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Time-dependent simulation of thermal lensing in high-power
broad-area semiconductor lasers

Anissa Zeghuzi, Hans-Jürgen Wünsche, Hans Wenzel, Mindaugas Radziunas, Jürgen Fuhrmann,
Andreas Klehr, Uwe Bandelow, Andrea Knigge

Abstract

We propose a physically realistic and yet numerically applicable thermal model to account
for short and long term self-heating within broad-area lasers. Although the temperature increase
is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can re-
sult in a transition from a gain-guided to an index-guided structure, leading to near and far field
narrowing. Under continuous wave operation the longitudinally varying temperature profile is ob-
tained self-consistently. The resulting unfavorable narrowing of the near field can be successfully
counteracted by etching trenches.

1 Introduction

Due to their small size and high efficiency broad-area (BA) lasers are important pump sources for
high-performance laser systems and also used for direct material processing. Tens of watts output
from single devices can be obtained. Accordingly, a large amount of heat is generated. Even be-
ing cooled, the interior temperature is increased with large impact on the laser operation. The most
prominent effect is the formation of a thermally induced waveguide, i.e. a substantial increase of the
refractive index in the hot center below the contact stripe (cf. Fig. 1) commonly referred to as thermal
lensing. This effect is well studied both experimentally [1] and theoretically [2, 3, 4] for continuous wave
(CW) operation assuming a stationary temperature distribution. It is usually neglected under pulsed
operation because thermal build-up times up to milliseconds are much longer than the pulse lengths.
However, the heat is generated near to the active layer in the same region where the guided wave
is localized. This region is small and its thermal build-up time is much shorter than that of the whole
device.

Short-time local heating can be expected to influence the optical pulse formation although time-
averaged heating is negligible. Theoretically, a time-dependent temperature has been considered in
early models as presented e.g. in Refs. [5, 6]. They concentrated on a sophisticated microscopic
description of the processes in the active layer. However, besides requiring enormous computer re-
sources even for nanosecond transients, they disregarded outer parts of devices, where a considerable
portion of the heat is generated. Heat flow was replaced by a simple local relaxation of temperature
towards an ambient temperature. These features prevent an application in device design.

In this paper we present and apply a new time-dependent quasi three-dimensional electro-optic-
thermal modeling of BA lasers. A description of the device structure and an experimental motivation
for the implementation of short-time heating are given in section 2. The electro-optical and thermal
models are introduced in sections 3 and 4, respectively. Exemplary laser operation with 10 ns long
pulses is simulated in section 5, revealing a fast-growing thermally induced waveguide initializing the
known stationary thermal lense. The application of the time-dependent approach to CW operation in
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section 6 yields strong spatio-temporal sub-ns fluctuations of the heat sources. However, they have a
negligible influence on the wave propagation, whereas the effects of the time-averaged londitudinally
varying temperature profile confirm those obtained with stationary temperatures in a previous publi-
cation [7]. It is shown how these effects can be tailored by appropriate lateral trenches. Furthermore
simulation results are validated by measurements. The paper is summarized in section 7.

2 Studied device structure and experimental motivation

The simulated device sketched in Fig. 1 is representative for high-power BA lasers. It has a cavity
length of L = 4 mm, a width of the contact stripe of W = 100µm, and rear and front facet power
reflectivities of R0 = 0.95 and RL = 0.01, respectively. The active layer consists of a 7 nm thick
single InGaAs quantum well (QW) embedded in p- and n-doped AlxGa1−xAs layers with thicknesses
d and Al mol fractions x chosen to eliminate carrier accumulation largely (n-cladding: d = 1.5µm,
x = 0.35, n-confinement: d = 2.54µm, x = 0.35 → 0.2, p-confinement: d = 0.25µm, x =
0.2→ 0.7, p-cladding: d = 0.63µm, x = 0.7, p-GaAs cap: d = 0.83µm). To provide lateral current
confinement the p-doped layers are implanted down to the vicinity of the active region, rendering these
areas highly resistive.

Experimental evidence of short time local heating is visible in Fig. 2 and can also be found in e.g. Ref.
[8]. The lateral aperture of the experimentally investigated laser in Fig. 2 is defined by an etched mesa
with a width of 100 µm. It is operated with a 25 ns long pulse and a low pulse repetition rate of 10 kHz
in order to exclude heating between the pulses. Details on the experimental setup can be found in [9].
After relaxation the center wavelength starts shifting to longer wavelength as a result of self-heating
in and around the active region. As a consequence, short-time local heating might become relevant.
These arguments hold particularly under short-pulse operation when hundreds of ampere flow during
only few nanoseconds with typically tens of microseconds rest period between the pulses.

3 Optical and electrical model

Our mathematical model is a hybrid combination of (A) a traveling-wave (TW) model in the (x, z)
plane, (B) a model of current flow in the (x, y) plane, and (C) a thermal model. In this section, (A)
and (B) are sketched only briefly (more details in Appendix A). We focus on their connection with the
thermal extension (C). For brevity, dependencies on time t and position (x, y, z) will be mentioned
only where important.

Figure 1: Sketches of a typ-
ical BA laser. (a) Domain of
the electro-optical simulation.
(b) Vertical-lateral cross sec-
tion of the thermal simulation
domain.
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Figure 2: Time evolution of the (a) emission spectra and (b) emitted optical power of a laser operated
with 25 ns long pulses at an injection current of 6.3 A and repetition rate of 10 kHz (measured with a
streak camera and averaged over 100 shots). The black line in (a) indicates a linear fit of the maximum
wavelength as function of time with the wavelength shift ∆λ/∆t = 50 pm/ns.

3.1 The (x, z) traveling wave model

In the semiclassical framework of rotating-wave, scalar, effective-index and paraxial approximations,
the transverse-electric optical field is represented by its electric x-component

E(~r, t) = A φ(y)
[
u+e−in̄k0z + u−ein̄k0z

]
eiωt + c.c. (1)

with A =
√
d~ω/(2ε0n̄ng) and k0 = 2π/λ0. λ0 = 910 nm, d = 7 nm, ~, ε0, ng = 3.87,

n̄ = 3.4, ω and c are the center wavelength, the thickness of the active region, the Planck constant,
the vacuum permittivity, the group refractive index, a real valued reference index, a reference angular
frequency and the vacuum speed of light, respectively. Supposing a well-designed vertical waveguide,
the normalized fundamental vertical mode φ(y) is calculated in advance for the cold cavity and re-
mains unchanged. The slowly varying complex amplitudes u±(x, z, t) obey a traveling wave equation
(TWE) coupled to a diffusion equation for the carrier density N(x, z, t) (sheet density divided by the
QW thickness)[

1

vg

∂

∂t
± ∂

∂z
+

i

2n̄k0

∂2

∂x2
+D

]
u± = −i∆β(N, T, ‖u‖2)u± + f±sp , (2)

∂N

∂t
=

∂

∂x

(
Deff(N)

∂N

∂x

)
+

j

ed
−R(N, ‖u‖2), (3)

with the injection current density j(x, z, t), the recombination rateR (see Appendix A), and the photon
density

‖u‖2 = |u+(x, z, t)|2 + |u−(x, z, t)|2. (4)

The group velocity is given by vg = c/ng. The amplitudes u± are coupled to each other by reflecting
boundary conditions at the facets. Periodic boundary conditions are assumed at the lateral boundaries
of the sufficiently broad simulation domain. The dispersion operator D, the spontaneous emission
contribution fsp, and the numerical treatment of the traveling wave equations are described in detail in
Ref. [10]. The complex propagation parameter (in excess of k0n̄)

∆β(N, T, ‖u‖2) = ∆βoe(N, ‖u‖2) + k0∆nT (T ) (5)
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is composed of an optoelectronic part given in Ref. [11] (cf. Appendix A) and a thermal contribution
k0∆nT . The real part of ∆β determines the effective index (in excess of n̄),

∆neff = Re(∆β)/k0, (6)

whereas its imaginary part is the net gain (see (A.1) in Appendix A). The linearized thermally induced
index shift

∆nT (T ) =

∫
n′T · (T − THS)|φ|2dy. (7)

with the heat-sink temperature THS and slope parameter n′T = 2.4 · 10−4 K−1 describes the thermal
impact on the lateral waveguiding. Note: it does not depend on the local temperature but only on
its vertical average, weighted with the mode profile |φ(y)|2. Hot carriers don’t contribute because
relaxation times are much shorter than life times or pulse lengths. Fermi distribution functions are
also calculated with the lattice temperature T , whereas the material parameters are kept temperature-
independent to distinguish thermal waveguiding effects from effects resulting from the dependence of
parameters on temperature.

The numerical integration of the TWE model is the computationally most expensive part of our nu-
merical modeling. For this reason, we exploit the software kit BALaser [12] which is based on the
split-step along the characteristics method for Eq. (3) and the finite difference approximations of Eq.
(2). To rapidly solve the discrete large scale problem (2000 × 800 spatial mesh corresponding to
∆x = 0.2µm and ∆z = 5µm lateral and longitudinal discretization steps), the numerical algorithm
was parallelized using the distributed-memory paradigm. As a consequence, instead of ∼ 3.5 hours
required for a simulation of ∼ 1.5 · 104 time iterations corresponding to 1 ns long transients of a typi-
cal BA laser using the single process on a single core of our server, we perform the same simulations
exploiting 30 processes of the multicore server in about 10 minutes. More details on the numerical
algorithm, its parallelization and efficiency can be found in Refs. [10, 13].

3.2 The (x, y) current flow model

Current spreading and current self-distribution in the p-doped layers play an important role in BA lasers
[11, 14]. They are also expected to have a large impact on the Joule heating, which is proportional to
the square of the current density,

~jp = σ∇ϕp (8)

with the electrical conductivity σ. The quasi-Fermi potential ϕp of the holes is determined by solving a
Laplace equation in the p-doped region [15, 14].

∇(σ∇ϕp) = 0 (9)

with the boundary conditions ϕp|y=ya = ϕF (N, T ), ϕp = U at the p-contact, and ∂
∂n
ϕp = 0

elsewhere, where ∂
∂n

is the normal derivative.U is the bias voltage and ϕF (N, T ) is the Fermi voltage
in the active layer, i.e. the separation between the quasi-Fermi potentials of holes and electrons. The
injection current density j(t, x, z) entering Eq. (3) is the y-component of ~jp at the upper boundary of
the active layer adjacent to the p-doped region. We note, that the application of the inhomogeneous
current spreading model with each time iteration causes about 50% slow-down of our calculations.
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4 Heat Model

The heat model calculates the heat generation using results of the opto-electronic model, solves the
heat-flow equation, and determines the thermal index contribution (7) acting on the wave propagation.

4.1 Heat generation model

Heat generation in a semiconductor laser is due to various relaxation processes with a wide span of
time scales [5, 6, 16]. Electrons, holes and phonons equilibrate to a common temperature T within
picoseconds or less, which is by orders of magnitude shorter than life times or pulse duration. Accord-
ingly, it is adequate to consider relaxation processes as instantaneous, characterized by the amount
h of energy per unit time and unit volume transferred to the thermalized system. In what follows we list
the heat sources of the model derived from corresponding expressions given in [17, 18].

The Joule heat is

hJ = j2
p/σ (10)

in the p-doped region and neglected in the n-doped region due to the very high electron conductivity
(in accordance with the current flow model).

The heat source due to absorption of stimulated emitted photons is given as

habs =


vg~ωdα0(y)n(y)

n̄
|φ(y)|2‖u(x, z, t)‖2

+(vg~ωd)2β2P(y)n(y)
n̄
|φ(y)|4‖u(x, z, t)‖4

for y /∈ active region,

vg~ωfNN‖u(x, z, t)‖2 for y ∈ active region

(11)

where n(y), α0(y) and β2P(y) denote the vertical distribution of the real part of the refractive index,
the absorption and the two-photon absorption coefficient, respectively. The first term in Eq. (11) ac-
counts for background absorption due to doping, the second term denotes two-photon absorption in
the cladding and confinement layers and the third term is due to free carrier absorption in the active
region. Note that for α0,eff and f2P entering the effective absorption coefficient of the traveling wave
equation (A.2), α0,eff =

∫
n(y)α0(y)/n̄|φ|2dy and f2P = ~ωvgda

∫
n(y)β2P(y)/n̄|φ|4dy must hold.

The third source term is recombination heat in the active region,

hrec = eϕF (N, T )(AN + ξBN2 + CN3) (12)

where ξ denotes the portion of absorbed spontaneous emission. By setting ξ = 1 we have assumed,
that all spontaneous emission is transferred into heat within the active region.

This is an overestimation because spontaneously emitted photons are reabsorbed anywhere in the
device or leave it. However, a detailed model is unnecessary because far above threshold this heat
contributes only to a small amount and the vertical distribution of heat sources only marginally influ-
ences the lateral temperature profile [19].

The last term taken into account denotes quantum defect heat generated in the active region as a
result of an incomplete energy transfer from the carrier reservoir to the radiation field and is given as

hdefect = (eϕF (N, T )− ~ω)Rstim(N, ‖u‖2). (13)
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Figure 3: Time averaged ab-
sorption, Joule, recombina-
tion and quantum defect heat
source densities as function of
the vertical y-direction for a
10 ns long 150 A current pulse
at the front facet in the middle
of the stripe.

There is additionally Thompson-Peltier heat [17, 18] generated by a current flow in the presence of
gradients of the Seebeck coefficients. However, any temperature gradients would act back on the
currents (Seebeck effect), resulting in a major alteration of the electric model. In this paper we set the
Seebeck coefficients to zero to keep consistency as the overall impact would be small if accounted for
(cf. Appendix B).

4.2 Modeling heat flow

Our model bases on the classical macroscopic heat-flow equation

ch
∂T

∂t
−∇ [κL∇T ] = h(N,~j, ‖u‖2), (14)

with the heat capacity ch and the heat conductivity κL (values taken from [20]). The heat source

h = hJ + habs + hrec + hdefect, (15)

consists of the individual heat sources given in Eqs. (10) - (13). The boundary conditions are

κL
∂
∂n
T = −(T − THS)/rth for (x, y, z) ∈ heat sink

∂
∂n
T = 0 for (x, y, z) ∈ other outer bounds

(16)

where rth = 8.33 · 10−6 Km2W−1 is the inverse heat transfer coefficient. Here and in what follows, T
is the absolute temperature and THS = 300 K the temperature of the heat sink, which also serves as
reference for parameter values. The arguments of h on the right hand side of Eq. (14) symbolize that
the heat source power density h depends on the carrier density, current density, and field intensity dis-
tributions in the laser, which result from the opto-electronic model. Reversely, T acts back on the wave
propagation mainly via the thermally induced effective index (7). In addition, T implicitly influences
the gain, distribution functions, and the diffusion as well as recombination terms in Eq. (3). Explicit
thermal changes are only considered in the Fermi function under CW operation. Thermal changes of
parameters are disregarded in order to separate those from thermal waveguiding effects.

4.2.1 The no-heat-flow (NHF) approximation

It is unreasonable to solve the heat-flow equation (14) over tens of microseconds with the sub-ps
temporal resolution of the opto-electronic model in the large spatial domain sketched in Fig. 1(b).
Fortunately, the following inherent traits of heat generation and conduction enable us to simplify the
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problem considerably. During a given time τ , heat generated at a certain position flows only into a
finite region of size l which is related to τ by the inverse thermal diffusivity (see also Appendix C)

τ

l2
≈ ch
κL
≈ 105 s/m2 ≈ 1 ns

(100 nm)2
. (17)

During a 1 ns simulation interval, the generated heat is spread by only about 100 nm. Thus, transverse
heat flow is certainly negligible because this distance is much smaller than transverse inhomogeneities
of the heat source density (Fig. 10). Furthermore, this small-distance redistribution of heat does only
marginally affect the thermally induced (effective) index (7), which is a vertical average with the weight
function |φ(y)|2 having a much wider spread. It is this index but not the local temperature, which
determines the thermal contribution to lateral waveguiding. Heat flow is therefore negligible when
simulating wave guiding during short transients. Differentiating (7) with respect to time and inserting
(14) with κL = 0, we find the ordinary differential equation

∂∆nT
∂t

=

∫
n′T
ch
|φ(y)|2h(N,~j, ‖u‖2)dy (18)

for the thermally induced index. At a given instant t, the actual distribution of local heat sources has
to be inserted here. Accordingly, this is one equation for the temporal variation of ∆nT in each point
(x, z) of the lateral-longitudinal plane. It is integrated much easier in each node of the spatial grid than
the original partial differential heat-flow equation (14). The price to pay is no information about the true
temperature profile, see the discussion at the end of section 5. Therefore, all parameters of the model
including occupation probabilities are derived for the heat-sink temperature T = THS. This limits the
NHF approximation to short pulses.

4.2.2 Treatment of CW operation

The extremely long thermal build-up in the case of CW operation cannot be calculated with the NHF
approximation. But in the later quasi-steady state, the rate of heat generation can be decomposed in
a time-constant mean contribution h̄ and a contribution hfluct = h− h̄ fluctuating around zero. h is the
total instantaneous heat production (15). Accordingly, the heat-flow equation (14) is split into

0 = ∇κL∇T̄ + h̄ and (19)

ch
∂Tfluct

∂t
= ∇κL∇Tfluct + hfluct (20)

with boundary conditions following from (16) and T̄ denoting time-averaged temperature. Obviously,
the sum of the two temperatures obeys the full heat-flow equation (14).

The time scale of the fluctuations h− h̄ is typically in the sub-ns range. Thus, Eq. (20) is solved with
the NHF approximation (18) along a few-ns-long simulation interval. Treating the stationary Eq. (19)
is more challenging because heat flow dominates and, in general, it must be solved in the full 3-D
domain including submout and substrate. In our study, however, we neglect the longitudinal heat flow
component and solve the static problem (19) within multiple (L/∆z = 800 in our case) lateral-vertical
(x-y) cross sections, see Fig. 1(b). Furthermore, the mean heat production h̄(x, y, z) as a function of
the coordinates is not known in advance. Therefore, we apply an iterative approach. In the first step
of the iteration the electro-optic model is solved under isothermal conditions with T = THS. During
this run, we set h̄ = 0. In all following iterations, h̄ is taken as the temporal average of the total
heat production of the last part of the iteration before and the fluctuating part inserted into (18) is
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hfluct = h− h̄. A detailed description of the numerical implementation is given in Ref. [21]. In our work,
we were using 10 iterations, each determined by a 8 ns transient simulation of the TWE model and a
solution of the static problem (19) which takes around 4 min of CPU time in our case. The iterations of
the thermally induced index ∆nT (T̄ ), eq. (7), always converged rapidly within less than four iterations.
Thereafter they fluctuated weakly around a constant level, which we interpreted as convergence. The
fluctuations are consequence of the chaotic spatio-temporal dynamics.

5 Application I: Short-pulse operation

First we exemplary study an 10 ns long pulse by applying the NHF approximation at an injection
current of 150 A, given by the total electric charge injected into the laser divided by the pulse length.
High pulse powers with short pulse duration are for example utilized in light detection and ranging
systems [22].

Figure 4: Thermal index gen-
eration rate of equation (18)
during the last 200 ps of a
10 ns long 150 A current pulse
transient.

The bias voltage U is instantaneously turned on and kept constant until it is switched of. After the turn
on period, the thermal index generation rate under the stripe (Eq. (18)) is non-negative and strongly
fluctuating around a mean value of about 50 ms−1 as shown in Fig. 4. Thus, the refractive index grows
like a staircase. The individual steps, however, are typically only ps short and raise the index by less
than 10−7, so that their presence does not have an impact on the wave propagation.

Figure 5: Thermal impact on
waveguiding for a 10 ns long
150 A current pulse transient.
(a) Effective index ∆neff =
∆nN + ∆nT below (x =
0µm) and beside the stripe
(x = 60µm) at rear and front
facet, respectively. ∆nT and
∆nN are also shown sepa-
rately for x = 0µm. (b) Evo-
lution of the near field widths
(both facets) and far field width
(front facet only), averaged
over 1 ns (95% power con-
tent). Shadings: Time intervals
used in the representations of
Fig. 6.

The effective index rises below the stripe (black solid in Fig. 5(a)) due to the rising thermal contribution,
whereas it remains approximately unchanged outside (black dashed). In this process, the index step
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from outside to inside the stripe δ∆neff = ∆neff(x = 0µm)−∆neff(x = 60µm) rises from negative
values immediately after turn on to positive values at the pulse end. At the time of transition, Fig. 6(a)
shows the lateral profiles of ∆nN and ∆nT together for comparison, averaged over 1 ns. Here the
effective index step δ∆neff from outside to inside the stripe nearly vanishes, whereas at the pulse end
it is clearly positive forming a lateral waveguide as displayed in Fig. 6(b). In panels (c) and (d), the near
field intensity, which is the forward propagating optical field intensity behind the front facet, and the far
field intensity obtained from a Fourier transformation of the complex near fields, averaged over 1 ns,
are shown. The disappearance of side wings in the near field and a change of the far field intensity
are visible.

Figure 6: Thermal impact on
waveguiding for a 10 ns long
150 A current pulse averaged
over the pulse within the time
interval 1 to 2 ns and 9 to
10 ns (gray shaded in Fig. 5(a)
and (c)). (a) & (b) Lateral pro-
files of the effective index. (c)
Near and (d) far field intensi-
ties at the front facet.

In laser structures with nonpositive index steps, lateral optical confinement results from the optical
gain and accordingly this regime is usually called gain guided or anti-index guided. Operation regimes
with positive index steps do not require the gain for optical confinement and are referred to as index
guided. Thus, Fig. 5(a) indicates a transition from gain guiding to index guiding during the pulse. Such
a transition has been reported already in [23] explaining long delay times for lasing of narrow-stripe
lasers. Fig. 5(b) reveals that this transition is accompanied by a shrinking of both widths w0 and
Θ of the lateral near respective far fields, which improves the beam quality. Due to the longitudinal
inhomogeneity, the transition happens at a later time near the rear facet, panel (a). It manifests itself in
a narrower near field width at the rear facet at the pulse beginning due to stronger anti-guiding, panel
(b).

Figure 7: (a) Mean pulse power and
(b) front facet near field width (black
left axis) and far field angle (red
right axis) containing 95 % of the
power as function of mean pulse
current for 10 ns long pulses with
(n′T = 2.4 · 10−4 K−1 - solid) and
without (n′T = 0 K−1 - dashed) ther-
mal waveguiding, respectively.
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A. Zeghuzi et al. 10

The described formation of an initial thermally induced waveguide is also detectable in the dependence
of time-averaged quantities on the pulse amplitude. Fig. 7(b) shows a shrinking of the near field width
and increased far field angle with increasing injection current (solid curve), compared to the case
without thermal waveguiding (dashed). The mean pulse power, given by the total pulse energy divided
by the pulse length, as function of pulse current, in contrast, shows no dependence on waveguiding
for currents up to 150 A as shown in Fig. 7(a). Note, that the neglected changes of parameters with
temperature might have an additional influence.

The preceding results have been obtained neglecting heat flow. In order to check the validity of this
approximation, we have performed the following post processing. We solve the full heat-flow Eq. (14)
where the fluctuating heat source density h at each position is replaced by its average along the whole
pulse. Moreover, we are disregarding heat flow in the (x, z)-plane and assume a vertically infinite
domain with homogeneous material. This is justified because the extensions of lateral and longitudinal
inhomogeneities in the heat source densities of the order of tens respective hundreds of micrometers
(cf. Fig. 10) as well as the vertical size of the device are much larger than the expected heat spreading
in the range of some hundred nanometers.

Under these conditions, the solution is (cf. Appendix C)

T (y, t) =
1

√
chκL

∫ ∞
−∞

dξ h(y + ξ)
√
t w

(
chξ

2

4κLt

)
, (21)

with w(q) =

{
√
q [erf(

√
q)− 1] +

1√
π
e−q
}
.

Figure 8: Impact of vertical heat flow for a 10 ns long 150 A current pulse. In all cases h is averaged
over the pulse. (a) Black left axis: Vertical temperature profiles at the end of the 10 ns pulse (at front
facet in the middle of the stripe). Black solid (HF): with heat flow, derived from Eq. (21). Black dashed
(NHF): without heat flow. Red right axis: intensity profile of the vertical mode. (b) Thermally induced
index (7) at the same position versus time. Black solid (HF): calculated from eq. (7) with T (y, t) from
eq. (21). Black dashed (NHF): without heat flow, calculated from eq. (18).

With increasing time, this function deviates more and more from the temperature increase h(y)t with-
out heat flow. Fig. 8(a) shows the situation in the stripe middle and at the pulse end. Here the vertical
distribution of the temperature increase is displayed on the left axis. Heat flow reduces the excess
temperature in the active layer from 60 K down to 5 K and smoothes the distribution considerably
(solid line compared to dashed line). However, to derive the thermally induced index according to (7)
the temperature profile has to be weighted with the intensity profile of the vertical mode |φ(y)|2 shown
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in Fig. 8(a) on the right axis. Thus, irrespective of the large temperature differences obtained with and
without heat flow, the thermally induced index differs only marginally between the two cases, Fig. 8(b).

One could think that the NHF approximation works nicely only for the special vertical mode profile
shown in Fig. 8(a). However this is not the case; the profile belongs to a real-world high-power laser
structure. The vertical intensity profiles of such lasers have to be wide to avoid facet damage and
generally have a width of about one µm. The analysis presented here is actually already performed
for an extremely asymmetric structure with a small overlap of the mode with the active region and the
p-layers. For more symmetric structures the approximation works even better.

We will now come back to the experimental Fig. 2 in order to evaluate the model for short-pulse
operation. The maximum wavelength shift there is ∆λ/∆t = 50 pm/ns. With ∆λ/∆T = 0.33 nm/K
known from independent measurements, this corresponds to a temperature increase of T = 1.5 K
in and around the active region for a 10 ns long 6.3 A current pulse. For 6.3 A the simulation yields
temperature increases inside the active region of TNHF = 4.1 K and THF = 0.1 K without and with
vertical heatflow, respectively. Since the experimental value is below TNHF but by a factor 15 larger than
our best estimate THF and the used parameter values are known with significantly better precision,
this suggests that the heat flow near the active region is inhibited by a mechanism not contained in
the model. After estimating different possibilities, we regard the thermal boundary resistance (TBR)
[24] of interfaces as the most probable one. Depending on the number of hetero-interfaces it could
increase the temperature of the active region by some fractions of Kelvin [25]. Although the cause of
inhibited heat transport remains unclear and is subject to further studies, it implies that the no-heat-
flow approximation is even more realistic than expected.

6 Application II: CW operation

Whereas under pulsed operation the thermally induced waveguide is growing with increased time of
excitation, under CW operation it approaches a steady state as discussed in section 4.2.2. Additionally
to the much larger magnitude, under CW operation the effective index step below and beside the
injection stripe, δ∆neff = ∆neff(x = 0µm) − ∆neff(x = 60µm), is a function of the longitudinal
coordinate accompanied by a corresponding variation of the width of the lateral field intensity [7], too.
This is exemplary displayed in Figs. 9(a) and (b) for a total injection current of I ≈ 19.5 A and power
at the output facet of Pout ≈ 19 W for the same structure discussed in the previous sections.

Figure 9: CW operation for I ≈ 19.5 A and Pout ≈ 19 W. Time-averaged longitudinal evolution of (a)
the effective index step below and beside the injection stripe, δ∆neff = ∆neff(x = 0µm)−∆neff(x =
60µm) and (b) the width (95% power content) of the lateral field intensity.

The high asymmetry in the facet reflectivities gives rise to a strong z-dependence of the field intensity
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and hence carrier density and Fermi potential due to longitudinal spatial holeburning [26]. This results
in a z-dependence of all heat sources as displayed in Fig. 10. At this point of operation Joule and
absorption heating have the highest fraction of the total heat production (QJoule = 4.0 W and Qabs =
3.9 W compared to Qrec = 2.0 W and Qdefect = 1 W) and as a result the temperature is higher at the
front facet compared to the rear facet, Fig. 11(a).

Figure 10: CW operation for
I ≈ 19.5 A and Pout ≈
19 W. Distribution of the time-
averaged (a) absorption, (b)
Joule, (c) recombination, and
(d) quantum defect surface
heat source densities H =∫
hdy as function of lat-

eral and longitudinal (x, z)-
coordinate.

At every time instance the field intensity distribution within the laser shows a fractured structure with
small intensity peaks of longitudinal and lateral extent in the range of some micrometers, here exem-
plary shown for the forward propagating field u+ in Fig. 11(c). The resulting highly dynamic behavior,
which is inherent to broad-area lasers, is predicted by other simulation tools and has been experimen-
tally verified [9, 27]. Spatial and temporal fluctuations of all heat source terms are the result. However,
the fluctuating contribution to thermal waveguiding ∆nT,fluct derived from Eq. (18) with hfluct = h − h̄
has a negligible influence on the results and can be disregarded under CW operation.
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Figure 11: CW operation for
I ≈ 19.5 A and Pout ≈ 19 W.
(a) Time averaged tempera-
ture, (b) time averaged field in-
tensity and (c) forward field in-
tensity distribution at last time
instance for the laser without
(left) and with (right) trenches.
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The temperature induced longitudinally varying index profile resulting in a narrowed optical field at the
front facet is unfavorable, firstly because of the carrier accumulation at the stripe edges (visible in the
gain profile in Fig. 12(a) and secondly because the enhanced power density lowers the threshold for
facet damage.

Figure 12: CW operation for I ≈
19.5 A and Pout ≈ 19 W.
Lateral profiles of the time av-
eraged effective index and net
gain at the front and rear facet
for (a) & (c) the laser with-
out and (b) & (d) with trenches.
The non-solid black lines indi-
cate the contributions due to
etched index trenches (dashed
line, ∆n0), temperature (dash-
dotted line, ∆nT ) and carrier
density (dotted line, ∆nN ).

To provide a temperature and carrier density independent lateral optical confinement, deep trenches
filled with an insulator can be etched directly next to the injection stripe. Then the term ∆n0(x) in
(A.1) is negative at the trench position, see the black dashed line in the lateral profiles of the effective
index in Figs. 12(b) and (d), where ∆n0 = −1.15 · 10−3 for |x| ∈ [55 : 50]µm. A comparison
of the laser operation with and without trenches reveals, that although the temperature distribution
remains largely unchanged, Fig. 11(a), the near field narrowing can be successfully counteracted by
etching trenches, Fig. 11(b). Although the effective index is smaller at the rear compared to the front
facet, the lateral effective index profile is stabilized by the trenches, Fig. 12(b) and (d). Accordingly
also the gain function is laterally stabilized and remains box-shaped throughout the device with only
small side peaks at the front facet. In contrast to this, the lateral gain and index profiles of the laser
without trenches differ at the rear and front facet, Figs. 12(a) and (c).

Figure 13: CW operation for
I ≈ 19.5 A and Pout ≈ 19 W.
(a) Near and (b) far field inten-
sities of the laser without and
with trenches.

The drawback of a laser design with etched trenches is a decreased beam quality, which is proportional
to the widths of near and far field. In Fig. 13(a) it is visible that the lateral width of the emitted field
is broadened to the width of the injection stripe. However, the profile of the far field remains nearly
unchanged, see Fig. 13(b), and thus the beam quality is decreased. To suggest a reasonable design,
it is necessary to counterbalance beam quality against efficiency and reliability.

Finally we compare our simulations with experimental results of a laser with a stripe width of W =
90µm, a cavity length of L = 6 mm and index trenches etched at |x| ∈ [50 : 45]µm (∆n0 =
3 ·10−3). The measured and simulated power-current characteristics plotted in Fig. 14(a) show a good
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Figure 14: Measured and sim-
ulated (a) power-current char-
acteristics, (b) near and (c) far
fields for a laser with etched
index trenches (∆n0 = 3 ·
10−3).

agreement. The widths of the near fields (Fig. 14(b)) remain almost constant if the current is increased
from 2 A to 10 A as predicted in the preceding paragraph. Both the simulated and measured far fields
(Fig. 14(c)) broaden with current. Although the overall behavior is correctly described by our simulation
tool, the discrepancies concerning the multi-peaked structures of the fields necessitate further studies.

7 Conclusion and Outlook

We propose a physically realistic and yet numerically applicable thermal model to account for slow
and fast temperature contributions in the time-dependent simulation of broad-area lasers. Although
the temperature increase is small under pulsed operation, a waveguide that is introduced within a
few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading
to a near field narrowing. Heat flow is shown to have a marginal influence on this result. Comparing
temperatures of the active zone calculated by the bulk heat-flow equations with measured ones, we
find indications of an inhibition of heat flow by the possible thermal boundary resistance of hetero
interfaces. For further improving the simulation model regarding pulsed applications it is therefore
desirable to solve the time-dependent heat equation within a small vicinity of the active region≈ 1µm
in vertical direction taking into account this boundary effect. Under continuous wave operation and
for a laser with asymmetric facet reflectivities, the longitudinally varying temperature profile generated
by unequal distributions of absorption and Joule heating at the facets is gained self-consistently. The
resulting narrowing of the near field can be successfully counteracted by etching trenches.
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Appendices

A Electro-optic parameters

Important properties of the optoelectronic model are given here, for more details see Ref. [11]. The
optoelectronic part of the propagation parameter in Eq. (5),

∆βoe(N, ‖u‖2) = k0∆n0(x, z) + k0∆nN(N) +
i

2

[
geff(N, ‖u‖2)− αeff(N)

]
, (A.1)

comprises built-in modifications of the effective index ∆n0 due to optionally etched trenches, carrier
density N induced index contributions ∆nN = −

√
n′NN . Furthermore it comprises gain geff =

g′ ln(N/Ntr)/(1 + εs‖u‖2) and losses

αeff = α0,eff + fNN + f2p(‖u‖2 + |u∓|), (A.2)

where n′N = 4.4 · 10−32 m3, g′ = 1655 m−1, Ntr = 1.7 · 1024 m−3, εs = 6.6 · 10−26 m3,
α0,eff = 47 m−1, fN = 1.1 ·10−23 m2, f2p = 1.2 ·10−23 m2 are the differential modal effective index,
the differential modal gain, the transparency carrier density (obtained from a microscopic gain model
[28] taking into account the QW confinement factor Γ = 6.6 · 10−3 of the vertical mode), the gain
compression factor (originating from a value of about 10−23 m3, cf. [18], before multiplying with Γ),
background absorption (free carrier absorption with cross sections of 4 · 10−22 m2 for n-doped layers,
12 · 10−22 m2 for p-doped layers [29]), the modal cross section for free-carrier absorption in the active
region (obtained by fitting the slope of the power-current characteristics, corresponds to a total cross
section of 16 · 10−22 m2), and the modal two-photon absorption coefficient (originating from a typical
value of β = 14 cm/GW, cf. [18], in the confinement and cladding layers properly weighted by the
vertical mode profile), respectively. The dispersion operator,

Du± =
gr
2

(u± − p±),
∂p±

∂t
= γ(u± − p±) + iδωp±, (A.3)

couples the TWE (2) to ordinary differential equations for the complex slowly varying amplitudes of the
polarization fields p± [30]. This approximates the dispersion of the gain with a Lorentzian of amplitude
gr, half width at half maximum γ, and relative central frequency δω. The recombination rate,

R(N, ‖u‖2) = AN +BN2 + CN3 +Rstim(N, ‖u‖2) (A.4)

includes non-radiative and spontaneous radiative recombination with the coefficients for A = 5 ·
108 s−1 (obtained by fitting the threshold current),B = 1·10−16 m3s−1 [20], andC = 4·10−42 m6s−1

[20] and the stimulated recombination Rstim(N, ‖u‖2) = vgRe
∑

ν=± u
ν∗[guν − gr(uν − pν)].

B Thermoelectric effects

In this model vanishing Seebeck coefficients are assumed to avoid major alterations of the electric
model and to maintain consistency at the same time. Furthermore in this way the heat equations are
also valid in the non-Boltzmann case.

The price we pay is small: In the electronic model a feedback of temperature on the current (See-
beck effect), is neglected. However, as current conservation and charge neutrality must hold, this only
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means slightly altered voltage gradients at hetero-boundaries and has no influence on the laser op-
eration. In the heat models of [17, 18] due to non-vanishing Seebeck coefficients an extra term, the
Thompson-Peltier heat source density, is considered. The main contribution of this heat term is gener-
ated near the active region, where current is injected into the QW passing a potential gradient from the
free Fermi potential ϕF to the potential of bound states of the QW. In our model, this heat contribution
is already accounted for in the defect heat term of Eq. (13) and the rest heat that is generated in the
p- and n-layers is negligible.

C Solving the 1D Heat Flow Equation

Assuming constant ch and κL, the one-dimensional Eq. (14) transforms to the standard heat equation

∂T

∂t′
− ∂2T

∂y′2
= h(κLy

′, cht
′) (C.1)

by the substitutions t = cht
′, y =

√
κLy

′. For initially T = 0, the solution is [31]

T (y′, t′) =

∫ ∞
−∞

dξ′
∫ t′

0

ds′h(
√
κLξ

′, chs
′)H(y′ − ξ′, t′ − s′) (C.2)

with the fundamental solution

H(∆y′,∆t′) = (4π∆t′)−1/2 exp

{
−∆y′2

4∆t′

}
. (C.3)

H is normalized to unity for any ∆t′ > 0. It drops rapidly down beyond the radius ∆y′2 = ∆t′. With
dimensions, this yields relation (17) for the ratio between elapsed time and radius of the spreading
heat sphere. If the heat source h is time independent, the temporal integral in (C.2) can be performed
analytically, yielding

T (y′, t′) =
√
t′
∫ ∞
−∞

dξ′ h(
√
κL(y′ + ξ′))w

(
ξ′2

4t′

)
. (C.4)

Resubstituting t′ = t/ch, y
′ = y/

√
κL and ξ′ = ξ/

√
κL, we arrive at formula (21), where also w(q)

is given.
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