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Drift-diffusion simulation of S-shaped current-voltage relations for organic
semiconductor devices

Duy Hai Doan, Axel Fischer, Jürgen Fuhrmann, Annegret Glitzky, Matthias Liero

Abstract

We present an electrothermal drift-diffusion model for organic semiconductor devices with Gauss-Fermi
statistics and positive temperature feedback for the charge carrier mobilities. We apply temperature depen-
dent Ohmic contact boundary conditions for the electrostatic potential and discretize the system by a finite
volume based generalized Scharfetter-Gummel scheme. Using path-following techniques we demonstrate
that the model exhibits S-shaped current-voltage curves with regions of negative differential resistance,
which were only recently observed experimentally.

1 Introduction

In inorganic high power transistors and lasers, thermal effects resulting from strong electric and optical fields and
from strong recombination processes are of significant importance and have to be included into mathematical
models [2]. However, electrothermal effects are even more potent in organic semiconductors where the temper-
ature activated hopping transport of charge carriers leads to a strong interplay between electric current and heat
flow. They result in interesting phenomena like S-shaped current-voltage relations with regions of negative dif-
ferential resistance in resistors and Organic Light Emitting Diodes (OLEDs) [9, 20] and lead to inhomogeneous
luminance in large-area OLEDs. Moreover, electrothermal effects have a strong impact on the performance of
organic solar cells and transistors [26, 17, 19].

Figure 1: Left: Schematic cross-section of the OLED stack simulated in [20]. Right: Simulated and measured
S-shaped current-voltage relations with regions of NDR for different thermal outcoupling regimes realized by
different values of the outcoupling coefficients. Both pictures are taken from [20].

As demonstrated in [20], p-Laplace thermistor models are able to capture the positive temperature feedback in
OLEDs. Especially, they can reproduce experimentally observed S-shaped current-voltage relations (see Fig. 1)
and inhomogeneous current density and temperature distributions in large-area OLEDs. The p-Laplace ther-
mistor model describes the total current flow and the heat flow in a device. As parameters serve a power law
exponent p for the underlying (isothermal) current-voltage relation, an activation energy in an Arrhenius type
temperature law for the hopping transport, and reference electrical and thermal conductivities (see [20]). How-
ever, details such as separate electron and hole current flow, space charge regions, generation-recombination
and related heat productions, as well as energy barriers at material interfaces are neglected.

The aim of the present paper is to investigate the ability of an electrothermal drift-diffusion model for organic
semiconductor devices and a suitable numerical approximation to produce S-shaped current-voltage relations.
For simplicity, for this proof of concept we use vertically layered device structures. Additionally, we propose a
generalization of Ohmic contact boundary conditions for the electrostatic potential to the non-isothermal case.
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2 Electrothermal drift-diffusion description of organic semiconductor devices

2.1 The PDE system

The electrothermal behavior of organic semiconductor devices is described in a drift-diffusion setting by PDEs
for the electrostatic potential ψ, the electrochemical potentials φn, φp and the temperature T . In the device
domain Ω we consider the following stationary coupled system

−∇ · (ε∇ψ) = q(C − n+ p),

−∇ · jn = −qR, jn = −qnµn∇φn,

∇ · jp = −qR, jp = −qpµp∇φp,

−∇ · (λ∇T ) = H + qR(φp − φn).

(2.1)

This system results from the coupling of a generalized van Roosbroeck system and a heat flow equation that
includes the Joule heating and recombination heat as heat sources. The dielectric permittivity is denoted by
ε = ε0εr, q is the elementary charge, C represents the density of the charged donors and acceptors, and λ is
the thermal conductivity.

Additionally we have to take into account the specialities of organic semiconductors, namely i) the statistical
relation between chemical potentials and charge carrier density is given by Gauss–Fermi integrals leading to
bounded charge carrier densities and ii) mobility functions µn, µp depending on temperature, density, and
electrical field strength. The mobility laws are fitted from a numerical solution of the master equation for the
hopping transport in a disordered energy landscape with a Gaussian density of states [24, 18]. Moreover, the
generation/recombination term R (see [8]), the Joule heat H , and the charge carrier densities n and p in (2.1)
are given by

R = r0(·, n, p, T )n p
(
1− exp

q(φn − φp)

kBT

)
,

H = qnµn|∇φn|2 + qpµp|∇φp|2 = −jn · ∇φn − jp · ∇φp,

n = Nn0(T )G
(q(ψ − φn)− EL(T )

kBT
;
σn(T )

kBT

)
,

p = Np0(T )G
(EH(T )− q(ψ − φp)

kBT
;
σp(T )

kBT

)
,

(2.2)

where kB is Boltzmann’s constant and G : R× [0,∞) → (0, 1) is defined by the Gauss–Fermi integral

G(η, s) :=
1√
2π

∞∫
−∞

exp

(
−ξ

2

2

)
1

exp (sξ − η) + 1
dξ,

see [23]. The LUMO- and HOMO-levels are denoted by EL, EH , respectively, and σ2n, σ2p are their variances,
Nn0, Np0 represent the total densities of transport states. We assume that these parameters are only weakly
temperature dependent such that we neglect this weak temperature dependence in our investigations.

According to [24], the mobilities of electrons µn = µn(T, n, |∇ψ|) and holes µp = µp(T, p, |∇ψ|) are
temperature, density and electrical field strength dependent functions of the form

µn(T, n, F ) = µn0(T )× g1(n, T )× g2(F, T ) (2.3)

with

µn0(T ) = µn0c1 exp
{
−c2s2n

}
, sn =

σn
kBT

,

g1(n, T ) = exp
{1
2
(s2n − sn)(2na

3)δ
}
, δ = 2

ln(s2n − sn)− ln(ln 4)

s2n
,

g2(F, T ) = exp
{
0.44(s3/2n − 2.2)

(√
1 + 0.8

(Fqa
σn

)2
− 1
)}
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with the average hopping distance a. The system (2.1), (2.2) is closed by mixed boundary conditions on ∂Ω
for the stationary drift-diffusion system combined with Robin boundary conditions for the heat flow equation
approximating a heat sink with ambient temperature Ta.

ψ = ψD, φn = φD
n , φp = φD

p on ΓD,

ε∇ψ · ν = jn · ν = jp · ν = 0 on ΓN ,

λ∇T · ν + κ(T − Ta) = 0 on ∂Ω.

(2.4)

Here ΓD and ΓN denote the Dirichlet and Neumann boundary parts, respectively. In [14] the solvability of (2.1),
(2.2), and (2.4) (weak solutions of continuity equations and Poisson equation, entropy solution of the heat flow
equation) is established. For mathematical results concerning the isothermal drift-diffusion model with Gauss–
Fermi statistics and field strength dependent mobility we refer to [6, 13].

We remark that in our model, as well as in [15] for classical semiconductors, additional thermoelectric effects
(Peltier, Thomson, and Seebeck) are neglected. In [19, Sect. II.D] it is argued that in the case of organic semi-
conductors such effects are neglible as the thermal voltages are small compared to the applied voltage. For fully
thermodynamically consistent energy models for inorganic semiconductors including all these effects we refer
e.g. to [1, 21, 16], where [16] also deals with the numerical approximation of the model.

2.2 Thermodynamic equilibrium and discussion of boundary conditions

In [14], the consistency of the model with thermodynamic equilibrium is proven. Thermodynamic equilibrium is
a physical state with vanishing generation/recombination rate, and vanishing current and heat flow,

jn = jp = 0, T = const = Ta, φ0 := φn = φp = const,

where we can set φ0 = 0 without loss of generality. In this situation the system (2.1), (2.2), and (2.4) reduces
to the nonlinear Poisson equation

−∇ · (ε∇ψ) = q
(
C −Nn0G

(qψ − EL

kBTa
;
σn
kBTa

)
+Np0G

(EH − qψ

kBTa
;
σp
kBTa

))
.

In the isothermal case following e.g. [8], semiconductor-metal contacts, such as Ohmic contacts are usually
modeled by Dirichlet boundary conditions

ψ = ψ0 + V, φn = V, φp = V on ΓD = ∪I
i=1ΓDi , (2.5)

where V denotes the externally applied voltage. The potential ψ0 at the contacts ΓDi is determined a priori
from the condition of local charge neutrality at the contacts ΓDi with no applied voltage at ambient temperature
Ta:

C −Nn0G
(qψ0 − EL

kBTa
;
σn
kBTa

)
+Np0G

(EH − qψ0

kBTa
;
σp
kBTa

)
= 0. (2.6)

In the non-isothermal case, the resulting equilibrium carrier densities at the electrical contacts neglect the influ-
ence of the increase in temperature, leading to unphysically high carrier densities compared to the doping near
to the contacts and to a pinning of the chemical potential vp = φp − ψ at both contacts, see Fig. 2, left.
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Figure 2: Simulation of a 200 nm thick structure of three (50 nm, 100 nm, 50 nm) pip-doped layers for different
applied voltages. The p-doped layers are doped by 1018cm−3, the intrinsic region by 1010cm−3. Upper row:
hole density. Lower row: chemical potential vp = φp − ψ. The plots in the left column have been obtained
with the boundary conditions resulting from (2.6) and show unphysical increased hole densities in the p-doped
regions. This is avoided by the contact description using (2.7) in the right column.

We argue that in the non-isothermal case the modeling of (ideal) Ohmic contacts requires local charge neutrality
at the contact also at the actual temperature dependent state (ψ,φn, φp, T ) which leads to the nonlinear
relation at the contacts ΓDi for the prescribed value ψ0 = ψ − V :

CDi(ψ;V, T ) := C −Nn0G
(q(ψ − V )− EL

kBT
;
σn
kBT

)
+Np0G

(EH − q(ψ − V )

kBT
;
σp
kBT

)
= 0. (2.7)

As a result, the simulated hole densities in Fig. 2 (upper right) are not artificially increased near to the contacts.
A straightforward generalization of the standard computational approach for the isothermal case would result in
the necessity to update ψ0 for each modification of the temperature T , leading to an additional iterative loop
for the determination of each bias solution. In order to avoid this iteration, we use (2.7) directly as a nonlinear
Dirichlet boundary condition for the electrostatic potential ψ depending on T and treat it with the nonlinear solver
along with all other nonlinearities.
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3 Discretization scheme

We use a finite volume discretization method based on partitioning the computational domain Ω by a Voronoi
mesh with m Voronoi volumes {Vl}l=1,...,m and accompanying collocation points {xl}. The potentials ψ, φn,
φp, and the temperature T are evaluated at each node {xl}. The discretized system corresponding to (2.1) is
derived by integrating the equations over each Voronoi volume Vl, applying Gauss’s theorem to get∫

∂Vl

−ε∇ψ · ν dΓ =

∫
Vl

q (C − n+ p) dx,

∫
∂Vl

−jn · ν dΓ =

∫
Vl

−qR dx,

∫
∂Vl

jp · ν dΓ =

∫
Vl

−qR dx,

∫
∂Vl

−λ∇T · ν dΓ =

∫
Vl

(H + qR(φp − φn)) dx

(3.1)

and then approximating these integrals suitably. Here N (Vl) stands for the set of Voronoi volumes Vr which are
adjacent to the Voronoi volume Vl. We also add the subscript l in all quantities such as potentials, doping density
and recombination-generation rate, temperature, recombination heat to denote their corresponding numerical
values at the node xl. In the following, we will assume that all material parameters, such as the permittivity ε,
the reference mobilities µi0, the densities of state Ni0, and the heat conductivity λ are constant, otherwise,
suitable averages have to be used.

The surface integrals in (3.1) are split into two parts: integrals over interfaces between two adjacent Voronoi
boxes and integrals over boundary parts of the device, as follows∫

∂Vl

−ε∇ψ · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−ε∇ψ · ν dΓ +

∫
∂Vl∩∂Ω

−ε∇ψ · ν dΓ,

∫
∂Vl

−jn · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−jn · ν dΓ +

∫
∂Vl∩∂Ω

−jn · ν dΓ,

∫
∂Vl

jp · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

jp · ν dΓ +

∫
∂Vl∩∂Ω

jp · ν dΓ,

∫
∂Vl

−λ∇T · ν dΓ =
∑

Vr∈N (Vl)

∫
∂Vl∩∂Vr

−λ∇T · ν dΓ +

∫
∂Vl∩∂Ω

−λ∇T · ν dΓ.

The integrals over interfaces ∂Vl ∩ ∂Vr must be treated specifically in order to maintain the consistency of
the numerical solution, whereas the surface integrals over ∂Vl ∩ ∂Ω are evaluated by quadrature rules after
replacing the normal flux in the integrand by the corresponding boundary condition.

3.1 Numerical fluxes through interfaces between Voronoi cells ∂Vl ∩ ∂Vr

The integrals of −ε∇ψ · ν and −λ∇T · ν over the interface ∂Vr ∩ ∂Vl are approximated by the conventional
finite difference approximations∫

∂Vr∩∂Vl

−ε∇ψ · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)
|xl − xr|

ε (ψl − ψr) ,

∫
∂Vr∩∂Vl

−λ∇T · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)
|xl − xr|

λ (Tl − Tr) .

DOI 10.20347/WIAS.PREPRINT.2630 Berlin 2019
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Meanwhile the corresponding integrals in the continuity equations are approximated with some extra effort∫
∂Vr∩∂Vl

−jn · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)
|xl − xr|

J l;r
n ,

∫
∂Vr∩∂Vl

jp · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)
|xl − xr|

J l;r
p ,

where the numerical fluxes J l;r
n and J l;r

p are determined by a modification of the Scharfetter-Gummel scheme
based on averaging of inverse activity coefficients introduced in [10] and discussed with respect to degenerate
semiconductors in [8, 7]. We introduce some notation to define the expressions for J l;r

n and J l;r
p in (3.3), (3.4).

Let

ψl,r :=
ψl + ψr

2
, φn;l,r :=

φn;l + φn;r

2
, φp;l,r :=

φp;l + φp;r

2
, Tl,r :=

Tl + Tr
2

,

ηn;l := ηn (ψl, φn;l, Tl,r) , ηn;r := ηn (ψr, φn;r, Tl,r) , η
l,r
n := ηn (ψl,r, φn;l,r, Tl,r) ,

ηp;l := ηp (ψl, φp;l, Tl,r) , ηp;r := ηp (ψr, φp;r, Tl,r) , η
l,r
p := ηp (ψl,r, φp;l,r, Tl,r) ,

U l,r
T :=

kBTl,r
q

, sl,rn :=
σn

kBTl,r
, sl,rp :=

σp
kBTl,r

,

nl,r := Nn0G
(
ηl,rn ; sl,rn

)
, pl,r := Np0G

(
ηl,rp ; sl,rp

)
,

µl,rn := µn

(
Tl,r, n

l,r, F l,r
)
, µl,rp := µp

(
Tl,r, p

l,r, F l,r
)
.

Note that according to (2.3), the mobility over a surface ∂Vl ∩ ∂Vr depends on the modulus of the full gradient
|∇ψ|. To take the full modulus of the gradient into account we compute the approximation of |∇ψ|2 on ∂Vl∩∂Vr
as the average squared norms of the P1 finite element gradients ∇τψ over the set Tl,r of all simplices τ
(triangles in 2D) in the underlying Delaunay triangulation adjacent to the edge xlxr [11]:

∣∣∇ψ∣∣2|∂Vl∩∂Vr ≈
∑

τ∈Tl,r mes(τ)|∇τψ|2∑
τ∈Tl,r mes(τ)

=: (F l,r)2. (3.2)

With the above definitions, the numerical fluxes J l;r
n and J l;r

p have the form

J l;r
n = −qNn0µ

l,r
n U

l,r
T

G
(
ηl,rn ; sl,rn

)
exp

(
ηl,rn
) [

exp (ηn;l)B

(
ψl − ψr

U l,r
T

)
− exp (ηn;r)B

(
−ψl − ψr

U l,r
T

)]
, (3.3)

J l;r
p = qNp0µ

l,r
p U

l,r
T

G
(
ηl,rp ; sl,rp

)
exp

(
ηl,rp
) [

exp (ηp;l)B

(
−ψl − ψr

U l,r
T

)
− exp (ηp;r)B

(
ψl − ψr

U l,r
T

)]
. (3.4)

Here B denotes the Bernoulli function, B (x) = x
exp(x)−1 .

3.2 Numerical treatment of the boundary conditions on ∂Vl ∩ ∂Ω

The realization of no flux and Robin boundary conditions is based on the evaluation of the corresponding surface
integrals by a midpoint quadrature rule.

Dirichlet boundary conditions are implemented using the Dirichlet penalty method: We replace the Dirichlet
boundary conditions for φn, φp by

jn · ν +Π(φn − V ) = 0, jp · ν +Π(φp − V ) (3.5)

DOI 10.20347/WIAS.PREPRINT.2630 Berlin 2019
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and treat them like Robin boundary conditions. The penalty parameter Π is a large number which results in
marginalizing the normal flux contributions in (3.5).

In order to approximate the nonlinear Dirichlet boundary condition (2.7), we use a similar idea. We replace (2.7)
by

−ε∇ψ +ΠCDi(ψ;V, T ) = 0 (3.6)

and treat the resulting boundary condition as a nonlinear Robin boundary condition. Using this approach, the
nonlinearity (2.7) can be treated without any additional iteration along with all the other nonlinearities in the
resulting system of equations by the general Newton solver coupled to a parameter embedding scheme.

3.3 Volume integrals

The integrals of the charge density C − n + p, the recombination-generation rate R and the reaction heat
R(φp − φn) are approximated by the midpoint rule,∫

Vl

(C − n+ p) dx ≈ mes (Vl) (Cl − nl + pl),

∫
Vl

R dx ≈ mes (Vl)Rl,

∫
Vl

R(φp − φn) dx ≈ mes (Vl)Rl(φp;l − φn;l).

The integral of the Joule heat is approximated by using the numerical fluxes J l;r
n and J l;r

p ,∫
Vl

H dx ≈
∑

Vr∈N (Vl)

mes (∂Vl ∩ ∂Vr)
2dim (Ω)

(
J l;r
n (φn;l − φn;r) + J l;r

p (φp;l − φp;r)
)
. (3.7)

Here we followed the idea proposed in [4] and exploited in [11] allowing to evaluate the Joule heating approxi-
mation for electrons and holes by edge contributions.

3.4 Path-following technique for the calculation of S-shaped current-voltage curves

As discussed in the introduction, organic semiconductors show a pronounced electrothermal feedback that can
lead to S-shaped current-voltage relations. For such situations, a voltage controlled simulation is unable to
cover the full characteristic, since at the lower turning point of the S-curve one would not find a point on the
curve with increased voltage and only slightly increased current and related temperature, see Fig. 1. For such
voltage values, only points on the upper branch of the S-curve are available, related to very different current
and temperature values. In other words, for increasing voltage, if at all the method would converge, one could
only jump to the upper part of the S-curve and the (unstable) region of negative differential resistance of the
S-curve is impossible to resolve. Therefore we need a path-following method to trace the S-curve. We adapt the
technique described in [11] which was used in [20] to simulate S-shaped current-voltage relations for organic
LEDs resulting from an electrothermal modeling by p-Laplace thermistor models to the drift-diffusion setting.

We consider an organic semiconductor device with two Dirichlet boundary parts ΓD1 and ΓD2 . On ΓD2 the
potential is set to zero and on ΓD1 to the (spatially constant) externally applied voltage V . We determine the
current-voltage relation of the organic device by calculating the current over ΓD1 . With the equations for the
approximation of (3.1) for all Voronoi boxes {Vl} we arrive at a system of 4m coupled nonlinear algebraic
equations for u = (ψl, φn;l, φp;l, Tl)l=1,...,m of the form

F (u, V ) = 0, F : R4m × R → R4m.

DOI 10.20347/WIAS.PREPRINT.2630 Berlin 2019
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To trace a solution branch, starting from a solution (u0, V0) of F (u, V ) = 0 we use a predictor-corrector
method [25] adapted to PDE calculations as proposed in [3]. The prediction is obtained by moving a step
forward along the tangent t to the branch. First we solve Fu,V (u0, V0)t = 0, t ∈ R4m+1. To ensure that t
points in the forward direction with respect to the tangent t0 of the last point, we demand t0 · t > 0. In other
words, we have to solve (

Fu,V (u0, V0)
t0

)
t =

(
0
1

)
.

Next, we normalize t such that ∥t∥ = 1. The predictor (u∗, V ∗) now is obtained by(
u∗

V ∗

)
=

(
u0
V0

)
+

∆L

∥t∥∗
t, where ∥t∥2∗ =

1

4m

4m∑
i=1

t2i + t24m+1

ensures that a step along the branch gives similar proportion to the unknowns and to the parameter, and, by
construction, ∥u∗ − u0, V

∗ − V0∥∗ = ∆L. The corrector step solves the nonlinear system(
F (u, V )

∥u− u0, V − V0∥2∗ − (∆L)2

)
= 0

by Newton’s method with the starting value (u∗, V ∗). If Newton’s method does not converge since the predictor
(u∗, V ∗) is too far from the desired solution, the step size ∆L (related to the arc length parameter) is locally
reduced until the method converges. The convergent Newton procedure yields the next point (u1, V1) on the
solution branch with a distance of ∆L to (u0, V0).

4 Simulation results

The finite volume method has been implemented in the prototype semiconductor device simulator ddfermi [5]
which is based on the PDE solution toolbox pdelib [12].

We provide results of a first investigation intended to be a proof of concept that electrothermal drift-diffusion
models from Section 2 can exhibit S-shaped current-voltage relations. For simplicity, we restrict our simulations
to the unipolar electronic case of a uniformly n-doped layer. Moreover, in the mobility function (2.3) we only
take into account the temperature dependent factor µn0(T ), describing the positive feedback, but we ignore the
density and field dependent factors g1 and g2 and set them to 1 to avoid parameter fitting.

We consider a uniformly n-doped, 340 nm thick organic semiconductor material that is contacted by two metal
layers and perform a quasi-1D simulation. Due to the high conductivity of the metal layers we assume that the po-
tential is constant here and neglect the metal layer entirely. Instead, we prescribe Dirichlet boundary conditions
on the parts ΓD1 and ΓD2 . On ΓD2 the potential is set to zero and on ΓD1 to the (spatially constant) externally
applied voltage V . We determine the current-voltage relation of the organic device (which can be S-shaped) by
calculating the current over ΓD1 . The aim of the simulation work in this paper was to find a parameter range

parameter value parameter value

ε 4.0 ε0 µn0 0.1 . . . 0.8 cm2 V−1 s−1

λ 0.4Wm−1 K−1 c1 1.0
Ta 220K c2 0.4
κ 103 . . . 105Wm−2 K−1 a 1.5 nm
EH 0.0 eV Nn0 1021 cm−3

σn 0.05 . . . 0.08 eV doping 5 · 1018 cm−3

thickness 340 nm

Table 1: Simulation parameters.
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Figure 3: Simulated current-voltage characteristics using the electrothermal drift-diffusion model different dis-
order parameters σn (left), the right figure shows the resulting maximal temperature in the device. We choose
µn0 = 0.8 cm2/(Vs), κ = 104 W/(m2K).

leading to a pronounced occurrence of S-shaped current-voltage relations. The resulting essential parameters
for the simulation are collected in Table 1.

For the study of the phenomenon of S-shaped current-voltage relations and their appearance in dependence on
physical parameters we performed three types of parameter variations.

In Fig. 3 we investigated the influence of the disorder parameter σn on the electrothermal interaction in the
device. The resulting current-voltage relations are depicted in the left picture, the right one shows the maximal
device temperature over the applied voltage. We remark that due to the small size of the device, for a given bias
voltage, the temperature difference within the device is very small. Whereas for σn = 0.05 eV no S-shaped
current-voltage relation with region of negative differential resistance occurs, such behavior evolves for higher
σn. With increasing σn the first turning point of the curve moves to a higher applied voltage but the related
current density decreases, and the ’S’ becomes more pronounced.

In Fig. 4 we varied the reference mobility µn0 = m × µ̃n0, m = 1, 2, 4, 8, µ̃n0 = 0.1 cm2 V−1 s−1. The
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Figure 4: Simulated current-voltage characteristics using the electrothermal drift-diffusion model for different
reference mobilities µn0 = m× µ̃n0, where m is indicated in the legend (left), µ̃n0 = 0.1 cm2/(Vs), κ = 104

W/(m2K), σn = 0.08 eV. The right figure shows the maximal temperature in the device.

DOI 10.20347/WIAS.PREPRINT.2630 Berlin 2019



D. H. Doan, A. Fischer, J. Fuhrmann, A. Glitzky, M. Liero 10

0.0 1.0 2.0 3.0 4.0

100

101

102

103

104

105

Applied voltage [V]

C
ur

re
nt

de
ns

ity
[A

cm
−
2
] k = 0.1

k = 1
k = 10

0.0 1.0 2.0 3.0 4.0

500

1000

1500

2000

Applied voltage [V]

Te
m

pe
ra

tu
re

[K
]

k = 0.1
k = 1
k = 10

Figure 5: Simulated current-voltage characteristics using the electrothermal drift-diffusion model for different
thermal outcoupling regimes (left), the right figure shows the resulting maximal temperature in the device. Here
κ = k × κ̃, where k is indicated in the legend and κ̃ = 104 W/(m2K), µn0 = 0.8 cm2/(Vs), σn = 0.08 eV.

resulting current-voltage relations are depicted in the left picture, the right one shows the maximal device tem-
perature over the applied voltage. Lower mobilities enforce a more pronounced S-shape which is additionally
shifted to the right. Higher mobilities lead to a stronger increase of the current density.

Finally, Fig. 5 contains a variation of the thermal outcoupling conditions realized by Robin boundary conditions
of the form λ∇T · ν + κ(T − Ta) = 0 on ∂Ω with κ = k × κ̃, κ̃ = 104Wm−2 K−1, k = 0.1, 1, 10
(left: current-voltage relations, right: the maximal device temperature over the applied voltage). Better cooling
broadens the ’S’, for the two turning points the applied voltage as well as the current density increase.

Whereas in the right plots of Fig. 3 and Fig. 4 we did not present the full range of resulting temperatures, this is
done in Fig. 5. In this way, in particular, the full S-shape of the simulated temperature over the applied voltage
is visible. Note that in real materials these temperatures are out of range since the material would be thermally
destroyed.

The exemplary variations of physical parameters show that the complex nonlinear interplay leads to strong vari-
ations in the shape of the current-voltage characteristics as well as temperature-voltage relations. In this paper
we were especially looking for parameter constellations leading to complicated characteristics. The simulation
of realistic organic semiconductor devices with more adequate physical parameters is planned in future work.

5 Conclusion and Remarks

We presented a discretization scheme for the electrothermal drift-diffusion model (2.1) for organic semiconductor
devices. We formulated temperature dependent nonlinear Dirichlet boundary conditions for the electrostatic
potential (2.7) at Ohmic contacts, which take into account the shift of the equilibrium potential due to changing
device temperature.

We used a finite volume based generalized Scharfetter-Gummel scheme implemented in the prototype semicon-
ductor device simulator ddfermi [5] on top of the PDE solver toolbox pdelib [12]. Implementing a path-following
technique we demonstrated that the model and its discretization for certain parameters exhibit the phenomenon
of an S-shaped current-voltage relation with regions of negative differential resistance. To our knowledge this
is the first simulation tool for drift-diffusion type models mastering this challenge. S-shaped current-voltage re-
lations have been observed experimentally [20] and need to be properly modeled in order to understand and
optimize the device behavior.
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Figure 6: Simulated Joule heat density [W/cm3] in an organic thin-film transistor using the numerical approxima-
tion of the electrothermal drift-diffusion model (2.1).

Besides the characteristics, our model and its discretization are capable to describe spatially resolved the elec-
trothermal behavior of real 3D organic semiconductor devices in terms of charge carrier densities, current den-
sities, potentials, temperature distributions. This in combination with a comparison to measurements has to be
done in future work. As a first result, Fig. 6 stems from a 2D simulation for an organic thin-film transistor. It
shows the produced Joule heat by using the numerical approximation of the electrothermal drift-diffusion model
in Section 2 with the temperature dependent Ohmic contact boundary conditions for the electrostatic potential
(2.7).

In addition, future simulations by means of the model for real organic device structures and realistic physical
parameters may help to estimate the region of a stable working regime guaranteeing the absence of material
destruction due to overheating. Furthermore, the description of the spatially resolved electrothermal behavior
of real devices is very important for understanding the effect of thermal switching, device degradation, device
breakdown and local heating (hot spots) in large area devices. Temperature activated ionic conductivity is ob-
served in solid oxide materials like yttria stabilized zirconia [22]. It would be interesting to apply the methodology
developed in this paper to recently derived drift-diffusion models for this type of materials [27].
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[2] U. Bandelow, H. Gajewski, and R. Hünlich, Thermodynamics-based modelling of edge-emitting quantum
well lasers, Optoelectronic devices: Advanced simulation and analysis (J. Piprek, ed.), Springer, 2005,
pp. 63–85.
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