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ABSTRACT. We derive a strong approximation of a local polynomial estimator
(LPE) in nonparametric autoregression by an LPE in a corresponding nonparame-
tric regression model. This generally suggests the application of regression-typical
tools for statistical inference in nonparametric autoregressive models. It provides
an important simplification for the bootstrap method to be used: It is enough to
mimic the structure of a nonparametric regression model rather than to imitate
the more complicated process structure in the autoregressive case. As an example
we consider a simple wild bootstrap. Besides our particular application to simul-
taneous confidence bands, this suggests the validity of wild bootstrap for several
other statistical purposes.

1. INTRODUCTION

In this paper we deal with a nonparametric autoregressive model
Xt = m(Xt_l) + &;.

Such processes generalize well-known linear first order autoregressive models. Several

~ authors dealt with the interesting statistical problem of estimating m nonparametri-

cally. Robinson (1983), Tjgstheim (1994) and Masry and Tjgstheim (1995) dealt with
usual Nadaraya-Watson type estimators. Recently (Hardle and Tsybakov (1995)) the
interest was directed to local polynomial estimators for this setup. Of course, it is
important to get knowledge about the statistical properties of particular nonparame-
tric estimates. Besides asymptotic results the bootstrap offers a powerful tool for this
purpose. Franke, Kreiss and Mammen (1996) consider a time series specific bootstrap
as well as a wild bootstrap proposal in order to obtain pointwise confidence intervals
for kernel smoothers in nonparametric autoregression with conditional heterosceda-
sticity. Successful application of the bootstrap for time series models can be found

- for example in Tjgstheim and Auestad (1994).

‘In this paper we consider the situation from a more general point of view. Asa typlcal ,
nonparametric estimator we consider local polynommls We derive a strong approxi-
mation of a local polynomial estimator (LPE) in the autoregressive setup by an LPE
in a corresponding nonparametric regression model. Besides the application of this
main result to our particular example of simultaneous confidence bands, it contains
the general message that nonpara.métric autoregression  and nonparametric regres-
sion are asymptotically equivalent in a certain sense concerning statistical inference
about the autoregression/regression function. Of course, this suggests and justifies to
use regression-type methods for statistical inference in the context of nonparametric
autoregression, t0o0. '

Further, from Neumann and Polzehl (1995) it is essentially known that one can find
a strong approximation of an LPE in nonparametric regression by a random process
generated by an appropriate bootstrap technique. Together with the strong appro-
ximation result in the present paper we are able to present a strong approximation
of an LPE in nonparametric autoregression by a process generated according to the
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wild bootstrap idea. Finally, we apply the strong approximation results to simulta-
neous confidence bands. On the basis of a result of Hall (1991), it can be shown that
the proposed bootstrap approximation outperforms the approach using first-order
asymptotic theory for the supremum of an appropriate Gaussian process.

But, quite general, the results suggest that the wild bootstrap is valid for several
other purposes, too. In a forthcoming manuscript we discuss in detail bootstrap tests
for the hypothes1s of a parametric model for m. Such results have been developed in
the regress1on model by Hérdle and Mammen (1993).

The paper is organized as follows. In Section 2 we present the main ideas and results
leading to a strong approximation of an LPE in nonparametric autoregression by
an LPE in nonparametric regression (Theorem 2.1). Furthermore, we collect in this
section the necessary assumptions and some auxiliary results. Section 3 contains the
wild bootstrap proposal and the corresponding strong approximation result. The
application of the results to simultaneous bootstrap confidence bands is given in
Section 4. There we also present some simulation results in order to demonstrate the
finite sample behavior of our proposal. All proofs are deferred to a final Section 5.

2. APPROXIMATION OF NONPARAMETRIC AUTOREGRESSION BY NONPARAMETRIC
REGRESSION

Assume we observe a stretch {Xo,... ,Xr} of a strictly stationary time-homogeneous
‘Markov chain. We are interested in estlmatmg the autoregression function m(z) =
E(X:| X¢-1 = z) . First, we write the data generatlng process in the form of a
nonpa.rametmc autoregresswe model,

X, = m(Xe) + &0, t=1,...,T, e
where the distribution ‘of € 1s allowed to depénd bn thi with ’
E (et ]| Xim1) = 0,
E (& |Xt_) = o(Xio1).

The cond1t1ona1 variance v(X;_1) is assumed to be bounded away from zero , and
infinity on compact intervals. Note that, in contrast to the frequently used assumption
of errors of the form o(X;_1)e; withi.i.d. &’s, the errors here can follow completely
different distributions and are not necessarily 1ndependent Such a dependence arises
because the distribution of &; depends on X, and é3,...,&-1 -

To ensure recurrence, we assume that

(A1) {X; :t > 0} is a (strictly) stationary time-homogeneous Markov chain. We'
denote by Px the stationary distribution. Furtherrnore, we assume absolute
regularity (i. e. B-mixing) for {X;} and that the B- -mixing coefficients decay
at a geometric rate.

Remark 1. For the definition of m1x1ng we refer to the monograph of Doukhan (1995,
Chapter 1). Assumption (A1) is for example fulfilled if we assume the following
explicit structure of the data.—generatmg process:

X = m(Xema) + s(Xima)el (22
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where s : R — (0,00) and (g}) denote i.i.d. innovations with zero mean and unit
variance. We assume that

. : !
lim sup 2@ +s(@)en]

le|—vo0 ||

and that the distribution of £} possesses a nowhere vanishing Lebesgue dens1ty iFrom
these conditions one may conclude that {X;} defined according to (2.2) is geometri-
cally ergodic (cf. Doukhan (1995, p. 106/107)), which implies geometrical S-mixing
if the chain is stationary, i.e. Xo ~ Px.

The assumption that the chain is stationary may be avoided, since, for any initial
distribution, we have geometric convergence to the unique statlonary distribution by
geometric ergod1c1ty Nevertheless, we assume throughout the whole paper that the
underlying Markov chain is stat1onary

Processes as defined in (2.2) play an important role in financial time series. Usually
they are called ARCH-processes. Finally, we like to mention that we need assum-
ption (Al), especially the geometric 8-mixing, to give a not too complicated proof to
Lemma 2.1. There we need more or less an exponential inequality.

We intend to constyruct, an asymptotic confidence band for the conditional mean
function m. This makes sense for a region where we have enough information about
m. To facilitate the technical calculations, we assume

(A2) The stationary density px of X; satisfies px(z) > C >0 for all z € [a,}]

and construct a confidence band for this interval [a,b]. In this paper we focus our
attention to so-called local polynomial estimators. These estimators are introduced in

a paper by Stone (1977). Fan (1992, 1993) and Fan and Gijbels (1992, 1995) discuss
the behavior of LPE for nonparametric regression in full detail. Recently Hardle and
Tsybakov (1995) applied LPE to nonparametric autoregressive models.

"A p-th order local polynomial estimator mh(a:) of m(z)is givenas @y = @o(z, Xo,... ,X1),
where @ = (@o, ... ,dp—1) minimizes- ;
I — X S T — X1 y : .
M, =) K ( ) - S a, ( ) : (2.3)
t=1 q=0

At the moment we only assume that the bandw1dth h of the local polynom1a1 esti-
mator satisfies h = O(T*~ 5y and h7! = O(T%) for some & > 0. We as-
~sume that the kernel Kisa nonnega,tlve function of bounded total variation with
supp(K) C [-1,1] . We do not impose any further smoothness condition on K, be-
cause only a partmular choice of p, which makes a certain rate of convergence poss1b1e,
can be motivated from the estimation point of V1eW From least-squares theory it is
clea.r that m, my, can be ertten as

EAC) th(w X, 1,{Xo, XT_I})Xt = [(D'K D.)" DK, x|, |
v t=1 : (2.4
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I)m = : 1
z—Xp_ T
1 T—1 ( }IiT l)p 1

K, = Diag [K(w _EXO),... ,K(f#)] .

On first sight the analysis of mj seems to be quite involved, because the X;’s are
dependent and enter into the right-hand side of (2.4) several times. To simplify the
investigation of the deviation field {mn(z) — m(z)}seny we approximate it by
an analogous deviation field defined by observations according to a nonparametric
regression model with independent errors.

Although it is perhaps more natural to approximate nonparametnc autoregresswn
by nonparametric regression with random design, we establish here an approx1ma.—
tion by nonparametric regression with nonrandom design. This is done in view of
the proposed bootstrap method, which mimics just nonparametric regression with
nonrandom design. Let {zo,...,zr_1} be a fixed realization of {Xp,...,Xr_1} .
As a counterpart to (2.1) we con31der the nonparametric regressmn model

14 = m(:z:t_l) + 7, t=1,...,T; o (2.5)

where the 7¢’s are independent with m ~ L(e | Xt 1 = %;—1) . Here we denote
the independent variables by small letters to underline the fact that we consider the
distribution of the Y’s conditioned on a fixed realization of {Xo,...,Xr_1} .
analogy to (2.4) we define a local polynomial estimator as ‘

T ~ , ‘
mp(z) = th(m,wt_l,{wo,... ,?T-—l})iftt | ‘ (2.6)

t=1

In this section we show that on a sufficiently rich probability space there exists a
pairing of (Xo,é&1,...,€ér) , having a joint distribution according to model (2.1),
with (m1,...,77) , having a joint distribution according to (2.5), such that 7y and
my, are close to each other in the supremum norm on [a,b]. Before we turn to the
main approximation step, we derive first some approximations to 7 and 7, which
allow to replace the local polynomial estimators by quantities of a simpler structure.

2.1. Simplification of the problem by approximating the local polynomial
estimators. If we compare the cumulative distribution functions of two random
variables, then we can expect that they are close to each other, if the difference
between the random variables is small with high probability. Because of the frequent



use of this fact we formalize it by introducing the following notion.

Definition 2.1. Let {Zr} be a sequence of random variables and let {ar} and
{Br} be sequences of pos1t1ve reals. We write

Zr = O(ar, Br),

if

P(|ZT| > C’aT) < CﬂT
holds for T > 1 and some C < oo.
This definition is obviously stronger than the usual Op and it is well suited for our
particular purpose of constructing confidence bands; see the application in Section 4
~where we obtain in conjunction with Lemma 4.1 upper estimates for the error in
coverage probability of the confidence bands. :
In the following we have to deal with random functions of X;_,, Wthh also depend on
the wholeset {Xo,...,Xr_1} . For example, the weights wx(z, X;—1,{Xo,... , X7 1})
of the local polynonnal estimator are of this structure. To get nonrandom approxi-
mations of them we show that the number of X}’s that fall into some fixed interval
converges to the expected number at a certain rate; cf. Lemma 2.1. Then we expand
the functions of interest into a Haar wavelet series and show that this series converges
in the supremum norm to a nonstochastic limit.
Here and in the following A denotes an arbltrarlly large constant

Lemma 2.1. Assume (A1). Then

Z{I(Xt 1 E [61,62]) — Pxles, o]}

t=1

-0 (min{\/TPX[cl,cz]T” + (log T, /T log T},T“A>

holds unifbrmly;in ~0<g <<,

- In the following we specify this and other approximations to intervals of the form
Ly = [k277,(k+1)277). R X §

We define Ir = {(j,k) | 0<j <5 (a—6)2 <k < (b+6)27}, where 2" = O(T) .
Here large values of j refer to small intervals, whereas Iox = [k, &k +1) .
As an immediate consequence of Lemma 2.1 we obtain that

# {t : Xig € Ij,k} - TP (Xt—l € I',k)
_ 0 (min{\/fi’P(Xt_l € L)T% + (log T?, /T log T},T-A) (2.8)

holds uniformly in (j,k) € Ir .
According to (2.4), the weights of the local polynomial estimator can be written as

= - X z— X1\
'LUh(IB, Xt—l; {Xo, e )XT—I}) = Z dq(a;, {XO) XT—-I})K ( = t— 1) ( - t Z) )’
‘ , .9

where d (:1: {Xo, L X7oa}) = ((D'K D)~ 1)1,q+1 . The functions d‘ depend on
- {Xo,.. XT 1} in a smooth manner (“smooth” is meant in the sense of bounded
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total variation, which leads to appropriately decaying coefficients in a Haar series
expansion) and yields the following nonrandom approximation:

Lemma 2.2. Assume (A1) and [AQ) Then there ezist nonrandom functions d,(z”)(:p)
d{)(z) = ((ED,K.D.)™"), o1 = OUTR)™), such that

J

sup {|dy(e, {Xo,..., Xr1}) — d{*Nz)[} = O ((Th)™/2T%,77%).

z€[a,b]

~ This lemma allows to introduce weights wh(m Xt 1) , which depend only on a single
value X;_4, namely ‘ S

| wh(m X 1)’— Zd(“)(m)K (’” _;‘th‘f> (m _If(*;l)q; (2.10)

g=0

Now we obtain the following assertions, which finally allow to consider the difference
between 3, wh(z, X¢-1)e: and Y, Wh(z,z¢—1)n; rather than between the more
involved quantities 7n(z) and mp(z). To ensure the desired behaviour of weighted
sums of the &;’s and #;’s, respectively, we impose the following condition.

(A3) For all M < oo and arbitrary & > 0 there exist finite constants Cps such
that  supserassrs {E (|| Xer=2)} < Cue |

Actually, it can be seen from the proofs that a certain finite number M of uniformly

bounded moments would suffice. However, it seems to be difficult to get a minimal

value for M, and therefore we do not make the attempt to give a particular value for
it.

Proposition 2.1. Assume (A1) to (A8). Then

51[1pb]{ > [wa(e, Xo-1,{Xo, - - , Xr-1}) — Ba(, Xi1)] at} =0 ((Th)‘1T5 T"‘)
z€|a, t ‘ ’ . ’
Analogously, | ’ »
' SlElpb] { Z [wh(:U) $t—17 {mo, (R ;mT—l}) - Uh(ma mt—l)] Uy } = 6 ((Th);lTs’ T_A)
z€la, t :

holds uniformly in (zo,...,z7_1) € Qr , where Qr is an appropmate set with
P((Xo, - . XT—l) ¢ Qr) = O(T) .

For the next assertion concerning a term, which plays a role similar to the usual bias
term in nonparametric regression, we need the following assumption.

(Ad4) m is p-times differentiable with sup,¢f,_ 65+5]{|m(p)(w)]} < oo , for some |
6§>0. . '



- Proposition 2.2. Assume (A1), (A2) and (A4).

As an approzimation to the bias-type term we consider the nonrandom quantity

boo(:c) -= :,Z;;l)dEIW)(w) Et: B {K (m —,.fftq) (a: —i‘j(t;l)q /xxt_l (Xt(;:ls))!p’_lfm(p)(s) ds} |

Then
Sup, {lbe(2)[} = O(h?)

z€[a,b]

and

;1{1;61{ XY m(Xe) — m(@) —  bu(a)

}

= O (W(Th)™ 1%, 7).

2.2. Approx1mat10n of autoregression by regression via Skorokhod em-
bedding. In the previous subsection we derived some helpful technical approxima-
tions to reduce the problem of finding a close connection between the processes
{Mn(z)}ecep) and {Mn(z)}zeap to the simpler task of finding a link between
: Zt wh(m,Xt 1)Et}oelap and gzt Wh(T, Te—1)Mt tzefay) - Now we construct such a
pairing of the observatlons in (2.1) and (2.5), which provides a good approximation
of partial sums of the ¢;’s by partial sums of the 7,’s corresponding to certain subin-
tervals of [a — §,b+ §]. Using a Haar wavelet expansion we then obtain the desired
connection between {X:Wn(z, Xi-1)et}ocay) and {3, Th(z, Te-1)7t toeay -
The link between the two samphng schemes (2.1) and (2.5) will be reached by Skorok-
hod embeddings of the ¢;’s and 7;’s, respectively, in the same set of Wiener processes.
Such an embedding was introduced by Skorokhod (1965) for independent random
variables and is known as a possible tool to derive strong approximations for partial
sums of independent random variables; cf. Csorgé and Révész (1981, Chapter 2). La-
ter the technique has been extended to martmgales by several authors; a convenient
description of the main ideas can be found in Hall and Heyde (1980, Appendlx Al).
As in the previous subsection, We consider partial sums of the &;’s and n;’s, respec-
tively, according to subintervals Ijk , (j,k) € Ir . Let Zjr = Xux, ,e1;, & and
Zir = Ltw,eL;, Nt be partial sums of the errors according to the autoregresswe

model (2.1) and the regression model (2.5), respectively. Using Skorokhod embed-
ding techniques we can establish the following fundamental lemma. Here and in the
following 6 > 0 denotes an arbitrarily small, but fixed constant.

Lemma 2.3. Assume (AI) to (A3). There ezist sets of events Qr, P((Xoy...,Xr1) ¢
Qr) = O(T~?) , such that there ezists on an appropriate probability space a pairing
~ of the mndom varwbles from (2.1) and (2.5) with »

(IZj,k k‘ > [TP(Xe-1 € Ijk)]1/4T5 + T¢ for any (],k) € IT) _ O(T A)

holds uniformly in (zo,... ,z7_1) € Qr .
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Using a Haar wavelet expansion of an arbitrary weighting function w we can now
establish a link between Y, w(X;-1)e: and th(mt_l)m . Such an approximation
will hold in a uniform manner and simultaneously in a whole class = {w |
supp(w) C [¢,d]} of such weighting functions, where ¢ < d are any ﬁxed consta.nts

Corollary 2.1. Assume (A1) to (A3) and let Qr be as in Lemma 2.3. Then there
ezists a pairing of the random variables from (2.1) and (2.5) such that

; [Sew(Xio1)e: — Spw(ze—r )l ~ .
’ (3353{i'“/‘*(TV(w»a/‘*||wn”‘*T<s o) > 0) = o)

holds uniformly in (zo,... ,z7-1) € Qr .
To establish now the desired approximation of ¥, Wx(z, Xi—1)e: by X, Wr(z, Tt 1)77t ,

we only have to find upper bounds to the total variation and the Lyi-norm of @y (z, .
This leads to the following assertion.

Pro_position 2.3. Assume (A1) to (A3) and let Qp be as in Lemma 2.3. Then there
ezists a pairing of the random vartables from (2.1) and (2.5) such that

sup { } = O ((Th)=/*1%,T7)
z€[a,b] : .

holds uniformly in (zo,...,Tr-1) € Qr .

th(m Xy 1)€t - th(% Teo1 )M
t cn

The approicimations given 1n the Propositions 2.1, 2.2 and 2.3 lead now to the desired
approximation of nonparametric autoregression‘ by nonparametric regression

,Theorem 2.1. Assume (A1) to (A4) and let Qr be as in Lemma 2.3. Then there
 ezists a pairing of the random variables from (2.1) and ( 2.5) such that

sup {|fn(z) — Tn(a)|} = (h"(Th) 2rd 4 (Th)-3/4T6 )

zE[a,
holds uniformly mn (a:o, e ,mT_l) € QT .

Besides the technical quantification of a certain upper bound of the rate of approxi-

~ mation of mx(z) by mn(z), the more important fact is that the difference between

mr(z) and mp(z) is of smaller order than the stochastic fluctuations of mh( ), which
are Op((Th)~*/?). Although we use this result here only for the particular purpose
of constructing simultaneous confidence bands for the autoregression function m, it
seems to be of much greater importance. It provides the fundamental message that
nonparametric autoregression and nonparametric regression are asymptotically equ-
ivalent. This explains in particular why methods, which were first developed in the
regressmn context can be literally applied to a.utoregressmn The approximation gi-
ven in Theorem 2.1 can also be used to transfer a testing method developed in Hardle
and Mammen (1993) for the case of nonparametric autoregression. This will be done
in a forthcoming paper.
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Remark 2. As was already nientioned it perhaps would have been more natural to
approximate nonparametrlc autoregressmn by nonparametric regressmn with random
design. That is, instead of (2.4) we consider the nonparametric regression model

where the pairs (Y;, Z;) are i.1.d. according to the stationary distribution of the vector
(Xi-1,X:) in model (2.1). Let mi(z) be the local polynomial estimator in model
(2.11), which is defined analogously to (2.6). It is easily seen that the statement in
Theorem 2.1 implies the asymptotic equivalence of the experiments (2.1) and (2.11).
Strictly speaking, under (Al) to (A4) there exists a pairing of the random variables
from (2.1) with those of (2.11) such that

sup {|[Fn(z) — ma(z)|} = O (hP(Th)‘1/2T5 + (TRY™*T%, 7).

“z€fa,b]

3. THE BOOTSTRAP

To motivate the particular resampling scheme proposed here, first note the different
nature of the stochastic and the “bias-type” term. Even if the current value of the
stochastic term is unknown, its distribution can be consistently mimicked by the bo-
otstrap. In comtrast, the bias can only be explicitly estimated, if some degrees of
smoothness of m are not used by Mx(z). In nonparametric regression and density
estimation there exist two main approaches to handle the bias problem: undersmo-
othing and explicit bias correction.

'Here we take an undersmoothed estimator 7is(z), that is the bandwidth & is chosen
such that the order of the bias is smaller than the order of the standard deviation.
Then it is not necessary to model m(z) in the bootstrap world, because the deviation
process my(z)—m(z) is dominated by the stochastic term ), wh(:c, Xee1,{Xoy- .-, X711 })es
In view of the possibly inhomogeneous conditional variances we use here the wild’
bootstrap technique, which has been introduced by Wu (1986). A detailed description
of this resampling scheme can be found in the monograph by Mammen (1992). It has
successfully been used in nonparametric regression in the already mentioned paper
by Hardle and Mammen (1993). Let (o, ... ,zr) be the realization of (X, ..., Xr)
at hand. We generate independent bootstrap innovations €3,... ;e with

E*e; =0, E*(ef) = & = (2 — Mn(zs-1))".
An appropriate counterpart to model (2.5) in the bootstrap world is given by
X = mn(zey) + &, t=1,...,T. '

~ As argued above, we mimic the stochastic term ¥, wh(m X 1,{X0, » X7r_1})ee
of the local polynomml estlma,tor only. From this it is clear that we do not use the

X}’s explicitly.
We have to ensure that for all integers M there exists a finite constant Cym > 0 such

that
E*15:|M < C’MIE:}IM
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This can be ensured if we assume that e} = &n; for a sequence of i.i. d. random
variables 77,...,7% with E*pf =0, E*(9})? =1, and E*n}™ < oo, for all
integers M. Exa.ctly along the lines of Section 2 we obtain the following results

Lemma 3.1. On a sufficiently rich probabzlzty space there ezists a pairing of Mm,... AT
with €3,...,ex such that :
* }
tl(

S?pb]{ th (z mt—l;{woa - TT- 1} M — th (z, @ 1,{130, S ZTT-1})E
zEla
O ((Thy1%, 1)

holds uniformly in (zo,... ,z7-1) € Qr .

In conjunctionk With Theorem 2.1 we get

Theorem 3.1. On a sufficiently rich probability space there ezists a pairing of Xo,€1,... ,€r
with €3,...,e5 such that

s?pb]{ mn(z) — m(z) — D wi(z, ze-1, {20, - .. ,ZT-1})E} } =0 (hp + (Th)"3/4T6,T_>‘)
z€la ) ‘ .

holds uniformly in (zo,...,z7-1) € QT .

4. AN APPLICATION OF THE BOOTSTRAP CONFIDENCE BANDS

We consider two possibilities for asymptotic confidence bands for m to a prescnbed
level 1 — o. We develop simultaneous bands as opposed to confidence bands which
attain p01ntW1se a certain coverage probability. First we can construct a confidence
band of a uniform size. To get the approprlate width for such a band, we consider
the quantity

)

UT = sup { ,mt_kl})s:

‘ we[a! 5]
which is introduced to mimic

Ur = sup {[ma(a) — m(a)l}.

, z€[a,b]
Let t% be the (random, because it depends on the sample Xo,...,Xr in model
(2.1)) (1-@)-quantile of Uz. Then | L ‘
| I}z) = [Mn(z) — &, 7n(z) + t2] (4.1)

is supposed to form an asymptotic confidence band of the prescribed level 1 — a.

A more reasonable and perhaps more natural alternative are simultaneous confidence
bands whose size is proportional to an estimate of the standard deviation of 7is(z).
Whereas the size of I’ is essentially driven by the worst case, that is by the supremum
of v(z)= var(mh(w)) , a variable confidence band follows in size the local variability
of mp(z). It can be expected that the area of such a confidence band is smaller than
that of a band of uniform size. Moreover, it can serve as a visual diagnostic tool to
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detect regions where there are difficulties for the estimator ~ either because of large '
variances of the e;’s or because of too sparse a design.

Now we describe the construction of a confidence band of variable size in detail. The
residuals &; can also be used to estimate v(z) by

o(z) = Zwi(m,ajt_l,{wo,... ,:nT_l})é‘f. (4.2)
t , .

Let ¢3* be the (1-a)-quantile of the distribution of

Vr = supb]{ th (z, Ti 1,{Zo, ... mt;l})a:/vﬁ(:c) }:
z€la
which mimics -
Ve = s {a) - m(e)] /y/i(0)}.
. € a.,

This leads to a confidence band of the form ,
(@) = [ne) — V@ e) + Vi@ (+3)

We already know from Theorem 3.1 that the process min(z) — m(z) is pathwise close
to the conditional (conditioned on Xo,€1,... ,er ) process Yo, wx(z, zs—1, {Zo,... ,27-1})e}
on an appropriate probability space. The following lemma provides a lower bound
for probabilities that sup,ep, y{l X¢wa(z, ze-1, {20, ... ,zr_1})e}|} falls into small
‘intervals. Finally, these two results will lead to an estlma.te of the error in coverage
probablhty of the proposed confidence bands.

Lemma 4.1. Assume (A1) to (A3) Then A
( sup {l th(m Ti_1, {(Eo, (ET_]_})E:'} € [Cl,Cg]>

z€[a,b]
= 0 (e~ e1)(Th)/*(log Ty (Th)™/21%) .

This lemma follows immediately from Lemma 2.2 in Neumann and Polzehl (1995)
In conjunction with Theorem 3.1, we now obtain an upper bound of the error in
‘coverage ‘probability for I7}.

Theorem 4.1. Assume (Al) to (A4) Then A ;
P (m(z) € [mh(m) (:z:) +&3] forall z € la,b]) :
—1-a+40 ((h" + (Th)-3/4T5)(Th)1/2,/1og T)

, Analogously, we are able to give an upper bound for the error in | coverage probability
for I* - , (



12

- Theorem 4.2. Assume (A1) to (A4). Then

( (=) € (=) - o)t mn(z) + o)) forall € la, b])
=1-4a+0 ((h” +(Th)" 34T)(Th) 1/2,/1ogT)

As already mentioned, we propose to use undersmoothing to handle the bias problem.
This means that the bandwidth A = R(T) has to be chosen in such a way that
R? & (Th)~ 1/2 . If we do this appropnately, the error terms in Theorems 4.1 and 4.2
vanish, that is the confidence bands have asymptotically the prescrlbed coverage
proba,blhty l1—a.

We conclude this section with some 51mulat10n results. For this purpose let us consider
the following two models:

X, = 4-sin(Xi1) + & a | - (4.4)

X, =08 X, +/1+02X2, & (4.5)

- The latter model is an usual linear first order autoregression with so-called ARCH-
€erTors.

~The innovations ¢; are assumed to be i.i.d. with zero mean and umt variance. For
model (4.4) we assume a double exponential distribution, while model (4.5) is assumed
to have normally distributed errors.

Based upon T = 500 observations X, ..., Xr we simulate simultaneous confidence
bands of variable size for my(z) = 4 - sin(z) and mo(z) = 0.8 -z . This is done
by simulating the 90% -quantile of Vr from 1000 Monte Carlo replications. The
results are reported in Figures 1 and 2. m; is estimated by a local linear estimator
my , h = 0.4 , while for m, we make use of an usual Nadaraya-Watson type kernel
estimator, i.e. a local constant smoother, with bandwidth A = 1.0 . The thick lines
show m, and m,, respectively, whereas the thin lines represent confidence bands of

and

the form 7ix(z) & 1/9(2)ta,: , Where to; is chosen such that m;() is covered in 900
cases by the above band. '

[Please insert Figures | 1 and 2 about here.]

 Finally, we choose at random three time series realizations from each model (4.4) and

(4.5) in order to carry through the bootstrap. All three resulting bootstrap confidence
bands I534(z) cf. (4.3), are given in Figures 3a-3c and 4a-4c, respectively. In order
to obtain an impression of the stochastic fluctuation of these simultaneous confidence
‘bands, we additionally report a plot (cf. Figures 5 and 6) which contains all bootstrap
conﬁdence bands together with the simulated true confidence bands frorn Figures 1
and 2 (thick lines).

[Please insert Figures 3, 4, 5, and 6 about here.]

~Although this is only a small simulation study, the results demonstrate that the
bootstrap offers a powerful tool in order to construct not only pointwise but also
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simultaneous confidence bands for nonparametric estimators in nonlinear autoregres-
sion.

The authors are very grateful to D. Seidel, Technical University of Braunschweig, for
doing the programming. ~

5 PROOFS

Proof of Lemma 2.1. The assertion can be concluded from a kind of Bernstein ine-
quality, which, for example, is given in Doukhan (1995, Theorem 4, p. 36). Define

Zy = I(X;—1 € [e1,¢2]) — Px([e1,¢2])

and abbreviate EZ? = Px [cl,cz](l — Px[eci,c]) = o2 . Since geometric f-mixing
implies geometric strong mixing (i.e. a-mixing) we obtain from & covariance inequality
(cf. Doukhan (1995), Theorem 3, p. 9) for all § >0 that

<Z Zt) < 2T02(1_6). |

i From the above mentioned Theorem 4 of Doukha.n (1995) we obtain for x, M > 0
large enough and all € > 0, uniformly in —co < ¢ <y <0, that '

(ZZt > Mmm{\/TPX [e1, cz]T25 + (log T)?, \/TilogT})
< P (Zzt > Mmin{\/ﬂiﬁ + (logT)z,\/TlogT})

t=1 . ‘
— in2{/T o226 2 ‘
< dexpld M (1 ¢) min®{ T'a T% + (log T)?,/Tlog T'} +o(T )
(2T0'2(1‘5) + &log T min{VTo?T? + (log T)?, /T log T})
In the case that the minimum in the denominator represents the dommatlng term it
is easy to see that the exponent is at least of magmtude const -log T, i.e. the whole

expression is of order O(T ).
In the case that

2T02(1f5) > klog Tmin{VTo2T? + (log T)?, /T log T} _ logT\/TlogT

we obtain from ¢2(17%) <1 an upper bound to the exponential term by
2 - N
8
Finally, for the remaining case

9T01~0) > klog T min{vTo?T%+( log T)?, \/Tlog T} = xlog T (VTo?T% + (log T))

we have, since (from the above 1nequa11ty) To?>1, the followmg upper bound to
the exponent1a1 term:

’exp( Mz(;—a) (ﬁ’@g;}(?gﬂ )2) S exﬁ (_Mz(+2w> - o(T .
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a
Proof of Lemma 2.2. First we investigate how good the random qua.ntlty (DLK.D, ),J

is approx1mated by its expectatlon Let g(z) = (‘”—z) (-h—)zﬂ . Note that, for

T large enough and z € [a,b] , g is supported on [a — k, b+ h]. Hence, we can apply
the estimate glven by (2 8). We approximate g by a t-runcated Haar wavelet series
expa.nsmn ‘

Zak¢k(Z) + > Zag,k% x(2), (5.1)
0<i<s*
| where ‘akA=‘f br(2)g(2)dz , U = J¥in(2)9(2)dz , and $u(z) =I(k <z < k+1),
| 2912 if k277 <z<(k+1/2)277
Yi(z) = { —2i/2, if (k+ l/2)2'j <z<(k+ 1)2_j .
0  otherwise

In view of the followmg calculations we choose 7* such that T277" < +/Th . It holds
that

Zlau glz, = O(h) - (52)
and

;Iaj,kl = O(min{|l¢j,klloallgll1,Il¢j,klllTV(g)}) = O(min{2’/*h,277/%}). 5:3)

~ Define FT(z) ST (X1 < z) and F (°°) =T, P(Xi1<2). Then’,'by (5.2),
(5. 3) and (2.8),

- (Xt 1) - ZEQ Xt—l)

t=1 =1

= | [ae)dEx(e) - [ae)ar)|
< ol (Pek +1) - Fa(k) = (FE(k +1) — FEE))|
+ Z Ziaﬂcl

3 [ i) [dF2(2) - dFf(2)

= o(h,/TlogT,T—)
+ Y 0@1R)0(MO(VTZIT,T)
. ji2ighmt ; ; ‘ :
+ Y 0@02*)0(VT2- T, T
3: 3<5*, 29>h71 :

='(§(\/JTIZT5,T-*). B - (5.4)
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]J'f,kl)-l fzj,‘,,= 9(z) dz

Since g is the best p1eceW1se constant approx1mat1on tog, that is g(z) = (
if z€ Ijeg , we get

Y 9 = Gz, < TV(9) = OQ1).
k -
This implies that

Z Q(Xi—1 ) —~ g(Xt—l)

t

= > . g(Xt—1)4§(Xt-1)

k t: X:iy te"‘.k

< Xk:llg = o {t: Xia € Ling}

= O (T277 + VT27'T%, ), (5.5)
and, analogously, ‘ ‘ ,

;Eg(Xt_l) — E§(X,y) = O(T277"). | (5.6)

LFrorﬁ (5.4) to (5.6) we obtain that ;
I(D;Ksz)ij - E(D;Ktz)iJ’] = 6(V TthaT_A)a

which implies

|DLK.D, — ED.K,D,| = O(VThT®,T . © (5.
Recall that px denotes the stationary density of {X.}. Because of
(T —2\ [z — 22
B(DLK.D.) = T / K( . ) ( . ) px(2)dz = Th / )2y (s—hz) dz
we obtain that ; ; , , ‘
ED.K.D, > CTh (( / (z)z"“ 2dz)) , (5.8)
‘ ' -1 o 4,7=1,...,p :

where /\mm< (/2 K (z)z+5-2 dz)),’jﬂ, . ) >0 Hence,

”(D’KD)“ (ED.K.Dg)~ || e e
“(D'K D)7 |D.K.D, — ED, | |(ED K. D)7

O ((Th)=18,17%). | | o (59)

With the definition |

e o
d)(z) = ((ED.K.D) )M+1

we obtain the assertion. [
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Proof of Proposition 2.1. By ||K((z —=.)/h)((z —.)/h)¥|1 = O(h) and
V(K((z —.)/h)((z - .)/h)*) = O(1) we conclude from Corollary 2.1 that

() (e
— ZK( — Ty 1) (m hmt/l) e+ O((Th)lMT‘s T ) (5.10)

holds for (zq,...,zr-1) € Qr , Qr according to Lemma 2.3.
For (zo,...,z7-1) € Qr we obtain by Theorem 4 in Amosova (1972) that

Zo= Y m=0 (\/T2-j1/log T, T""),

tize1 €Lk

which implies, by calculations similar to those in the préof of Corollary 2.1 below,

that
sup { > K (a: ;hmt_1> (m —-ha:t_1>‘1m } =0 (\/Th\/logT, T"‘) . (5.11)
z€[a,b] £ A i

Using now Lemma 2.2, (2.9), and (210) we obtain the assertions. [

Proof of Proposition 2.2. Because of Y}, wa(z, X¢—1,{Xo,... ,X7-1}) =1 and
Yewn(z, Xeo1,{Xo, ... , Xr-1})(X4-1 —2)8=0 for ¢=1,...,p—1 we get from a

Taylor series expansion with integral remainder that

;wh(m,Xt_l,{Xo? , Xr- 1})m(Xt 1) — m(z)

= th(m‘, Xt—l,{Xq, , X1 1})/ 1 (X —13))! m (P)(s) ds
Bt R () (= [ B

Y
TV(g) = O(h?) , we obtain analogously to (5.7) that

S () (258)' [ g

_ EZK( —Het) (22 Ry’ (Xt(;l:ls))!”_lm(p)(;)ds"
+0 (h"\/_ T, 7). |

Since g(2) = K (u) (52)" 12 e m(s)ds satisfies |lgl = O(**) and
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~Since EY, K (z_x""1> (m_‘;f"l) [ %%,L}-m(p)( )ds = O(Th?*1) | we obtain,

in conJunctlon with Lemma 2.2, that

sup {
z€[a,b]
= O (w2 (T8, 7).

th(ﬂﬂ Xi1,{Xo,. .., Xr-1})m(Xi1) — m(z) —  beo(2)

d
Proof of Lemma 2.3. (i) General idea
The pairing of the observations in the autoregression model (2.1) with those in the
regressmn model (2.5), which provides a close connection between Z;; and Z}, is
made via a Skorokhod embedding of the &;’s and 7,’s, respectively, in a certain set of
Wiener processes. This technique makes use of the well-known fact that any random
variable Y with EY =0 and EY? < co can be represented as the value of a Wiener
process stopped at an appropriate random time. Moreover, such a representation is
also possible for the partial sum process of independent ra,ndom variables as well as
for a discrete time martingale; see e.g. Hall and Heyde (1980, Appendix A.1) for
~ a convenient description. In particular, one can show asymptotic normality for a
martingale with this approach.
However, here we have a different task. We are not interested in a close connection
of the two global partia.l sum processes S, = Yi,& and S, = YL, Tt but
we are interested in a close connectlon of the sums of those &’s and 7;’s which
correspond to X;_;’s and z:-1’s, respectively, that fall into a particular interval. A
quite obvious modification of $he usual Skorokhod embedding in one Wiener process
would be to relate the sets of random variables {ei,...,er} and {m,...,nr}
to independent Wiener processes W} , which correspond to the intervals It on
the finest resolution scale under consideration. This would lead to such a pairing
of {ei,...,er} W1th {m,-..,nr} , which prov1des a close connection between
Zj» , and Z k- 1 7% is chosen fine enough, that is if 279" « & , then we also get

mn(z) — mh(m) = op((Th)~'/?) . However, although this monoscale approx1mat1on
is quite good for the dlfferences between Z;; and Z}, for j close to j*, it is not
optimal at coarser scales 7 < 7* . In view of th1s 1nefﬁc1ency we apply here a reﬁned
truely multiscale approximation scheme Accordingly we will relate the €;’s and 7,’s
to Wiener processes W;, for (7,k) € Ir .

In the following we describe this construction in detail for the autoregresswe process
(2.1). The construction in the regression setting (2.5) is completely analogous, and
will only be mentioned briefly. Then we draw conclusions for the rate of approxima-
tlon of Zjk by Ziy, Wh1ch W111 complete the proof

(@) Embeddmg of €1

Let Wik, (j,k) € I , be 1ndependent Wiener processes We will use each of these
processes only on a certain time interval [0, T} ], where the values of the Tj;’s will
be defined below. At the moment it is only important to know that Ty = co

Let k; be that random number with Xy € Ijxx, . Now we represent €; by the
Wiener process Wi« r,. This should be done by means of a stopping time 7(!), which
is constructed accordmg to Lemma A.2 in Hall and Heyde (1980, Appendlx Al).
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However, since we want to use Wi+, up to some time Tj. r, only, it might happen |
that this is not enough to represent ;. In this case we additionally use a certain
stretch of the process Wj«_1 [, /2, and so on.

To formalize this construction, let k) be such that
Lk C Ly gi*-1) € ... C Iy o,

that is, kU) = [k27=7"] | where [q] denotes the largest integer not greater than a.
According to the above description we represent £; by the following Wiener process:

[ Wier(s), i 0<s<Tjp,
W(l)(.s) — Wj"kl(T'*,kl) A W+1 k(:+1)(T e k(:+1)) + W (,)(s ek = e — T.+i’k§j+1

J

lf Tj* kl ,+ .+ Tg+l,k£’+,1) < s S Tw’;c1 + e+ Tj’kgj)

(W) is indeed a Wiener proc’ess on [0‘, ), since Tor = o0 2
- According to Lemma A.2 in Hall and Heyde (1980), we have

Ller| Xo= ) = WH(rD)

- foran appropridte stopping time 7(1)..

To explain the following steps in a formally correct way we introduce stopping times

3(2, t=0,...,T, assigned to the corresponding Wiener processes W'Jk Define

D=0 forall (j, k) € Tr.

(1)

To get 7)) we redeﬁne all those 'r( )’s Wh1ch are a.531gned to Wiener processes W
that were needed to represent ;. Accordmg to the above construction we set

| Tod =T @ Tjnkf
We redefine further

[7(1) _ Tj* ks =T i1, k(;+1)] AT, k(J))
R 1f T*k1+ AT ~1,80- -y <7
0 - otherw1se

FLCY

Jk(J) -
The remaining stopping times 'r( ) with l # l{;(J ) keep their preceding value 'r(,) =0.
This procedure will be repea.ted for all other ¢;’s, with the modification that we use

only stretches of the Wiener processes, Wh1ch are still untouched by the prev1ous
construction steps. : :

(iii) Embedding of &

Let k; be that random number with Xt 1 € Ijxg, . We represent &; by means of
parts of Wik, W],_1 Wi* 1)+« Wy (o) , which have not been used so far. ‘
ey 0, f
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First note that because of the strong Markov property, these remaining parts
W']k(J)(s + TJ,c 1)) -Ww, k(])( ik )) are again Wiener processes. Hence,

(W, .kt(sw:,;))—W,*,kt(f(f‘kt ), 0SS s< Ty — (f,;’

(W,-.,kt(Tj.,kt) Wy )+t
(W T goen) =W o (r00))
W(t)(s) =9 + I/T/'j’kgj)(s = (Tje e — T(f ki)) - (TH_1 R — (+—1112’+1 )+ 7 (‘ 1)) _
- Jk(’)( (2(11)))) |
if (Tjo g — 750 kt)) +... + (T 3+, k("H) (+1 k(:+1)) <s <
< (T — T(f ORI (Tip = T(t (:1)))

is again a Wiener process on [0, o).
Now we take, according to the construction in Lemma A.2 in Hall and Heyde (1980),
a stopping time 7(* with

, L] Xeox=my) = W(t)(T ).
To get 7 (tk), we redefine those stopping times 7 (e~ Tk ), which are ass1gned to Wiener
processes Wj that were used to represent e;. We set

-1 -1 '
[ (k(])) + (T(t) - (Tw,kf ( )) - - (T J+1, k(]+1) +1 k(J+1))>:| A Tj,kg-’)’
. 1 -
](,3(1) = if (Tj*,kt T(f kt)) + .+ (T j4+1, k(:+ ) — (t 11,2(J+1)) < ()
' J(tk(})) otherwise \
For all (j,1) with | # & we define
i = o,
After embedding €1,...,er we arrive at stopping times 'rJ( k)
(iv) Embedding of T

We embed 7y,...,77 in complete analogy to the embedding of €;,...,er in the
same Wiener processes Wk, (4,k) € Ir . In this way we arrive at stopping times
Jk, which play the same role as the 7. ( )’s.~ ' '

(v) Choice of the values for Tjx

~ To motivate our particular choice of the T} ;’s we consider first two extreme cases.
If Tj»r = oo, then Zj-x and Z. ; are both completely represented by Wi« . This
will lead to a close connectlon of Zj and Z. ;. However, this choice is not favo-
rable for scales 7 with 7 < 5* . If for sunphmty, Tj«) = oo for all k, then the
representations of Z;x and Zj,, for j < j* , depend very much on the particular

values of {Xo,...,Xr-1} and {zo,... ,-’ET—1} . In general, in the case of too large
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a Tj» x there will be a tendency that for the representation of Z;x and Z:, too many
d1fferent stretches of the Wiener processes Wi+, with I;. , C I; are used which
leads to a suboptimal connection of Z;; and Z’

On the other hand, if T} is quite small, then Zjx . and Z « . will be represented
in large parts by stretches of Wiener processes VVJm, 7 < 3%, which correspond to
intervals I, D I;+r . Then we will get a suboptimal connection of Z;. x and Z. ;.

+ To find a good compromise between these two conflicting aims, we choose the TJ k'S as
large as possible, but with the additional property that the stretches [0,T;x], 7#0,
are used up in the representation of {ei,...,er} and {m1,...,7r} with lhigh
probability. Strictly speaking, we choose the Tj’s in such a way that

pr(Zr&)I(Xt_l €Ly < Y Ty forany (k) €Zr\{( k)}) = O(T™)
t ‘ (m): Ly m Cl; ) ‘ 7 (512)

and

j2 (Z?“H’(mt_l €Lx) < Y  Tim forany (5,k) €Zr\ {(0, k)})’ o(T™).
t (Lm):fom S ; (5.13)

To achieve this, we study first the behaviour of the above sums of the stopping times
assigned to the interval [; .

Define the o-field F; = 0 (Xo,¢1,... , 66, {Wy(s), 0 < s < 72} imers) - According
to Theorem A.l in Hall and Heyde (1980, Appendix A.1), the stoppmg time 7(®) is

Fi-measurable with ‘
E (’r(t) | .7:}_1) =E (s? |~7'_t—1> = v(X¢1) as.
‘and |

E((rO) | Fiii) < OuE (M| Fiy) = OME (62 | Xoe)  ass.

Further, {Zt ’T(’) — (X I( X1 € Lig), Fiyt > l} is a martingale.

Let & > 0 be chosen such that & > g/(4 + 2¢) . Further, define g¢(X;—1) =
v(Xt_ (X1 € I,k) Ev(Xo)I(Xo € Ijx) and pjx = P(Xo € Ijx) . Since {X;}
is geometrically B-mixing, we obtain by Rosenthal’s inequahty (see Doukha.n (1995)
Theorem 2, P. 26)).that &

M

. t=1 t=1
= O (7o ™" + [Tp 2/‘”‘)]M/z) | |
~ (T(Py,k +1/T)T/M%9) 4 [T(p; + 1/T)T/@+eNMI2) - (5.14)

T NM/(M+e) [ 2/(2+e) "
i = st
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Define f(Xi-1)=FE ([’r(t) — v(Xt_l)]zI(Xt_; € L) | .7:}_1> . Then we obtain that
M/2 R '
= 0 ([T(pjs + 1/T)1M/2),

Zf (Xe-1)|

which implies by Rosenthal’s 1nequa11ty for martingales (cf. Hall and Heyde (1980,
“Theorem 2.12, p. 23/24)) that ,

T , M
E Y[ —o(Xeo1) I (Xen € Lig)

t=1

Il

T M/2 T ) : ~
0 (E (Z f(Xt_1)> + EEH‘) — 0(Xeo1)MI( X € Ij,k))

= o(@Eutym). (5.15)

If we choose M > A/(6 —€/(4+2€)) , we obtain from (5 14) and (5.15) by Markov’s
inequality that

(2

ZT(t)I(Xt_1 € Ij,k) —_ TEU(XO)I(XO € I'?k) > \/TP(XO € Ij,k)TJ -+ T§>

= _o (T(Pj,k+ 1/T)T/4e) 4 [T(pjp + 1/T)T/CHNM2 4 [T(pss + 1/T)]M/"'>
o [T(pie + LT
= O(T™). | | (5.16)

Accordingly, we have

P( S Keretn ™ — TEo(Xo)(Xo € Lip)| > [/TP(Xo € L;p)T* + T )
for any (j,k) € Zr \ {(0, %)}

= O(T™). (5.17)
- For the regression scheme (2.5) we have an analogous relation: '
5 < IS0 aeven 7O — TEO(X)I(Xo € Lin)| > [/TP(Xo € L)T® + T5] >
: ' T ‘ for any (7,k) € Zr \ {(0, %)}
= 0(T™) (5.18)

- uniformly in (zo,... ,zr-1) € Qr , where P((Xo,...,X7-1) € Qr) = o(T~?) .
Here and in the followmg Q7 denotes an a.ppropnate set of ‘not too irregular” reali-
zations of (Xo, ..., X7r-1). '

Define

- N ;
Sip = S ErOI( X,y € Lx) — [TP(Xo € Li)T® + T°).
] t=1 ) . .
Further, we define : ,
Tix = Sik — > St

(l)m): Il,mCIj,k
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(Then Sik = Xgm): nnclip Ttim )
By (5.17) and (5.18) we obtain (5.12) and (5 13).
(vi) Conclusions for | Z5x — Z: 1|

By (5.12) we obtain with a probability exceeding 1 — O(T~*) that

Zip = Z - Wim(Tim) + Z Z Wl,m(”z(,f,);) — Wit l(,:nl))
. (I;m): L mCl; t: Xe—1 €L (Lm): LikClim | (5 19)
and, by (5.13), | |
Zp= T Walwr LT Wil - M)
(Lym): I mCLik t: ze_1€L (Im): L xClim (5 20)

which holds again with a probability exceeding 1 — O(T~*) under the condition
(zo,... ,@r—1) € Qr . At this point we see why our particular pairing of ¢1,... ,er
with 71,...,n7 provides a close connection between Z;x and Z},: most of the

randomness of Z;x and Z], is contained in the first terms on the r1ght hand side of -

(5.19) and (5.20), respectwely These terms are random, but identical to each other.
Assume now that min{3L, 7 I(X;_; € Lik), Et_l T(t)I(ZI:t 1 € Ijk)} > Tir is
satisfied. By (5.17) and (5. 18) we have that -

DI Do 7'1(2 Tz(frfl) = > Tt,—Sj,'k’

t: Xy €l (l,'m.): L xCI, m . t: Xt 1€L

0 (VIPOG €T + 4,7)

and

DD S P AT

t: m_1 €L (I;m): L pClim ‘ t: o1 €L s

= 6 (\/TP(XO € Ij,k)Tg - Ts,T_'\> .

Note that, for fixed ¢ and under Xt = Lk, the pieces {W'l m(8), (t_l) <s< f(t)}

of the W1ener processes W; m corresponding to intervals I;n, D Lk can be composed

4 & *
to a piece of a new Wiener process W™ on the interval [0, 7], where Tk =

2 (t,m): L kClim ('r,(’m ——"r,(fn 1)) . This is achieved by setting

(

Wi—1,ik/2(s + 1 k/z]) - Wi 1[k/2](7' —1,[k ), i 0<s< T() 1,(k/2] ~
[W] 1, k/2]( 1 k/z]) - W;- 1[k/2]( (—1 [k/zl)j

,e,t (s) = e Wz+1 [kzl+1—:](Tz(+)1 [kzz+1—:) - Wl+1 [k2t+1—d] (""z+1 [l)cz"*‘l"'J])]
N+ W) = Wigamn(rla)]

if s= ('r(t) (¢-1)

and u < T,'E 2t-31)

\

(In the case of X;—1 & L;x we simply let 7. "”t =0.)

t—1
i-1ik/2) — Tievib/z) T - -t (Tz+1,[kzl+1—j] - Tz(+1,[/)czl+1—:']) + (v — Ty

(f 1)
Ti—1,[k/

(u
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Note that {Wm’t (s),0<s< T’Z”t is Fi-measurable. By the strong Markov pro-
‘perty, the remammg parts of the Wiener processes W,

ie. {W,k(.s + Tjk) Wi k(T Jk) 0<s< oo} form again 1ndependen1: Wiener pro-

cesses, which are also independent of F;. Hence we can compose all these parts of
Wre”t considered above to a Wiener process T“ by setting

resl() 1f0<s<7_re31
res(s) —

rea 1( res, 1) + ;Zs,:;—;l( f1-::.9,1.1.— ) Tes, u(s res 1 L= Tres,u—l)’

gk
it e o e <s <r””1 + e r;jj'“
An analogous constructlon can be made for the 7 ( )’s leading to a Wiener process
WTeS
Note that 'r;,‘,?’l + ...+ T;Z”T = Yb Xiorehp ) — Sik - Now we obtain by

Lemma 1.2.1 in Csérgd and Révész (1981, p. 29) that

> Wim(r(n) = Wim(r)

1t Xemr €5 (Lm): 155,11 Clom

> Y Win(F) = WimGEY)

& w1 €Lk (Lm): 155, Chim

|Z',k - “ZJ",k| 5;

+

Wi 3 = S
t: Xt—l te,k
= O ((TP(Xo € Lix)/*T?, T7),
which finishes the proof. [ .

Proof of Corollary 2.1. We choose 7* such that 7277 < T% . Assume throughout
this proof that

+We( Y 7O~ S

iz €L g

|Zsp — Bh| < (T279)HAT8 forall (,b) €Tr, (5.21)
which is sat1sﬁed with a probability exceedlng 1-— O(T A) . Further, assume that
S e+ Y, Iml € CAT277 forall k, (5.22)
t: X¢_1€Ij~,k t: ﬂ-’t—lte',k :

which i’svals'oefulﬁlled with a probability exceeding 1 — O(T~*) for an appropriate
~ choice of Cy. To prove the assertion we use an approach similar to the proof of
Lemma 2.2. We approximate w again by a truncated Haar wavelet ser1es expansmn

W(z) = Zﬂkqbk(z + Z Zﬁg,kd)y, (2), - (5.23)

: - ) 0<5<*
where ﬂk = j'qSk(z)w(z) dz | Bix = [ ix (z)w(z) dz We have . ,
o Xl =0klk) B (2
A ; ,
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and | - 4 , : L
;lﬂj,kl = O (min{|[jklleo[|wlls, ¢34l TV (w)}) = O(mm{2’/2llwlll "J/ZTV((W)}))
~ : ; ‘ - 5.25
This implies that
T T ,
Zla(Xt—l)st —\Zﬁ(mt—l)"?t
t= Cot=1
< Z,Bk [Zox — Z4)
<Z Eﬁ],k2[¢1,k(xt 1)€t ¢j,k($t—1)77t]
0<5<3* : .
< O (Jlwllx T1/4T6) + <Z Zlﬁaklll%kllwmaX{lZJm Zhynal}
0<5<3* :
= O(JwlhTT%) + 3 O (minf2|uly, 29/ TV(w)}2/(T2 ) /T)
0<5<5* ' ‘
= O (TVHTV(w) 1) . N  (5.26)
Further we have | . 4
Sl = Blatien < TVw),
which implies that | |
| 3 (@) = B(Xen)) e
=2 > (&) - B(Xe))e
E & Xe1€Lm o
= 0(T27'TV(w)), (5.27)
and, analogously, f ~’ ; o .
Y (@) — W(zer)) me = O (T2 TV (w)). (5.28)

The assertion follows now from (5.26) to (5.28). O , ,
Proof of Proposition 2.3. By |[@a|l, = O(T- 1) and TV(wh) = O((Th) 1) , the |

assertion follows 1mmed1ately from Corollary 21. 0O

Proof of Lemma 3.1. This proof is 51m11ar to that of Theorem 2.1 in Neumann and
Polzehl (1995). In order to prove the assertion we introduce independent random
variables € ~ N(0,var(n;)) as well as a second set of independent random variables
in the bootstrap doma.m & ~ N (0,var(e})) , whose relationship among each other
as well as to the 7;’s and the £}’s is described below.
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We split up as follows

th(m Tio 1)'qt Xt:wh(m,mt_l)a;‘
= zt:wh T, ze1)(me — &) + ;wh(m)mt—l)(ft - f:) + Zﬁh(ﬁ,wtq)(ff — &)
= S5i(z) + 5(z) + Ss(). , | (5.29)

First we pair the random variables &,...,¢ér with the random variables &,..., ¢
in such a way that Sg(a:) is as small as poss1ble Some motivation for the particular
construction used here is given in Neumann and Polzehl (1995).

We decompose the error vectors ¢ = (é1,...,ér) and & = (&,...,¢) into
A x h~! packages of length d; <X Th, respectively, that is ‘ '

€= (&1, &a, €1, 5 €nan ) - (5.30)
(" is splitted up analogously)
Let vjr = By, vi = Ef 3 and wjx(z) = Wh(x,z4-1), if ¢ corresponds to (7,k) in
(5.30). Further, let V; Ek 1k, Vi = Zk_l % (7 =1,...,A). We define

| tig = D v 5 th = Zvﬂ,
<k 1<k
sip = (=1 +tw/Vi , sh =G —1)+ 5/
- Now we represent the &’s as well as the £}’s by one and the same Wiener process
W (t), namely we set ‘ »

G = Vi (W(s) = W(sina)

o= VIV (W(sh) — W(siey)) -

It is clear that the ¢’s as well as the ¢;’s are independent and have the desired
distributions. v
Now we decompose S3(z) in a “coarse structure” term

Sa(z) = E (V;/z _ V].u/g) zk: wik(z) (W(s;fk) - W(S;,k—rl))

J

and

and a “fine structure” term

Sal(e) = Zvlfzzw,k z) [(W(sin) = W(sjn-1)) — (W) - W(s3r-1))] -
We can easily show that

ma {Jtn — thl} = Z(eg, v,,>,+ S - ) = 0((Th>1/2T5 -),
» | 1<k | L (5.31)

~ which implies V;x V}'x Th and

-1/2 | x1/21 _ : IVJ_V;*‘ A § m=-A
m;ax{lVJ '"V; l}—mfx{wl/z—l—V}*l/z _O(T:TA)'
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’Therefore we have

sup{|Sn(e)l} = O ((Th)™1° T"'\) | (5.32)
We rewrite A
522 T = .1/2 Wikl T ‘ "".7'" — e
Sule) = T L) L awe) — [2 awo)

- ZV;I/Z /’_ s —w;] dW(t),

where wy = wjk(z), if t € (8jk-1, Sj%), and w} = wjk(:z:), ifte ( 8% k_1s ikl
By (5.31) and wjx(z) — wikt1(z) = O((Th)™?) we acquire sup,{|w; — wi[} =.
O((Th)~3/>T¢,T—*) , which implies that

Sua(z) = O ((Th)™T%,T7) . (5.33)
To get a favorable pairing of the 7:’s with the ¢;’s we consider the partia,l sum processes

Pt = Z’I]s and ) ﬁt = Zga.

<t <t

According Corollary 4 in Sakhanenko (1991, p. 76), there exists a pairing of the ¢;’s
and ¢}’s, on a sufficiently rich probability space, such that

s {p - Bl} = 0 (r°,77),

1<t<T

which implies by TV(wWx(z,.)) = O((Th)‘l) that

T—1
sup {|S’1(m)|} < sup{z [Dh(z, ze—1) — wh(:u :z:t)“Pt Pt{ + ]wh(cc TT_ 1)||PT—PT|}

z€[a,b t=1 ‘
= O((Th)1%,77%). | (5.34)
Analogously we can find a pairing of the +’s with the &’s such that
sup {|Ss(z)|} = O ((Th)™T?,T7%). ‘ (5.35)
z€[a,b]

The assertion follows now from (5.29) and (5.32) to (5.35). O

- Proof of Theorem 4.2. This proof is 'a.nya.logous to that of Theorem 2.3 in Neﬁmann ‘
and Polzehl (1995) and is essentially based on the fact that

sup {{#(e) — v(=)l} = (T‘(Th) ¥2,77)
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