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Optimal Neumann boundary control of a vibrating string
with uncertain initial data and probabilistic terminal constraints

M. Hassan Farshbaf-Shaker, Martin Gugat, Holger Heitsch, René Henrion

Abstract

In optimal control problems, often initial data are required that are not known exactly in prac-
tice. In order to take into account this uncertainty, we consider optimal control problems for a
system with an uncertain initial state. A finite terminal time is given. On account of the uncer-
tainty of the initial state, it is not possible to prescribe an exact terminal state. Instead, we are
looking for controls that steer the system into a given neighborhood of the desired terminal state
with sufficiently high probability. This neighborhood is described in terms of an inequality for the
terminal energy. The probabilistic constraint in the considered optimal control problem leads to
optimal controls that are robust against the inevitable uncertainties of the initial state. We show
the existence of such optimal controls. Numerical examples with optimal Neumann control of the
wave equation are presented.

1 Introduction

Many applications in engineering sciences are modeled by initial boundary value problems with a
hyperbolic system, see for example [3, 12, 6]. In the applications in engineering, often some data are
uncertain. In order to provide analytical insights for such a situation, in this paper we consider a system
that is governed by a wave equation with uncertain initial data that are modeled by random Fourier
series. The corresponding Cauchy problems have been analyzed in [4].

For the situation with uncertain initial data, we consider an optimal control problem with conditions on
the terminal state. For a given control, the terminal state is also uncertain. Optimal control problems
with terminal constraints have been studied before in the classical deterministic setting where the
desired terminal state is prescribed exactly, see for example [22, 26} [15]. This is possible since the
system is exactly controllable, that is for a known initial state and a sufficiently large control time there
exists a control such that the desired terminal state is reached exactly (see [23]). This exact terminal
condition is equivalent to a sequence of moment equations for the terminal state, see for example [12].
Control to a position of rest can also be characterized by the requirement that the terminal energy is
equal to zero.

In our probabilistic setting, since the initial state is uncertain for a fixed control function it is impossible
to predict the terminal state exactly. Therefore, instead of a terminal constraint we require that the
terminal energy of the system state is less than or equal to a given upper bound € at least with a given
probability. So similar as in [14], we present a relaxation of the exact terminal constraint that increases
the robustness of the optimal controls.

In this way, we obtain optimal controls for which the probability that the terminal position is contained
in a certain e-neighborhood of the desired terminal position is greater than or equal to a prescribed
parameter p € (0, 1). So starting from the uncertain initial state, the optimal controls generate a
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terminal state that satisfies a probabilistic constraint. The solution of this optimal control problem can
be approximated by a suitable numerical method. By truncating the infinite series that represents the
terminal energy we obtain a sequence of auxiliary problems whose solutions converge to the solution
of the optimal control problem with the probabilistic contraint on the terminal energy. In this way, we
can compute approximations for a control that satisfies the probabilistic constraints and minimizes the
objective function of the optimal control problem. Here we consider the L?—norm of the control as the
objective function.

The problem we consider falls into the class of PDE-constrained optimization subject to risk-averse
decisions. This topic has gained much interest recently. One direction of approaching such problems is
the consideration of the conditional value-at-risk in the objective or constraints (e.g., [17}21])). Another
perspective, the one taken in this paper, is the use of probabilistic constraints which are very popular in
engineering problems but traditionally applied in finite dimension. Their application in the environment
of PDE-constrained optimization is still in its infancy (e.g., [9} [25]).

The paper has the following structure. In Section [2]we discuss the deterministic initial-boundary value
problem and the corresponding problem with uncertain initial data. In Section [3|we discuss the corre-
sponding problem of norm-minimal Neumann control for the system with uncertain initial state and a
probabilistic constraint for the terminal energy. Also an approximation of the energy with finite sums is
introduced.

In Section [4]it is shown that the probabilistic constraint in the optimal control problem with approxi-
mated energy is convex. Based upon this fact, methods for the computation of the probabilities and
the corresponding gradients with respect to the control are presented in Section 5| The existence of
optimal controls for the original problem and the problems with the approximated energy constraint is
shown in Section[g] In Section[7|numerical examples are illustrated and discussed.

2 System states for Neumann boundary of the wave equation
control with uncertain initial data

We consider a vibrating string of length L > 0 with homogeneous Dirichlet boundary conditions at
one end and Neumann—boundary control at the other end. To study this problem we use the Sobolev
space H'(0,L) = {f € L*(0, L): The derivative f’ in the sense of distributions is in L*(0, L)}.
Letyo € H'(0,L) and y; € L*(0, L) be given. Let T > 0 denote a given terminal time and let
¢ > 0 denote the wave speed. For a given control u € L?(0, T') the deterministic initial boundary
value problem

y(o,l‘) = yo(l’)7 ZAAS (07L)
v (0,2) = (), z € (0,L)
(NIBVP){ yu(t,z) = ywl(t,z), (t,x)€ (0,T)x (0,L)
y(t,0) = 0, t e (0,7)
v (t, L) = wu(t), t e (0,7).

has been analyzed for example in [13], Theorem 2.3. In engineering applications, often the initial data
are uncertain. As a model for the uncertain initial data, we use random Fourier series as studied in
[19]. For n € {0, 1,2, ...} define the complete orthonormal series

™ T

on(T) = % sin <<§ —l—mr) E)
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Optimal control with uncertain initial data 3

and the corresponding coefficients a2, } € R with

b= | " gole) gule) de, ol = / C (@) enl) da.

Then we have the series representations

vo(x) =D alen(@), nlz) = a)en(2). (1)

Unless otherwise stated, we shall make the following standing assumption for our model of uncertain
initial data:

(A) Assume that for all n € {0, 1,2, ...}, identically distributed random variables a,,, b,, are given on
a probability space (£2, A, P).

Consider the random initial data
yi(x) =Y asalon(x), yile) =) W a)ea(x), )
n=0 n=0

where the superscript w indicates the evaluation of the random variable at this outcome w € (2.
Then, our assumption (A) along with an argument related to the Paley—Zygmund Theorem implies
that for these random series almost surely we have y& € H'(0, L), v¥ € L*(0, L) (see [18, Lemma
4.3],[4, 7). The corresponding initial boundary value problem with uncertain initial data is given by

yw(oﬂ JJ) - yff(m), YIS (07 L)

yf(O,x) = y‘ld(x)’ YOS (07 L)
(NIBVPU)] ya(t,x) = Ay (t,z), (t,x)€ (0,T)x (0,L)

y“(t,0) = 0, t€(0,7)

Yo (6, L) = u(?), t€(0,7),

where w € €. The solution of (NI BV PU ) is almost surely at least as well-behaved as the solution of
(NIBV P). In fact, we have again a series representation that is presented in the following theorem.

Theorem 1 Assume thatyo € H'(0, L) with yo(0) = 0, y; € L*(0,L) andu € L*(0,T). For
n € {0,1,2,...} define
A z :
ni=—=(=+n
(2 * W)
and the random variables

a“(t) = a?al cos (x/)\nct) + b2 al \/AITLC sin <\//\nct)
t
+ (L) /\1 /u(s) sin (x/)\nc(t—s)> ds.
n C 0

Then

ye(tx) = as(t) pa(x) (3)
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is almost surely the unique solution of (NIBV PU). For allt € (0,T) we have almost surely

y“(t,-) € L*(0,L) and
| reorar =3 @),

n=0
Moreover we have almost surely y~ € C((0,T), L*(0, L)).

Proof: The functions ,, are the solutions of the eigenvalue problem

Par() = =X(x), 7 € [0, L], ©(0) =0, @u(L) =0

with the eigenvalues \,, and the normalization

L
/ on(r)?dr =1, n€{0,1,2,...}.
0

o0 .

The sequence of functions (¢,,) -, is a complete orthonormal system in the Hilbert space L?(0, L).
The definition of the functions a*(t) implies that almost surely a(0) = a% o and almost surely

(@¥)(0) = ba;. Hence we have almost surely » >° a%(0)¢,(z) = y§(z) and
> (@) (0) pn(z) = yy(x) almost everywhere on (0, L). Thus we have almost surely

y“(0, z) = y§(x) and ¥ (0, ) = y¥(x) almost everywhere on (0, L), that is the initial condi-
tions of (NIBV PU) are satisfied. Now we consider the boundary traces. Almost everywhere on
(0, T') we have almost surely y* (¢, 0) = > 7% o (t) ¢,(0) = 0.

n=0"n

The definition of o (¢) implies that for all n € {0, 1,2, ...} we have almost surely

(a¥)"(t) = —% (g + mr)2 a%(t) + (1) % u(t).

For a test function ¢ € D([0, T] x [0, L]) we have
o L
ot 0= [ elts) eulo)dsionl)
n=0"0

Hence 0 = ¢(t, L) = > fOL ©o(t, s) pn(s)ds p,(L). Thus the definition of the distributional
derivative implies almost surely

T L
| [ Wit - @ i) ot o dode
o Jo
T L
= / / y“(t, x) pu(t, ©) — ? y“(t, ) Qp(t, x) dx dt
o Jo

- /OT /jgaﬁ(t} pu(@) pult, ©) = ¢ ol (t) pu(2) puu(t, x) dz dt

- g /OT /0 L pul(x) ()™ 05 (t) () @(t, z) de dt

- g /OT /OL on() (1) [=* X + PN @t ) + ul) on(L) u(t) (1, ) da dt
= /OT c? u(t) i/j o(t, s) pn(s) ds (L) dt

_ /T S ul(t) o(t, L) dt = 0.
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Optimal control with uncertain initial data 5

Thus almost surely y“ satisfies the wave equation in the sense of distributions.

Now we choose a test function ¢(z) € C?([0, L]) such that p(0) = 0 and ¢,(L) = 0. Then we

have (L) = >, fOL ©(x) on(x) dz p,(L). Hence we have almost surely for ¢ € (0, 1) almost
everywhere

/0 [yt 2) — (1, )] o) de

= /0 Lya(t, m) () — ¥ (t, @) @u(z) de — y2 (¢, @) p() |2y + ¥ (¢, ) ul(2)]2y

= D (F )+ hanlt)) [ ola) eale) e = 2t D (D)

= Y L) ult) /0 (@) palx) do — (1, L) (L)

n=0
= u(t)p(L) =y (t, L) (L)
= [ut) =2 (t, L)] o(L).
In this weak sense y* satisfies the Neumann boundary condition at x = L.

Hence the series (3) almost surely solves (N1 BV PU). Consider the classical energy

L
1
(0= [l 5 Gp ) de

Since the energy decays almost surely for u(¢) = 0, the uniqueness of the solution follows. The
continuity of the solution with respect to time follows from the regularity of the v, (t). Thus Theorem
is proved.[]

Remark 2.1 Note that the functions (\/L,\* @l )5, also form a complete orthonormal system in L (0, L).

3 Optimal Neumann control

In this section we look at the problem of optimal control from an uncertain initial state to a desired
terminal position in a probabilistic sense in a given finite time for a system that is governed by the
initial boundary value problem (NIBV PU). We assume for simplicity that L = 1. Let T > 2
be given. Let an expected initial position yo € H'(0,1) with 3,(0) = 0 and an expected initial
velocity y; € LQ(O, 1) be given. For the convenience of the reader we first restate the deterministic
optimal control problem (NEC) for the case of initial states without uncertainty with an exact terminal
condition that has been studied in [12]:

( minger2o7) [ullF2(,r) subject to
y(0,2) = yo(x), 1:(0,2) = y1(x), x € (0,1)
(NEC) { y(t,0) =0, y.(t, 1) = u(t), t € (0,T)

Yt (t, ) = P ypa(t, ), (t,2) € (0,T) x (0,1)

l y(T,2) =0, y(T,z) =0, z € (0,1)
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The terminal constraints can also be replaced by the requirement that the terminal energy is equal to
zero. For the convenience of the reader we include the representation of the optimal control for the
deterministic case (NEC) with wave speed ¢ = 1.

Theorem 2 (Representation of the optimal Neumann control, see [12]) LetT > 2,k := max{n €
N:2n <T}and A :=T —2k.... Fort € [0,2), let

[ k+1, te(0,A]
dt) = { K, te(A2). )

Then the optimal control u that solves (NEC) is 4—periodic, with

sam Wo(l—t) —yi(L =), te(0,1),
Uo(t) =
s ot = 1) + ot = 1)], te(1,2).

Fort € (0,2),1 € {0,1,....k} witht + 21 < T we have ug(t + 21) = (—1) uy(t).

Now we present a problem that is suitable for uncertain initial data. Let an accuracy parameter € > 0
and a preset probability threshold p € (0, 1) be given. We consider the problem of optimal exact
control and uncertain initial data

min,erz(0,7) [|ufl72(.) Subject to

y(0,2) = yg'(x), ¥ (0,2) =y (x), = € (0,1)
(NECU)(e, p) ¢ °(t,0) =0, y2(t,1) = u(t), t € (0,T)
ya(t,x) = Ayt x), (ta) €(0,T) x (0,1)

| P( E¥(u,T) <e)>p.

The parameter ¢ is an upper bound for the terminal energy that is valid at least with the given probability
p. For the terminal energy we have

L
1
PT) = [ (T + S (T

2

1 2
ta

dx

/ CY (T 2) gula) da

T (o) da

=" (a2(1)) + 1 () (T))*.

Forn € {1,2,3,...} define

0¥ (t) := a“ a? cos <\/_ct>—|—b“’

- sin <\/_ct>

DOI 10.20347/WIAS.PREPRINT.2626 Berlin 2019



Optimal control with uncertain initial data 7

and

T
cD(u) = (1) \/)\LC / u(s) sin <\/)\nc(T — s)) ds.
" Jo
With the explicit representation of a*(T") from Theorem [1]we obtain

a2 (T) = ) (u) + o3 (T).

n

We have
(%) (t) = —a? \/)\_nc sin <\/)\_nct) + b ol cos (\/)\—nct> )
Define
T
D (u) = 2 (1) / u(s) cos (\/)\_nc(T - S)) ds
0
Then

For the terminal energy this yields
B, T) = > A () +0(1)" + 5 (2 (w) + (02)/ (7).
n=0

Thus the inequality constraint in (NECU) (e, p) has the form
P <Z A (e (u) + a:;(T))2 + = (P (u) + (a:;)’(T))2 < 5) > p. (5)
n=0

In this way, the probabilistic constraint in the definition of (NECU) (e, p) demands that the probability
that the control is successful in a reduction of the energy such that £“(u, T') < ¢ is greater than or
equal to p.

In order to make the energy accessible to numerical computations, the infinite series that defines
E“(u, T) is approximated by the finite sum of the first [V terms with N € {1, 2, 3, ...}. Define

E(u, T) =Y A (D (u) +02(T))" + 5 (2 (w) + (02)(T))". (6)

We obtain the problem

min,erz0,7) [|ufl72.0) subject to
(NECU)(e, p, N)
P(EY(u, T)<e)>p.

4 Convexity of the probabilistic constraintin (NECU) (e, p, N)

In this and the following section, we shall be dealing with finite-dimensional random vectors in the
context of problem (NECU) (e, p, N) with cut-off N-term energy [6| Therefore we will not have to
impose our standing assumption (A) on identical distributions of all of its components. This assumption
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will become critical again, when showing in Section|[g]the existence of solutions to the original problem
(NECU)(e, p) where the whole sequence of random variables comes into play.

In this section, we show that the probabilistic constraint in (NECU) (e, p, N) defines a convex set
of admissible controls u. To this aim, let £ be a m-dimensional random vector, U a vector space and
g:UXxR" — RF a given mapping. The following Theorem is due to Prékopa (in the original
formulation, U was supposed to be finite-dimensional, but this restrictive property is not exploited in
the proof of the result, see also [9} Prop. 4]):

Theorem 3 ([24]) Let & have a log-concave density, i.e., a density whose log is (possibly extended-
valued) concave. If all components g; of g, (i=1,... k), are quasi-convex, then the probability function
¢ : U — R defined by

o(u) =P (§:(u, &) <0 (i=1,...,k)) (7)

is log-concave.

We introduce the probability functions ¢ : L?(0,T) — R for N € N associated with the inequality
constraints in (NECU) (¢, p, N) as

¢n(u) =P (Ex(u,T)<e),

or more explicitly (see (6)):
u):=P (Z An (cg)(u) + a;i:(T))2 + 1 (cn2) (u) + (U;‘L’)’(T))2 < 5) ) (8)
n=0

Proposition 1 Let the random vector £ = ((a,, bn))n 1» have a log-concave density. Then, ¢x,
defined in (8), is log-concave too.

Proof 1 By definition, ¢ can be written as ¢ (u) = P (g (u,&) < 0), where forn = 1,...,N:

g(u,z) = Zgn(u,z)—g

gn (u,2) == A\, (c (1) ( )+ <An,z)) + — (cn2)(u) + <Bn,z>)

A, = ((o,o ,(0,0),

<a cos \/_ cT)

B, = ((o,o 0,0),
(

\/A_ sin (\/)\_HCT>> ,(0,0),...,(0,0))
( \/—csm (\/_CT> , ik cos <\/)\_ncT>> ,(0,0),...,(0, O))
(28.20)) -

(1) (2)

where the nonzero expressions in A,,, B,, appear at position n. Since the functions cy,’ (1) and ¢z, (u)
are linear in u, the functions g,, are convex as squares of linear functions in (u, z) jointly. Hence g is
convex too. Now, the result follows from Theorem@ upon putting gb = ¢y andg = g.

DOI 10.20347/WIAS.PREPRINT.2626 Berlin 2019



Optimal control with uncertain initial data 9

Corollary 1 In the setting of Proposition[1] the set of feasible controls u defined by the probabilistic
constraint in problem (NECU) (g, p, N) is convex and can be equivalently represented by a convex
inequality hy (u) < 0, where

hy(u) := —log ¢y (u) + logp 9)

and ¢y is defined in (§).

Remark 4.1 We observe that many prominent multivariate distributions share the property of having
log-concave densities, e.g., multivariate Gaussian, Dirichlet, Wishart, Gamma or the uniform distribu-
tion on convex compact sets, see [24]

5 Algorithmic approach to the solution of problem (NECU) (e, p, N)

For the algorithmic solution of the optimization problem (NECU)(e, p, N) the numerical evalua-
tion/approximation of the probability function ¢ in along with its sensitivity with respect to the
control variable u is necessary. We will describe next an approach via the so-called spheric-radial
decomposition of Gaussian random vectors (see, e.g., [8, p. 105], [10, p.30]). Although the same idea
applies to a whole class of distributions (e.g., Gaussian-like such as log-normal, truncated Gaussian or
elliptically symmetric distributions such as Student), we will content ourselves here with the probably
most prominent case of purely Gaussian distributions. The following result is well-known (see [8, eq.
(8)] or in its present form [11} Th. 3.1.]):

Lemma1 Leté ~ N (1, X) be an m-dimensional Gaussian random vector having expectation f.
and (nondegenerate) covariance matrix Y. Then, for any Borel-measurable subset M C R™ its
probability with respect to this distribution can be represented as

]P’(fEM):/ vy {r > 0|p+rLv e M}dy,(v).

§m—1

Here, S™ 1 is the (m — 1)-dimensional unit sphere in R™, v, is the uniform distribution on S™1, v,
denotes the one-dimensional x -distribution with m degrees of freedom and L is such that

Y =LLT (10)

(e.g., Cholesky decomposition).

Next, we apply the previous lemma to the probability function &(u) defined in Theoremfor k=1
and consider

d(u) =P (g (u,&) <0), (11)

where g : U x R™ — R for some Banach space U and ¢ is a Gaussian random vector as in Lemma

[l
Corollary 2 Fix any u € U with the following properties:

1 é(u) > 0.5

DOI 10.20347/WIAS.PREPRINT.2626 Berlin 2019
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2 g (u,-) is convex.

3 The convex inequality g (u, -) < 0 admits a Slater point, i.e., there is some Z with g (u, z) < 0.

Then,

o) = [ eluoyduo) (12

where e (u,v) = I, (p(u,v)) (with I, referring to the distribution function of v ) if the equation

Vx
g(u,p+rLlv)=0

admits a (unique) nonnegative solutionr = p (u,v) > 0 ande (u,v) = 1 else (i.e., g (u, pu + rLv) <
0 forallr > 0).

Proof 2 Lemmal(i| yields that
o(u) = / vy {r > 0]g(u, p+rLv) < 0} dy,(v). (13)
Smfl

For fixed u € U, define the set M := {z € R™ | g(u,z) < 0}. Clearly, M is convex and
nonempty by the assumption 3. From our assumptions, it follows that the mean vector |1 of £ satisfies
the strict inequality § (u, 11) < 0 (see [1,, Prop. 3.11]). Now, by the convexity of M, one has either that
g(u,u+rLv) <0 forallr > 0 orthat g (u,pu+ rLv) = 0 for exactly oner = p (u,v) > 0. In
the first case,

vy {r > 0[g(u, p+ rLv) <0} = 1, (Ry) = 1

since the support of the x -distribution is the nonnegative reals. In the second case,

([0, p (u,0)]) = Fy, (p (u,v)) = F,, (0)
(

v Ar > 0lg(u, i+ rLv) <0} = 1,
= I, (p(u,0)).

Now, the assertion follows from (13).

A few words on the assumptions of Corollary [2| are in order: The convexity assumption 2. will hold
true in the case of our problem (NECU)(e, p, N) because the function g defined in the proof
of Proposition [1] and playing the role of ¢ in Corollary [2| was shown to be convex (actually in both
arguments simultaneously) in the mentioned proof. Requiring the value of the probability function to
be larger than 0.5 as in assumption 1. is no practical restriction because in probabilistic constraints
one is typically dealing with probabilities close to one. Finally, it is well known that, without the Slater
point assumption 3., the probability function qz~5 may even fail to be continuous.

For numerical purposes, the spheric integral in Corollary 2 will be approximated by a finite sum based

on a sample v', ..., v® € S™! from the uniform distribution on the sphere. One possibility to do
so efficiently, consists in generating a Quasi-Monte Carlo sample w', . .. ,wK of the m-dimensional
standard Gaussian distribution in R™ and to normalize it, so that v* := w*/ ||[w"|| fork = 1,..., K.

Then, the desired value of the probability function in can be approximated as

qg(u) ~K! Ze (u,vk) ) (14)

K
k=1

DOI 10.20347/WIAS.PREPRINT.2626 Berlin 2019



Optimal control with uncertain initial data 11

Of course, the larger K, the better this approximation. It remains to clarify, how the function e (u, v) in
Corollary [2| can be evaluated in the context of our optimization problem (NECU)(e, p, N). To this
end, the general function g defined in will be specified now as the function g introduced in the
proof of Proposition 1} Hence, we have

N

1
> ()\n (D () + (An, o+ rL0))” + > (2 (w) + (Boy i + er>)2) .
n=1

Now, to solve the equation g (u, i + rLv) = 0 for given v and v in r > 0 as mentioned in Corollary
we can regroup and rewrite it as a quadratic equation in 7:

o (u,v) r* + B (u,v) r + 7 (u,v) =0, (15)
where
a(u,v) = Z An (Ap, Lv)? + c% (B,, Lv)*
B (u,v) = Z 2\, (A, Lv) ((An, ) + c%l)(u)) + % (B, Lv) ((Bn, w + cg)(u))
Tw) = S A (D) + (A )+ g () + {Ba i)

Under the assumptions of Corollary it follows that g (u, 1) < 0 (see proof there), which means that
v (u,v) < 0. Since, moreover, o (u,v) > 0, it follows that exactly one of the following cases may
occur:

(@) lfa (u,v) = 0and 3 (u,v) < 0, then (15) has no solution 7 > 0 at all and, hence, e (u,v) =
1 (see Corollary[2).

(o) If o (u,v) = 0and B (u,v) > 0, then the unique solution of is

7 (w,v)
B (u,v)

(c) If a (u,v) > 0, then has exactly one solution > 0 given by

_ _B (uv U) + \//62 (uv U) B 4’7 (u7 U) a (’LL, ,U)‘

2 (u,v)

r=p(u,v) = — > 0.

r=p(u,v):

We note, that the one-dimensional distribution function F,, of the x-distribution is a direct built-in
function of many mathematical software packages or can be easily derived from the corresponding
distribution functions of the x?- or I'-distributions (for instance: F,,_(t) = F,,, (t*)).

After having described, how to evaluate fairly precise values for the probability function gf;(u) via
(or in the context of optimization problem (NECU) (g, p, N) the probability function ¢ (u) defined
in ), we address now the question, how to obtain its Derivative DQNS(u) in order to set up a gradient-
based optimization procedure for solving problem (NECU) (e, p, N). For the following result we
refer to [16], Th. 6, Cor. 3, Rem.1]:

2
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Theorem 4 Let g in be continuously differentiable. Additionally to the assumptions of Corollary
[3 suppose that the following growth condition is satisfied around u € U :

31> 0:||Dyg (w, 2)|| <l Y : |jw —u| < 1/1Vz: ||2]| > 1.

Then, the probability function ¢ from is (strictly) differentiable at u and the derivative D (u) is
given as

- / X (p (u,v)) - Dyg (u, p (u,v) Lv) <h)an(U) VheU.  (16)

Do(u)(h) = — ~
(w)(h) (V.q (u, p(u,v) Lv), Lv)
vEF (u)
Here,
pm—1 eftQ /2
t) = ———F7——

XU = 5o 5 2)
is the density of the one-dimensional x -distribution with m degrees of freedom. Moreover, F'(u) refers
to the set of directions v € S™ ! such that the equation

(t > 0)

g(u,p+rLv) =0

admits a (unique) nonnegative solution r = p (u,v) > 0 (see Cor. @)

The preceding Theorem can now be applied to the probability function of our problem (NECU) (e, p, N):

Theorem 5 Let the random vector § := (ay, bn)nN:1 with coefficients introduced in (A) have a 2N -
dimensional Gaussian distribution & ~ N (u1,Y). Assume that p > 0.5 in (NECU)(e, p, N).
Consider any v € L*(0,T) such that E%(u) < ¢ for at least one scenario w. Then, the probability
function ¢ (u) := P ( EX(u) < e ) is (strictly) differentiable at v and its gradient is given by

o x(p(u,v)) - Vug (w,p(u,v) L)
Vontw =~ [y o).

(17)

vEF (u)

where, with the defintions of A,,, B,, in the proof of Proposition

Vug(u,z) =2 Z {)\n (D (u) + (A, 2)) Vel (u) +

N (2)
V.glu,2) =2 {An (P (u) + (An, 2)) Ay + e () + (Bn, 2) Bn} . (19)

Proof 3 Clearly, the function g introduced in Proposition|1| is continuously differentiable with partial
gradients as in (18), (19). As already stated in the proof of Proposition[1} g is convex. Furthermore,
EX(u) < € for some scenario w means the existence of z such that g (u, z) < 0. Finally, we have
that

IVug(v, ) <2 {0 [Vl )] (| ()] + 1 4a] 1121)

n=1

+ l 12 )| (|2 (0)] + |1 Bal lI=11)}-
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By linearity of ¢\, ¢\, the normsHVc (v)

Vc,(f) (v) H are constants and, moreover, there exists

’

some »,0 > 0 such that

) ,|C$L2)(U)|} < Yo:|v—ul <4

max{{cq(ll)(v
From here, one easily deduces the existence of some | > 0 such that
|Vug(w, 2)|| < 1l v : |Jw —u| < 1/1 V2,

Putting, g :== g andgzNS = @y with the latter from @) we observe that all assumptions of Theorem
(including those of Corollary|2) are fulfilled. Accordingly, (16) yields by the Fubini Theorem that for all
h e L*0,T),

(Von(u),h) = Dé(u)(h)
X

. / (0 0) - (Tug (e p () o) 1) -

(Veg (up (o) o) Loy
_ [ (0 (1,0)) Vg (1, (0,0) L) () BCE)
B EF/( 0/ (V.g (u, p (u,v) Lv) , Lv) dt iy (v)
o X)) Vgl L) ()b
- //( Veglwpo) Loy Loy O

_ [/ _ X (p(w,0)) - Vug (u,p(w,0) Lv) -
= < eI{) (V.9 (u, p(u,v) Lv), Lv) dv,( )’h>_

This yields the asserted formula of our Theorem.

We recall that the functions cg), cg) occuring in the formulae , are defined below problem

(NECU)(g, p). In particular, one calculates their gradients occuring in as
Cc

Vel (u) (s) = ea(1) sin (VAne(T =) (s € (0,7)) (20)
Ve (u) (s) = pn(l) cos <\/)\_nc(T—s)) (s €(0,7)) (21)

o Q‘
>
3

The results presented in this section suggest an algorithmic scheme for determining approximations of
the probability function ¢ (u) = P ( EY(u) < € ) and its gradients V¢ (u) in the iterative solution
of our optimization problem (NECU)(e, p, N) at a given iterate u € L*(0,7"). The idea is to
approximate the gradient V¢ (1) by its values on a finite subset {¢1, ...ty } C (0, 7). In this way,
a gradient-based solution algorithm for (NECU) (e, p, N) (e.g., projected gradients) is easily set up.
Observe that, thanks to Corollary 2| and Theorem 5] both the value ¢ (u) and its gradient Ve (u)
are represented as spherical integrals (in the latter case one reduces the sphere to its subset v €
F(u) by a simple check of p (u,v) < 00). Hence, the same sample v € S~ can be used in order
to update both ¢ (u) and Vo (u). Here, one takes advantage of the fact, that the value p (u, v)
has only to be determined once. The following algorithm assigns to a given iterate u € L*(0,7')
approximations for ¢N( ) and for Vo (u) on a given grid {t1, ..., tx} under the given Gaussian
distribution (ay, b,)_, ~ N (1, ¥) of the coefficients in :
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Algorithm 5.1 1 Generate a (Quasi Monte-Carlo) sample v', . . . , v™ of the m-dimensional stan-
dard Gaussian distribution N (0, I).

2 Find a Cholesky decomposition ¥ = LL" for the covariance matrix of the given distribution of
coefficients.

3 Initialise the desired approximation s,, for ¢ (u) and s, for Vo (u) on the grid {t1, ..., ta}
by s, == 0ands, (t;) == 0fori =1,..., M. Initialise the iteration counter for the sample in
Step 1. ask = 1.

4 For the given iterate u and the sampled direction v := v* € S, check for and identify solution
of . Compute values o (u,v*), 8 (u,v*), v (u,v*) as indicated below @) Update the
contribution of sample v* to the discretized versions of the spherical integrals and
according to the case distinction made above:

(@ If o (u,v*) = 0 and 8 (u,v*) <0 (ie, has no solution, whence e (u,v*) = 1
andv® ¢ F(u)), then update s, := s, + 1.

(b) Ifor (u,v*) = 0and 3 (u,v*) > 0, then put

() Ifo (u,v*) > 0, then put

—f (u,vk) + \/62 (u, v*) — 4y (u,v*) (u,vk).

2 (u, v*)

p (u,vk) =

In both cases (b) and (c), v* € F(u). Update s, := s, + F,_(p (u,v")) and (see ):

X (p (u, vk)) - Vaug (u, p (u, vk) ka) (t;)
(V-9 (ar p (w, 0%) L) LoF)

Sq (i) = s, (t;) + (it=1,...,M).

In this last formula, use the representations (18), (19). Referring to (20) and (21)), we obtain, for
instance, the following fully explicit representation for V ,,g, required above:

Vg (u, p (u, o) Lo¥) (1) =
zcné (222 f u(s)sin (VAw e (T = 5) ds + (An,p (u,0) Lot )
VA n(1) sin (VA e (T — 1)) +
2 ﬁvjl ((c2 wn(1) [ u(s) cos (VA ¢ (T = 5)) ds + ( By, p (u, v*) ka>> _

- (1) cos (VA e (T —t;))

5 Ifk < K, thenk := k + 1 and goto 4.

6 STOP with ¢ (u) ~ K~ 's, and Voy(u) (t;) = K s, (t;) fori =1,..., M.
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6 Existence of Solutions

In this section first we show that for all natural numbers N € {1,2,3,...} and ¢ > 0 a solution of
(NECU)(e, p, N) exists if p is sufficiently small. For a given € > 0, we set

Psup(€, N) := sup {p €0,1] | Ju e LQ(O,T) stP(EY(u, T)<e) Zp},

which is decreasing with respect to V. Hence, for all p < psyp(e, N), there exists u € L%(0, T')
suchthat P ( E%(u, T') < e ) > p, which means that the feasible set of the optimal control problem
(NECU)(g, p, N) is nonempty. This fact is used to prove the following lemma, that ensures the
existence of a unique solution to (NECU) (¢, p, N).

Lemma2 LetN € {1,2,3,...} begiven. Assume thatp € [0, psp(e, N)). Then(NECU)(e, p, N)
has a unique solutionu, € L?(0, T).

Proof 4 With the convex function hy as defined in (9) we can state problem (NECU)(e, p, N) in
the form

Minyer2(0,7) ||u||%2(07T) subject to hy(u) < 0.

Then the Direct Method of the Calculus of Variations yields the solution as the weak limit point of a
minimizing sequence. The strong convexity of the objective function implies the uniqueness.

In preparation of the following lemma, let v(e, p, N) and v(e, p) denote the optimal value of
(NECU)(g, p, N) and (NECU)(¢, p), respectively.

Lemma 3 Assume thatp € |0, i%f psup(€, N)) and v (e, p) < oo. Then the sequence of solutions

u*(e, p, N) of (NECU)(e, p, N) (N € {1,2,3,...}) contains a subsequence that converges
strongly in L*(0, T).

Proof 5 Since By (u, T) < E{ 4 (u, T) < ... < E¥(u, T') we have
v(e,p, N) <wv(e, p) forall N € {1,2,3,...}.

Moreover, the sequence (v (e, p, N))nen is increasing. Let L = limy_uv(e, p, N). The as-
sumption v(e, p) < oo implies that the sequence (u*(e, p, N))nen is bounded. Hence there
exists a weakly convergent subsequence with a weak limit u. We have L > HﬂH%Q(O’ L) For all
N €{1,2,3,...}, we have forall M > N,

hn(u*(e, p, M)) <0.

Since hy is sequentially weakly lower semi-continuous, see [9, Proposition 1], we obtain for all N €
{1,2,3,...}
hn(@) < liminf hy(u*(e, p, M)) <O0.

M—o00
This implies that 1 is feasible for (NECU)(e, p, N) forall N € {1,2,3,...}. But, v(g, p, N) <
[l|72 (0, 1) @nd hence L < ||[|72 (o 1)- Thus we have L = ||i|7», - This implies in turn the strong
convergence of the subsequence in L*(0, T') to 1.
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In the following Theorem we show that each strong limit point & of the sequence of solutions
(u*(e, p, N))nen of the problems (NECU) (¢, p, N) is feasible for (NECU) (e, p). In particular,
this implies that a solution of (NECU) (¢, p) exists.

Theorem 6 Under the assumptions of Lemma [3 and under our standing assumption (A),
(NECU)(e, p) has a solution & and

lim (e, p. N) — a2y = 0.
where (u* (e, p, N))nen is given by Lemma[3 Moreover we have

lim v(e, p, N) =v(e, p). (22)
N—o0

Proof 6 Letu be as in the proof of Lemma|3. Note that we have HﬂH%Q(O ry < v(e, p) . Since t is
feasible for ( NECU)(e, p, N) forall N € {1,2,3, ...}, we have forall N € {1,2,3,...}:

P(EX(u, T)<e)>p. (23)

Define the random variable 6% = E“(u, T) — EX(u, T) < 0. We obtain that 6%, < 0%.
Moreover, as a consequence of our standing assumption (A), Lemma 4.3 from [18] implies that almost

2 2
surely we have » >~ |\, (cg)(u) + afj(T)) < oo and ) o, <c§lz) (u) + (05{)’(T)> < 00.

Hence almost surely Nlim 0% = 0. Moreover, we have
—00

P(BY (i, T) < £) = P(E*(a) < = +6%).
Consider the sets
Sy ={weQ|EYu, T) <e+ 0y} and NF_, Sy ={w € Q| E¥(a) <&}
Then we have Sy 1 C Sy and due to we have P(Sy) > p. Define the set
S::{w€Q|E‘“(&,T)Ss}U{wEQ]A}i_{I})o(S%#O},
where P({w € Q | ]&gnoo % #0}) =0. ThenP(S) = NhinOO P(Sn). Thus we have shown

P(E“(a) <e) > p.

Hence . is feasible for ( NECU)(g, p), and hence also a solution of (NECU)(e, p). Since the
arguments in the proof of Lemma [3 and Lemma [6 can be applied to any weak limit point of the
sequence (u*(e, p, N))nen, this implies that the solution of (NECU) (e, p) is the strong limit of
the sequence (u*(e, p, N))yen. Moreover we have (23).

7 Numerical solution of two examples

In this section, we discuss the numerical solution of two examples with different expected initial con-
ditions for problem (NECU)) (¢, p). Referring to the explicit description of that problem as well as to
and (), we consider the following problem data:

¢ = 1;5::01'T':4'L':1‘p€{010015020 P
a, ~ N(1,0.2) (n € N); a, pairwise uncorrelated; b, := 0 (n € N)
yo(x) = x (example 1); yo(z ) =7 'sin(nz) (example 2); yi(x) =0 (z € (0,1))
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The coefficients a® and ! in ) and (1), respectively are obtained as the Fourier coefficients of the
chosen functions yo(), y1 (). In particular, o) = 0 for all n. The latter implies that the (formal)
multiplicative random coefficients b,, for perturbing y; () can be chosen arbitrarily without any effect.
As for the coefficients a,,, they all follow an identical Gaussian distribution (with mean 1 and standard
deviation 0.2) in order to satisfy our standing assumption (A). This allows to apply all the existence and
convergence results of Section [6] to our examples. However, as pointed out earlier, this assumption
is not necessary for the numerical solution of the approximating problem (NECU) (e, p). Moreover,
assuming all coefficients to be pairwise uncorrelated is of absolutely no importance (recall Algorithm
[5.1] allowing for correlated components of the Gaussian random vector) neither for the theory nor for
the numerical solution and is just due to a lack of significant information about correlations here. With
the a,, having expectation 1 it is ensured that the expected initial value coincides with the nominal one,
i.e., Ey§(x) = yo(x) forallz € (0,1).

In order to deal with (NECU)(e, p) numerically, one has to pass to finite-dimensional approxima-
tions on two sides simultaneously: first, the series expansion for the terminal energy has to be cut after
N terms which leads us to the consideration of problem (NECU)(e, p, N). Second, we compute
approximations for the optimal controls u € L2((), T) in the space of piecewise constant functions.
Letagrid 0 =ty < t; <ty < .. <ty =T begiven. Fori € {1,..., M} let

1t et ty),
v(t) = { 0 elsewhere,

and, define the finite dimensional space X;(7") by
Xu(T) :=span{v;(-): j=1,...,M}.

For any u € X;/(T') we use the representation

M
Zu j—1)v;(t te€l0,7).
7j=1

Hence, we are finally led to solve the problem

M
Milyex,, (1) Z(t — t;_1) u(t;_1)? subject to

(NECU)(e, p, N, M) =
on(u) > p

The solution will be based on a projected gradient method using values and gradients of ¢ 5 computed
by means of Algorithm [5.1] Apart from explicit expressions occuring in these computations, we have to
specify (see (17),(T8).(T9)) the integrals defining the functions ¢! (u), ¢ (u) introduced below problem
(NECU)(e, p). By elementary calculus, one obtains that for u € X,(7) and foralln € N

)sin (VAL(T = s))

e |- cos (VAT) (to)+z Hulty 1) = ulty)) cos (VAT = 1)) + ultar)]
u(s) cos (VA (T — )

7 [sin (VAT) < o) = I 1) — ult)) sin (VAT = )]

n
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7.1 First example

Here, we assume that the nominal (unperturbed, expected) initial state is given by yo(z) = x. With
the concrete problem data as specified above, it follows from Theorem [2]that the optimal deterministic
control in problem (NEC) is the bang-bang control

w(t) = 1/4 VEe (0,2); w(t)=—1/4 Vte (2,4). (24)

This solution takes a nominal deterministic initial state yo(z) = x and y;(z) = 0 to a position of
rest, i.e. a terminal state with zero energy, within the time 7" = 4. In contrast to the deterministic case,
for uncertain initial values this same optimal control will no longer take the string to rest (apart from
the unlikely event that the uncertain initial value coincides with the nominal or expected initial value).
Instead, we search for a control which takes the initial state with a certain sufficiently high probability
to a terminal state with an energy level below the chosen value of ¢ = 0.1. In order to approximate
the theoretical solution of problem (NECU) (¢, p), we solved problem (NECU) (e, p, N, M) for
N = 100 and M = 256 with the probability level p varying from p = 0.1 to the maximum possible
value p = 0.9078 in steps of 0.05. The corresponding optimal controls are illustrated in Fig.

0 25 pMax = 0.9078 _|
p=0.85
p=0.47

p=0.10

% \/

g 0

c

o

Expect. Sol. Aﬂ
-0.25 |
| | |
0 1 2 3 4
Time t

Figure 1: The figure shows the optimal controls under probabilistic terminal energy constraint as
solutions of problem (NECU) (e, p, N, M) for a tolerance of ¢ = 0.1 and for different probability
levels p. The two bang-bang controls in the figure refer to the optimal solution of the deterministic
problem (NEC) (zero terminal energy) (larger amplitude) and to the solution of the expected value
counterpart of problem (NECU) (e, p, N, M) (lower amplitude, see text).

Not surprisingly, unlike the piecewise constant deterministic solution of problem (NEC) (largest
control in Fig. these controls are quite nonlinear due to the presence of the probabilistic constraint
and they are increasing in amplitude for increasing probability level p. Moreover, they exhibit the same
symmetry patterns as the deterministic controls. More surprisingly, the profiles change their shape
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from bimodal to concave when passing a certain medium probability level p ~ 0.47. At that proba-
bility, the optimal control is bang-bang again but with lower amplitude than the solution of (NEC). It
turns out that this is the solution of problem (NECU) (e, p, N, M) when replacing the probabilistic
constraint ¢ (u) > p by the constraint

L
1
/ Uo(T,2)? + & (T, 2% < e, 5)
0 C

which bounds the terminal energy of the nominal (expected) initial state by € (whence the control can
afford a lower amplitude than that of (NEC) which would correspond to the stricter bound € = 0).

Even less evident is the fact that the largest possible probability p = 0.9078 is achieved again by
a bang-bang solution which is exactly the one of the deterministic problem (INEC) imposing zero
terminal energy while starting with the nominal initial state. Beyond that maximum probability, the
feasible set of (NECU) (e, p, N, M) becomes empty and costs jump to infinity.

Initial State y(0,x)
o
o

I I I I I I
0 0.25 0.5 0.75 1 0 1 2 3 4
Position x Time t

Figure 2: lllustration of ten simulated scenarios for the initial state (left diagram) and corresponding
evolution of energy over time.

In order to illustrate the effect of the calculated solutions, we simulate a sample of 10 random scenarios
for the initial state around the nominal (expected) initial state yo(x) = x according to the chosen
Gaussian distribution of the multiplicative perturbations a,, of the nominal Fourier coefficients (see
problem data above). They are illustrated in the left diagram of Fig. [2| Taking the optimal control for
the (still feasible) probability level p = 0.9 (see Fig. and applying it to these ten scenarios for the
initial state yields a time-dependent development of the corresponding energy as illustrated in the right
diagram of Fig. |2l At terminal time 7" = 4, nine out of these ten scenarios reach a terminal energy
within the € band around zero. This is in expected correspondence with the chosen probability 0.9 (of
course, slight deviations could occur when repeating the simulation). Note however, that this is just an
out-of-sample test (posterior test) and that the computation of optimal controls has not been based on
simulated scenarios but on the parameters of the underlying continuous multivariate distribution.

7.2 Second example

We repeat the numerical experiment with the nominal initial state yo(z) = 7! sin(7z). The accord-
ing optimal controls are illustrated in Fig. [3l Except monotonicity of profiles with respect to the prob-
ability level, we detect similar effects as in the previous example: again, the family of profiles passes,
when increasing the probability level, through the solution of problem (NECU) (e, p, N, M) when
replacing the probabilistic constraint ¢ (u) > p by the constraint (terminal energy of expected
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0.25 -
Expect. Sol.

=
=}
e 0
c
[}
(@)

-0.25 pMax = 0.9945

| | |

0 1 2 3 4
Time t

Figure 3: The meaning of the Figure is analogous to that in the previous example but now for a
problem with different initial state

initial state smaller than ¢) at p = 0.43 and reaches its maximum probability at p = 0.9945 when
being identical with the deterministic solution of problem (NEC). As this relation between the prob-
abilistic and the two deterministic solutions is repeatedly observed in examples, we strongly believe,
without having a proof yet, that it is generally true.

1
09 -
0.8
0.1
0.7
0.6

0.5

Probability
Cost of control

04 0.05 -
03|

02

0.1

! ! ! ! ! ! ! ! ! 0 ! ! ! ! ! ! ! ! ! !
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Epsilon Tolerance Probability

0

Figure 4: Plot of the maximum achievable probability as a function of the energy tolerance ¢ (left
diagram) and of the cost for the control as a function of the chosen probability level (right diagram)

The left diagram of Fig. illustrates the dependence of the maximum achievable probability on
the chosen tolerance ¢ for the terminal energy. Of course, the larger this tolerance, the higher the
maximum probability that can be achieved. It turns out that a slight increase of the tolerance from zero
to 0.05 already ensures a sufficiently high maximum probability of around 0.9. The right diagram of
Fig. [7.2 illustrates the dependence of the cost for the control on the chosen probability level. It can
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be seen, that the level can be quickly increased up to around 0.8-0.9 at a very moderate increase of
costs. However, when approaching the maximum possible probability level, the additional costs are
considerable.

8 Conclusions

We have studied optimal control problems with systems governed by the wave equation where the
initial state is uncertain. In order to take into account the uncertainty, we have prescribed a probabilistic
terminal constraint for the energy of the system. In the probabilistic constraint, an upper bound ¢ for the
energy and a desired probability level p appear as parameters. We have shown that for reasonable
choices of these parameters, optimal controls exist that solve the optimal control problems with a
probabilistic terminal constraint. Examples illustrate that the optimal controls can also be approximated
numerically.

Since the uncertainty of the initial states occurs for many optimal control problems, it is also interesting
to study this type of problem for more complex nonlinear dynamics (see for example [5]). Also the
analysis of uncertain non-linearities that occur as disturbance of the pde similar as in [20] is of interest.
This will be a topic in future research.
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