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1 Introduction 

During the last two decades dynamic processes simulation has become an indispens-
able tool for the design and operation of complex chemical plants. The rigorous 
modeling of the chemical processes results in large-scale systems of differential and 
algebraic equations (DAE). Using an appropriate modeling the differential index of 
the resulting DAE systems can be restricted to index 1 in many cases [BPl]. For 
details about the numerical solution of DAE systems and the index problem we refer 
to [BCl, GHl]. 

For large-scale systems cost-effective numerical methods are needed. Under special 
modeling assumptions waveform iteration methods can be used for the concurrent 
dynamic process simulation [SMl]. These methods, also called dynamic iteration 
methods or Picard-type methods are well suited for the implementation on parallel 
computers. 

Since the beginning of the 80'th the main application field for waveform iteration 
methods has been the circuit simulation of MOS digital integrated circuits [LRS]. In-
vestigations of waveform iteration methods for systems of ordinary differential equa-
tions (ODE) [WSl, JPl, Brl, BBl] as well as for systems of differential algebraic 
equations [LRS, Mil, SLl, SMl] are known. Convergence under certain conditions 
on the mathematical problem has been proven in [Brl] for explicit ODE systems and 
in [Mil] for linear DAE systems of arbitrary index. Lelarasmee et. al. [LRS] and 
Schneider [Scl] proved convergence for a semiexplicit type of waveform iteration for 
semiexplicit DAEs of Index 1. 

In this paper we consider the application of block waveform iteration methods to 
initial value problems for implicit DAE systems of index 1 arising in chemical pro-
cess simulation. Block waveform iteration methods permit the concurrent treatment 
of blocks of subsystems of the entire system with multirate integration techniques 
gaining a coarse granular parallelism. Their convergence properties strongly depend 
on the assignment of variables to equations and the partitioning of the system into 
subsystem blocks. 

First we proof convergence for waveform iteration methods applied to semiexplicit 
DAE sytems of index 1. The convergence conditions are given in a blocksystem 
oriented manner, i.e. only the blocksystems have to satisfy some corresponding con-
ditions. Then we show that the convergence conditions are fulfilled for a simplified 
modeling of distillation columns. An assignment and partitioning algorithm is given, 
which takes the requirements of the convergence theorems into account. 

Based on this investigations a prototype of a waveform-iteration code has been imple-
mented and tested by means of examples included in the user package of the chemical 
process simulator SPEEDUP [PSl]. 
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2 Waveformiteration 

We consider the initial value problem (IVP) for a semiexplizit DAE system: 

X1 - ](x1,X2,t) (2.1) 
Q h(x1, X2, t) 

x(to) - xo, t E [to, te] 

with x = (x1, x2f, x0 the consistent initial value, J Rk X Rl X [to, te] --+ Rk, 
h: Rk X Rl X [t0 , te] --+ Rl and n :--:- k + l. 
Let the time interval be denoted by T := [t0 , te]· 

For index 1 problems (2.1) the inverse (hx2 t 1 exists in a neighbourhood of the solu-
tion of the IVP. In the following we assume that (hxJ-1 exists in the whole domain. 

Definition 1 Letf: RkxRlxRkxRlxT-+ Rk, h: RkxRlxRkxRlxT-+ Rz be 
functions with f(x 1,x2,xi,x2,t) = f(xi,x 2,t), h(x1,x2,xi,x2,t) - h(x1,x2,t). The 
general form of the continuous waveform iteration for the problem {2.1) is then given 
by 

0 
f(x~, x~, x~~1 (t), x~- 1 (t), t) 
h(x~, x~, x~- 1 (t), x~- 1 (t), t) 

(2.2) 

fork = 1, 2, ... with x0 : T --+ Rn be any arbitrary approximation for the beginning 
of the iteration which satisfies x0 (t0 ) = x0 • · 

For the discrete waveform iteration on subintervals, the so called "windows", we refer 
to [Brl]. 
After partitioning of (2.1) into a set of r semiexplicit index 1 problems with X1 = 
(x11, ... , X1r)T, X1i E Rki, E ki = k, X2 = (x21, ... , X2r)T, X2i E Rzi, Eli = l, 
ni := ki + li, Eni = n, X_i := (x1,i,X2,i)T, x = (x_1, ... ,x_r)T, one obtains the 
following block structured representation 

X1i - h(xn, ... 'X1r, X2i, ... 'X2r, t) 
0 hi(xu, ... ,X1r,X217 ... ,X2r,t) 

X_i( to) - X_i,O, i = l(l)r . 

The corresponding block waveform iteration is then given by 

fi(x~, x~, x~- 1 (t), x~- 1 (t), t), 
hi(x~, x~, x~- 1 (t), x~- 1 (t), t), 
x_i,o, i = l(l)r . 
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Two special cases are the block Gauss Seidel waveform iteration where fi and gi are 
given by 

fi(x1,x2,Y1,Y2,t) h(x11,X21, ... ,x1i,X2i,Y1i+i,Y2i+1, ... ,Y1r,Y2r,t) 
hi(x1,x2,Y1,Y2,t) .- hi(x11,X2i, ... ,x1i,X2i,Y1i+i,Y2i+1, ... ,Y1r,Y2r,t) 

(2.5) 

and the block Jacobi waveform iteration with 

fi(x1, X2, Y1, Y2, t) .- h(Y11, Y21, · · · , Y1i-1, Y2i-1, X1i, X2i, Y1i+2, Y2i+2, · · · , Y1r, Y2r, t) 
hi(x1,x2,Y1,Y2,t) .- hi(Y11,Y2i, ... ,Y1i-1,Y2i-1,X1i,X2i,Y1i+i,Y2i+1, ... ,Y1r,Y2r,t). 

(2.6) 

The block Jacobi waveform iteration is especially suitable for parallelization. 

3 Convergence considerations 

For problems (2.1) with index 1 the existence of an unique solution x2 = g(x 1 , t) of 
the algebraic equations 0 = h(x1, x2, t) follows from the implicit function theorem. 
Because each blocksystem in (2.3) is assumed to have index 1, every hi is solvable for 
x 2i as well. Hence in the cases of block Gauss Seidel- and of block Jacobi waveform 
iteration the hi are also sovable for X2i· 

Then (2.4) can formally be rewritten as 

fi(x~, x~, x~- 1 (t), x~- 1 (t), t), 
9i(x~, x~, x~- 1 (t), x~- 1 (t), t), 
X_i,o, i = l(l)r, 

(3.1) 

In the case of the block Jacobi waveform iteration the 9i are even independent of x2, 
so that 3.1 has the representation 

·k X1i 
k X2i 

x~i( to) 

fi(x~, x~, x~- 1 (t), x~- 1 (t), t), 
- 9i(x~, x~- 1 (t), x~- 1 (t), t), 

X_i,O, i = l(l)r. 

(3.2) 

Let G(T, Rn) and 0 1(T, Rn) be the spaces of the continuous and the continuous 
differentiable n dimensional functions defined on T. 

The direct sum Z := G1(T, Rk) ffi G(T, Rl) is a set of ordered pairs defined by 
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Let I· Im be any norm in IR m, then for z2 E C (T, JRl) and z1 E 0 1 (T, JRk) exponetially 
weighted norms for arbitrary but fixed a> 0 are defined by 

II z2 lla,l .- sup(e-a(t-to)lz2(t)li) 
tET 

1 - e-a(te-to) 
·- lx(to)lk + a lli1lla,k· 

With this norms a norm for z E Z is defined by 

llzllz := max{llz1llk, llz2lla,z}. 

Lemma 1 {Z, 11·11.z} is a Banach-space. 

Proof: 

It has to be shown, that the limit z = (z1, z2f of an arbitrary Cauchy sequence 
(zi)~1 in {Z, ll·llz} is an element of Z. 
VE> 0 there 3i0 such that llz0 - zPllz <€holds 'Vq,p > i0 • 

We have that 

Since €---+ 0 for growing q and p it follows that 

sup lii(t) - ii(t)lk---+ 0 and sup lzHt) - zHt)lz---+ 0. 
tET tET 

So we have uniform convergence for if ---+ ii, z~ ---+ z2 and thus i 1 E C(T, J:Rk), 
z2 E C(T, Rz). Because also zf(to) ---+ z1 (t0 ) it follows the uniform convergence 

. 1 k 
z~ ---+ z1 and hence z1 E C (T, IR ). 

0 

With respect to the partitioned system (2.3) we have z1 = (z11 , ••• , z1r f and z2 = 
(z21, ... , Z2r)T. With z_i := (z1i, z2i)T we can define function sets Zi corresponding to 
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Zand norms 11-llzi corresporrding to 11-llz· Because of Lemma 1, the spaces {Zi, 11-llzJ, 
i = 1, ... , r, are Banach-spaces. For z = ( z_i, ... , z_r )T E Z, Z := Z1 EB Z 2 EB ... EB Zr, 
a norm ll·llz is defined by 

llzllz :=. max {llz_illzJ. 
iE{l, ... ,r} 

One easily can show that {Z, ll·llz} is a Banach-space. 

For x, y E Z, an operator 0: Z x Z-+ Z is defined by 

From the definition of the operator 0 we find that the block waveform iteration (3.1) 
has the formal representation 

with xk(t0 ) = x0 and an arbitrary starting function x0 E Z. 

We now consider the operator equation 

x = O(x, y). 

If this equation is uniquely solvable for x, an operator 

P:Z-tZ 

is defined where x is determined by the equation x = P(y). 

(3.3) 

In the following Lemma 2 the Banach space {Z, ll·llz} and the operator 0 are more 
generally defined. The coinciding notation is chosen because the above defined Ba-
nach space { Z, 11 · llz} and operator 0 are applicable to this Lemma, what will be 
shown later. 

The proof of the Lemma 2 also can be found in [Br 1]. 

Lemma 2 Let {Z, ll·llz} be a Banach-space and let the operator 0 : Z x Z -+ Z 
satisfy the following assumptions: 

al 0 is globally Lipschitz continuous, i.e. there exist constants Kx, Ky ~ 0 such that 
for all x, y, x, y 

llO(x, y) - O(x, Y)llz::; Kxllx - xllz + KyllY - yllz, 

a2 0 < .Kx + K11 < 1. 

Then 
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f1 For each y E Z the equation x = 0( x, y) is uniquely solvable for x. The operator 
P defined in {3.3) is contractive with a Lipschitz-constant My = 1 ~k:z:. 

f2 The sequence ( xk) defined by 

converges to a unique limit x for any starting function x 0 E Z. 

Proof: 

Let y E Z be arbitrary but fixed. First it is shown, that the operator 

O_y := 0(., y), O_y: z -t z 
is contractive and has a unique fixpoint. From al it is known that O_y is Lipschitz 
continuous with the Lipschitz constant Kx and from a2 we have that Kx < 1. Thus 
the fixpoint theorem of Banach is applicable to O_y which proofs the assertion. 

The operator P : Z -t Z is defined in that way, that P app9ints to every y E Z the 
fixpoint of O_y. 
For arbitrary y, y E Z with x := P(y) and x := P(y) we have 

!Ix - xllz = llO(x, Y) - O(x, Y)llz ~ Kxllx - xllz + KvllY - :Yllz 
and thus 

K llx - xllz ~ l _ ~x llY - Yllz. 

Since 
llx - xllz = llP(y) - P(y)llz, 

P is Lipschitz continuous. From a2 it followes that the Lipschitz constant 1 ~k:z: is 
smaller than 1, i.e. P is contractive. This proofs fl. 
With x := xk and y := xk-l, we have 

and thus 
xk = P(xk-1). 

Because of fl the fixpoint theorem of Banach is applicable to P what proves f2. 
D 

If IR.m = IR.m1 ffiIR.m2 ffi ... ffiJR.mq, then an appropriate norm for w = (w1, ... , wqf E IR.m 
is defined by 
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Lemma 3 Let the waveform iteration {3.1} for the partitioned system {2.3} be con-
sidered. If the functions fi and 9i, i = 1, ... , r fulfill Lipschitz conditions, i.e. for all 
e = (6,6f,( = ({i,(2f,'f/ = ("1i,"12f,fj = (ii1,ifaf E JRk ED JRl, t ET exist positi1! 
constants kc, fiy, 9ix, 9iy with 

lfi(e, 11, t) - fi((, ii, t)lki :::; fix le - (I+ fiyl'f/ - iii (3.4) 
l9i(e, "'' t) - 9i((, r;, t) k :::; 9ixle - (I + 9iyl'f/ - iii (3.5) 

then the following estimations hold for x, y, x, y E Z: 

llfi(x1(.),x2(.),y1(.),y2(.), .)- fi(x1(.),x2(.),y1(.),y2(.), .)lla,ki (3.6) 
:::; fixllx - xllz + fiyllY - 'Yllz, 

ll9i(x1(.), x2(.), Y1(.), Y2(.), .) - 9i(x1(.), x2(.), Yi(.), Y2(.), .)lla,li (3.7) 
:::; 9ixllx - xllz + 9iyllY - 'Yllz. 

Proof: With x, y, x, y E Zone obtains from (3.4) 

lfi(X1 ( t), x2( t), Y1 ( t), Y2( t), t) - fi( x1(t), x2(t)", Y1 ( t), Y2( t), t) lki 
< fix. max {maxHx1i(t) - X1i(t)lki, lx2i(t) - X2i(t)lzJ}} + 

iE{l, ... ,r} 

fiy. max {max{IY1i(t) -i}1i(t)lko IY2i(t) - 'Y2i(t)lzil}} 
iE{l, ... ,r} 

Let j be the index i which yields the maximum for the x-corriponent. Then we have 

fix. max {max{lx1i(t) - X1i(t)lki, lx2i(t) - X2i(t)lzJ}} 
iE{l, ... ,r} 

< f;x max { l:z:1j(to) - X1;(to) + 1:(X1;(s) - :i:1;(s ))dslk;i l:z:2j(t) - X2j(t)l1;} 

< fix max { l:z:1;( to) - X1;(to) I + 1: e"(s-to)e-a(s-to) IX1;( s) - 5:1;( s) lk; ds, 

ea(t-to) e-a(t-to) lx2j( t) - X2j( t) lz;} 

< fix max { lx1;( to) - x1;( to) lk; + 1.t ea(s-to) sup { e-a(s-to) lx1j( s) - ~ij( s) lk;} ds, 
to sET 

ea(t-to) sup { e-a(t-to)IX2j(t) - X2j(t)lz;}} 
tET 

- . fix max { l:z:1;( to) - X1;( to) lk; + llX1; - :i:1;lla,k; 1: e<>(s-to)ds, e"(t-to) ll:z:2; - X2illa'.I;} 

- fix max { l:z:1;( to) - X1j( to) lk; + e"(t-:) -
1 llX1; - :i:1;lla,k;, e"(t-to) ll:z:2; - X2;lla,I;} 

{ 
1 _ e-a(t-to) . } 

< fixea(t-to) max lx1j(to) - X1j(to)lk; + a llx1j - X1jlla,k;, llx2j - X2jlla,l; 

- ea(t-to) fix max {II X1j - X1j llkn II X2j - X2j lla,z;} · 
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Because the same estimate holds for the y-component we obtain 

lfi(x1(t), x2(t), Y1(t), Y2(t), t) - fi(x1(t), x2(t), iJ1(t), fh(t), t)lki 
:::; ea(t-to) (fi:z=llx - xllz + fiyllY - iJllz) · 

Using the norm definition of 11-rla,ki one obtains (3.6). 

Going for g through the same procedure as for f one gets (3. 7). 
D 

Theorem 1 Let the assumptions of Lemma 3 be satisfied. If further the Lipschitz 
constants 9ix, 9iy of 9i fulfill for every i the condition 

9ix + 9iy < 1, 

then the sequence ( xk) obtained by the block waveform iteration {3.1) converges in· 
{Z, 11-llz} to the solution of {2.1). 

Proof: 

We show that the operator 0 is globally Lipschitz continuous and the Lipschitz 
constants satisfy the condition a2 of Lemma 2. Then fl, f2 can be followed. 

We have 

llO(x,y)- O(x,iJ)llz = llz - zllz =. max {max{llz1i - Z1illko llz2i - Z2illa,zJ}. 
iE{l, ... ,r} 

Let j be- the maximal i. Using the result of Lemma 3, it follows that 

Hence for large enough chosen a the Lipschitz constants of 0 are 

Beca:use the assumption 9jx + 9jy < 1 satisfies the condition a2 of Lemma 2 the proof 
is completed. 

D 
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Let Z_i = (z1i, Z2i)T E Zi. Then norms I-lo, 1-11 usually used for the continuous and 
continuous differentiable functions are defined by 

lz2ilo sup{ lz2i(t) I}, 
tET 

lz1il1 .- lz1ilo + lz1ilo . 

Further a norm 1.1 Zi for Z _i E zi is defined by 

lz_ilz := max{lz1il1, lz2ilo}. 

Another norm 1-1 z for z = ( z _1, . . . , Z _r) T E Z is then defined by 

lzlz := max{jz_ilzJ. 

With this definitions {Z, 1.lz} is a Banach space. 

Theorem 2 With the assumptions of theorem 1 the sequence ( xk) obtained by the 
block waveform iteration {3.1} converges in {Z, l·lz} to the solution of (2.1). 

Proof: 

Let the fixpoint of P be denoted by x*. To show that the block waveform iteration 
(3.1) converge,s to z* E {Z, l·lz} fork-+ oo we look for a constant K > 0 such that 

lxk - x*lz::; Kllxk - x*llz. 

For z = (z_1, ... , z_r )T E Z it holds by definition 

With 

we have 

and hence 

Further it is 
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and hence 
I . I < a a(te-to) II II Z1i 0 - 1 - e-a(te-to) e Z1i ki. 

Finally one has 

and thus 

what results in 

(3.8) 

Then replacing z by xk - x* in (3.8) leads to the assertion. 

0 

In summary, for the convergence of the block waveform iteration (3.1) for semiexplicit 
DAE systems of index 1 the Lipschitz continuity of fi and 9i, i = 1, ... , r, is required, 
where the Lipschitz constants of 9i satisfy the inequality 

9ix + 9iy < 1. 

A local approximation for the Lipschitz constants 9ix, 9iy can be determined by means 
of the Jacobians ~9:, ~~ evaluated in a fixed point (x 1(t*), x2(t*), y1(t*), y2(t*), t*). In 
the following these arguments are left away. 

We remember that the blocksystems hi were solved for X2i = 9i(x1, x2, Y1, Y2) with 9i 
independent of x 2i. A deduction from the implizit function theorem yields 

[ 
8g 89 8g 8g] [ 8h ]-l [ 8h 8h 8h 8h] 
8x1 8x2 8y2 8y2 = 8x2i 8x1 8x2 8y1 8y2 · 

(3.9) 

The constants 9ix and 9iy are then evaluated for the block Jacobi waveform iteration 
by 

9ix 
1

8 9i I [ 8 hi J- l 8 hi 
8x1 = . 8x2i 8x1i (3.10) 

nli 

1

89· 1 [ 8h· ]-l 8h· _i - """ __ i __ i + """ 
8y - ~ 8x2i 8y1j L..J 

J'l:.i n 1; j-:f:i 
9iy = (3.11) 

and for the block Gauss Seidel waveform iteration by 

9ix = 

9iy 
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Here the matrix norm 1-1 is induced by the vector norm 1-1· The coinciding notation 
for the norms is used for simplicity. 

These conditions just require the Jacobian of the. discretized problem (2.1) to be block 
diagonal dominanat because the diagonal elements of the Jacobian in the hyperrows, 
belonging to the differential part Xi - h == 0 of the DAE system, get arbitrary large 
with reduction of the stepsize. This comes from the stepsize in the denominator of 
the discretized x. 

Definition 2 A matrix A E lR.nxn, A == (Aij)f,}= 11 Aij E JR.nixn;, I:t!i ni == n, is 
called block diagonal dominant if 

holds. 

L 1Aii1Aijl:::; 1, 
i-:f;j 

i==l, ... ,M 

For an implementation on a computer the evaluation of these Lipschitz constants is 
still to expansive. In chapter 5 we give a strategy for the partitioning of implicit 
index 1 problems, which is related to the results of this chapter but requieres less 
computation time due to some heuristics. 

4 Mathematical modeling of distillation columns 

The modeling of distillation columns like it has been done in (Wol], (Rel] leads to 
linear DAE systems of index 1: 

Du 
0 

(u(to), v(to)f 

- ](u, v, t) 
h(u, v, t) 

- (uo,vo)T 

where D is a diagonal matrix with constant coefficients. 

If the modeling is done with the following restrictions, 

e constant molar hold-up HUL of the liquid phase, 

e neglectable hold-up HUV of the vapor phase, 

• temporal constant pressure profile over column hight, 

• ideal mixing in liquid phase, 

e phase equilibrium between vapor and liquid phase with constant tray efficiency. 
coefficient, 

• no excessive enthalpy, 
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one obtains for each tray of the distillation column, except for the bottom tray, the 
following system of equations: 

Material balance for each component i = l(l)N: 

d(ui,iHUf) 
dt ( Lj + U; + ufn)ui,j - Lj-1 Ui,j-1 

+(V; + W; + Wi~m)vi,i - V;+ivi,i+i - Fluf,i 
pV F UR w;R - i vi,i - k,jui,k - l,jvi,l 

Energy balance: 

with 

d(Hf HUf) 
dt - (L; + U; + Ufn)Hf - Lj-1Hf_1 

+(V; + Wi + Wi~m)Hf - 11;+1Hf+1 - Fl Hfe,; 
-FTHfa,; - uf:iHf- Wi~Hr +Qi 

N 

Hf = L Ui,jhf,j, 
i=l 

N 

N 

Hj = L Vi,;h[j, 
i=l 
N 

HFL. = ""'uf.h1:' 1.F 
,3 ' L..J i,3 i,3 ' HFv . = ""' vf' -h 1(,!'. ,3 L..J i,3 i,3 

i=l i=l 

Phase equilibrium relation for i = l(l)N: 

7l·k· ·u· · - v· · + (1 - 7l·)v· ·+1 = 0. '13 i,3 i,3 i,3 '13 i,3 

The tray efficiency coefficients T/j of tray j are smaller than 1 and calculated from 

The equilibrium constants ki,j are evaluated by 

0 

k Pi,i 
i1' = li1·-, ' ' Pi 

where the activity coefficients li,j are given by 

The following quantities are for the liquid and vapor phase respectively: 
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for liquid for vapor explanation 

feed streams 
side stripping streams 
recycle streams 
hold-ups 
specific enthalpies 
specific enthalpies of component i 
mol fraction of component i 
mol fraction of component i in equilibrium 
vapor pressure of component i in tray j 
vapor pressure in tray j 

Now each variable is assigned to an equation, namely 

• Ui,j to the material balance equation i, 

• Hf to the energy balance equation, 

• Vi,j to the phase equilibrium equation i. 

The given DAE system consists of subsystems corresponding to the trays. Now we 
have to find a partitioning which ensures the index .1 property for each blocksystem. 
This requirement is already satisfied if each subsystem builds one blocksystem. Other 
partitionings can be obtained by merging several subsystems together. As the result 
we obtain semiexplicit DAE systems of index 1 for each blocksytem. If using the 
block Jacobi waveform iteration the convergence property 9jx1 + 9jy < 1 still has to 
be verified. For this we ass:ume that each tray j builds the blocksystem j, for the 
other above given partitionings the convergence property can be proved analogously. 
To obtain the (x1 , x 2 , y1 , Y2) notation for the arguments of the functions f; and h; in 
(2.6) we define the vectors u; := (u1,;, •.. , uN,;)T, v; := (v1,;, ... , VN,i?· With the 
identity transformations u; H- x1;, v; H- X2j and ui H- Yll, vi i-+' Y2l for l =J j we can 
proceed with the evaluation of 9ix1 and 9iy· 

From the phase equilibrium relations one obtains for the Jacobian matrix 

[
8h; 8h;] 
8x; 8y 

13 

0 



Trivially [ :x~'.;] -l = diag( -1) and hence 

n; 

= T/j k _j + 1 - T/j < 1, 

for maXiE{l, ... ,N}{kii} ==: k_j < 1. 

Hence the following theorem is proved. 

[

'T/j-1 .. l 
T/j - 1 

Theorem 3 For the described mathematical model of a distillation column the block 
Jacobi waveform iteration {3.2} converges for any partitioning given above. 

5 Implementation 

The mathematical modeling of chemical processes in chemical plants leads usually 
[ATl) to initial value problems for implicit DAE systems 

F(t, y(t), iJ(t), u(t)) = 0, y(to) ==Yo, (5.1) 
F: JR. X JR.n X JR.n X JR.q --1- Rn,t E [to,te), 

with F (!1 , ... , fnf, a given parameter vector function u(t) and the unknown 
vector function y(t) = (v1(t), ... , vn(t)f. 

In many cases during the process of modeling it can be made sure that the index of 
the system (5.1) is 1. Usually the arising systems are stiff, and their discretization and 
linearization yield systems of equations with sparse nonsymmetric Jacobian matrices. 
The systems can comprise several 10 OOO equations (e.g. distillation columns) and 
are structured into subsystems 

Fi(t, y, y, u) == 0, y(to) =Yo, (5.2) 
Fi : JR. x JR. n x JR. n x JR. q --1- lR ni' L ni == n' i = 1, . . . ' m 

in accordance with the functional units of the chemical plant. 

To apply the block Jacobi waveform iteration there has to be done a one to one 
assignment of variables to the equations and a partitioning of the system (5.1) in 
such a way that the waveform iteration is convergent. Because (5.1) is a fully-implicit 
problem the convergence condition for semiexplicit problems is not applicable. For 
this we use some heuristic. Like observed before, in case of block Jacobi waveform 
iteration for semiexplicit index 1 problems the convergence condition 9(ixi) + 9(iy) < 1 
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implies the block diagonal dominance of the Jacobian of the discretized problem. So 
our partitioning algorithm puts priority to getting the Jacobian of the partitioned 
discretized problem (5.1) block diagonal dominant. 

We assume that the hyperrows of the Jacobian ~~ = o;:i + Ci * 88~i can be com-
puted separately. Fi is a discretized subsystem from (5.2) and Ci the corresponding 
discretization constant dependent on the integration method and stepsize used. 

Assigning variables to equations, system (5.2) can be rewritten to 

Fi(t, xi(t), Xi(t), Yi(t), Yi(t), u(t)) = 0, xi(to) == Xi,o, i = l(l)m, (5.3) 

where Xi is the vector of variables assigned to the subsystem Fi and Yi is the vector 
remaining if the components Xi are removed from y. 

The system is then partitioned by merging subsytems Fi to blocksytems :F; = 
(Fh, ... , F;m.)T, 2:: m; = m. With the notations Xi == (xil' ... , Xjm.f and the 

3 3 
corresponding Yj, the partitioning leads to 

The waveform iteration is done over time windows [tp, tp+1] ~ [t0 , te], p = l, ... ,pe, 
U[tp, tp+l] = [t0 , te] [GBl] to speed up the convergence. Here the blocksystems can be 
solved concurrently using general known methods. We use BDF, Newton's method 
and sparse matrix solver. 

The algorithm reads as 

do for p = 0, 1, 2, ... 
set Yj0 on [tp, tP+l] for j = l(l)M 
dofork=l,2, ... 

do for j = l(l)M 
solve for t E [tp, tp+i] 

:F;(t, Xj(t), Xj(t), Yjk- 1(t), }jk-l(t), u(t)) 
Yf(tp) 

end do 
until llYk _ yk-1 lln;,[tp,t,,+d < € 

enddo 

For assigning variables to equations as well as merging strongly connected subsystems 
into blocks we define "weights" for the couplings between equations and subsystems 
respectively using the Jacobian matrix 

aP(y) A I A= (apq) E IRnxn := 8y y=fj, . 

of the nonlinear system 
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Figure 1: DYNEVAP: Jacobian matrix before and after assignment 

obtained by the discretization of the DAE system at the time point t == i, fj rv 

y(i). During the assignment process each variable Vq is assigned to one and only one 
equation fp, such that the resulting assignment Xi --+ Fi is consistent with respect 
to the state variables for each subsystem i and the ni x ni Jacobians ~ are at least 
non singular. 

To treat this problem we consider the linear weighted matching problem 

n n n n 

L L WpqSpq --+ max, L Spk == 1, L Skq == 1, 
p=l q=l k=l k=l 

Spq ={ ~ if variable Vq is assigned to equation fp 
else 

0 fp depends neither on Vq nor on Vq 

Wpq - fp depends on vq, but not on vq 

f P depends on vq 

Starting from the original Jacobian we generate a parametrized directed graph and 
solve the matching problem with graph algorithms from the package LEDA [Nal]. 
In Figure 1 the structure of the Jacobi matrix of the example DYNEVAP is given 
before and after the assignment of the variables to the equations. To merge tightly 
coupled subsystems to blocks we define "strong" connections between equations and 
subsystems respectively. We call a row p of the matrix A with fp E Fi dominant with 
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respect to subsystem i, if 

L lapql/lappl < 1, with index set Ki = {r I fr E Fi}. 
qrf.Ki 

Then the subsystem i is called strong input to subsystem j, if there exists a 

Pi E {p I fp E Fj, row p is not dominant with respect to subsystem j}, 

so that 

After determining strong inputs for the subsystems, we initialize blocks with one 
subsystem each and merge blocks containing strong input subsystems successively. 
In general the block partitioning is done only once before the iteration process starts, 
but there is an option to repeat it for some t > t0 if convergence problems appear. 

Codes of block waveform iteration methods have been tested on sequential machines. 
Currently the block waveform algorithm uses a modified DAS SL code [BCl] including 
our linear sparse matrix package [Gr 1] for numerical integration of the block systems. 
A program, automatically creating an interface for our code out of the data supplied 
by SPEEDUP when simulating a process [Hol], is used. The interface contains the 
DAE system in a structured representation, so it is possible to evaluate the function 
and the Jacobian-matrix subsystem-wise. At present the parallel case is simulated 
by these codes. 

The numerical methods were run on two examples. The example DYNEVAP consist-
ing of 87 equations within 13 subsystems represents a double effect evaporator. The 
second example BTX, a mathematical model of a · Benzene-Toluene-Xylene distilla-
tion column, is made of 52 subsystems containing 1089 equations. For the example 
DYNEVAP an appropriate partitioning has been found, so that block waveform it-
eration method converges rapidly. 

For BTX an appropriate partitioning, fulfilling all conditions for assignment and block 
generation, has not been found. Obviously the subsytems are strongly connected 
due to strong feedbacks between the stages (trays) of the column. For this reason 
possibilities to combine our iterative block methods with parallelizable direct block 
methods are investigated. A paper concerning this topic is in preparation. 
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