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Lower large deviations for geometric functionals
Christian Hirsch, Benedikt Jahnel, András Tóbiás

Abstract

This work develops a methodology for analyzing large-deviation lower tails associated with
geometric functionals computed on a homogeneous Poisson point process. The technique applies
to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity
properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes
of Poisson–Voronoi cells, as well as power-weighted edge lengths in the random geometric, k-
nearest neighbor and relative neighborhood graph.
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1 Introduction and main results

Considering the field of random graphs, there is a subtle difference in the understanding between
upper and lower tails in a large-deviation regime. For instance, when considering the triangle count
in the Erdős–Rényi graph, the probability of observing atypically few triangles is described accurately
via very general Poisson-approximation results [Jan90, JW16]. On the other hand, the probability of
having too many triangles requires a substantially more specialized and refined analysis [Cha12].

This begs the question whether a similar dichotomy also arises in the large-deviation analysis of
functionals that are of geometric rather than combinatorial nature. For instance, Figure 1.1 shows a
typical realization of the random geometric graph in comparison to a realization with an atypically
small number of edges. In geometric probability, elaborate results are available for large and moderate
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Ch. Hirsch, B. Jahnel, A. Tóbiás 2

deviations of geometric functionals exhibiting a similar behavior in the upper and the lower tails [SY01,
SY05, ERS15]. However, they prominently do not cover the edge count in the random geometric graph,
whose upper tails have been understood only recently [CH14].

Figure 1.1: Typical realization of the random geometric graph (left) next to a realization having fewer
than 75% of the expected number of edges (right).

In the present work, we provide three general results, Theorems 1.1, 1.2 and 1.3, tailored to studying
large-deviation lower tails of geometric functionals. For the proofs, we resort to a method inspired
by the idea of sprinkling [ACC+83]. We perform small changes in those parts of the domain where
the underlying point process exhibits highly pathological configurations. After this procedure, we can
compare the resulting functionals to approximations that are then amenable to the point-process based
large-deviation theory from [GZ93] or [SY01, SY05]. Among the examples covered by our method are
clique counts in the random geometric graph, inner volumes of Poisson–Voronoi cells and power-
weighted edge lengths in the random geometric, k-nearest neighbor and relative neighborhood graph.

In the rest of this section, we set up the notation and state the main results. Then, Section 2 illustrates
those results through the examples. Finally, Section 3 contains the proofs.

We study functionals on a homogeneous Poisson point process X = {Xi}i≥1 ⊂ Rd with intensity 1,
whose distribution on the space N of locally-finite configurations will be denoted by P. Following the
framework of [SY01], these functionals are realized as averages of scores associated to the points of
X . More precisely, a score function

ξ : Rd ×N→ [0,∞)

is any bounded measurable function. To simplify notation, we shift the coordinate system to the con-
sidered point and write ξ(X − Xi) = ξ(Xi, X). In this notation ϕ 7→ ξ(ϕ) acts on configurations
ϕ ∈ No, the family of locally-finite point configurations with a distinguished node at the origin o ∈ Rd.

We then consider lower tails of functionals of the form

Hn = Hξ
n(X) =

1

nd

∑
Xi∈X∩Qn

ξ(X −Xi), (1.1)
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Lower large deviations for geometric functionals 3

i.e., averages of the score function over all points in the boxQn = [−n/2, n/2]d of side length n ≥ 1
centered at the origin.

In a first step, we derive upper bounds for the lower tail probabilities. To that end, we work with ap-
proximating score functions ξr that are r-dependent for some r > 0. That is, ξr(ϕ) = ξr(ϕ ∩ Br)
for every ϕ ∈ No, where Br denotes the Euclidean ball of radius r centered at the origin.

To state the main results, we resort to the entropy-based formulation of the large-deviation rate func-
tion. We write

h(Q) = lim
n↑∞

1

nd

∫
dQn log

dQn

dPn
for the specific relative entropy of a stationary point process Q, where Qn and Pn denote the re-
strictions of Q and P to the box Qn, respectively. If Qn is not absolutely continuous with respect to
the restricted Poisson point process, we adhere to the convention that the above integral is infinite.
Further, Qo[ξ] is the expectation of ξ with respect to the Palm version Qo of Q, see [GZ93] for details.
Here is our first main theorem.

Theorem 1.1 (Upper bound). Let a > 0 and assume the score function ξ to be the pointwise increas-
ing limit of a family {ξr}r≥1 of r-dependent score functions. Then,

lim sup
n↑∞

1

nd
logP(Hn ≤ a) ≤ − inf

Q:Qo[ξ]≤a
h(Q). (1.2)

For the lower bound, we give two sets of conditions. The first deals with score functions ξ that are
increasing in the sense that ξ(ϕ) ≤ ξ(ψ) for every ϕ ⊂ ψ. This applies for instance to clique counts
and power-weighted edge lengths in the random geometric graph.

Theorem 1.2 (Lower bound for bounded-range scores). Let a > 0 and assume the score function ξ
to be increasing and r-dependent for some r > 0. Moreover, assume that for every b > 0 there exists
M =M(b) > 0 such that ξ(ϕ) ≤M whenever #ϕ < b. Then,

lim inf
n↑∞

1

nd
logP(Hn < a) ≥ − inf

Q:Qo[ξ]<a
h(Q). (1.3)

However, many score functions are neither r-dependent nor increasing, or not even monotone. A prime
example is the sum of power-weighted edge lengths in the k-nearest neighbor graph, see Section 2.
Still, this example and many other score functions are stabilizing, R-bounded and weakly decreasing
in the following sense.

First, a score function ξ is stabilizing if there exists a Po-almost surely finite measurable stabilization
radius R : No → [0,∞], such that {R(X) ≤ r} is measurable with respect to X ∩ Br for every
r ≥ 0 and

Po
(
ξ(X) = ξ(X ∩BR(X))

)
= 1.

In words, ξ(X) does not depend on the configuration outside the ball BR(X). We call R decreasing if
R(ϕ ∪ {x}) ≤ R(ϕ) for all ϕ ∈ No and x ∈ Rd.

Second, ξ is R-bounded if for every δ > 0 and sufficiently large M =M(δ) ≥ 1,

Po
(
{R(X) ≤M} ∩ {ξ(X) ≥ δMd}

)
= 0.

Loosely speaking, the score function is negligible compared to the dth power of the stabilization radius.
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Third, ξ is weakly decreasing if

P
(
#{y ∈ X : ξ(X ∪ {o} − y) > ξ(X − y)} ≤ k

)
= 1

holds for some k ≥ 1. In words, for all but at most k points of a configuration, adding a new point to
the configuration decreases the score function value of the point.

Finally, we need to ensure that sprinkling a sparse configuration of Poisson points yields control on
the stabilization radii of the points in a box. More precisely, we assume that the stabilization radius is
regular in the following sense. Let X+,M denote a Poisson point process with intensity M−d that is
independent of X . Then, we assume that there exists K0 > 0 with the following property. For every
δ > 0 there exist M0 =M0(δ) ≥ 1 and n0 = n0(δ) ≥ 1 such that for all M ≥M0 and n ≥ n0,

P
(
{X+,M(Qn) ≤ K0(n/M)d} ∩ EM,+

n |X
)
≥ exp(−δnd)

holds almost surely. Here, for ϕ ∈ N and any measurable subset A ⊂ Rd, we write ϕ(A) = #{x ∈
ϕ : x ∈ A} for the number of points of ϕ contained in A, and

EM,+
n = max

Xi∈(X∪X+,M )∩Qn
R
(
(X ∪X+,M)−Xi

)
≤M

denotes the event that after the sprinkling, the stabilization radii of all points in Qn are at most M .
Here is the corresponding main result.

Theorem 1.3 (Lower bound for stabilizing scores). Let a > 0 and ξ be a weakly-decreasing R-
bounded score function with a decreasing and regular radius of stabilization. Then, (1.3) remains true.

2 Examples

In this section, we discuss how to apply the results announced in Section 1 to a variety of examples
arising in geometric probability. More precisely, Sections 2.1, 2.2 and 2.3 are devoted to characteris-
tics for the random geometric graph, the Voronoi tessellation, k-nearest neighbor graphs and relative
neighborhood graphs, respectively.

2.1 Clique counts and power-weighted edge lengths in random geometric
graphs

As a first simple application of our results, consider the set

Ck(ϕ) = Ck,t(ϕ) =
{
{x1, . . . , xk} ⊂ ϕ : x1 = o and |xi − xj| < t for all i 6= j

}
of k-cliques associated to the origin in the geometric graph on ϕ ∈ No with connectivity radius t > 0.
Then, for k ≥ 2 and α ≥ 0, the score functions

ξk(ϕ) =
1

k
#Ck(ϕ) and ξ′α(ϕ) =

1

2

∑
x∈ϕ : |x|<t

|x|α

count the number of k-cliques containing the origin and the power-weighted edge lengths at the ori-
gin, respectively. Note that ξk and ξ′α are t-dependent and increasing. Additionally, if #ϕ < b, then
ξk(ϕ) ≤ k−1bk−1 and ξ′α(ϕ) ≤ tαb. Hence Theorems 1.1 and 1.2 are applicable.
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Lower large deviations for geometric functionals 5

Further examples arise in the context of topological data analysis. More precisely, the number of
k-cliques containing the origin is precisely the number of k-simplices of the Vietoris–Rips complex
containing the origin. Similar arguments also apply to the Čech complex, the second central simplicial
complex in topological data analysis. We refer the reader to [BCY18, Section 2.5] for precise definitions
and further properties.

2.2 Intrinsic volumes of Voronoi cells

Recall the definition of the Voronoi cell at the origin of a locally-finite configuration ϕ ∈ No, i.e.,

Co(ϕ) = {x ∈ Rd : |x| ≤ inf
y∈ϕ
|x− y|}.

Recall that since Co(ϕ) is a convex body, its intrinsic volumes v0(Co), v1(Co), . . . , vd(Co) can be
computed. They are key characteristics of a convex set, e.g., v1, vd−1 and vd are proportional to the
mean width, the surface area and the volume, respectively. We refer the reader to [SW08, Section
14.2] for a precise definition and further properties. In particular, considering v1 in dimension d = 2,
the associated characteristic ndHn becomes the total edge length of the Voronoi graph, so that we
obtain a link to the setting studied in [SY05, Section 2.4.1]. Due to the intricate geometry, deriving a full
large deviation principle even for a strictly concave function of the edge length was only achieved for a
Poisson point process that is restricted to a lattice instead of living in the entire Euclidean space. This
example illustrates that even in situations where understanding the large-deviation upper tails requires
a delicate geometric analysis, the lower tails may be more accessible.

More precisely, consider the score functions

ξk(ϕ) = vk(Co(ϕ))

and note that ξrk(ϕ) = vk
(
Co(ϕ) ∩ Br

)
is a 4r-dependent, pointwise increasing approximation of

ξk(ϕ). Hence, the upper bound of Theorem 1.1 applies.

For the lower bound, the conditions of Theorem 1.3 can be satisfied using the following definitions. The
radius of stabilization is described in [Pen07, Section 6.3]: Take any collection {Si}i∈I of cones with
apex at the origin and angular radius π/12 whose union covers Rd, where I = I(d) ∈ N. Let S+

i

denote the cone that has the same apex and symmetry hyperplane as Si and has the larger angular
radius π/6. Then, we define the stabilization radius

R(ϕ) = 2max
i∈I

min
x∈ϕ∩S+

i

|x|, (2.1)

as twice the radius at which the origin has a neighbor in every extended cone. In particular, both R
and ξk are decreasing. Since Co(ϕ) ⊂ BR(ϕ), we deduce that

ξk(ϕ) ≤ vk(BR(ϕ)) = R(ϕ)kvk(B1).

In particular, ξk is R-bounded for k < d. Finally, we define for a suitable constant L = L(d) ≥ 1 the
event

AMn = {X+,M(QM/L(z)) = 1 for all z ∈ (M/L)Zd ∩Q2n} (2.2)

that X+,M has precisely one point in each sub-box from an M/L-partition of the box Q2n. It follows
from the definition of R that the event EM,+

n occurs whenever AMn occurs, provided that L is chosen
sufficiently large. Moreover, setting K0 = (2L)d, we deduce that X+,M(Qn) ≤ K0(n/M)d under
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AMn . Hence, it remains to establish the asserted lower bound on the probability P(AMn ). Fixing δ > 0
and invoking the independence property of the Poisson point process yields that

P(AMn ) = P(X+,M(QM/L) = 1)(2nL/M)d = e−(2n/M)dL−(2nL/M)d ≥ e−δn
d

,

provided that M = M(δ) is sufficiently large. Summarizing the above findings, we deduce that
Theorem 1.3 can be applied to get the lower bound on the rate function.

2.3 Power-weighted edge counts in k-nearest neighbor graphs and relative
neighborhood graphs

Finally, we elucidate how to apply Theorem 1.3 to the power-weighted edge count of two central graphs
in computational geometry, namely the k-nearest neighbor graph and the relative neighborhood graph.
As we shall see, in contrast to the Voronoi example presented in Section 2.2, we encounter here
score functions that are weakly decreasing but not decreasing. A full large deviation principle for
the total edge length of the k-nearest neighbor graph is described in [SY05, Section 2.3], and we
believe that the proof should extend to power-weighted edge lengths with a power strictly less than d.
Nevertheless, we apply here our approach towards the large-deviation lower tails as it can be directly
adapted to the bidirectional k-nearest neighbor graph, the relative neighborhood graph and possibly
further graphs.

In the undirected k-nearest neighbor graph, ξ expresses the powers of distances between any point
and the origin, such that at least one of them belongs to the set of k nearest neighbors of the other
one. To be more precise,

Rk(ϕ) = inf{r > 0: ϕ(Br) ≥ k + 1} (2.3)

defines the k-nearest neighbor radius of o in ϕ ∈ No. Then, for some α ≥ 0, the score function
corresponding to the sum of power-weighted edge lengths of the k-nearest neighbor graph is defined
via

ξk,α(ϕ) =
1

2

∑
x∈ϕ : |x|≤Rk(ϕ)∨Rk(ϕ−x)

|x|α.

In particular, we recover the number of edges by setting α = 0. As noted in [Pen07, Section 6.3], to
construct a radius of stabilization we can proceed as in (2.1) except for replacing minx∈ϕ∩S+

i
|x| by

the distance of the kth closest point from the origin in ϕ∩S+
i . Hence, ξk,α becomes stabilizing with a

decreasing stabilization radius. In the same vein, a minor adaptation of the arguments in Section 2.2
yield the regularity and R-boundedness for α < d.

In order to apply Theorem 1.3 for the lower bound, it remains to verify the following.

Lemma 2.1. ξk,α is weakly decreasing.

Proof. Let us call ϕ ∈ N nonequidistant if for all y, z, v, w ∈ ϕ, |y − z| = |v − w| > 0 implies
{y, z} = {v, w}. First note that for any x ∈ Rd, under P, almost all configurations ϕ ∪ {x} are
nonequidistant. We claim that for any nonequidistant configuration ϕ ∪ {x}, we have for all but at
most k points y ∈ ϕ that

ξk(ϕ ∪ {x} − y) ≤ ξk(ϕ− y). (2.4)
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Indeed, for y ∈ ϕ, let us define the set of k nearest neighbors of y in ϕ as follows

kNN(ϕ, y) =
(
BRk(ϕ−y)(y) ∩ ϕ

)
\ {y}.

Now, if y ∈ kNN(ϕ∪{x}, x), then possibly ξk(ϕ∪{x}− y) > ξk(ϕ− y). We claim that else (2.4)
holds. Indeed, if y /∈ kNN(ϕ ∪ {x}, x), then there are two possibilities. If x ∈ kNN(ϕ ∪ {x}, y),
then x replaced precisely one neighbor z of y and is closer to y than z. More precisely, note that
|x − y| ≤ Rk(ϕ ∪ {x} − y) ≤ Rk(ϕ − y). Hence, there exists z ∈ kNN(ϕ, y) such that
|z−y| = Rk(ϕ−y) and z /∈ kNN(ϕ∪{x}, y), the neighbor of y that is replaced by x. Additionally,
for any w ∈ kNN(ϕ, y) \ {z} also w ∈ kNN(ϕ ∪ {x}, y). Further, also for any v ∈ ϕ such that
y ∈ kNN(ϕ ∪ {x}, v) we have y ∈ kNN(ϕ, v). Hence,

ξk(ϕ ∪ {x} − y)− ξk(ϕ− y) ≤ |x− y|α − |z − y|α ≤ 0,

which is (2.4). The other possibility is that x /∈ kNN(ϕ ∪ {x}, y). Then the addition of x can only
remove edges that were present due to the fact that some other point had y as a neighbor. In this
case, ξ(ϕ ∪ {x} − y) = ξ(ϕ − y) unless there exists z ∈ ϕ such that y ∈ kNN(ϕ, z) but
y /∈ kNN(ϕ∪ {x}, z), which must be due to the property that x ∈ kNN(ϕ∪ {x}, z). So again, the
addition of x can only remove such an edge and hence again (2.4) holds for y.

Note that the approach presented above also applies to further graphs studied in computational geom-
etry. The most immediate adaptation concerns the bidirectional k-nearest neighbor graph, see [BB13],
where in the definition of the score function, we replace Rk(ϕ)∨Rk(ϕ−x) by Rk(ϕ)∧Rk(ϕ−x).
Not only can we take the same radius of stabilization, but also Lemma 2.1 remains valid. As a third
example, we showcase the relative neighborhood graph. Here, for α ≥ 0 and ϕ ∈ No the score
function is given by

ξRN(ϕ) =
1

2

∑
x∈ϕ : ϕ∩B|x|(o)∩B|x|(x)=∅

|x|α.

The relative neighborhood graph is a sub-graph of the Delaunay tessellation, and in fact we can reuse
the radius of stabilization from Section 2.2. Finally, proving the analog of Lemma 2.1 reduces to the
observation that the degree of every node in the relative neighborhood graph is bounded by a constant
K = K(d), see [JT92, Section IV]. What remains to be verified is that ξRN is weakly decreasing.

Lemma 2.2. ξRN is weakly decreasing.

Proof. We claim that for any nonequidistant configuration ϕ ∪ {x} with ϕ ∈ N, for all but at most K
points y ∈ ϕ,

ξRN(ϕ ∪ {x} − y) ≤ ξRN(ϕ− y) (2.5)

holds. Indeed, for y ∈ ϕ, let us define the set of relative neighbors of y in ϕ as follows

RN(ϕ, y) := {z ∈ ϕ \ {y} : ϕ ∩B|z−y|(y) ∩B|z−y|(z) = ∅},

and note that z ∈ RN(ϕ, y) if and only if y ∈ RN(ϕ, z). In particular, #RN(ϕ, y) ≤ K for any
y ∈ ϕ. So, if y ∈ RN(ϕ ∪ {x}, x), then possibly ξRN(ϕ ∪ {x} − y) > ξRN(ϕ − y). But if
y /∈ RN(ϕ ∪ {x}, x), then

ξRN(ϕ ∪ {x} − y)− ξRN(ϕ− y)

= 1
2

∑
z∈ϕ−y

|z − y|α
(
1{z ∈ RN(ϕ ∪ {x}, y)} − 1{z ∈ RN(ϕ, y)}

)
≤ 0,

as asserted.

DOI 10.20347/WIAS.PREPRINT.2632 Berlin 2019



Ch. Hirsch, B. Jahnel, A. Tóbiás 8

3 Proofs

In this section we provide the proofs of the main theorems.

3.1 Proof of Theorem 1.1

The proof of the upper bound relies on the level-3 large deviation principle for the Poisson point process
from [GZ93, Theorem 3.1].

Proof of Theorem 1.1. Replacing ξr by ξr ∧ r if necessary, we may assume that ξr is bounded above
by r. Then, ξr is a bounded local observable, so that by the contraction principle [DZ98, Theorem
4.2.10] and [GZ93, Theorem 3.1],

lim sup
n↑∞

1

nd
logP(Hn ≤ a) ≤ lim sup

n↑∞

1

nd
logP(Hξr

n ≤ a) ≤ − inf
Q:Qo[ξr]≤a

h(Q).

Hence, it suffices to show that

− lim
r↑∞

inf
Q:Qo[ξr]≤a

h(Q) ≤ − inf
Q:Qo[ξ]≤a

h(Q).

Let {Qk}k≥1 be a family of stationary point processes such that Qo
k[ξ

k] ≤ a and

lim
k↑∞

h(Qk) = lim
r↑∞

inf
Q:Qo[ξr]≤a

h(Q).

Let Q∗ be a subsequential limit of {Qk}k≥1. To simplify the presentation, we may assume Q∗ to be
the limit of {Qk}k≥1. Then, by monotone convergence,

Qo
∗[ξ] ≤ lim

r↑∞
Qo
∗[ξ

r] = lim
r↑∞

lim
k↑∞

Qo
k[ξ

r] ≤ lim sup
k↑∞

Qo
k[ξ

k] ≤ a.

Since the specific relative entropy h is lower semicontinuous, we arrive at

lim inf
k↑∞

h(Qk) ≥ h(Q∗) ≥ inf
Q:Qo[ξ]≤a

h(Q),

as asserted.

3.2 Proof of Theorem 1.2

To prove Theorem 1.2, we consider the truncation ξM = ξ ∧ M of the original increasing and r-
dependent score function ξ at a large threshold M > 1 and write HM

n = HξM

n . In comparison to
the arguments in Section 3.1, the proof of the lower bound is more involved, since we can no longer
replace P(Hn ≤ a) by P(HM

n ≤ a). Instead, we rely on a sprinkling approach. For this method to
work, we need that the total number of points in pathological areas is small with high probability. More
precisely, we say that a point Xi ∈ X is b-dense if X(Qr(Xi)) > b and write

Nb,n = Nb,n(X) = #{Xi ∈ X ∩Qn : Xi is b-dense}

for the total number of b-dense points in Qn. Then, b-dense points are indeed rare.
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Lemma 3.1 (Rareness of b-dense points). Let δ > 0. Then,

lim sup
b↑∞

lim sup
n↑∞

1

nd
logP(Nb,n > δnd) = −∞.

In the second step, we remove all b-dense points through the coupling. That is, we let X−,ε be an
independent thinning ofX with survival probability 1−ε. Furthermore, we letX+,ε be an independent
Poisson point process with intensity ε > 0. Then, the coupled process

Xε = X−,ε ∪X+,ε

is again a Poisson point process with intensity 1. Now, let

Eb,n = {X+,ε ∩Qn = ∅} ∩ {X−,ε ∩Qn has no b-dense points}

be the event that X+,ε has no points in Qn and that X−,ε does not contain any b-dense points in Qn.

Lemma 3.2 (Removal of b-dense points). Let b, n, ε > 0. Then, P-almost surely,

P(Eb,n|X) ≥ exp(−εnd +Nb,n log(ε)).

Before showing Lemmas 3.1 and 3.2, we illustrate how they enter the proof of (1.3).

Proof of Theorem 1.2. Let M > 0. Then, by [GZ93, Theorem 3.1],

lim inf
n↑∞

1

nd
logP(HM

n < a) ≥ − inf
Q:Qo[ξM ]<a

h(Q) ≥ − inf
Q:Qo[ξ]<a

h(Q).

Hence, it remains to show that

lim inf
n↑∞

1

nd
logP(Hn < a) ≥ lim inf

M↑∞
lim inf
n↑∞

1

nd
logP(HM

n < a). (3.1)

Let b, δ, ε > 0 be arbitrary. Now, since ξ is increasing,

P(Hn < a) = P(Hn(X
ε) < a) ≥ P({HM(b)

n < a} ∩ Eb,n) = E
[
1{HM(b)

n < a}P[Eb,n |X]
]
.

Thus, by Lemma 3.2,

P(Hn < a) ≥ exp(−εnd)E
[
1{HM(b)

n < a}εNb,n
]

≥ exp
(
(δ log(ε)− ε)nd

)
P(HM(b)

n < a)− P(Nb,n > δnd).

Since X and Xε share the same distribution, Lemma 3.1 allows us to choose b = b(δ) > 0 suffi-
ciently large such that

lim inf
n↑∞

1

nd
logP(Hn < a) ≥ δ log(ε)− ε+ lim inf

n↑∞

1

nd
logP(HM(b)

n < a).

Hence, sending ε ↓ 0, δ ↓ 0, and b ↑ ∞ concludes the proof of (3.1).
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Proof of Lemma 3.1. Consider a subdivision of Qn, for sufficiently large n ≥ 1, into sub-boxes
Qa(zi) = zi + Qa of side length a > r where zi ∈ aZd. Let Ni = X(Qa(zi)) be the number
of points in the ith sub-box and N ′i = X(Q3a(zi)) be the number of points the ith sub-box plus its
adjacent sub-boxes. Then, Nb,n ≤ N ′′b,n, where

N ′′b,n =
∑

i∈aZd∩Qn

Ni1{N ′i > b},

so that by the exponential Markov inequality, for all t > 0,

logP(Nb,n > δnd) ≤ logP(N ′′b,n > δnd) ≤ −δtnd + logE[exp(tN ′′b,n)].

Since the random variables Ni1{N ′i > b} and Nj1{N ′j > b} are independent whenever ‖zi −
zj‖∞ ≥ 3, we have 3d regular sub-grids of aZd containing independent random variablesNi1{N ′i >
b}. Thus, using Hölder’s inequality, independence and the dominated convergence theorem, we arrive
at

lim sup
b↑∞

lim sup
n↑∞

1

nd
logE[exp(tN ′′b,n)] ≤

1

(3a)d
lim sup
b↑∞

logE
[
exp(3dtNo1{N ′o > b})

]
=

1

(3a)d
.

Since t > 0 was arbitrary, we conclude the proof.

Proof of Lemma 3.2. First, since X+,ε and X−,ε are independent, it suffices to compute

P(X+,ε ∩Qn = ∅ |X) and P(X−,ε ∩Qn has no b-dense points |X)

separately. The void probabilities for a Poisson point process give that

P(X+,ε ∩Qn = ∅ |X) = exp(−εnd).

Next, since X−,ε is an independent thinning of X with probability ε, we arrive at

P(X−,ε ∩Qn has no b-dense points |X) ≥ εNb,n ,

as asserted.

3.3 Proof of Theorem 1.3

In order to prove the lower bound for stabilizing score functions, we use sprinkling to regularize sub-
regions that are not sufficiently stabilized. Let us define the approximation

ξδ,M(ϕ) = ξ(ϕ ∩QM) ∧ δMd

and write Hδ,M
n = Hξδ,M

n .

Similarly as before, we consider a coupling construction. Now, we let X−,M denote an independent
thinning of X with survival probability 1 −M−d and X+,M an independent Poisson point process
with intensity M−d. Then,

XM = X−,M ∪X+,M

defines a unit-intensity Poisson point process.

In this coupling, we consider events in which the sprinkling X+,M adds points wherever necessary to
reduce the stabilization radius. More precisely, let

EM
n = {X−,M ∩Qn = X ∩Qn} ∩

{
X+,M(Qn) ≤ K0(n/M)d

}
∩ EM,+

n .

As we shall prove below, the events EM
n occur with a high probability.
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Lemma 3.3 (Sprinkling regularizes with high probability). Let δ > 0 and n ≥ M ≥ 1 sufficiently
large. Then, under the assumptions of Theorem 1.3, P-almost surely,

P(EM
n |X) ≥ exp

(
X(Qn) log(1−M−d)− δnd

)
.

Proof. Indeed, for given X , the event {X−,M ∩ Qn = X ∩ Qn} has probability (1 −M−d)X(Qn)

and is independent of the event
{
X+,M(Qn) ≤ K0(n/M)d

}
∩EM,+

n , which has probability at least
exp(−δnd).

Now, we conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. Let δ > 0 and M =M(δ) > 1 sufficiently large. Then, by R-boundedness,

P(Hn < a) = P(Hn(X
M) < a) ≥ P

(
{Hδ,M

n (XM) < a} ∩ EM
n

)
.

Moreover, under the event EM
n ,

Hδ,M
n (XM) =

1

nd

∑
Xi∈X+,M∩Qn

ξδ,M(XM −Xi) +
1

nd

∑
Xi∈X∩Qn

ξδ,M(XM −Xi)

≤ K0δ +Hδ,M
n (X) +

1

nd

∑
Xi∈X∩Qn

(
ξδ,M(XM −Xi)− ξδ,M(X −Xi)

)
.

Let us write XM,0 = X and XM,j+1 = XM,j ∪ {X+,M
j } where {X+,M

j }1≤j≤N(M) is an arbitrary
ordering of X+,M . Then, since ξ is weakly decreasing,∑

Xi∈X∩Qn

(
ξδ,M(XM −Xi)− ξδ,M(X −Xi)

)
=

∑
Xi∈X∩Qn

∑
j≤N(M)

(ξδ,M(XM,j −Xi)− ξδ,M(XM,j−1 −Xi))

≤ δMd
∑

j≤N(M)

∑
Xi∈X∩Qn

1
{
ξδ,M(XM,j −Xi) > ξδ,M(XM,j−1 −Xi)

}
≤ kδMdN(M).

Further note that N(M) ≤ K0(n/M)d, and thus we arrive at

P(Hn(X
M) < a) ≥ P

(
{Hδ,M

n (XM) < a} ∩ EM
n

)
≥ P

(
{Hδ,M

n (X) < a− 2kK0δ} ∩ EM
n

)
.

Now, by conditioning on X and applying Lemma 3.3 for sufficiently large n ≥M ≥ 1,

P(Hn(X
M) < a) ≥ E

[
1{Hδ,M

n (X) < a− 2kK0δ}P(EM
n |X)

]
≥ E

[
1{Hδ,M

n (X) < a− 2kK0δ} exp
(
X(Qn) log(1−M−d)

)]
exp(−δnd).

Moreover, for any c > 0,

E
[
1{Hδ,M

n (X) < a− 2kK0δ} exp
(
X(Qn) log(1−M−d)

)]
≥ exp

(
cnd log(1−M−d)

)
P({Hδ,M

n (X) < a− 2kK0δ} ∩ {X(Qn) < cnd}),
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where for the first factor,

lim inf
M↑∞

1

nd
log
(
exp

(
cnd log(1−M−d)

))
= lim inf

M↑∞
c log(1−M−d) = 0.

Now, for the second factor,

P
(
{Hδ,M

n (X) < a− 2kK0δ} ∩ {X(Qn) < cnd}
)
≥ P(Hδ,M

n (X) < a− 2kK0δ)

− P(X(Qn) ≥ cnd),

where for large c the second summand plays no role in the large deviations. Applying [GZ93, Theorem
3.1] on the local bounded observable ξδ,M yields that

lim inf
n↑∞

1

nd
logP

(
Hδ,M
n (X) < a− 2kK0δ

)
≥ − inf

Q:Qo[ξδ,M ]<a−2kK0δ
h(Q).

Finally, if Qo[ξ] < a, then lim supM↑∞Qo[ξδ,M ] < a− 2kK0δ for a sufficiently small δ > 0, so that

lim inf
M↑∞

(
− inf

Q:Qo[ξδ,M ]<a−2kK0δ
h(Q)

)
≥ − inf

Q:Qo[ξ]<a
h(Q),

as asserted.
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