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Topology optimization subject to additive
manufacturing constraints

Moritz Ebeling-Rump, Dietmar Hömberg, Robert Lasarzik, Thomas Petzold

Abstract

In Topology Optimization the goal is to find the ideal material distribution in a domain subject to
external forces. The structure is optimal if it has the highest possible stiffness. A volume constraint
ensures filigree structures, which are regulated via a Ginzburg-Landau term. During 3D Printing
overhangs lead to instabilities, which have only been tackled unsatisfactorily. The novel idea is to
incorporate an Additive Manufacturing Constraint into the phase field method. A rigorous analysis
proves the existence of a solution and leads to first order necessary optimality conditions. With
an Allen-Cahn interface propagation the optimization problem is solved iteratively. At a low com-
putational cost the Additive Manufacturing Constraint brings about support structures, which can
be fine tuned according to engineering demands. Stability during 3D Printing is assured, which
solves a common Additive Manufacturing problem.

1 Introduction

Additive Manufacturing or 3D Printing is understood as the process of building up a structure layer by
layer. Traditional manufacturing methods, such as Injection Molding, place constraints on the achiev-
able shapes. Whereas with 3D Printing the complexity of the possible forms is much less limited.
Traditional methods allow for a cheaper and faster production in high volume orders . However, as or-
der volumes decrease and need for customizability increases, Additive Manufacturing becomes more
attractive. It allows for production of parts just in time as they are needed. This reduces the logistical
burden tremendously. Some even call 3D Printing the next industrial revolution and draw comparisons
to feats such as the assembly line.

Additive Manufacturing comes with its own constraints and problems. The production of a single unit
takes longer and the surface structure has a rougher finish.

This paper focuses on eliminating instabilities during the printing process which are caused by over-
hangs. These are problematic in Fused Deposition Modeling, where a plastic filament is heated and
extruded. Printing layer by layer can leave overhangs disconnected from the rest of the structure or
cause sagging filament. Commonly external support structures are added to alleviate that problem. On
the downside, this method uses more material and takes longer to print. Removing support structures
after the printing process is both time and labor intensive.

The problem of instabilities can be alleviated by incorporating an Additive Manufacturing Constraint
(AMC) in the modeling stage. Rigidness of the structure during the building process is taken into
consideration. When executing the Topology Optimization, the AMC is accounted for via a penalty
term. While being printed the resulting structure shall be stable without relying on manually added
supports. This approach is introduced in the work of (Allaire et al. , 2017a) and results are presented
in (Allaire et al. , 2017b).
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As a novel approach the AMC is incorporated into the phase field method for Topology Optimization. An
analysis of the optimal control problem subject to Additive Manufacturing Constraints shows existence
of a solution and leads to optimality conditions. The proofs are adapted from the scheme developed
by (Blank et al. , 2014). This approach is validated numerically by showing that the AMC increases
stability during the manufacturing process.

This paper is partitioned in the following way: After explaining linear elasticity the theoretical foundation
of topology optimization is laid out in Section 2.3. The Additive Manufacturing Constraint is introduced
in Section 2.4 and incorporated into the optimal control problem. Existence of a unique solution and
a rigorous derivation of optimality conditions is displayed in Passage 3. Numerical approaches are
explained in Chapter 4. To examine the influence of the Additive Manufacturing Constraint, calculations
are done with and without it in Chapter 5.

2 Problem Formulation

The aim of this section is to define the optimal control problem. After modeling the mechanics, topology
optimization is explained and the Additive Manufacturing Constraint is formalized. First of all some
notations are introduced.

2.1 Notation

Let Ω ⊂ Rd, d = 2, 3 be a bounded, regular domain and denote its boundary by Γ. In case of a
Dirichlet boundary ΓD ⊂ ∂Ω the notation

H1
D

(
Ω,Rd

)
:=
{
ξ ∈ H1

(
Ω,Rd

)
| ξ = 0 on ΓD

}
is used.

The Frobenius inner product for second order tensors M,N is defined by the pairwise sum of
element-products

M : N :=
d∑

i,j=1

MijNij.

The bilinear form is displayed using

〈M,N〉C :=

∫
Ω

CM : N dx. (1)

Note that CM is defined via

[CM]ij :=
d∑

k=1

d∑
l=1

CijklMkl,

where C is a fourth order tensor.

2.2 Linear Elasticity Problem

Using the displacement u : Ω→ Rd the linearized strain tensor

E (u) :=
1

2

(
∇u+∇uT

)
(2)
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is defined.

The material distribution ϕ ∈ L∞ (Ω) will be introduced in section (2.3). Consider the symmet-
ric fourth order stiffness tensor C (ϕ) with continuously differentiable entries. It is assumed that
the derivative of the stiffness tensor C ′ (ϕ) is globally Lipschitz continuous. Towards receiving pure
phases, a transition function s (ϕ) = ϕ3 is employed. The elasticity tensor for the whole domain is
defined in the following way

C (ϕ) := Cmats (ϕ) + Cvoid (1− s (ϕ)) , (3)

where

CmatE := λmattr (E) I + 2µmatE , (4)

CvoidE := ε2CmatE .

The constants λmat and µmat are called Lamé parameters. This definition warrants 0 6= Cvoid �
Cmat, which ensures low stiffness in void, but avoids degeneracy.

A load f is acting on a part of the boundary labeled Γf and gravitational force g is present where
material ϕ is located. Let um ∈ H1

D

(
Ω,Rd

)
be the unique weak solution of the mechanical linear

elasticity problem (Pm). This means that um satisfies the weak formulation of the mechanical system
for all vm ∈ H1

D

(
Ω,Rd

)
, see Equation (6). Such a function um exists, as proven in Theorem 3.1. The

superscript m is used throughout this paper in connection with the mechanical system. The normal
vector is denoted by n.

Mechanical system

(Pm)


−div [C (ϕ) E (um)] = ϕg in Ω

um = 0 on ΓD
[C (ϕ) E (um)]n = 0 on ∂Ω \

(
ΓD ∪ Γf

)
[C (ϕ) E (um)]n = f on Γf ,

(5)

Weak formulation

〈E (um) , E (vm)〉C(ϕ) = F (vm, ϕ) ∀vm ∈ H1
D

(
Ω,Rd

)
, (6)

where F (vm, ϕ) :=

∫
Ω

ϕg · vm dx+

∫
Γf

f · vm dω.

2.3 Topology Optimization

This section is based on (Blank et al. , 2013). Topology Optimization is concerned with the optimal
distribution of a limited quantity of material in a domain Ω. The distribution of material in Ω is described
by a phase field ϕ with

0 ≤ ϕ ≤ 1 (7)

almost everywhere in Ω. Here ϕ = 0 describes void and ϕ = 1 represents areas containing material.
In a physically accurate setting each point in space either does or does not contain material, i.e.
ϕ ∈ {0, 1}, leading to a sharp transition. However, in the realm of optimization a smooth transition
between material and void is desired in order to calculate derivatives. This is achieved by explicitly
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allowing impure phases, i.e. states with 0 < ϕ < 1. The transition is seen as the interface between
material and void.

Without further restrictions the solution would be trivial. The stiffest structure is produced by setting
ϕ ≡ 1 on Ω, i.e. covering the whole domain with material. An additional constraint makes the problem
more interesting. Let m be the mass parameter with 0 < m < 1. The amount of material is restricted
via a volume constraint ∫

Ω

ϕ dx = m|Ω|, (8)

where |Ω| denotes the Lebesque measure of the domain Ω. The admissible set is defined as

Gm :=

{
ϕ ∈ H1 (Ω,R) | 0 ≤ ϕ (x) ≤ 1 a.e. in Ω and

∫
Ω

ϕ dx = m|Ω|
}
.

The objective is to find a material distribution ϕ ∈ Gm and a corresponding solution of the elasticity
problem u : Ω→ Rd such that the mean compliance

F (u, ϕ) (9)

is minimized. However, this minimization problem is not well-posed as explained in (Allaire et al. ,
2004). The regularity of the solution is not ensured. In computational examples this can lead to a
checkerboard solution. Checkerboarding is the frequent occurrence of jumps between material and
void, which is not desirable, see (Shukla et al. , 2013). The algorithm might produce so called porous
solutions, which can be thought of as sponge-like microstructures. In many industrial cases this type
of material is hard to realize and therefore undesirable. The ill-posedness can be alleviated by adding
a perimeter regularization which was proven in (Ambrosio & Buttazzo, 1993). The paper of (Takezawa
et al. , 2010) explains that the perimeter can be approximated by the Ginzburg-Landau term

Eε (ϕ) :=

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx, (10)

for ε > 0 and ϕ ∈ H1 (Ω,R). This function finds its origin in the work of (Ginzburg & Landau,
1950). For convergence properties as ε approaches zero see (Van Gennip et al. , 2012). The first
term penalizes transitions between material and void through the gradient of the material distribution.
A commonly used potential ψ (ϕ) is the double well potential

ψ (ϕ) =
1

4
((ϕ− 1)ϕ)2 =

1

4

(
ϕ2 − ϕ

)2
.

The aim of the potential is to penalize impure phases, which are states where the phase field ϕ is not
equal to 0 or 1.

Assumption A1. There exist positive constants
¯
Λ, Λ̄ and Λ′ such that for all symmetricalM,N ∈

Rd×d \ {0} and all ϕ, ω ∈ R the following relationships hold:

¯
Λ |M|2 ≤ C (ϕ)M :M≤ Λ̄ |M|2 , (11)

|C ′ (ϕ)ωM : N| ≤ Λ′ |ω| |M| |N | . (12)

Assumption A2. The data lays in L2

f ∈ L2
(
Γf ,Rd

)
, g ∈ L2

(
Ω,Rd

)
.
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2.4 Additive Manufacturing Constraint

In Additive Manufacturing a structure is created in a layer-by-layer approach. Following (Allaire et al. ,
2017a) the intermediate states are taken into consideration to ensure stability during manufacturing.
This can be thought of as slicing the final topology into horizontal layers and leads to the definition of
the intermediate shape up to height h ∈ R+

Ωh := Ω ∩
{
x = (x1, . . . , xd) ∈ Rd, 0 ≤ xd ≤ h

}
.

Whenever 〈·, ·〉 contains terms with index h the integration takes place over the intermediate domain
Ωh, instead of Ω.

The Dirichlet boundary for the AMC problems differs from the Dirichlet boundary of the mechanical
problem. In the mechanical problem it describes areas where the structure is supported when forces
are applied. In the constraint problems the process of Additive Manufacturing is simulated. Homoge-
neous Dirichlet boundary conditions are assumed for all parts of the geometry touching the building
plate Γ0. During the manufacturing process no surface forces are applied to the structure. Each inter-
mediate shape Ωh is only subjected to gravity g.

The elastic displacement uch ∈ H1
D

(
Ωh,Rd

)
is defined as the unique weak solution of the problem

(P c
h). Each function uch satisfies the weak formulation of the AMC systems, i.e. Equation (14), on the

corresponding space Ωh.

AMC system

(P c
h)


−div [C (ϕ) E (uch)] = ϕg in Ωh

uch = 0 on Γ0

[C (ϕ) E (uch)]n = 0 on ∂Ω \ Γ0,
(13)

Weak formulation

〈E (uch) , E (vh)〉C(ϕ) =

∫
Ωh

ϕg · vh dx ∀vh ∈ H1
D

(
Ωh,Rd

)
. (14)

The mechanical system (5) described the load case where a force is acting on the structure. On the
other hand the AMC system (13) models the printing process, where only gravity is considered. To help
distinguish between both systems the superscript c is used in conjunction with constraint problems.

In order to judge the stiffness during the manufacturing process, the compliance of the intermediate
shape Ωh

cΩh
:=

∫
Ωh

ϕg · uch dx

is defined. Low compliance values are desirable, because they coincide with high stiffness. A penalty
function is defined via

P (uc, ϕ) :=

∫ H

0

∫
Ωh

ϕg · uch dx dh.

The idea is to slice the domain Ω into N layers and define successively growing domains Ωh with
Ωi ⊆ Ωj for i ≤ j. Up to this point the height h has been a continuous parameter. To avoid double
subscripts it is now used as an index of the domain. For example, uch is the displacement of the
structure up to the h-th layer. The following notation is used:

uc := {uch}
N
h=1 ∈ H

1
D

(
Ω1,Rd

)
× · · · ×H1

D

(
ΩN ,Rd

)
=: Hc.
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The outer integration of P (uc, ϕ) becomes a sum yielding the discretized penalty function

P d (uc, ϕ) :=
N∑
h=1

∫
Ωh

ϕg · uch dx.

Not only the final structure shall bend as little as possible, but also all intermediate structures. Towards
calculating the penalty function an additional N stationary problems have to be solved.

All ingredients have been gathered to write down the optimization problem.

(P ε)



min J ε (um, uc, ϕ) := F (um, ϕ) + βP d (uc, ϕ) + γEε (ϕ)

over (um, uc, ϕ) ∈ H1
D

(
Ω,Rd

)
×Hc ×H1 (Ω,R)

s.t. (um, ϕ) fulfills (6) on Ω,

(uch, ϕ) fulfills (14) on Ωh, h = 1, . . . , N

and ϕ ∈ Gm.

3 Analysis of the Optimal Control Problem

The aim of this chapter is to prove optimality conditions. Theorems and proofs of this chapter are
adapted from the work of (Blank et al. , 2014).

Theorem 3.1. For a given phase field ϕ ∈ L∞ (Ω) there exists a unique weak solution u ∈
H1
D

(
Ω,Rd

)
of the elasticity problem (Pm) such that the weak formulation of the elasticity problem

(6) is fulfilled. There exists a constant c = c (f, g) > 0 such that

‖u‖H1
D(Ω,Rd) ≤ c

(
‖ϕ‖L∞(Ω) + 1

)
. (15)

The proof is a standard application of Lax-Milgram. It utilizes Korn’s inequality, Hölder’s inequality,
Poincaré-Friedrichs inequality and the trace theorem.

Theorem 3.1 defines the control-to-state operator which maps the phase field ϕ to the unique weak
solution u of the elasticity problem

S : L∞ (Ω)→ H1
D

(
Ω,Rd

)
, S (ϕ) := u.

In order to derive first-order necessary optimality conditions the states will be replaced by the control-
to-state operators. This results in a reduced functional which only depends on the control ϕ. When
the reduced functional is differentiated, the differentiability of the control-to-state operator comes into
play via the chain rule. Towards the Fréchet-differentiability of the operator S, the following Lipschitz
continuity is needed.

Lemma 3.2. Let there be controls ϕi ∈ L∞ (Ω,R) and corresponding states ui = S (ϕi) , i = 1, 2.
Then there exists a constant c > 0 such that

‖u1 − u2‖H1
D(Ω,Rd) ≤ c‖ϕ1 − ϕ2‖L∞(Ω,R). (16)

The proof is done by subtracting the corresponding elasticity equations from one another and apply-
ing the triangle inequality, Lipschitz continuity of C (ϕ), Korn’s and Hölder’s inequality and Poincaré-
Friedrich. Details can be found in (Blank et al. , 2014).
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Theorem 3.3. The control-to-state operatorS is Fréchet-differentiable. The derivative atϕ ∈ L∞ (Ω,R)
in direction ω ∈ L∞ (Ω,R) is

S ′ (ϕ)ω = ū, (17)

with u = S (ϕ) and ū being the unique solution of

〈E (ū) , E (v)〉C(ϕ) = −〈E (u) , E (v)〉C′(ϕ)ω +

∫
Ω

ωg · v dx (18)

for all v ∈ H1
D

(
Ω,Rd

)
. Furthermore there exists a constant c > 0 such that

‖ū‖H1
D(Ω,Rd) ≤ c‖ω‖L∞(Ω,R). (19)

Thus S ′ (ϕ) is a bounded operator.

Remark. Formally this can be seen by differentiating the implicit state equation

〈E (S (ϕ)) , E (v)〉C(ϕ) = F (v, ϕ)

with respect to ϕ in direction ω.

The proof applies Assumption (A1), Theorem 3.1 and Lemma 3.2. Additionally standard tools like
Korn’s and Hölder’s inequality are used. For a complete proof see (Blank et al. , 2014).

Notice that these results carry over to the differentiability of the control-to-state operator Sm of the
mechanical system as well as the control-to-state operators Sch, h = 1, . . . , N of the AMC problems.
The following notation will be used:

Sm : L∞ (Ω)→ H1
D

(
Ω,Rd

)
, Sm (ϕ) := um

Sch : L∞ (Ω)→ H1
D

(
Ωh,Rd

)
, Sch (ϕ) := uch, h = 1, . . . , N,

Sc : L∞ (Ω)→ Hc, Sc (ϕ) := uc.

The space L∞ (Ω) has to be restricted to L∞ (Ωh) if Sch is applied.

Theorem 3.4. Under assumptions (A1) and (A2) there exists a solution to the optimization problem
(P ε).

Proof. The existence of a unique solution to the elasticity problem (6) is ensured by Theorem 3.1. Let
the admissible set be defined by

Fad := { (um, uc, ϕ) ∈ H1
D

(
Ω,Rd

)
×Hc × Gm,

s.t. (um, ϕ) fulfills (6) on Ω,

(uch, ϕ) fulfills (14) on Ωh, h = 1, . . . , N } .
Looking at (6) with vm := um for (Pm) and at (14) with vh := uch for (P c

h) , h = 1, . . . , N it can be
seen that J ε has a lower bound on the non-empty set Fad since

J ε (um, uc, ϕ) =F (um, ϕ) + βP d (uc, ϕ) + γEε (ϕ)

=

∫
Ω

C (ϕ) E (um) : E (um) dx+ β

N∑
h=1

∫
Ωh

C (ϕ) E (uch) : E (uch) dx

+ γ

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx

(11)
≥
∫

Ω ¯
Λ |E (um)|2 dx+ β

N∑
h=1

∫
Ωh

¯
Λ |E (uch)|

2 dx+ γ

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx

≥ 0.
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Thus
inf

(um,uc,ϕ)∈Fad

J ε (um, uc, ϕ) > −∞

holds. Let
{(umk , uck, ϕk)} ⊂ Fad, k ∈ N

be a minimizing sequence with

lim
k→∞

J ε (umk , u
c
k, ϕk) = inf

(um,uc,ϕ)∈Fad

J ε (um, uc, ϕ) .

First note that {ϕk} ⊂ Gm is uniformly bounded. Applying the estimation (15), it is clear that the
sequences {umk } and

{
uch,k

}
, h = 1, . . . , N are bounded independently of k in H1

D

(
Ω,Rd

)
and

H1
D

(
Ωh,Rd

)
, h = 1, . . . , N respectively. For every bounded sequence there exists a weakly con-

vergent subsequence

umk ⇀ um in H1
D

(
Ω,Rd

)
uch,k ⇀ uch in H1

D

(
Ωh,Rd

)
, h = 1, . . . , N (20)

ϕk ⇀ ϕ in H1 (Ω,R) .

The set Gm is convex and closed in H1
D (Ω,R) hence weakly closed, thus ϕ ∈ Gm. Moreover the

above convergences hold strongly in L2. Choosing another subsequence denoted in the same way
leads to pointwise convergence

ϕk −→ ϕ a.e. in Ω. (21)

The functionals F and P d are continuous with respect to the underlying topologies. Using the conver-
gence results from above and noting that the norm is weakly lower semi-continuous and the potential
is continuous, thus weakly lower semi-continuous, the following inequality is obtained

J ε (um, uc, ϕ) ≤ lim inf
k→∞

J ε (umk , u
c
k, ϕk) .

It is left to show that the elasticity problem is fulfilled by (um, ϕ) on Ω and
(
uch, ϕ

)
on Ωh, h =

1, . . . , N , respectively. For the mechanical problem as well as the constraint problems the bilinear
form of the elasticity problem has to be passed to the limit. Only the mechanical case will be considered
since the other cases are analogous. The sequence {ϕk} is uniformly bounded since {ϕk} ⊂ Gm.
Using pointwise convergence (21) Lebesgue’s dominated convergence theorem can be employed to
get strong convergence ofC (ϕk) E (v) toC (ϕ) E (v) inL2

(
Ω,Rd×d). Taking into account the weak

convergence properties from above this yields∫
Ω

C (ϕk) E (umk ) : E (v) dx −→
∫

Ω

C (ϕ) E (um) : E (v) dx (22)

for all v ∈ H1
D

(
Ω,Rd

)
. Finally the calculation arrives at

−∞ < inf
(um,uc,ϕ)⊂Fad

J ε (um, uc, ϕ) ≤ J ε (um, uc, ϕ)

≤ lim inf
k→∞

J ε (umk , u
c
k, ϕk)

= inf
(um,uc,ϕ)⊂Fad

J ε (um, uc, ϕ) ,

which proves that
J ε (um, uc, ϕ) = inf

(um,uc,ϕ)⊂Fad

J ε (um, uc, ϕ) .

Thus (um, uc, ϕ) is a minimizer of the problem (P ε).

DOI 10.20347/WIAS.PREPRINT.2629 Berlin 2019



Topology optimization subject to AMC 9

Letϕ ∈ H1 (Ω,R)∩L∞ (Ω,R). With help of the control-to-state operators Sm (ϕ) = um, Sc (ϕ) =
uc the state functional J ε (um, uc, ϕ) can be viewed as being only dependent on the control ϕ, which
defines the reduced cost-functional j (ϕ)

J ε (um, uc, ϕ) = J ε (Sm (ϕ) , Sc (ϕ) , ϕ) =: j (ϕ) .

Lemma 3.5. The reduced cost-functional j : H1 (Ω,R) ∩ L∞ (Ω,R)→ R is Fréchet-differentiable.
The derivative in direction ω ∈ H1 (Ω,R) ∩ L∞ (Ω,R) is

j′ (ϕ)ω

= −〈E (um) , E (um)〉C′(ϕ)ω + 2

∫
Ω

ωg · um dx

− β
N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕ)ω − 2

∫
Ωh

ωg · uch dx

]
+ γε

∫
Ω

∇ϕ · ∇ω dx+
γ

ε

∫
Ω

ψ′ (ϕ)ω dx.

Proof. The partial derivatives of J ε are continuous by the sequence criterion. Using

ūm = (Sm)′ (ϕ)ω

and

ūch = (Sch)
′ (ϕ)ω

leads to

j′ (ϕ)ω = J εum (um, uc, ϕ) (Sm)′ (ϕ)ω + β
N∑
h=1

J εuch (um, uc, ϕ) (Sc)′ (ϕ)ω + J εϕ (um, uc, ϕ)ω

= J εum (um, uc, ϕ) ūm + β
N∑
h=1

J εuch (um, uc, ϕ) ūch + J εϕ (um, uc, ϕ)ω

= 2〈E (um) , E (ūm)〉C(ϕ) + 2β
N∑
h=1

〈E (uch) , E (ūch)〉C(ϕ)

+ 〈E (um) , E (um)〉C′(ϕ)ω + β

N∑
h=1

〈E (uch) , E (uch)〉C′(ϕ)ω

+ γε

∫
Ω

∇ϕ · ∇ω dx+
γ

ε

∫
Ω

ψ′ (ϕ)ω dx

= −〈E (um) , E (um)〉C′(ϕ)ω + 2

∫
Ω

ωg · um dx

− β
N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕ)ω − 2

∫
Ωh

ωg · uch dx

]
+ γε

∫
Ω

∇ϕ · ∇ω dx+
γ

ε

∫
Ω

ψ′ (ϕ)ω dx.

(23)

Equation (18) was applied in the last equality.
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The special structure of the compliance causes the adjoint equations to coincide with the respective
state equations. For adjoint states qm ∈ H1

D

(
Ω,Rd

)
and qh ∈ H1

D

(
Ωh,Rd

)
, h = 1, . . . , N

qm ≡ um,

qh ≡ uch, h = 1, . . . , N

holds true.

The problem (P ε) was defined using the functional J ε (um, uc, ϕ). After considering the reduced
functional j (ϕ) the optimality problem can be reformulated compactly as

min
ϕ∈Gm

j (ϕ) . (24)

The following theorem summarizes preceding results.

Theorem 3.6. Let ϕ̄ ∈ Gm be a solution of (24). Since Gm is convex the following optimality system
holds

State Equations

〈E (vm) , E (um)〉C(ϕ) = F (vm, ϕ) ∀vm ∈ H1
D

(
Ω,Rd

)
,

〈E (vh) , E (uch)〉C(ϕ) =

∫
Ωh

ϕg · vh dx ∀vh ∈ H1
D

(
Ωh,Rd

)
, h = 1, . . . , N

Variational Inequality

γ

∫
Ω

ε∇ϕ · ∇ (ϕ− ϕ̄) +
1

ε
ψ′ (ϕ) (ϕ− ϕ̄) dx

− 〈E (um) , E (um)〉C′(ϕ)(ϕ−ϕ̄) + 2

∫
Ω

(ϕ− ϕ̄) g · um dx

− β
N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕ)(ϕ−ϕ̄) − 2

∫
Ωh

(ϕ− ϕ̄) g · uch dx

]
≥ 0 ∀ϕ ∈ Gm.

Remark. Introduction of KKT multipliers for the control constraint

The optimality conditions can be derived formally via the Lagrange functional

L (um, uc, ϕ, vm, vc) := F (um, ϕ) + βP d (uc, ϕ) + γEε (ϕ)

− 〈E (um) , E (vm)〉C(ϕ) + F (vm, ϕ)

− β
N∑
h=1

[
〈E (uch) , E (vh)〉C(ϕ) −

∫
Ωh

ϕg · vh dx

]
.

When formulating the optimality system the box constraint 0 ≤ ϕ ≤ 1 was taken into account
via the space Gm. In accordance with (Tröltzsch, 2010, p. 330–334) Karush-Kuhn-Tucker multipliers
µ+, µ− ∈ (L∞ (Ω))∗ are introduced such that

0 ≤ ϕ ≤ 1 a.e. in Ω

µ+ ≥ 0, µ− ≥ 0 in Ω (25)

(µ+, ϕ− 1) = 0, (µ−,−ϕ) = 0 in Ω.

Here the notation
(p, q) = 0 in Ω :⇔ p (x) q (x) = 0 ∀x ∈ Ω

is used.
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4 Discretization

Observations and theoretical derivations of linear elasticity take place in the three-dimensional space.
However, two-dimensional models have computational advantages. At the beginning of this chapter
a two-dimensional models will be studied. Then an interface propagation is explained, which allows
stationary problems to be solved iteratively. Lastly the Primal-Dual Active-Set Method is presented to
solve the optimal control problem.

The goal is to construct a thin, 3D-printable structure. The plane stress model is feasible since it
assumes that the z-dimension is very small in comparison to the others.
The normal stress σz,z and the shear stresses σx,z and σy,z are perpendicular to the x-y-plane. In the
plane stress model they are assumed to be zero. Thus σi,z = σz,i = 0, i = x, y, z and assuming
symmetry leads to

σ =

σx,x σx,y 0
σx,y σy,y 0
0 0 0

 . (26)

This yields Ex,z = 0, Ey,z = 0 and

0 = σz,z = λtr (E) + 2µEz,z ⇔ (λ+ 2µ) Ez,z = −λ (Ex,x + Ey,y)

⇔ Ez,z = − λ

λ+ 2µ
(Ex,x + Ey,y) .

Since the (z, z)-component of the strain tensor E can be written as a linear combination of Ex,x and
Ey,y, the component Ez,z can be eliminated. However, the Lamé-constants have to be adapted to
account for this. Hooke’s material law reads

σ = λtr (E) I + 2µE
= λ (Ex,x + Ey,y + Ez,z) I + 2µE

= λ

(
Ex,x + Ey,y −

λ

λ+ 2µ
(Ex,x + Ey,y)

)
I + 2µE

= λ

(
λ+ 2µ

λ+ 2µ
(Ex,x + Ey,y)−

λ

λ+ 2µ
(Ex,x + Ey,y)

)
I + 2µE

= λ

(
2µ

λ+ 2µ
(Ex,x + Ey,y)

)
I + 2µE

=
2λµ

λ+ 2µ︸ ︷︷ ︸
λ , adapted for the plane stress case

(Ex,x + Ey,y) I + 2µE .

The goal is to iteratively solve the stationary problem. After an initial material distribution ϕ0 is set,
pseudo timestepping is used to evolve the solution. The negative derivative of the reduced cost func-
tional is chosen as the direction of interface movement, thus

−j′ (ϕ)ω = −∂L
∂ϕ

ω = ε

∫
Ω

∂ϕ

∂t
ω dx ≈ ε

∫
Ω

ϕk+1 − ϕk

τ
ω dx, (27)

where τ is the length of a pseudo time-step. This approach was developed in the work of (Cahn &
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Hilliard, 1958) and (Allen & Cahn, 1979). Inserting the derivative (23) leads to

ε

∫
Ω

∂ϕ

∂t
ω dx =− γε

∫
Ω

∇ϕ · ∇ω dx− γ

ε

∫
Ω

ψ′ (ϕ)ω dx

+ 〈E (um) , E (um)〉C′(ϕ)ω dx− 2

∫
Ω

ωg · um dx

+ β

N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕ)ω − 2

∫
Ωh

ωg · uch dx

]
.

(28)

Towards better stability the equation is discretized using a semi-implicit approach and approximation
(27) is applied

ε

τ

∫
Ω

ϕk+1ω dx+ γε

∫
Ω

∇ϕk+1 · ∇ω dx

≈ ε

τ

∫
Ω

ϕkω dx− γ

ε

∫
Ω

ψ′
(
ϕk
)
ω dx

+ 〈E (um) , E (um)〉C′(ϕk)ω dx− 2

∫
Ω

ωg · um dx

+ β
N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕk)ω − 2

∫
Ωh

ωg · uch dx

]
.

(29)

Note that the time-step τ is just a numerical construct and does not represent a physically relevant
time, hence the word pseudo. The time-step can be varied independently of any physical phenomenon
to achieve convergence.

The box constraint for the phase field is made up of the two inequalities−ϕ (x) ≤ 0 and ϕ (x)−1 ≤
0. For example the second inequality is called active in x ∈ Ω if ϕ (x) − 1 = 0 and inactive if
ϕ (x)− 1 < 0. Adding the equations of (25) to the Lagrange function yields

L := L − (µ+, ϕ− 1)− (µ−,−ϕ) ,

leading to the unconstrained optimality problem

min
ϕ∈H1(Ω,R)

L .

In an optimum

∂L

∂ϕ
ω =

∂L
∂ϕ

ω − µ+ω + µ−ω
!

= 0 (30)

holds.

This incorporation of the box constraint via KKT-multipliers leads to the Primal-Dual Active-Set Method,
see (Blank et al. , 2013). In each step the active and inactive sets are updated using the result from
the previous iteration. If there are no further changes in these sets, the algorithm has converged and
terminates.
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Algorithm 1 Primal-Dual Active-Set-Method

1: Initialize
ϕ0, µ0

+, µ
0
− and set k = 0.

2: Solve the mechanical system (6), yielding um.
Solve the AMC systems (14), h = 1, . . . , N yielding uch, h = 1, . . . , N .

3: With c ∈ R+ set

Ak+1
+ := {x ∈ Ω : µk+ (x) + c

(
ϕk (x)− 1

)
> 0},

Ak+1
− := {x ∈ Ω : µk− (x) + c

(
−ϕk (x)

)
> 0},

Ik+1 := Ω \
(
Ak+1

+ ∪ Ak+1
−
)

and

ϕk+1 = 1 onAk+1
+ ,

ϕk+1 = 0 onAk+1
− ,

µk+1
+ = 0 on Ω \ Ak+1

+ ,

µk+1
− = 0 on Ω \ Ak+1

− .

4: On Ik+1 solve

ε

τ

∫
Ω

ϕk+1ω dx+ γε

∫
Ω

∇ϕk+1 · ∇ω dx

=
ε

τ

∫
Ω

ϕkω dx− γ

ε

∫
Ω

ψ′
(
ϕk
)
ω dx

+ 〈E (um) , E (um)〉C′(ϕk)ω dx− 2

∫
Ω

ωg · um dx

+ β
N∑
h=1

[
〈E (uch) , E (uch)〉C′(ϕk)ω − 2

∫
Ωh

ωg · uch dx

]
.

(31)

for ϕk+1.
5: OnAk+1

+ calculate µk+1
+ via (30).

6: OnAk+1
− calculate µk+1

− via (30).
7: Stop or set k = k + 1 and return to 2.

The potential ψ introduced in Section 2.3 has a local maximum in ϕ = 0.5. As an initialization a
slight perturbation around 0.5 is empirically beneficial. According to empirical evidence c = 100 is
a good choice. The elasticity equations and the gradient equation are solved via the Finite Element
Method. According to the work of (Hintermüller et al. , 2002) the Primal-Dual Active-Set-Method can
be interpreted as a semismooth Newton method. This yields local superlinear convergence.
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5 Numerical Examples

Calculations are done for a simply supported beam with and without the Additive Manufacturing Con-
straint. This makes it possible to observe the influence of the constraint. Here only linearly elastic,
homogeneous, isotropic materials are considered. For a formal definition see (Braess, 2013). The
elastic moduli depend on the type of material. Since the aim is to model 3D-printable structures, the
properties of typical filament, PLA, will be used. The code is implemented in C/C++ and incorporates
the p∂elib toolbox for numerical computations, see (Streckenbach et al. , 2014).

5.1 Calculations without Additive Manufacturing Constraint

Three parameters can be varied to influence the topologies resulting from the Primal-Dual Active-Set-
Method. It will be seen why the parameter γ characterizes the surface tension and the value of ε
determines the interface width. The volume constraint parameter m determines how much material is
used. The first part of the cost function, the compliance, is the inverse of the structural stiffness.

These calculations are performed without taking the Additive Manufacturing Constraint into account.
This is achieved by setting β = 0. In this subsection the cost functional is defined via

J ε (um, ϕ)︸ ︷︷ ︸
Residuum

:= F (um, ϕ)︸ ︷︷ ︸
Compliance

+γEε (ϕ) .

5.1.1 Parameter Study for ε and γ

In this study the following nondimensionalized parameters will be used:

Force density f = −6000

Interface width parameter ε0 = 0.0035

Surface tension parameter γ0 = 2.5× 10−5

Volume constraint m = 20%

Table 1: Top: Compliance Value. Bottom: Residuum Value

ε
γ 1

64
γ0

1
32
γ0

1
16
γ0

1
8
γ0

1
4
γ0

1
2
γ0 γ0

1
2
ε0

0.001442

0.001477

ε0
0.001519 0.001467 0.001430 0.001400 0.001408 0.001445 0.001478

0.001535 0.001488 0.001463 0.001454 0.001487 0.0015496 0.00163

2ε0
0.001404

0.001485

4ε0
0.001414

0.001521
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The parameter γ is the prefactor of the Ginzburg-Landau term and thus controls the influence of the
perimeter regularization, which can be interpreted as a surface tension. Larger values of γ cause the
material to lump together to simple, non-filigree structures. A sensibly small γ allows for the creation
of more filigree structures while still avoiding checkerboarding. As a reminder, the Ginzburg-Landau
penalty term is defined via

Eε (ϕ) =

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
ψ (ϕ) dx. (32)

The parameter ε regulates the influence of the two summands within the Ginzburg-Landau term. When
ε is increased the gradient term receives a higher weight. Penalizing the derivative causes less jumps
to occur. However, impure phases with 0 < ϕ < 1 are more likely to appear. Often ε is referred to
as the interface thickness parameter. If it is set too large filigree structures cannot emerge. When ε
is decreased a transition from material to void is penalized less. A smaller interface thickness brings
about more filigree structures. If ε is very small the potential term dominates. Fine, pure phased,
porous structures arise. It helps to decrease the mesh size, which allows for thinner beams to be
displayed. These influences of the parameters ε and γ are summarized in Figure 1.

Reasonable
initial con-
figuration

Simpler
structures

Spherical
structures

More
filigree

structures

Porous
structures

Interface
thinner

Abrupt
transition

Interface
thicker

Filigree
structures
not visible

ε too big

ε bigger

γ biggerγ smaller

ε smaller

ε too small

γ too bigγ too small

Figure 1: Influence of parameters

5.2 Calculations with Additive Manufacturing Constraint

The numerical results discussed in Section 5.1 did not take the Additive Manufacturing Constraint into
consideration. After having seen how the parameters γ and ε influence the compliance, it is time to
introduce the AMC. Its purpose is to ensure that a 3D printer will be able to print the resulting topology.
The penalty term was introduced in Chapter 2.4. The sum of intermediate compliances is added to the
cost functional to increase stiffness during the building process. One would assume that the penalty
term causes overhangs to vanish or supporting structures to arise, which will decrease deformations
during the printing process.
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In order to test the influence of AMC, calculations are done for different factors β. From an analytical
point it is not trivial to see how severely the penalty term influences the optimal topology. A set of
calculations is performed to gather intelligence numerically.

For every layer an elasticity equation is solved. More layers model the building process more precisely,
but increase the computation cost significantly. The constraint problems can be solved independent
from one another. If a larger number of layers is required, parallelization is a feasible option. Here the
number of layers is set to just three. The computational cost is kept small and influences can already
be seen.

In Table 1 it has been found that a configuration with ε = ε0 and γ = 1
8
γ0 leads to a minimal compli-

ance and thus maximal stiffness. A volume constraint of m = 20% results in reasonable filigree and
at the same time stiff structures. These parameters are kept constant while examining the influence of
the penalty function.

Figure 2: Structure without AMC, β = 0

Figure 2 depicts the structure without influence of the AMC, i.e. β = 0. Large holes show that the
material is not scattered, but concentrated in major beams. Not a lot of support structures are present
to hold the major beams in place. Generally the severity of an overhang can be measured by its angle
to the normal axis. As a rule of thumb, an angle of over 45◦ is critical. Here diagonal structures can
be seen that have an angle δ to the vertical axis of well above 45◦. Also note how the material is
distributed evenly with respect to the vertical axis. It is not the case that a majority of the material is
placed either near the top or the bottom of the domain.

Figure 3: Structure with AMC, β = 64

The penalty term is introduced by successively doubling the factor β. A convincing change in topology
can be seen when β reaches 64, see Figure 3. The beams are quite vertical, i.e. have a small angle
towards the normal vector and thus can be printed. These beams do not have a big impact on the
compliance. In other areas of the domain more substructures have emerged. These mostly vertical
supports lower the compliance in intermediate domains. In the technical realm they allow for less
deformations in the manufacturing process.
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Figure 4: More support structures, β = 128

Doubling the factor β once more leads to an increase in support structures displayed in Figure 4. A
larger amount of material is placed near the bottom of the domain as opposed to the vertically even
distribution found in Figure 2. This leads to a lower compliance in the advanced stages of manufactur-
ing. Beams are oriented more vertically than before. In Figure 2 the beams were quite long, whereas
here they intersect each other. The leverage effect causes a smaller amount of deformation and stress
on these shorter beams, which makes the structure more stable.

Note that it looks like more material was used in the last computation. This is not the case. However,
an increase of β leads to a larger influence of compliances in the cost functional. This is similar to
choosing a smaller γ, which would mean less influence of the Ginzburg-Landau term. Thus impure
phases are not penalized as much, which results in larger interfaces. A cutoff at the value 0.5 makes
these structures appear to be using more material.

Figure 5: AMC term too large, β = 512

If β is too large, the AMC penalty term dominates the cost functional, which can be seen in Figure 5.
Towards lowering intermediate compliances, material is placed almost exclusively near the bottom of
the domain. This causes the structure to be extremely stable during the manufacturing process. On the
other hand, there is very little material used to bear the weight of a load. The resulting deformations are
large as is the compliance. However, this effect is largely ignored because of the dominating penalty
term. This defeats the purpose of building a bridge which is ultimately meant to withstand exterior
forces.
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Up to this point the influence of the Additive Manufacturing Constraint was isolated by only varying the
parameter β. The study conducted in Section 5.1.1 shows how γ and ε affect the topology. Insights
from isolating all three parameters allow for a fine-tuning of support structures. As an example some
topologies are displayed. The first two arise from setting β = 64 and varying the interface thickness
by adjusting ε.

Figure 6: ε = 4ε0, γ = 1
8
γ0, β = 64

Figure 7: ε = 8ε0, γ = 1
8
γ0, β = 64

The parameter β is doubled and thereby the influence of the AMC increased. When the calculations
are repeated more support structures appear to stabilize the topology during Additive Manufacturing.

Figure 8: ε = 4ε0, γ = 1
8
γ0, β = 128

Figure 9: ε = 8ε0, γ = 1
8
γ0, β = 128
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5.3 Multiple Loads

As a second example a multi load case is considered. To goal is to design a 3D printable wheel. To
ensure placement of material on the border the phase field ϕ is set to 1 for points in the outmost 5%
of the domain.

The building domain for the load case is seen in Figure 10a. Loads with direction towards the midpoint
of the left side of the domain are acting upon all points of the green boundary. A Dirichlet boundary is
defined via the blue edge of the inner semicircle. The red vertical lines indicate a symmetry axis.

When considering the elasticity problems stemming from the Additive Manufacturing Constraint only
gravity is acting upon the structure. Here the boundary conditions are different, which is depicted in
Figure 10b. The domain is fixed on a printer bed, which is modeled via a Dirichlet boundary along the
blue line. A homogeneous Neumann condition is defined on the red border. See .

(a) Domain for outer forces (b) Domain for AMC

Figure 10: Boundary conditions for the load case and the manufacturing case

Again the influence of the Additive Manufacturing Constraint is investigated. Figure 11a shows the
result if the AMC is inactive. Large horizontal structures arise and the material distribution is almost
symmetrical with regards to the horizontal axis. The introduction of the AMC in Figure 11b leads to
thinner overhangs, decreasing compliances of gravity-based elasticity problems. Instead this material
is placed towards the horizontal center. The increasing trend of ticker structures near the bottom of
the domain is continued in Figure 11c. The trade-off between supporting mechanical outer forces
and stability during the printing process is observed anew. If the prefactor β is chosen too large the
material contracts like a pillar on top of the Dirichlet boundary, see Figure 11d. This does decrease
printing instabilities, but the structure would not support external loads well.
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(a) β = 0.0 (b) β = 0.0001

(c) β = 0.001 (d) β = 0.01

Figure 11: Influence of the Additive Manufacturing Constraint
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6 Conclusion

This paper comprises five conceptual levels. First, instabilities during 3D Printing motivate research on
this topic. Secondly, the Additive Manufacturing Constraint gets incorporated into the optimal control
problem. Optimality conditions arise from a rigorous analysis. The fourth level builds upon those results
when discussing the numerical approach. Lastly, calculations show that the Additive Manufacturing
Constraint decreases overhangs and brings about support structures, which validates this concepts.

The approach of modeling material distribution via a phase field stems from (Blank et al. , 2012) with
an analysis found in (Blank et al. , 2014). A penalty function for the Additive Manufacturing Constraint
is introduced by (Allaire et al. , 2017a).

To the author’s best knowledge this is the first time the AMC is applied to the phase field method
for Topology Optimization. A rigorous analysis of the optimal control problem shows existence of a
solution and results in first order necessary optimality conditions.

An Allen-Cahn interface propagation iteratively solves the stationary optimality problem. After a pseudo
time discretization the Primal Dual Active Set Algorithm is executed. Calculations without the AMC
show in which way the topology can be influenced by setting the parameters. After applying the AMC
noticeable changes occur. More support structures emerge, leading to a smaller compliance and in
turn to a higher stiffness during the manufacturing process. The influence of the penalty term is ad-
justable, which allows the structures to be fine-tuned according to engineering demands. No labor
intensive post processing is necessary, giving this approach a big advantage over manually added
support structures. Applying the AMC to the phase field method was successful.

Further research on this topic could include the incorporation of a micro field to represent lattice
structures. This helps create printable light-weight constructions. Additionally, one could implement
an adaptive mesh, which is fine in the interface region and coarser otherwise. This would reduce
computational costs and allow for three dimensional calculations. An integration of stress constraints
is desirable for engineering applications. On a larger scope there are many more problems in Additive
Manufacturing which can be tackled with optimization methods.
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