
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Bootstrap confidence bands for the 
autoregression function 

Michael H. Neumann1 , Jens-Peter Kreiss2 

submitted: 30th August 1996 

1 .WeierstraB-Institut 
fiir Angewandte Analysis 
und Stochastik 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

2 Technische U niversitat Braunschweig 
Institut fiir Mathematische Stochastik 
PockelsstraBe 14 
D - 38106 Braunschweig 
Germany 

Preprint No. 263 
Berlin 1996 

1991 Mathematics Subject Classification. Primary 62G07, 62M05; secondary 62G09, 62G15. 
Key words and phrases. Nonparametric autoregression, nonparametric regression, strong approxi-
mation, bootstrap, wild bootstrap, confidence bands. 

The second author gratefully acknowledges the hospitality and support of the SFB 373 at Humboldt 
University, Berlin. 



Edited by 
WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



ABSTRACT. We derive a strong approximation of a local polynomial estimator 
(LPE) in nonparametric autoregression by an LPE in a corresponding nonparame-
tric regression model. This generally suggests the application of regression-typical 
tools for statistical inference in nonparametric autoregressive models. It provides 
an important simplification for the bootstrap method to be used: It is enough to 
mimic the structure of a nonparametric regression model rather than to imitate 
the more complicated process structure in the autoregressive case. As an example 
we consider a simple wild bootstrap. Besides our particular application to simul-
taneous confidence bands, this suggests the validity of wild bootstrap for several 
other statistical purposes. 

1. INTRODUCTION 

In this paper we deal with a nonparametric autoregressive model 

Xt = m(Xt-1) + et· 
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Such processes generalize well-known linear first order autoregressive models. Several 
authors dealt with the interesting statistical problem of estimating m nonparametri-
cally. Robinson (1983), Tjrz1stheim (1994) and Masry and Tjrz1stheim (1995) dealt with 
usual N adaraya-Watson type estimators. Recently (Hardle and Tsybakov (1995)) the 
interest was directed to local polynomial estimators for this setup. Of course, it is 
important to get knowledge about the statistical properties of particular nonparame-
tric estimates. Besides asymptotic results the bootstrap offers a powerful tool for this 
purpose. Franke, Kreiss and Mammen (1996) consider a time series specific bootstrap 
as well as a wild bootstrap proposal in order to obtain pointwise confidence intervals 
for kernel smoothers in nonparametric autoregression with conditional heterosceda-
sticity. Successful application of the bootstrap for time series models can be found 
for example in Tjrz1stheim and Auestad (1994). , 
In this paper we consider the situation from a more general point of view. As a typical 
nonparametric estimator we consider local polynomials. We derive a strong approxi-
mation of a local polynomial estimator (LPE) in the autoregressive setup by an LPE 
in a corresponding nonparametric regression model. Besides the application of this 
main result to our particular example of simultaneous confidence bands, it contains 
the general message that nonparametric autoregression and nonparametric regres-
sion are asymptotically equivalent in a certain sense concerning statistical inference 
about the autoregression/regression function. Of course, this suggests andjustifies to 
use regression-type methods for statistical inference in the context of nonparametric 
autoregression, too. 
Further, from Neumann and Polzehl (1995) it is essentially known that one can find 
a strong approximation of an LPE in nonparametric regression by a random process 
generated by an appropriate bootstrap technique. Together with the strong appro-
ximation result in the present paper we are able to present a strong approximation 
of an LPE in nonparametric autoregression by a process generated according to the 
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wild bootstrap idea. Finally, we apply the strong approximation results to simulta-
neous confidence bands. On the basis of a result of Hall (1991 ), it can be shown that 
the proposed bootstrap approximation outperforms the approach using first-order 
asymptotic theory for the supremum of an appropriate Gaussian process. 
But, quite general, the results suggest that the wild bootstrap is valid for several 
other purposes, too. In a forthcoming manuscript we discuss in detail bootstrap tests 
for the hypothesis of a parametric model for m. Such results have been developed in 
the regression model by Hardle and Mammen ( 1993). 
The paper is organized as follows. In Section 2 we present the main ideas and results 
leading to a strong approximation of an LPE in nonparametric autoregression by 
an LPE in nonparametric regression (Theorem 2.1). Furthermore, we collect in this 
section the necessary assumptions and some auxiliary results. Section 3 contains the 
wild bootstrap proposal and the corresponding strong approximation result. The 
application of the results to simultaneous bootstrap confidence bands is given in 
Section 4. There ~e also present some simulation results in order to demonstrate the 
finite sample behavior of our proposal. All proofs are deferred to a final Section 5. 

2. APPROXIMATION OF NONPARAMETRIC AUTOREGRESSION BY NONPARAMETRIC 
REGRESSION 

Assume we observe a stretch {X0 , ••• , Xr} of a strictly stationary time-homogeneous 
Markov chain. We are interested in estimating the autoregression function m( x) = 
E(Xtl Xt-l = x) . First, we write the data generating process in the form of a 
nonparametric autoregressive model, 

Xt = m(Xt-1) +et, t = 1, ... ,T, 

where the distribution of et is allowed to depend on Xt-l with 

E (et I Xt-1) - 0, 

E ( e~ I Xt-1) v(Xt-1). 

(2.1) 

The conditional variance v(Xt_1) is assumed to be bounded away from zero and 
infinity on compact intervals. Note that, in contrast to the frequently used assumption 
of errors of the form a(Xt_1)et with i.i.d. et's, the errors here can follow completely 
different distributions and are not necessarily independent. Such a dependence arises 
because the distribution of et depends on X 0 and el, ... , et-1 . 
To ensure recurrence, we assume· that 
(Al) {Xt : t 2:: O} is a (strictly) stationary time-homogeneous Markov chain. We· 

denote by Px the stationary distribution. Furthermore, we assume absolute 
regularity (i. e. /3-mixing) for { Xt} and that the ,B-mixing coefficients decay 
at a geometric rate. 

Remark 1. For the definition of mixing we refer to the monograph of Doukhan (1995, 
Chapter 1). Assumption (Al) is for example fulfilled if we assume the following 
explicit structure of the data-generating process: 

(2.2) 
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where s : 1R -t (0, oo) and (cD denote i.i.d. innovations with zero mean and unit 
variance. We assume that 

1. Ejm(x) + s(x)c~I 
1msup I I < 1 lxl-+oo X • 

and that the distribution of£~ possesses a nowhere vanishing Lebesgue density. lFrom 
these conditions one may conclude that {Xt} defined according to (2.2) is geometri-
cally ergodic ( cf. Doukhan (1995, p. 106/107)), which implies geometrical ,8-mixing 
if the chain is stationary, i.e. X 0 '""' Px. 
The assumption that the chain is stationary may be avoided, since, for any initial 
distribution, we have geometric convergence to the unique stationary distribution by 
geometric ergodicity. Nevertheless, we assu'me throughout the whole paper that the 
underlying Markov chain is stationary. 
Processes as defined in (2.2) play an important role in financial time series. Usually 
they are called ARCH-processes. Finally, we like to mention that we need assum-
ption (Al), espedally the geometric ,8-mixing, to give a not too complicated proof to 
Lemma 2.1. There we need more or less an exponential inequality. 

We intend to construct an asymptotic confidence band for the conditional mean 
function m. This makes sense for a region where we have enough information about 
m. To facilitate the technical calculations, we assume 
(A2) The stationary density px of Xt satisfies px(x) 2:'.: C > 0 for all x E [a, b] 

and construct a confidence band for this interval [a, b]. In this paper we focus our 
attention to so-called local polynomial estimators. These estimators are introduced in 
a paper by Stone (1977). Fan (1992, 1993) and Fan and Gijbels (1992, 1995) discuss 
the behavior of LPE for nonparametric regression in full detail. Recently Hardle and 
Tsybakov (1995) applied LPE to non.parametric autoregressive models . 

. A p-th order local polynomial estimator mh( x) of m( x) is given as ao = ao( x, Xo, ... 'XT) ' 
where a= (ao,. ~. 'ap-1)' minimizes 

(2.3) 

At the moment we only assume that the bandwidth h of the local polynomial esti-
mator satisfies h = O(T1- 0 ) and h-1 = O(T8 ) for some 5 > 0 . We as-
sume that the kernel K is a non.negative function of bounded total variation with 
supp(K) ~ [-1, 1] . We do not impose any further smoothness condition on K, be-
cause only a particular choice of p, which makes a certain rate of convergence possible, 
can be motivated from the estimation point of view. From least-squares theory it is 
clear that mh can be written as 

T 
mh(x) = 2: wh(x, Xt-1, {Xo, ... , XT-1} )Xt - [(D~KxDxt1 D~KxXJi, 

t=l (2.4) 
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where X = (Xi, ... ,XT)', 

D = ( ~ x . 

1 

. [ x - Xo x - XT-1 ] Kx = Diag K( h ), ... , K( h ) . 

On first sight the analysis of mh seems to be quite involved, because the Xt's are 
dependent and enter into the right-hand side of (2.4) several times. To simplify the 
investigation of the deviation field {mh( x) - m( x) }xE[a,b] we approximate it by 
an analogous deviation field defined by observations according to a nonparametric 
regression model with independent errors. 
Although it is perhaps more natural to approximate nonparametric autoregression 
by nonparametric regression with random design, we establish here an approxima-
tion by nonparametric regression with nonrandom design. This is done in view of 
the proposed bootstrap method, which mimics just nonparametric regression with 
nonrandom design. Let {x0 , ••• , XT-l} be a fixed realization of {X0 , ••• , XT-l} . 
As a counterpart to (2.1) we consider the nonparametric regression model 

Yt = m(xt-1) + 'f/t, t = 1, ... , T, (2.5) 

where the "It's are independent with 'f/t rv .C(et I Xt....:1 = Xt-1) . Here we denote 
the independent variables by small letters to underline the fact that we consider the 
distribution of the Yt's conditioned on a fixed realization of {X0 ,.:. , XT-l} . In 
analogy to (2.4) we define a local polynomial estimator as 

T 

mh( X) = L Wh( X, Xt-1, { Xo, ... , XT-1} )J:t. (2.6) 
t=l 

In this section we show that on a sufficiently rich probability space there exists a 
pairing of (X0, e1, ... , eT) , having a joint distribution according to model (2.1), 
with ( 'f/1 , ... , 'f/T) , having a joint distribution according to (2.5), such that mh and 
mh are close to each other in the supremum norm on [a, b]. Before we turn to the 
main approximation step, we derive first some approximations to mh and mh, which 
allow to replace the local polynomial estimators by quantities of a simpler structure. 

2.1. Simplification of the problem by approximating the local polynomial 
estimators. If we compare the cumulative distribution functions of two random 
variables, then we can expect that they are close to each other, if the difference 
between the random variables is small with high probability. Because of the frequent 
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use of this fact we formalize it by introducing the following notion. 

Definition 2.1. Let { ZT} be a sequence of random variables and let { aT} and 
{JJT} be sequences of positive reals. We write 

ZT = O(aT,JJT), 
if 

P(IZTI > CaT) ~ Cf9T 
holds for T 2:: 1 ·and some C < oo . 
This definition is obviously stronger than the usual Op and it is well suited for our 
particular purpose of constructing confidence bands; see the application in Section 4 
where we obtain in conjunction with Lemma 4.1 upper estimates for the error in 
coverage probability of the confidence bands. 
In the following we have to deal with random functions of Xt_1 , which also depend on 
the whole set {Xo, ... , XT-1}. For example, the weights wh(x, Xt_ 1 , {X0 , ••. , XT-l}) 
of the local polynomial estimator are of this structure. To get n·onrandom approxi-
mations of them we show that the number of Xt 's that fall into some fixed interval 
converges to the expected number at a certain rate; cf. Lemma 2.1. Then we expand 
the functions of interest into a Haar wavelet series and show that this series converges 
in the supremum norm to a nonstochastic limit. 
Here and in the following A denotes an arbitrarily large constant. 

Lemma 2.1. Assume {Al). Then 

t {I ( X1-1 E lei, c2]) - Px [ c1, c2]} = 0 ( min { y'T Px [ c1, c2] T 25 + (log T) 2
, y'T log T}, r->') 

t=1 
holds uniformly. in -oo ~ c1 < c2 ~ oo . 

In the following we specify this and other approximations to intervals of the form 

(2.7) 

We define IT= {(j, k) I 0 ~ j ~ j*, (a-6)2i < k ~ (b+6)2i}, where 2i* = O(T). 
Here large values of j refer to small intervals, whereas Io,k = [k, k + 1) . 
As an immediate consequence of Lemma 2.1 we obtain that 

# {t: Xt-1 E lj,k} - T P (Xt-1 E lj,k) 

= {j ( min{ y'T P(X1_ 1 E l;,k)T25 + (log T) 2
, y'Tlog T}, r->.) (2.8) 

holds uniformly in (j, k) E IT . . 
According to (2.4), the weights of the local polynomial estimator can be written as 

wh(x,Xt-1, {Xo, ... ,XT-1}) = E dq(x,{Xo, ... ,XT-1})K c-:t-l) (x -:t-l.\ q, 
q=O .. (i.9) 

where dq(x, {X0 , ••• , XT-1}) = ((D~KxDxt1 )i,q+l . The functions dq depend on 
{X0 , ••• , XT-l} in a smooth manner ("smooth" is meant in the sense of bounded 
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total variation, which leads to appropriately decaying coefficients in a Haar series 
expansion) and yields the following nonrandom approximation: 

Lemma 2.2. Assume {A1) and (A2). Then there exist nonrandomfunctions d~00>(x), 
d~00)(x) == ((ED~KxDxr1 ) == O((Tht1), such that 

1,q+l 

This lemma allows to introduce weights wh(x, Xt-l) , which depend only on a single 
value Xt-1, namely 

(2.10) 

Now we obtain the following assertions, which finally allow to consider the difference 
between Et wh(x, Xt-1)et and Et wh(x, Xt-l)T/t rather than between the more 
involved quantities mh(x) and mh(x). To ensure the desired behaviour of weighted 
sums of the et 's and 77/s, respectively, we impose the following condition. 
(A3) For all M < oo and arbitrary 5 > 0 there exist finite constants CM such 

that SUPxe[a-o,b+o] { E (letlM I Xt-1 == x)} ~CM 
Actually, it can be seen from the proofs that a certain finite number M of uniformly 
bounded moments would suffice. However, it seems to be difficult to get a minimal 
value for M, and therefore we do not make the attempt to give a particular value for 
it. 

Proposition 2.1. Assume {A1) to {A3). Then 

sup { L: .. [wh(x, Xt-1, {Xo, ... , XT-1}) - wh(x, Xt-1)] et}. 
xE[a,b] t 

Analogously, 

holds uniformly in .. ( Xo, ... ) XT-1) E nT J where nT is an appropriate set with 
P((Xo, ... , XT-1) f/. nT) == O(T->.) . 

For the next assertion concerning a term, which plays a role similar to the usual bias 
term in nonparametric regression, we need the following assumption. 
(A4) m is p-times differentiable with supxE[a-o,b+o]{lm(P)(x)I} < oo , for some 

5 > 0. ' 
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Proposition 2.2. Assume {Al), {A2) and (A4). 
As an approximation to the bias-type term we consider the nonrandom quantity 

b00 (x) ~ 400l(x) ~ E { K (x -:t-l) c-:1-1 rt-' (Xt(~1 _=-g-l m<vl(s) ds}. 

Then 
sup {lb00 (x)I} == O(hP) 

xE[a,b] 

and 

sup { :E wh(x, Xt-i, {Xo, ... , XT-1} )m(Xt-1) - m(x) b00 (x) } 
xE[a,b] t 

== 0 (hP(Tht 112T 8 , T->.). 

2.2. Approximation of autoregression by regression via Skorokhod em-
bedding. In the previous subsection we derived some helpful technical approxima-
tions to reduce the problem of finding a close connection between the processes 
{mh( x )}xE[a,b] and {mh( x )}xEJa,b] to the simpler task of finding a link between 
{:Et wh( x, Xt-1)et}xE[a,b] and {:Et wh( x, Xt-1)7lt}xE[a,b] . Now we construct such a 
pairing of the observations in (2.1) and (2.5), which provides a good approximation 
of partial sums of the C:t's by partial sums of the 'f}t's corresponding to certain subin-
tervals of [a - 5, b + 5]. Using a Haar wavelet expansion we then obtain the desired 
connection between {:Et wh( x, Xt-dct}xe[a,b] and {:Et wh( x, Xt-1)7lt}xE[a,b] . 
The link between the two sampling schemes (2.1) and (2.5) will be reached by.Skorok-
hod embeddings of the c:t's and 77t's, respectively, in the same set of Wiener processes. 
Such an embedding was introduced by Skorokhod (1965) for independent random 
variables and ·is known as a possible tool to derive strong approximations for partial 
sums of independent random variables; cf. Csorg8 and Revesz (1981, Chapter 2). La-
ter the technique has been extended to martingales by several authors; a convenient 
description of the main ideas can be found in Hall and Heyde (1980, Appendix A.l ). 
As in the previous subsection, we consider partial sums of the C:t's and 77t's, respec-
tively, according to ~ubintervals I;,k , (j, k) E IT . Let Z;,k == Et:Xt-iEI;,k C:t and 
Zj,k == Et:xt-i EI;,k 77t be partial sums of the errors according to the autoregressive 
model (2.1) and the regression model (2.5), respectively. Using Skorokhod embed-
ding techniques we can establish the following fundamental lemma. Here and in the 
following 5 > 0 denotes an arbitrarily small, but fixed constant. 

Lemma 2.3. Assume (Al) to ( A3). There exist sets of events nT, P((Xo, ..• , XT-1) t/. 
nT) == O(T->.) 1 such that there exists on an appropriate probability space a pairing 
of the random variables from {2.l) and (2.5) with 

P (IZ;,k - Zj,kl > [T P(Xt-1 E I;,k)] 114T 8 + T 8 for any (j, k) E IT) = O(T->.) 

holds uniformly in (xo, ... 'XT~1) E nT . 



8 

Using a Haar wavelet expansion of an arbitrary weighting function w we can now 
establish a link between Etw(Xt-1)ct and Etw(xt-i)77t. Such an approximation 
will hold in a uniform manner and simultaneously in a whole class W = { w I 
supp( w) ~ [c; d]} of such weighting functions, where c < d are any fixed constants. 

Corollary 2.1. Assume (A1) to (A3) and let nT be as in Lemma 2.3. Then there 
exists a pairing of the random variables from (2.1) and (2.5) such that 

p ( { IEtw(Xt-1)ct - Etw(xt-1)7ltl } C) = O(T-A) 
!~~ T 114(TV(w)) 314 llwlli14Ts + TV(w)T0 > A 

holds uniformly in ( Xo, ... 'XT-1) E nT . 

To establish now the desired approximation of Et wh(x, Xt-1)ct by Et wh(x, Xt-1)7lt , 
we only have to find upper bounds to the total variation and the L1-norm of wh(x, .). 
This leads to the following assertion. 

Proposition 2.3. Assume ( A1) to ( A3) and let nT be as in Lemma 2.3. Then there 
exists a pairing of the random variables from (2.1) and (2.5) such that 

sup {IL:wh(x,Xt-1)ct - 2:wh(x,xt-i)77tl} =a ((Tht 314T 0 ,T-A) 
xE[a,b] t · t 

holds uniformly in ( Xo, . .. , XT-1) E f2T . 

The approximations given in the Propositions 2.1, 2.2 and 2.3 lead now to the desired 
approximation of nonparametric autoregression by nonparametric regression. 

Theorem 2.1. Assume (A1) to (A4) and let nT be as in Lemma 2.3. Then there 
exists a pairing of the random variables from (2.1) and (2.5) such that 

sup {jmh(x) - mh(x)j} = 0 (hP(Tht112T 0 + (Tht 314T 0 ,T-A) 
xE[a,b] 

holds uniformly in (xo, ... 'XT-1) E nT . 

Besides the technical quantification of a certain upper bound of the rate of approxi-
mation of mh( x) by mh( x ), the more important fact is that the difference between 
mh( x} and mh( x) is of smaller order than the stochastic fluctuations of mh( x ), which 
are Op((Th)-112 ). Although we use this result here only for the particular purpose 
of constructing simultaneous confidence bands for the autoregression function m, it 
seems to be of much greater importance. It provides the fundamental message that 
non parametric autoregression and non parametric regression are asymptotically equ-
ivalent. This explains in particular why methods, which were first developed in the 
regression context can be literally applied to autoregression. The approximation gi-
ven in Theorem 2.1 can also be used to transfer a testing method developed in Hardle 
and Mammen (1993) for the case of nonparametric autoregression. This will be done 
in a forthcoming paper. 
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Remark 2. As was already mentioned, it perhaps would have been more natural to 
approximate nonparametric autoregression by nonparametric regression with random 
design. That is, instead of (2.4) we co:r_isider the nonparametric regression model 

Zt = m(yt) + T/t, t = 1, ... ,T, (2.11-) 

where the pairs (yt, Zt) are i.i.d. according to the stationary distribution of the vector 
(Xt-1,Xt) in model (2.1). Let mh(x) be the local polynomial estimator in model 
(2.11 ), which is defined analogously to (2.6). It is easily seen that the statement in 
Theorem 2.1 implies the asymptotic equivalence of the experiments (2.1) and (2.11). 
Strictly speaking, under (Al) to ( A4) there exists a pairing of the random variables 
from (2.1) with those of (2.11) such that 

sup {lmh(x) - mh(x)I} = 0 (hP(Tht 1l 2T 8 + (Tht 314T 8 ,T->-). 
xE[a,b] 

3. THE BOOTSTRAP 

To motivate the particular resampling scheme proposed here, first note the different 
nature of the stochastic and the "bias-type" term. Even if the current value of the 
stochastic term is unknown, its distribution can be consistently mimicked by the bo-
otstrap. In contrast, the bias can only be explicitly estimated, if some degrees of 
smoothness of m are not used by mh(x ). In nonparametric regression and density 
estimation there exist two main approaches to handle the bias problem; uridersmo-
othing and explicit bias correction. 
Here we take an undersmoothed estimator mh( x ), that is the bandwidth h is chosen 
such that the order of the bias is smaller. than the order of the standard deviation. 
Then it is not necessary to model m( x) in the bootstrap world, because the deviation 
process mh( x )-m( x) is dominated by the stochastic term Et wh( x, Xt-1, { Xo, . .. 'XT-1} )et . 
In view of the possibly inhomogeneous conditional variances we use here the wild· 
bootstrap technique, which has been introduced by Wu (1986). A detailed description 
of this resampling scheme can be found in the monograph by Mammen (1992). It has 
successfully been used in nonparametric regression in the already mentioned paper 
by Hardle and Mammen (1993). Let (x0 , ••• , XT) be the realization of (X0 , •.. , XT) 
at hand. We generate independent bootstrap innovations ei, ... , e7' with 

E*e; = 0, E*(e;)2 = ft,2 = (xt - mh(Xt-1))2
• 

An appropriate counterpart to model (2.5) in the bootstrap world is given by 

x; = mh(xt-1) + e;, t = 1,. .. , T. 

As argued above, we mimic the stochastic term Et wh(x, Xt-i, {Xo, ... , XT-1 } )et 
of the local polynomial estimator only. From this it is clear that we do not use the 
X;'s explicitly. · 
We have to ensure that for all integers M there exists a finite constant GM > 0 such 
that 
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This can be ensured if we assume that e; == ft'T/; for a sequence of i.i.d. random 
variables 'T/;, ... ,'TJf with E*'T/T == 0, E*('TJT) 2 == 1, and E*l"ITIM < oo, for all 
integers M. Exactly along the lines of Section 2 we obtain the following results. 

Lemma 3.1. On a sufficiently rich probability space there exists a pairing of 'T/l, ... , T/T 
with e~, . . . , eT such that 

sup { 2: wh( x, Xt-1, { xa, ... , XT-1} )'T/t - L wh( x, Xt-1, { xa, ... , XT-1} )e; }. 
xE[a,b] t t 

- 8 ((Tht 1T 8,r->.) 
holds uniformly in ( Xo, ... 'XT-1) E nT . 

In conjunction with Theorem 2.1 we get 

Theorem 3.1. On a sufficiently rich probability space there exists a pairing of X 0 , e1 , ... , eT 
with e~, . . . , eT such that 

{ - ( ) ( ) '""" ( { }) * } 0- (hP + (Th)-314T 8 , r->.) sup mh x - m x - L.J Wh x, Xt-1, Xo, ... 'XT-1 Ct -
xE[a,b] t 

holds uniformly in (xo, ... 'XT-1) E nT . 

4. AN APPLICATION OF THE BOOTSTRAP: CONFIDENCE BANDS 

We consider two possibilities for asymptotic confidence bands for m to a prescribed 
level 1 - a. We develqp simultaneous bands as opposed to confidence bands which 
attain pointwise a certain coverage probability. First we can construct a confidence 
band of a uniform size. To get the appropriate width for such a band, we consider 
the quantity 

Ur == sup { L Wh(x, Xt-1, {xo,. · · , Xt-1} )e; } , 
xE[a,b] t . 

which is introduced to mimic 

UT == sup {lmh(x) - m(x)I}. 
xE[a,b] 

Let t~ be the (random, because it depends on the sample X0 , ••• , XT in model 
(2.1)) (1-a)-quantile of u;. Then 

I~(x) == [mh(x) - t~,mh(x) + t~] (4.1) 
is supposed to form an asymptotic confidence band of the prescribed level 1 - a. 
A more reasonable and perhaps more natural alternative are simultaneous confidence 
bands whose size is proportional to an estimate of the standard deviation of mh( x ). 
Whereas the size of I~ is essentially driven by the worst case, that is by the supremum. 
of v( x) == var(mh( x)) , a variable confidence band follows in size the local variability 
of mh( x ). It can be expected that the area of such a confidence band is smaller than 
that of a band of uniform size. Moreover, it can serve as a visual diagnostic tool to 
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detect regions where there are difficulties for the estimator - either because of large 
variances of the et's or because of too sparse a design. 
Now we describe the construction of a confidence band of variable size in detail. The · 
residuals ft can also be used to estimate v( x) by 

v(x) = L:w~(X,Xt-1,{xa, ... ,XT-1})e;. ( 4.2) 
t 

Let t~* be the (1-a)-quantile of the distribution of 

v; sup { :E wh( x, Xt-1, { Xo, ... 'Xt-1} )e; I~} ' 
xE[a,b] t 

which mimics 
VT sup {lmh(x) - m(x)I /~}. 

xE[a,b] 

This leads to a confidence band of the form 

( 4.3) 

We already know from Theorem 3.1 that the process mh( x) - m( x) is pathwise close 
to the conditional (conditioned on Xo, c1, ... , cT ) process Et wh( x, Xt-1, {x0, . .. , XT-1} )c:; 
on an appropriate probability space. The following lemma provides a lower bound 
for probabilities that supxE(a,b]{I Et wh( x, Xt-1, {xo, ... , XT-1} )c:; I} falls into small 
intervals. Finally, these two results will lead to an estimate of the error in coverage 
probability of the proposed confidence bands. 

Lemma 4.1. Assume {At) to {A3). Then 

P (sup {1 :E wh(x, Xt-1, {xo, ... , XT-1} )e;I} E [c1, c2]) 
xE[a,b] t 

= 0 ( (c2 - c1)(T h )112(log T) 1l 2 + (Th t 112T 6) • 

This lemma follows immediately from Lemma 2.2 in Neumann and Polzehl (1995). 
In conjunction with Theorem 3~1, we now obtain an upper bound of the error in 
coverage probability for 1;. 
Theorem 4.1. Assume {At) to {A4). Then 

P (m(x) E [mh(x) - t:, mh(x) + t:J for all x E [a, b]) 

= 1 - a+ O (W + (Tht3/4T6 )(Th)1! 2J1ogT). 

Analogously, we are able to give an upper bound for the error in coverage probability . 
for I;* . 
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Theorem 4.2. Assume {A1) to {A4). Then 

P ( m( x) E [mh( x) - .,/iWt:*, mh( x) + .,/iWt:*J for all x E [a, b]) 
= 1 - a+ 0 (W + (Tht314T6 )(Th)112jlogT). 

As already mentioned, we propose to use undersmoothing to handle the bias problem. 
This means that the bandwidth h = h(T) has to be chosen in such a way that 
hP ~ (Tht 1! 2 • If we do this appropriately, the error terms in Theorems 4.1 and 4.2 
vanish, that is the confidence bands have asymptotically the prescribed coverage 
probability 1 - a. 
We conclude this section with some simulation results. For this purpose let us consider 
the following two models: 

Xt = 4 · sin(Xt-1) + et ( 4.4) 

and 

Xt = 0.8 . Xt-1 + .j1 + 0.2 X'f-1 . Ct ( 4.5) 

The latter model is an usual linear first order autoregression with so-called ARCH-
errors. 
The innovations et are assumed to be i.i.d. with zero mean and unit variance. For 
model ( 4.4) we assume a double exponential distribution, while model ( 4.5) is assumed 
to have normally distributed errors. 
Based upon T = 500 observations X 1 , • •• , XT we simulate simultaneous confidence 
bands of variable size for m1(x) = 4 · sin(x) and m2(x) = 0.8 · x . This is done 
by simulating the 90% -quantile of VT from 1000 Monte Carlo replications. The 
results are reported in Figures 1 and 2. m1 is estimated by a local linear estimator 
mh , h = 0.4 , while for m 2 we make use of an usual Nadaraya-Watson type kernel 
estimator, i.e. a local constant smoother, with bandwidth h ~ 1.0 . The thick lines 
show m1 and m 2 , respectively, whereas the thin lines represent confidence bands of 
the form mh( x) ± ~ta.,i ' where ta.,i is chosen such that mi( x) is covered in 900 
cases by the above band. 

[Please insert Figures 1 and 2 about here.] 
Finally, we choose at random three time series realizations from each model ( 4.4) and 
( 4.5) in order to carry through the bootstrap. All three resulting bootstrap confidence 
bands 1;.;0 ( x) , cf. ( 4.3), are given in Figures 3a-3c and 4a-4c, respectively. In order 
to obtain an impression of the stochastic fluctuation of these simultaneous confidence 
bands, we additionally report a plot ( cf. Figures 5 and 6) which contains all bootstrap 
confidence bands together with the simulated true confidence bands from Figures 1 
and 2 (thick lines). 

[Please insert Figures 3, 4, 5, and 6 about here.] 
Although this is only a small simulation study, the results demonstrate that the 
bootstrap offers a powerful tool in order to construct not only pointwise but also 
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s~multaneous confidence bands for nonparametric estimators in nonlinear autoregres-
s1on. 
The authors are very grateful to D. Seidel, Technical University of Braunschweig, for 
doing the programming. 

5. PROOFS 

Proof of Lemma 2.1. The assertion can be concluded from a kind of Bernstein ine-
quality, which, for example, is given in -Doukhan (1995, Theorem 4, p. 36). Define 

Zt = I(Xt-1 E [c1, c2]) - Px([c1, c2]) 
and abbreviate EZi = Px[ci, c2](l - Px[c1, c2]) = a 2 . Since geometric J3-mixing 
implies geometric strong mixing (i.e. a-mixing) we obtain from a covariance inequality 
( cf. Doukhan (1995), Theorem 3, p. 9) for all 5 > 0 that 

E (~ z,) 2 

~ 2Ta2
(
1

-
0l. 

lFrom the above mentioned Theorem 4 of Doukhan (1995) we obtain for K-, M > 0 
large enough and all e > 0 , uniformly in - oo < c1 < c2 < oo , that 

P (~z, ~ Mmin{JTPx[c1,c2]T26 +(logT)2,Jr1ogT}) 

< P ( ~ z, ~ M min { v'Ta2T 26 + (logT)2, v'Tlog T}) 

{ 
2 (1 - e) min2

{ )Ta2T 28 +(log T) 2
, )T log T} } O(T->..) < 4exp -M . + . 

2 ( 2Ta2(1- 0) + K-log Tmin{ VTa2T 28 +(log T)2, )T log T}) 

In the case that the minimum in the denominator represents the dominating term it 
is easy to see that the exponent is at least of magnitude canst · log T, i.e. the whole 
expression is of <?rder O(T->.. ). 
In the case that 

2Ta2C1- 0) 2:: K-logTmin{VTa2T 20 + (logT)2, .jTlogT} = K-logT.jTlogT 

we obtain from a 2C1 -o) ~ 1 an upper bound to the exponential term by 

( 
M 2(1- e) ) exp -

8 
, log T . 

Finally, for the remaining case 

2Ta2(l-o) 2:: "'log T min{ VTa2T 20+(log T)2, .jT log T} = "'log T ( VTa2T 20 +(log T)2) 

we have, since (from the above inequality) Ta2 2:: 1 , the following upper bound to 
the exponential term: 

(
- M2(l - e) (VTa2r2s + (logT)2)2) < ex (- M2(1- e)Ts) = O(T->..). 

exp 8 Ta2(1-o) - p 8 
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D 

Proof of Lemma 2.2. First we investigate how good the random quantity (D~KxDx)ij 
is approximated by its expectation. Let 9( z) = K ( xhz) ( xhz) i+j-

2 
• Note that, for 

T large enough and x E [a, b] , 9 is supported on [a - h, b + h]. Hence, we can apply 
the estimate given by (2.8). We approximate 9 by a truncated Haar wavelet series 
expans10n 

g(z) = L:akc/>k(z) + L L:aj,k7/;j,k(z), (5.1) 
k 0$.j<j* k 

where. ak = J c/>k(z)9(z) dz, CTj,k = J 7/;j,k(z)9(z) dz, and c/>k(z) = I(k::; z < k + 1), 

if k2-j ::; z < (k + 1/2)2-j 
if (k + 1/2)2-j ::; z < (k + 1)2-j . 
otherwise 

In view of the following calculations we choose J.* such that r2-i* ~ y'Th. It holds 
that 

L lakl ::; 11911£1 = O(h) (5.2) 
k 

and 

L lai,kl = 0(min{ll7/;j,klloo119111, ll'l/Ji,kl'1TV(9)}) = O(min{2i/2h, 2-i/2
} ). 

k (5.3) 

Define FT(z) = Ef=1 J(Xt-1 < z) and F~oo) = Ef=1 P(Xt-1 < z) . Then, by (5.2), 
(5.3) and (2.8), 

l~g(Xt-1) - ~Eg(Xt-1) 
If 9(z) dFT(z) - f 9(z) dFf 00l(z)I 

< L lakl l(FT(k + 1) - FT(k)) - (F~00)(k + 1) - F~00)(k)) I 
k 

+ );., ~ la;,kl If ;/J;,k(z) [dFT(z) - dFf
00>(z)J I 

_J J 

- 0 ( hJTlogT, r->.) 
+ L: 0(2il2h)0(2il2)o(JT2-iT6 , r->-) 

(5.4) 
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Since g is the best piecewise constant approximation tog, that is g( z) == (I Ij* ,k I t 1 Jh 1c g( z) dz 
if z E Ii* ,k , we get 3 

' 

This implies that 

and, analogously, 

2: Ilg - 9llLoo(Ij*,k) ::; TV(g) == 0(1 ). 
k 

l:g(Xt-1) - g(Xt-1) 
t 

< E Ilg - 9llLoo(Ij*,k)# {t: Xt-1 E Jj* 1k} 
k 

o (r2-i* + Jr2-i*T8 , r-A), 

EEg(Xt-1) - E§(Xt-1) == O(Tri*). 
t 

iFrom (5.4) to (5.6) we obtain that 

l(D~K:z:Dx)ii - E(D~KxDx)iil == 0( VfihT8, r-A), 
which implies 

Recall that px denotes the stationary density of {Xt}· Because of 

(5.5) 

(5.6) 

(5.7) 

E(D~K,.D,.);; = T j K C ~ z) ('1' ~ z) •+i-
2 

px(z) dz = Th J_1
1 

K(z)z'+i-2px(x-hz) dz 

we obtain that 

ED~K,.D,. 2: C Th ( (t K(z)zi+i-2 dz)) . . _ , (5.8) 
i,3-l, ... ,p 

where Amin ( , ((J~1 K(z)zi+i-2 dz)) . . _ ) > 0. Hence, 
i,3-l, ... ,p 

ll(D~KxDxt1 
- (ED~KxDxt1 ll 

::; ll(D~KxDxt1 ll llD~KxDx - ED~KxDxll ll(ED~KxDxt1 ll 
== O((Tht312T8,T-A). (5.9) 

With the definition 
d(00)(x) == ('(ED' K D )-1) 

q ' x x x 1,q+l 

we obtain the assertion. D 
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Proof of Proposition 2.1. By llK((x - .)/h)((x - .)/h)qll 1 = O(h) and 
TV (K((x - .)/h)((x - .)/h)q) = 0(1) we conclude from Corollary 2.1 that 

holds for ( Xo, ... 'XT-1) E nT ' nT according to Lemma 2.3. 
For (xo, ... 'XT-1) E nT we obtain by Theorem 4 in Amosova (1972) that 

Zj,k = l: 7/t = 0 ( .JT2-i J!og T, r->.) , 
t:Xt-1 Elj,k 

which implies, by calculations similar to those in the proof of Corollary 2.1 below, 
that 

Using now Lemma 2.2, (2.9), and (2.10) we obtain the assertions. D 

Proof of Proposition 2.2. Because of Et wh( x, Xt-1' {Xo, ... , XT-1}) = 1 and 
Et wh(x, Xt-1, {Xo, ... , XT-1} )(Xt-1 - x)q = 0 for q = 1, ... ,p - 1 we get from a 
Taylor series expansion with integral remainder that 

L wh(x, Xt-1, {Xo, ... , XT-1} )m(Xt-1) - m(x) 
t 

~ [Xt-1 (Xt-1 - s )p-1 (p) 
~wh(x,Xt-1,{Xa, ... ,XT-1})Jx (p-l)! m (s)ds 

_ ~ d ( {X X }) "K (x - Xt-1) (x - Xt-l)q J.Xt-1 (Xt-l - s)P-
1 

(P)( ) d 
L.i q x, o, ... ' T-1 L.i h h ( - 1)1 m s 
q=O t x p · 

Since g(z) = K (xhz) (xhzr J: ((;~);~1

mCP)(s)ds satisfies 1191'1 = O(hP+l) and 
TV(g) = O(hP), we obtain analogously to (5.7) that 

L K (x - Xt-1) (x - Xt-1) q (¥t-1 (Xt-1 - s )p-l m(P)( s) ds 
t h h J x (p - 1) ! ' 

ELK (x - Xt-1) (x - Xt-l)q {Xt-1 (Xt-1 - s)P-l m(P)(s) ds 
t h h J x (p - 1) ! 

+ o ( hPVfihT6, r->-) . 
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Since. E '°"' K (x-Xt-1) (x-Xt-1) q JXt-1 (Xt-1-s)P-1 mCP)(s) ds - O(T hP+l) bt . LA h h x (p-l)! . - , we o am, 
in conjunction with Lemma 2.2, that 

sup { I:wh(x,Xt-1,{Xo, ... ,XT-1})m(Xt_i) - m(x) b00 (x)I} 
xE[a,b] t 

== 0 (hP(Tht 1! 2T 8 ,T->-). 

D 

Proof of Lemma 2.3. (i) General idea 
The pairing of the observations in the autoregression model (2.1) with those in the 
regression model (2.5), which provides a close connection between Zj,k and Z~ k' is 
made via a Skorokhod embedding of the ct's and 7/t's, respectively, in a certain ~~t of 
Wiener processes. This technique makes use of the well-known fact that any random 
variable Y with EY == 0 and EY2 < oo can be represented as the value of a Wiener 
process stopped at an appropriate random time. Moreover, such a representation is 
also possible for the partial sum process of independent random variables as well as 
for a discrete time martingale; see e.g. Hall and Heyde (1980, Appendix A.l) for 
a convenient description. In particular, one can show asymptotic normality for a 
martingale with this approach. 
However, here we have a different task. We are not interested in a close connection 
of the two global partial sum processes Sn == I:~=l Ct and s~ == I:~=l 7/t ' but 
we are interested in a close connection of the sums of those ct's and 7/t's which 
correspond to Xt-i 's and Xt.:... 1 's, respectively, that fall into a particular interval. A 
quite obvious modification of the usual Skorokhod embedding in one Wiener process 
would be to relate the sets of random variables { e1, ... , eT} and { 711, ... , 7/T} 
to independent Wiener processes Wk , which correspond to the intervals Ii* ,k on 
the finest resolution scale under consideration. This would lead to such a pairing 
of {c1, ... , cT} with {711, ... , 7/T} , which provides a _close connection between 
Zj*,k and Zj*,k· If j* is chosen fine enough, that is if 2-3* ~ h , .then we also get 
mh(x) - mh(x) == op((Tht1l2 ) • However, although this monoscale approximation 
is quite good for the differences between Zj,k and Zj,k for j close to j*, it is not 
optimal at coarser scales j ~ j* . In view of this inefficiency we apply here a refined, 
truely multiscale approximation scheme. Accordingly we will relate the ct's and 7/t's 
to Wiener processes Wj,k for . (j, k) E LT . 
In the following we describe this construction in detail for the autoregressive process 
(2.1). The construction in the regression setting (2.5) is completely analogous, and 
will only be mentioned briefly. Then we draw conclusions for the rate of approxima-
tion of Zj,k by Zj,k, which will complete the proof. 

(ii) Embedding of c1 
Let Wj,k, (j, k) E LT , be independent Wiener processes. We will use each of these 
processes only on a certain time interval [O, Tj,k], where the values of the Tj,k's will 
be defined below. At the moment it is only important to know that To,k == oo . 
Let k1 be that random number with Xo E Ij*,k1 • Now we represent c1 by the 
Wiener process Wj*,k1 • This should be done by means of a stopping time T(l), which 
is constructed according to Lemma A.2 in Hall and Heyde (1980, Appendix A.l). 
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However, since we want to use Wj"',ki up to some time Tj"',ki only, it might happen 
that this is not enough to represent c:1 • In this case we additionally use a certain 
stretch of the process Wj•-1,[ki/ 2], and so on. 
To formalize this construction, let k(i) be such that 

Ij*,k ~ Ji"'-l,kCi*-1) ~ ... ~ Io,k(o), 

that is, k(i) == [k2i-i"'] , where [a] denotes the largest integer not greater than a. 
According to the above description we represent c:1 by the following Wiener process: 

(WC1) is indeed a Wiener process on [O, oo ), since To,k == oo . ) 
According to Lemma A.2 in Hall and Heyde (1980), we have 

for an appropriate stopping time T(l). 
To explain the following steps in a formally correct way we introduce stopping times 
TJ,~, t == 0, ... , T , assigned to the corresponding Wiener processes Wj,k· Define 

T~~ == 0 J, for all (j, k) E IT. 

To get Ti~~ we redefine all those T},~'s, which are assigned to Wiener processes Wj,k 
that were needed to represent c:1 • According to the above construction we set 

We redefine further 

(1) 
TJ. k(j) 

l l = l [rC1
) -Ti* ki - ••• -T.+1 kcH1)] /\ T.kc;), 

l J I l Ji l 
'f T. T (1) 1 j*,kt + ... + J·-l k(j-1) < T 

I l 

0 otherwise 

The remaining stopping times TJ,P with l # kii) keep their preceding value TJ,~) == 0 . 
This procedure will be repeated for all other C:t 's, with the modification that we use 
only stretches of the Wiener processes, which are still untouched by the previous 
construction steps. · 

(iii) Embedding of C:t 

Let kt be that random number with Xt-l E Ij*,kt . We represent C:t by means of 
parts of Wj*,kt, w .. _l·k(j"'-1), ..• 'WO k(O) 'which have not been used so far. 

J l t I t 



First note that, because of the strong Markov property, these remaining parts 
W. k(i) ( s + r1~~-l)) - W. k(i) ( T1~~-l)) are again Wiener processes. Hence, J1 t I J1 t I 

Wj*,kt(s + rj!~!)) - Wj*,kt(rj!~!)), if 0::; s::; Tj*,kt - rj!~!) 

is again a Wiener process on [O, oo). 
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Now we take, according to the construction in Lemma A.2 in Hall and Heyde (1980), 
a stopping time r(t) with 

£(et I Xt-1 = Xt-1) = wCt)( T(t)). 

To get r},~, we redefine those stopping times rJ,~-l), which are assigned to Wiener 
processes Wj,k that were used to represent et· We set 

( t) 
TJ. k(j) 

[TJ~tk(N + (r(t) - (Tj*,kt - r}!A:!)) - ... - (T.+1 k(i+i) - r~t-1)(;+1) )) ] /\ T. ken' 
I t I J I t J+l,kt J1 t 

if (Tj*,kt - rJ!~!)) + ... + (T.+1 k(i+1) - r~t-l)(i+i)) < r(t) 
I t (t-1) 

TJ. k(i) 
I t 

otherwise 

For all (j, l) with l =I Mi) we define 
(t) - (t-1) 

Tj,l - Tj,l . 

J I t J+l,kt 

After embedding c 1, ... , cT we arrive at stopping times r},r). 
(iv) Embedding of 171, .•. , "lT 

We embed 171, ... , "lT in complete analogy to the embedding of c 1, ... , cT in the 
same Wiener processes Wj,k, (j, k) E IT . In this way we arrive at stopping times 
:rJ,~, which play the same role as the r},~'s. 

( v) Choice of the values for Tj,k 

To motivate our particular choice of the Tj,k's we consider first two extreme cases. 
If Tj•,k = oo , then Zj*,k and Zj.,k are both completely represented by Wj*,k· This 
will lead to a close connection of Zj*,k and Zj•,k· However, this choice is not favo-
rable for scales j with j ~ j* . If, for simplicity, Tj*,k = oo for all k, then the 
representations of Zj,k and Zj,k, for j < j* , depend very much on the particular 
values of {X0 , .•• , XT-1} and {xo, ... , XT-1} . In general, in the case of too large 
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a Tj* ,k there will be a tendency that for the representation of Zj,k and Zj,k too many 
different stretches of the Wiener processes Wj*,m with lj*,m C lj,k are used, which 
leads to a suboptimal connection of Zj,k and Zj,k. 
On the other hand, if Tj*,k is quite small, then Zj*,k and Zj.,k will be represented 
in large parts by stretches of Wiener processes Wj,m, j < j* , which correspond to 
intervals hm ::J lj*,k . Then we will get a suboptimal connection of Zj*,k and Zj*,k· 
To find a good compromise between these two conflicting aims, we choose the Tj,k's as 
large as possible, but with the additional property that the stretches [O, Tj,k], j =J 0 , 
are used up in the representation of {c:1, ... , £T} and {711, ... , 7]T} with high 
probability. Strictly speaking, we choose the Tj,k's in such a way that 

p(~ T(t) l(Xt-1 E lj,k) < L Tz,m for any (j, k) E LT\ {(O, kn) = O(T->.) 
(l,m):Iz,rn~Ij,lc ( 5.12) 

and 

P (L:;=(t)J(xt-1 E lj,k) < L . Tz,m for any (j, k) E LT\ {(O, k)})· = O(T->.). 
t (l,m):Iz,rn~Ij,k (5.13) 

To achieve this, we study first the behaviour of the above sums of the stopping times 
assigned to the interval lj,k. · 
Define the a-field :Ft = er ( X 0 , ei, ... , et, {Wj,k( s ), 0 ::; s ::; T],~}(j,k)EIT) . According 
to Theorem A.1 in Hall and Heyde (1980, Appendix A.l), the stopping time T(t) is 
:Frmeasurable with 

E ( T(t) I :Ft-1) = E ( c:; I :Ft-1) = v(Xt-1) a.s. 

and 

E ((T(t))M I Ft-1) ::; CME (c:;M I :Ft-1) = CME (c:;M I Xt-1) a.s. 

Further, { 2:!=1 [T(s) - v(Xs-1)]J(Xs-1 E lj,k), :Ft, t ~ 1} is a martingale. 
Let e > 0 be chosen such that 5 > c:/(4 + 2c:) . Further, define g(Xt-1) 
v(Xt-1)l(Xt-1 E li,k) - Ev(Xo)l(Xo E lj,k) and Pi,k = P(Xo E lj,k) . Since {Xt} 
is geometrically J3-mixing, we obtain by Rosenthal's inequality (see Doukhan (1995), 
Theorem 2, p. 26)} that 

El~g(X{ 
< C(M, e)max {~ (Efg(Xi)[M+•t'(M+•), [~ (Efg(X,)[ 2+•) 2/(2+•f 12

} 

0 (T ~/(M+t!) + [T ~/(2+t!)]M12) P3,k P3,k 

0 ( T(Pi,k + l/T)Tt!f(M+t!) + [T(pj,k + l/T)Tt!f(2+t!)]Ml2 ) • (5.14) 
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Define f(Xt-1) = E ([rCt) - v(Xt-1)] 2 l(Xt-1 E lj,k) I Ft-1) . Then we obtain that 

T !v!/2 
E L f(Xt-1) = 0 ([T(pj,k + l/T)]lvff2)' 

t=1 
which implies by Rosenthal's inequality for martingales ( cf. Hall and Heyde (1980, 
Theorem 2.12, p. 23/24)) that 

T !v! 
E L[T(t) - v(Xt-1)]J(Xt-1 E lj,k) 

t=1 

0 ( E (~f(Xt-i)) M/
2 

+ ~E[r(tl - v(Xt-1)[MI(Xt-i E I;,k)) 

- 0 ([T(Pi,k + l/T)]!v!f2) . (5.15) 

If we choose M ~ >i./(8-c:/(4+2c:)), we obtain from (5.14) and (5.15) by Markov's 
inequality that 

P ( ~r(')J(Xt-1 E I;,k) - TEv(Xo)I(Xo E I;,k) > jTP(Xo E I;,k)T6 + T6) 

= O (T(Pi,k + l/T)Tt:f(!v!+t:) + [T(Pi,k + l/T)Tt:f(2+t:)]!v!f2 + [T(Pi,k + 1/T)]!v!f2) 
[Ti+2o(Pi,k + l/T)]!v!/2 

= O(T-><). (5.16) 
Accordingly, we have 

p ( !Et: Xt-iEI;,1e r(t) - T Ev(Xo)l(Xo E lj,k)I > [ JT P(Xo E 1j,k)T0 + T 0
] ) 

for any (j, k) E IT\ {(0, k)} 
= O(T-><). (5.17) 

For the regression scheme (2.5) we have an analogous relation: 

p ( jEt: Xt-iEI;,1c ;;:Ct) - T Ev(Xo)I(Xo E Ij,k)j > [ JT P(Xo E Ii,k)T0 + T 0
] ) 

. · for any (j, k) E IT\ {(0, k)} 
= O(T->.) (5.18) 

uniformly in (xo, ... 'XT-1) E nT ' where P((Xo, ... 'XT-1) (/. nT) = O(T->.) . 
Here and in the following nT denotes an appropriate set of "not too irregular" reali-
zations of (Xo, ... , XT-1). 
Define 

T 
Sj,k = LET(t)J(Xt-1 E lj,k) - [jTP(Xo E lj,k)T0 + T0

]. 
t=l 

Further, we define 
Ti,k = Si,k - 2: Sl,m· 

(l,m): IL,m.Clj,k 
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(Then Sj,k = L(l,m): Ii,rn~Ii,k Tz,m .) 
By (5.17) and (5.18) we obtain (5.12) and (5.13). 

( vi) Conclusions for . I Zj,k - z;,k I 
By (5.12) we obtain with a probability exceeding 1 - O(T->.) that 

L Wz,m(Tz,m) + L L Wz,m( Tz~2) - Wz,m( Tz~t;: 1 )), 
(l,m): li,rn~Ij,k t: Xt-1El1,1e (l,m): lj,1eCli,rn (5.19) 

and, by (5.13), 

z~k = J, L Wz,m(Tz,m) + L L Wz,m(Tz~2) - Wz,m(Tc~t;:1 )), 
(l,m): li,rn ~l;,k t: Xt-1Elj,k (l,m): Ij,1eClt,rn (5.20) 

which holds again with a probability exceeding 1 - O(T->.) under the condition 
( x 0 , ••• , XT-1) E !"h . At this point we see why our particular pairing of ei, ... , eT 
with 77i, ... , 'T/T provides a close connection between Zj,k and Zj,k: most of the 
randomness of Zj,k and Zj,k is contained in the first terms on the right-hand side of 
(5.19) and (5.20), respectively. These terms are random, but identical to each other. 
Assume now that min{:Lf=1 rCt)J(Xt-1 E lj,k), :Lf=1 f(t)J(xt-1 E lj,k)} ~ Tj,k is 
satisfied. By (5.17) and (5.18) we have that 

~ ~ (t) (t-1) 
L....J ~ Tz,m - 7 l,m 

t: Xt-1 Eli,k (l,m): l1,1eCli,rn t: Xt-1 Elj,k 

and 
~ ~ -(t) -(t-1) 
L....J L....J Tl,m - 7 l,m 

t: Xt-1 Elj,k (l,m): lj,1eCli,rn t: Xt-1 Elj,k 

- {j (JTP(Xo E I;,k)T6 + T6,r~). 

Note that, for fixed t and under Xt-1 E lj,k , the pieces {Wz,m(s ), Tz~t;: 1 ) ~ s ~ Tz~2} 
of the Wiener processes Wz,m corresponding to intervals lz,m :'J lj,k can b~ composed 
t · f w· wres t th . t l [O res t] h res t o a piece o a new 1ener process j,k ' on e m erva , rj,k ' , w ere rj,k ' = 
~ ( (t) (t-l)) Th" . h" d b tt" Li(l,m): 11,1ecli,rn Tz,m - Tz,m . 1s 1s ac 1eve y se 1ng 

W ( (t-1) ) w ( (t-1) ) .f (t) (t-1) 
j-1,[k/2] S + Tj-1,[k/2] - j-1,(k/2) 7j-1,(kj2] ' l 0 ~ S ~ 7j-1,(k/2] - 7j-1,(k/ 

[w ( ( t) ) w .( ( t-1) ) . 
j-1,(k/2] Tj-1,(k/2) - j-1,[k/2] Tj-1,[k/2] + · · · 

WJ,%s,t( 
8

) + ·[Wz+1,(k2z+1-11( Tz~~.[k2i+1-i]) - Wz+i,(k2z+1-11( Tz~~1~k2i+1-1 1 )] + ... 
+ Wi,[k2l-i] ( u) -· Wi,(k2HJ ( Tz~~~2~~i])] , : 

if S = ( rJ~l,(k/2) - rJ~~~(~/2]) + · · · + ( 7z~)l,(k2t+l-i] - 7z~~1~l2z+1-i]) + ( U - 7z~~~r
and u < Tz~~l2H]) 

(In the case of Xt-l rf. Ij,k we simply let rJ,~s,t = 0 . ) 
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Note that { Wj,~s,t( s ), 0 :::; s :::; rj,~s,t} is Ft-measurable. By the strong Markov pro-
perty, the remaining parts of the Wiener processes Wj,k, 
i.e. { Wj,k( s + r},~) - Wj,k( r},~), 0 :::; s < oo} , form again independent Wiener pro-
cesses, which are also independent of Ft. Hence, we can compose all these parts of 
WJ,%s,t considered above to a Wiener process WJ,ks by setting 

{ 

W:es,l ( ) ·f O < < :es,1 J,k S , 1 _ S _ TJ,k 
w~es( ) = w:es,1 ( :es,1) + + w:es,u-1 ( :es,u-1) + w:es,u( - :es,l - - res,u-1) J,k S 3,k 7 1,k · · · J,k 7 1,k 3,k S TJ,k · · · Tj,k , 

·f res,1 + + res,u-1 < < res,1 + + res,u 1 T1·k . . . T1·k S T1·k . . . T·k , , -:- , J, 

An analogous construction can be made for the Tl~~ 's, leading to a Wiener process 
W res j,k. 
Note that :es,l + + :es,T _ " (t) _ S N bt · b TJ,k . . . TJ,k - L-Jt: Xt-1 Elj,k T j,k . ow we 0 a1n y 
Lemma 1.2.1 in Csorgo and Revesz (1981, p. 29) that 

I Zj,k - Zj,k I :::; 
t: Xt-1 Elj,k (l,~): l>j,Ij,1cCii,m. 

TAT ( (t)) TAT ( (t-1)) 
YY l,m Tz,m - YY l,m Tl,m 

+ TAT (-(t)) Wi (-(t-1)) 
YY l,m Tz,m -- l,m Tz,m 

t: Xt-1 Elj,k (l,m): l>j,lj,1r.Clz,m. 

0 ((TP(Xo E lj,k))114T 0 ,T-A), 

which finishes the proof. D 

Proof of Corollary 2.1. We choose j* such that T2-i"' x T0 . Assume throughout 
this proof that 

(5.21) 

which is satisfied with a probability exceeding 1 - O(T-).) . Further, assume that 

L letl + L l77tl :::; G).T2-i"' for all k, (5.22) 
t: Xt-1 Elj•,1c t: Xt-1 eir ,1c 

which is also. fulfilled with a probability exceeding 1 - O(T-A) for an appropriate 
choice of C).. To prove the assertion we use an approach similar to the proof of 
Lemma 2.2. We approximate w again by a truncated Haar wavelet series expansion 

w(z) ~ Ef3kc/Jk(z) + I:. 2:!3i,k'l/Jj,k(z), 
k O~j<j"' k 

where f3k ·= f cPk(z)w(z) dz, {3j,k = f'l/Ji,k(z)w(z) dz. We have 

2: lf3kl = O(llwll1) 
k 

(5.23) 

(5.24) 
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and 

L lf3i,kl = 0 (min{ll'l/Ji,klloo llwll1, ll'l/Ji,klliTV( w )} ) = O(min{2i/2 llwll1, 2-il2TV( w )} ). 
k (5.25) 

This implies that 
T T 

L: w(Xt-1)c:t - L: w(xt-1)11t 
t=l t=l 

+ L LfJi,k L ['l/;j,k(Xt-1)c:t - 'l/Ji,k(Xt-1)11t] 
O~j<j• k t 

< 0 (llwll1T114T6
) + 0~~;· ~ l,8;,klll,P;,klloo mF {IZ;+1,1 - Zi+1,1I} 

0 (llwll1T114T0
) + L 0 (min{2i/2 llwlli, 2-il2TV(w)}2il2(T2-i)1l4T 0 ) 

O~j<j• 

(5.26) 

Further we have 
L llw - wllLoo(l3•,1e) ::; TV(w), 

k 

which implies that 

L(w(Xt-1) - w(Xt-1))c:t 
t 

- E E 
(5.27) 

and, analogously, 

E(w(Xt-1) - w(Xt-1))11t = 0 (T2-j•Tv(w)). (5.28) 
t 

The assertion follows now from (5.26) to (5.28). D 

Proofof Proposition 2.3. By llwhll1 = O(T-1) and TV(wh) = O((Th)-1) , the 
assertion follows immediately from Corollary 2.1. D 

Proof of Lemma 3.1. This proof is similar to that of Theorem 2.1 in Neumann and 
Polzehl (1995). In order to prove the assertion we introduce independent random 
variables et rv N(O, var( 71t)) as well as a second set of independent raridom variables 
in the bootstrap domain e; rv N(O, var(c:;)) , whose relationship among each other 
as well as to the 71t's and the c:;'s is described below. -
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We split up as follows 

L wh(x, Xt-1)7lt - L wh(x, Xt-1)c:; 
t t 

LWh(X,Xt-1)(7lt - et)+ LWh(X,Xt-1)(et - en+ LWh(X,Xt-1)(e; - e;) 
t t 

(5.29) 
First we pair the random variables ei' ... 'fr with the random variables e;' ... 'eT 
in such a way that S2 ( x) is as small as possible. Some motivation for the particular 
construction used here is given in Neumann and Polzehl (1995). 
We decompose the error vectors e = ( 6' ... 'fr)' and e* ( e;' ... 'eT )' into 
!::::.. x h-1 packages of length di x Th, respectively, that is -

{ = (en,··· '6d1' • · · 'e~l, • · • 'e~dA)'. (5.30) 
( e* is splitted up analogously.) 
L~t Vjk = Ee]k, vjk = Eejk 2 and Wjk( x) = wh( x, Xt-1), if t corresponds to (j, k) in 
(5.30). Further, let Vj = E~~1 Vjk, V/ = E~~1 vjk (j = 1, ... , !::::..). We define 

tik = LVjz , tjk = L:vJz, 
l~k l~k 

Sjk = (j - 1) + tjk/Vj , sjk = (j - 1) + tjk/Vj*. 
Now we represent the et's as well as the e;'s by one and the same Wiep.er process 
W(t), namely we set 

eik = Vj112 (W(sik) - W(si,k-1)) 
and 

e;k = Vj*1/2 (w(sjk) - W(sj,k-1)) '. 
It is clear that the et'S as well as the ers are independent and have the desired 
distributions. 
Now we decompose S2(x) in a "coarse structure" term 

S21(x) = L::(itj112 -Vj*112) LWik(x) (w(sjk)- W(sj,k-1)) 
j k 

and a "fine structure" term 

S22(x) = 2:Vj112 Lwik(x) [(W(sik)- W(sj,k-1)) - (W(sjk)- W(sj,k_1))]. 
j k 

We can easily show that 

In;ax{ltjk-tjkl} = L(e;z-Vjz) + L::(e;z-e;z) = o((Th)1l 2T 0 ,T-)..), 
J,k l~k l~k ( 5.31) 

which implies Vj x Vj* X Th and 

{l v.1/2 _ v.*1/2I} = max {· IV; - Vj*I } = 0 (ro r->..). m;x 3 3 i y:.1/2 + V.*1/2 ' 
J J 
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Therefore we have 

sup{IS21(x)I} = O ((Tht1T0,T->.). 
x 

(5.32) 

We rewrite 

where Wt = Wj,k( x ), if t E ( Sj,k-1, Sjk], and w; = Wj,k( x ), if t E ( sj,k_1, sjk]. 
By (5.31) and Wj,k(x) - Wj,k+1(x) = O((Tht2) we acquire supt{lwt - w;I} =. 
O((Tht312T8 , T->.), which implies that 

(5.33) 

To get a favorable pairing of the 77t'S with the et'S we consider the partial sum processes 

and 

According Corollary 4 in Sakhanenko (1991, p. 76), there exists a pairing of the e/s 
and ers, on a sufficiently rich probability space, such that 

which implies by TV( wh( x, .) ) = 0( (Th t 1) that 

~~~!,&] {IS1(x )I} < s~p {~ lwh( x, X1-1) - wh(x, xi)llPt - Pt! + lwh(x, XT-1)llPT - PT!} 
0 ((Tht 1T0,T->.). (5.34) 

Analogously we can find a pairing of the e;'s with the ft's such that 

sup {jS3(x)I} = 0 ((Tht 1T8 ,T->..). 
xE[a,b] 

(5.35) 

The assertion follows now from (5.29) and (5.32) to (5.35). D 

Proof of Theorem 4.2. This proof is analogous to that of Theorem 2.3 in Neumann 
and Polzehl (1995) and is essentially based on the fact that 

sup {lv(x) - v(x)I} = 0 (T8(Tht312,T->.). 
xE[a,b] · 

D 
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