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Branching controlled by branching catalysts 

Abstract 

The model under consideration is a catalytic branching model con-
structed in [DF96], where the catalysts themselves suffer a spatial 
branching mechanism. Main attention is paid to dimension d = 3. The 
key result is a convergence theorem towards a limit with full intensity 
(persistence), which in a sense is comparable with the situation for 
the "classical" continuous super-Brownian motion. As by-products, 
strong laws of large numbers are derived for the Brownian collision 
local time controlling the branching of reactants, and for the catalytic 
occupation time process. Also, the occupation measures are shown to 
be absolutely continuous. 
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1 Introduction and main results 
Consider two types of "particles" situated in Rd, one of the:tn we call the 
catalysts, the others the reactants. The catalysts perform a continuous super-
Brownian motion (SBM) {!with constant branching rate 1 > 0. The reactants 
are also super-Brownian, however given {!, their branching rate at time t in 
the volume element db of Rd is just given by f!t( db ). In other words, first {! 

is realized, and then a continuous SBM X = xu = (Xu, Ps~µ) evolves with 
varying branching rates f!t( db) (quenched approach). More precisely, the rate 
of branching of a reactant with (Brownian) path W is controlled (in the sense 
of Dynkin's additive functional approach to superprocesses) by the Brownian 
collision local time (BGLT} ·L[w,e] of{!, formally described by 

(1) 

which exists non-trivially for dimensions d :::; 3 ( cf. Barlow et al. [BEP91]). 
In higher dimensions instead, Wand e do not collide (see Barlow and Perkins 
[BP94, Proposition 1.3]), and therefore branching should not occur, which 
means that xe degenerates to the heat flow. That catalytic SBM xe in Rd, 
d ~ 3, was constructed as a continuous process in detail in [DF96]. 

It might be useful at this point to recall the longtime behavior of SBM 
with constant branching rate, starting with a Lebesgue measure l ([Daw77]). 
In dimension one, it suffers local extinction almost surely, in dimension two 
stochastically, whereas in d ~ 3 it converges in law to a non-trivial steady 
state with expectation l (persistence). 

The study of the longtime behavior of the catalytic SBM xe was initi-
ated also in [DF96], but restricted only to dimension d = 1. In this case, 
xe behaves quite different from the usual spatial branching models in law 
dimensions. In fact, if both the catalyst process e and the catalytic SBM xe 
start off with the Lebesgue measure £, then, for almost all catalyst process 
realizations, Xf converges stochastically to the starting Lebesgue measure l 
(persistence). 

Here we continue the study of this model xe in the time-space catalytic 
medium g. In dimension d = 2, we get only some partial results, namely some 
self-similarity properties (Proposition 12) and a random ergodic limit (The-
orem 14). The question whether or not persistence occurs in this "delicate" 
dimension is an open problem (see also Remark 13). 
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But our main result concerns dimension d = 3. Here we alternatively 
allow e to start off also with the ergodic steady state (of the catalyst pro-
cess) leading to a time-stationary (in law) medium. Then the random (with 
respect to e) distribution of Xl2 converges in law to some (possibly random) 
distribution of a random measure of full intensity (convergence and persis-
tence Theorem 17 (b)). From this point of view, the time averaged process 
should obey a strong law of large numbers (Theorem 9). Both can be consid-
ered as a random medium analog of properties of the classical SBM in higher 
dimensions. But note that it can be expected that the limit is. dependent 
on the medium g, hence is different from the classical one. To complete the 
picture, we also establish a strong law of large numbers for the BOLT L[w,u] 
(Theorem 5). 

We also show that the (weighted) occupation time process Yt := f~dr Xr 
has absolutely continuous states. 

The log-Laplace functional Vt = vf of the catalytic SBM Xf at time t 
satisfies (formally) the following reaction-diffusion equation 

- aa Vt(s,a) = ~~vt(s,a)- es(da)vNs,a), 
s 2 (2) 

with a terminal condition Vt( s, ·) ls=t- = f ~ 0. (The backward setting re-
flects the fact that, for e fixed, the deterministic process v" is "dual" to 
the stochastic process X 0 , realized by the log-Laplace functional.) Via this 
connection, our results can also be understood as a probabilistic contribu-
tion to ·the study of that equation with a (random) singular reaction coef-
ficient es(da), describing a spatially heterogeneous catalytic reaction. Actu-
ally, our results give information on the longtime behavior of the L1-norm 
J l( da) v( s, a) of the solution to (2) as s -+ -oo _if it "starts" at time t 
with a finite mass Jl(da) f(a). In fact, we proved in [DF96] that in the 
one-dimensional case one has convergence to the starting mass f £( da) f (a) 
(persistence). Dimension two is open. But the main result of the present 
paper establishes in dimension three a.s. convergence to a non-zero limit 
(possibly depending on the medium e). 

Note that the one-dimensional case resembles a bit a reaction-diffusion 
process of electrically charged species studied by Glitzky et al. [GGH95J. They 
got convergence to an equilibrium with exponential velocity. But our three-
dimensional model behaves different in that we do not get an equilibrium at 
the equation level. 
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2 Brownian collision local time 

In this section we introduce the Brownian collision local time L = L[w,e], and 
state in dimension d = 3 a strong law of large numbers (Theorem 5 at p. 7). 

2.1 Preliminaries 
Fix a constant p > d with d ;::: 1 the dimension of space, and introduce the 
reference function 

(3) 

Let BP· denote the space of all measurable functions f defined on Rd such 
that Ill ::; CJ cPp for some constant CJ. Write cp;l for the subset of all 

·continuous functions fin BP such that f(b)/cf;p(b) has a finite limit as lbl-+ 
00. Equipped with the norm llfll := Ill I c/Jplloo' the Banach space cp;l is 
separable. 

Set I := [O, T], T ;::: 0. Write CP·1 for the set of all continuous functions 
'l/; defined on Ix Rd such that l'l/J,,I ::; c,pc/Jp, s E I, for some constant c,p. 

Let Mp refer to the cone of all (non-negative) measures µ defined on Rd 
such that 

(4) 

Mp is endowed with the coarsest topology such that the maps µ -+ (µ, f) 
are continuous where f = cf;p or f E C~omp. Here ccomp denotes the space of 
continuous functions on Rd with compact support (and the index + indicates 
the subset of all non-negative members). Recall that each Lebesgue measure 
l belongs to Mp. Write il for the unit volume in Rd measured with respect 
to l. 

Let W = (W, II,,,a) denote the Brownian motion in Rd on canonical path 
space of continuous functions, with "generator" ~ 11. Let Pt( a, b) = Pt(b - a) 
refer to its continuous transition density function, and S = {St : t ;::: O} 
to its semigroup. Set II,,,µ := Jµ( da) II,,,a. We also introduce the (time-
inhomogeneous) Brownian potential kernel 

q.,t( a, b) = q.,t(b - a) := [ dr p,(a, b), 0::; s::; t, a,b E Rd. (5) 
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2.2 Catalyst process e 
For convenience, we expose the following definition of the catalyst process g. 

Definition 1 (catalyst process g) Write g = (g, IP.,,µ) for the continuous 
SBM in Rd with constant branching rate 'Y > 0. Consequently, for fixed t ~ 0, 
the log-Laplace functional of g is given by 

where Vt is the unique non-negative solution to (2) with g.,( da) replaced by 
the constant 'Y, and with terminal condition Vt( s, · }l.,=t- == f. Here we always 
work with a mild solution, that is with a solution to the equation in the 
integrated and Dynkin's probabilistic form 

Vt( s, a) = rr.,a [!(Wt) - {rdr vi(r, w.)], (7) 

g is called the catalyst process. 0 

Recall the expectation formula 

IP s,µ {et,!) == (µ,St_.,!), (8) 

Recall also, that in dimensions d > 3, with respect to IP o,l, the catalyst 
process {!t has a non-trivial limit e00 in law as t t oo which has full intensity 
measure l (see, e.g. [DP91, Proposition 6.1]). Hence, here we can form the 
time-stationary _continuous Mp-valued process g == {et : t E R} which one-
dimensional laws . .C(et) coincide with £(g00 ). In this case we write IP and 
sometimes IP -oo,l for the law of g. 

The following mixing property is taken from a general result in [Fle82b], 
which was formulated in a time-discrete setting. In the present particular 
situation, a simplified proof will be given. 

Lemma 2 (time-space mixing) In dimensions d ~ 3, the catalyst process 
g with time-space-shift invariant law IP is time-space mixing of all orders. In 
particular, for f, g E C~omp, the vector 

[ {gt1 , J) , (gt2 , g)] is asymptotically independent as 1t1 - t2 I --+ oo. 
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Proof First of all, recall the following covariance formula for (! : 

(9) 

s ~ t 1 , t 2 , µ E Mp, and f,g E C~omp; see e.g. [DF96, Proposition 11 (b)]. 
Hence, the covariance density function of e at [[t1 , b1], [t2 , b2]] with respect 
to IPs,l is given by 

f. t1 /\t2 
2 

8 
1dr Pt1+t2-2r(b1, b2). 

Letting s i -oo, we arrive at the covariance density function at [t1 , b1] and 
[t2 , b2] of the catalyst process (!with respect to IP. Since IP is invariant with 
respect to the time-space shift and infinitely divisible, it suffices to show that 
this covariance density function converges to 0 as I [t1 , b1] - [t2, b2] I -+ oo 
on the sets {lb1 - b2 I ~ e}, e > O; see the remark after Theorem 2.0.2 in 
[Fle82a]. Here we may set [t2 , b2] = 0 without loss of generality. Thus it is 
sufficient to demonstrate that 

j_: dr Pt-r(b)-+ 0 as [t, JbJ]-+ +oo on R+ x {lbl ~ e}, e > 0. 

But the latter integral equals ft' dr Pr(b) and can be estimated from above 
by ~ const [lbl 2-d /\ t-1!2] with a constant const depending on e. This 
finishes .. the proof. • 

2.3 Brownian collision local time L[w,e] 

Assumption 3 From now on we restrict our attention to dimensions d ~ 
3, and assume, if not otherwise indicated, that the catalyst process e is 
distributed according to IP o,l or to the stationary IP, the latter of course only 
if d = 3. 0 

For e > 0 and given (!, consider the following continuous additive func-
tional L[w,e] of Brownian motion W : 

(10) 

describing the collision local time of the measure-valued path (! with the 
"e-vicinity" of the Brownian path W. 
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Lemma 4 (Brownian collision local time L[w,e]) Suppose Assumption 
3, and fix a constant e E ( 0, ~). Then for almost all paths e of the catalyst 
process, there exists a continuous additive functional L = L[w,e] of the Brow-
nian motion W, called the Brownian collision local time (BCLT) of {!, with 
the following properties. 

(a) (convergence) If'!/; is a {strictly) positive function in CP·1 , I= [O, T], 
T > 0, then 

sup Ils,a sup I J.tLt:(dr)'l/;r(Wr)-1tL(dr)'l/;r(Wr)l
2 

--t 0. 
sEI, aERd s:9~T s !J t:-!.O 

(b) (moments) For measurable '!/; : R+ x Rd r-+ R+ , and s :::; t, a E Rd, 

II.,a J.\w,e1( dr) 1/Jr(Wr) = t dr fer( db) Pr-a( a, b) 1/Jr(b), 

J.
t 2 

Ils,a[ 
8 

L[W,e](dr)'l/;r(Wr)] 

= 2 [ dr l dr' fer( db) fer•( db') Pr-a( a, b) Pr•-r(b, b') .,P,(b) 1/Jr•(b'). 

Proof This follows from Proposition 38 and Theorem 42 in [DF96]. a 

2.4 A strong law of large numbers for L[w,u] in d = 3 
In this subsection we assume that Brownian motion W is distributed accord-
ing to II0 ,0 • First we recall that in dimension d = 1 the total BCLT L[w,"1(R+) 
of{! is finite, for almost all [W, e] ([DF96, Proposition 4.8]). Next we mention 
that in d = 2 we have a self-similarity property for L = L[w,e], see Corollary 
11 below. But in dimension d = 3, a strong law of large numbers holds: 

Theorem 5 (strong LLN for the BCLT). If d = 3, then 

IIo o x IPo t-a.s. and IIo o x IP-a.s. 
' ' ' 
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Proof Step 1° First of all, for s ::; 0, by the expectation formula in 
Lemma 4 (b), 

IIo,o x IP,,tT-1 L[O, T] = IP,,tT-1 foT dr (er, Pr) = it (11) 

since by the expectation formula (8) 

(12) 

(independent of the dimension d).Hence, the claimed a.s. convergence follows 
if we show that the Ilo,o x IPs,t-variance of r-1 L[O, T] is of order O(r-1!2 ) 

as T t oo, uniformly in s ::; 0 (covering the cases s = 0 and s = - oo 
corresponding to IPo,t and IP, respectively, we are interested in). 

Step 2° In view of the second moment formula in Lemma 4 (b), 

Ilo,o(L[O, T])2 = 2 { dr t dr' fer( db) fer•( db') Pr(b) Pr•-r(b, b'). 

Therefore, by (12), by 

f £( db) f £( db') Pr (b) Pr'-r (b, b') 

and by step 1 °, 

Ilo,o ?< IPs,tlT- 1 L[O, T] - itl 2 
) 

T (13) 
= 2 T-2 laT dr 1 dr' C:ov ,,t[er ( db), er• ( db') ]Pr ( b) Pr' -r ( b, b'). 

But by (9), the latter covariance expression equals 

2 II.,t [ ')'dt f db Pr-t(Wi, b) Pr(b) P2r'-r-t(Wt, b). 

Therefore we may continue (13) with 

= 4itT-2 foT dr lT dr' J.r ')'dt P2r•-2t(O). 

However, the internal integral is of order O((r' -rt1l 2 ), uniformly ins::; 0. 
Hence, altogether we get an order O(r-1! 2 ) uniformly in s ::; 0, finishing the 
proof. • 



Branching controlled by branching catalysts 9 

3 Occupation times 
Here we introduce the catalytic SBM xu, verify that its occupation time ye 
has absolutely continuous states, and satisfies a strong law of large numbers, 
the latter in the cased= 3. 

3.1 Catalytic SBM 
Since the BOLT L = L[w,e] of Lemma 4 is a locally admissible additive 
functional with "small" increments one can conclude for the existence of the 
catalytic SBM xu in the catalytic medium e: 
Lemma 6 (catalytic SBM e) Under Assumption 3, for almost all realiza-
tions e of the catalyst process,. the following statements hold: 

(a) (existence) There exists the continuous SBM X = xe = (X'', Ps~µ) 
with branching functional given by the BCLT L = L[w,e]. 

(b) (log-Laplace functional) The log-Laplace functional of X is given by 

- log Ps~µ exp (Xt, - !) = (µ, -vt(s, · )), (14) 

s ~ t, µ E MP, f E BP, where Vt is the unique non-negative solution to 
Dynkin's log-Laplace equation 

Vt(s, a) = IT.,a [f(W1) - l L( dr) v~(r, Wr )] , (15) 

s ~ t, a E. Rd. 
(c) (moments) Expectation and covariance of xu are given by 

Proof See [DF96], Definition 44 which is based on Theorem 18 (b ), and 
formula (95). • 

Note· that ( 15) is the precise meaning of the reaction diffusion equation 
(2) with reaction rate es(da). 
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3.2 Absolutely continuous occupation time states 
Since xu is pathwise continuous, we may introduce the (weighted} occupation 
time process Y = yu = {Yt" : t ;:=: 0} related to X = X 0 , defined by Yt := 
J~dr Xr. 

Recall that for the "classical" continuous SBM, say XL, in dimensions 
d ::; 3, the related occupation measures Y/ are absolutely continuous, i.e. 
density functions yf exist (see e.g. [Fle88]). This property is shared also by 
the SBM X 12 in the catalytic medium e : 

Theorem 7 (densities of Yt) Under Assumption 3, for almost all catalyst 
process realizations (!, and fixed T > 0 and z E Rd, the following statements 
hold: 

(a) (L2-densities) The L2(Pt,l)-limit of (Y,:fl, Pe(z, ·)) as c; _J,. 0 exists and 
is denoted by YH z). 

(b) (absolutely continuous states) With respect to Pt l' the random mea-
. sure Y,:fl is absolutely con~inuous with density function yf : 

Po~t(Yr( db) = yf(b) db) = 1. 

( c) (moments) The following expectation and variance formulas hold: 

Pt,lyHz) 

Var6tYHz) 
I 

'LL, 

2itfoT dr je,(db) ~.T-r(b, z) 

(recall definition (5) of the Brownian potential kernel q). 

Proof According to [DF96, Proposition 24] it suffices to show that for 
almost all (! 

Ilo,l f
0

T Lrw;u](dr) q;',e+r'(Wr, z) ----+ 0 Jo e.l.O 
for r' = 0 and r = T - r. 

(16) 
By the expectation formula in Lemma 4 (b) 



Branching controlled by branching catalysts 11 

Hence, the l.h.s. in (16) equals 

Since this is monotone in e, the limit as e -!,. 0 exists (for each g). Thus it is 
sufficient to show that even the expectation over e converges to 0 as e + 0. 
But by (12), the latter IPs,l-expectation, s ::; 0, is independent of sand equals 

laT f , lT 1e+r' 1e:+r' il dr l( db) q~, ,e+r' ( b, z) = ii dr dt dt' Pt+tt( 0). 
0 0 r' r' 

Because the integrand is monotone decreasing in t and t', we may replace r' 
by 0, and since T is fixed we continue with 

::; const f
0

" dt f
0

" dt' ( t + t')-d/2 < const e1/ 2 --:-+ 0 smce d ::; 3. la lo e:.l,O •. 

This :finishes the proof. • 
Remark 8 (occupation density field) It can be expected that for the 
catalytic occupation time process ye in all dimensions ( d s; 3) a jointly 
continuous occupation density field ye exists, as it is for the "classical" contin-
uous SBM, established by Sugitani (Sug89] (and reproved in (DF96, Lemma 
25]). 0 

3.3 A strong law of large numbers for ye in d = 3 
First we recall that in dimension d ~ 1, the catalytic SBM Xf converges 
P0~L-stochastically to£, for IPo,L-almost all g, see [DF96, Theorem 51]. This 
of course implies a law of large numbers for the related occupation time 
process Yi". Ind = 2, a "random self-similarity" holds instead, see Proposition 
12 (b) below. Here now we restrict our attention to dimension d = 3. For 
s E [-oo, OJ, set 

IP s,l ® P~,l ( d(g, X"]) := IPs,L( dg )Pt,l( dX) 

for the law of the (coupled) pair [e, X 0]. 
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Theorem 9 (LLN for Y) If d = 3, then 

IPo,l ® P~,l-a.s. and IP® P~,l-a.s. 

Consequently, in dimension d = 3, the time-averaged X"-process behaves 
for almost all {! just as the "classical" SBM. That is, here the averaging 
principle holds: Finally only the expectation l of the medium f!t is "effective". 

Proof Since P~lT- 1 Y,f = l by the expectation formula in Lemma 6 (c), it 
suffices to show that for fixed f ~ 0 in the separable Banach space C p;l, 

IP~,t ® P~,t1T- 1 (Yr,!) - (£, !) 1

2 
::::; const T-1

/
2

, (18) 
uniformly in s ::::; 0. But 

Varg_L (YT,f) = 2ITo,L f L(dr)[[ dt ITr,w.f(W,)]
2

, (19) 

see [DF96, formula ( 46)]. Hence, the l.h.s. in (18) equals 

2 r-2 IP.,LITo,L laT L( dr) UT dt IIr, w. f (Wt) r. 
Using the expectation formulas (17) and (12), we may continue with 

= 2iLT-2 f dr jt(db)[{ dt jdz Pt-r(b, z) f(z)j2. 

Interchanging the order of integrations, and calculating the £( db )-integral, 
this can be estimated from above by 

:<:; 2 (£, /}2 T-2 laT dr 1T dt 1T dt' Pt+t'-2r(O). 

As in the end of proof of Theorem 5, the internal integral can be estimated 
by ::::; const ( t - r t 112 , and the claim follows. • 

4 Random self-similarity in dimension d = 2 
Re·call that in dimension d = 2 the "classical" SBM {! with law IP o,l is self-
similar: For K > 0, 

{K-1 f!Kt( K 112·) : t ~ O} £:. {et : t ~ 0}. (20) 
This has some consequences for the catalytic SBM Xll. 
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4.1 A scaling property of L[w,e] 

We start with a scaling property of the Brownian collision local time: 

Lemma 10 (scaling of the BCLT) Fix d = 2, s ;::: 0, a E R2 , and K > 
0. Then for IT.,,a x IPo,t-almost all [W, e], and measurable g: R+ i--+ R+, 

Proof Recalling the definition (10) of U, by definition of the BOLT L = 
L[w,o] it suffices to verify the claim with L replaced by LKe and Le, respec-
tively. Then by (10), 

jLfJV.01(dr) K- 1g(K-1r) = jdr Jer(db) PKe(Wr, b) K- 1g(K- 1r). 

By a change of variables, and using the self-similarity of the Brownian tran-
sition density p, this can be written as 

Again by (10), we arrive at the r.h.s. of (21) with L replaced by U, finishing 
the proof. • 

Combining Lemma 10 with the self-similarity of Brownian motion W and 
e (recall (20)) we get the following result. 

Corollary 11 (self-similarity of the BCLT) Ford= 2 and K > 0, with 
respect to IIo,o x IP o,l , 

4.2 Random self-similarity of [Xu, YU] 
Instead of the well-known self-similarity of the "classical" SBM in d = 2 (as 
in (20)), for the catalytic SBM we have a "randomized" version: 

Proposition 12 (properties of [X, Y]) Let d = 2 and K > 0. 
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(a) (scaling) For IPo,t-almost all (! the following holds. If [X, Y] is dis-
tributed according to Pt,l then the paii 

. K-1 (K1/2.) of processes has the same law as [X, Y] with respect to P0 l flK· • 
I 

(b) (random self-similarity) With respect to the random law P0~l' 

[ K-1 XK.(K1/2.), K-2yK.(K1f2.)] f. [X, Y]. 

Proof By [DF96, Hypothesis 13 and notation ( 47)], for T ~ 0 and f, g in 

- log Pt,l exp [ (XT, -!) + (YT, -g)] = (£, vT(O, ·)) 
with 

0 :::; s :::; T, a E R2 . Hence 

-log Po~l exp [ \xKT, -K-1 f(K-112·)) + \YKT' -K-2g(K-1l2.))] 

= (£' VKT(O, ·)) = \£' KVKT(O, K 112
·)) (22) 

with 

KvxT(Ks, K1t 2a) = IIx,,K1f2a[f(K-1l 2WxT) + fx~T dr K- 1g(K-1l 2Wr) 
. KT 

- K-1 ix. L[w,ei(dr) K 2vh(r, Wr)]. 

Setting uT(s, a):= KvKT(Ks, K 112a) (for the fixed K), by a change of vari-
ables and using the scaling Lemma 10 (with [s, a] replaced by (K s, K 112a)), 
the latter equation can be written as 

uT(s,a) = IIx,,K1f2a[f(K- 1l 2WxT) + J.T dr g(K-1l 2Wxr) 

- J.T L[x-112wK. ,K-'eK· {K'/•.J]( dr) u~(r, K-112Wxr)]. 
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But W distributed according to IIK,,,K1f2a implies by scaling that the process 
t --+ K- 1l2W Kt has the law II,,,a. Therefore w~ may continue with 

Hence, by uniqueness of the solution to the log-Laplace equation, we conclude 
that (22) equals 

K-1 (K1/2.) [ ] = - log Po,t "K· exp (XT, - f) + (YT, -g) . 

This proves the first claim. But the second one then immediately follows 
from the self-similarity ( 20) of (!, finishing the proof. • 

Remark 13 (open problems) By the random self-similarity of xe, the 
random law of Xf coincides with the randqm law of T Xf(T-1! 2 ·).Passing 
formally to T too, we arrive at X~ and xi(O). This relates the questions of 
existence of a non-trivial limit X~. and of absolute continuity of X:f in the 
critical dimension d = 2. But whether or not a non-trivial limit X~ exists 
remains open. 0 

4.3 A random ergodic limit 
Recall that for the continuous SBM xt in R2 with constant branching rate 
and with law PJ l we have the following "random" ergodic limit: 

' 
r-1 y,J. --+ yf(O) l in law, 

Ttoo 

where yf(O) is the random density of the occupation measure Y/ at time 1 at 
the origin O; see e.g. [Fle88]. The two-dimensional catalytic SBM X" satisfies 
a "randomized" version of this, expressed in convergence in law of random 
probability distributions: 

Theorem 14 (random ergodic limit) Let d = 2 and consider the cat-
alytic SBM X{} with IP0,t-random law Po~t · Then the IPo,t-random law of 
r-1 Y.j converges in IP 0,t-law as T too towards the IP0,t-random law of the 
multiple yf (O)l of Lebesgue measure£, where yf(O), given (!, is the L2 (P0~l)
density at 0 of the occupation measure Yiu at time 1, according to Theorem 
7 (a). 
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Proof Using the random self-similarity in Proposition 12 (b), the IP0,l-

random law of T-1Y,/ coincides with that of TYi(T-1/ 2 ·).But by Theorem 
7 (a), for f E C~;l and IP0,ralmost all e 

(Tt;_e(T-1/ 2 · ),f) --t yf(O) (£,!) 
Ttoo 

implying the claim. • 
Note that opposed to dimensions 1 and 3, here the limit after the av-

eraging procedure remains random, even in a double sense (by the random 
medium). 

5 Persistence in dimension d = 3 
In this final.section we pay attention to the following situation. 

Assumption 15 (time-space-shift invariance) Let d = 3 and assume 
that the catalyst process e is distributed according to the time-space-shift 
invariant IP (introduced in § 2.2). Write P for the annealed law IP P0~l. <> 

Remark 16 (approximation) Working with the non-stationary catalyst 
process e distributed according to IPo,l would require some additional ap-
proximation. <> 

5.1 Main result 
Now we are in a position to formulate our main result: 

Theorem 17 (convergence and persistence) Impose Assumption 15. 

(a) (annealed convergence) With respect to the annealed P, the catalytic 
SBM XT converges in law as T t oo to some limit X 00 with full 
intensity .f. (persistence). 

(b) (random convergence) The IP-random distribution of 
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converges in IP-law as T too to some IP-random distribution Q~ with 
full intensity (persistence): 

jQ~(dv) v = l, IP-a.s. 

Consequently, at the first sight, our catalytic SBM xe behaves similar to 
the classical continuous SBM XL. However, the main difference should be 
that a new limit occurs. For instance, the limiting random measure X 00 of 
(a) should be different from the classical steady state Xfx, . Such statements 
will be investigated in a forthcoming paper. 

5.2 Proof of the main theorem 

The key of proof will be some backward technique: By the time-stationarity 
of the random medium e we may start xe at time -T with£, and observe 
the state at time 0. Then we may continue for fixed realization g, sending 
-T to -oo, by exploiting some backward monotonicities. 

1° (convergence) First of all, for IP-almost all {!, the law Q~ coincides with 
the law P~~;i (Xo E · ). Here {!T+· is the catalyst process shifted by T. Hence, 
by the time-shift invariance of the catalyst process {!, the distribution of the 
random law Q~ coincides with that of the random law P~T l(Xo E · ). 

' ' Given g, we turn to the log-Laplace functional according to Lemma 6 (b ): 
For f E B~, writing (£, !) =: llfll1, 

-log P~T,l exp (Xo, -!) - llvo(-T, ·)111 

where by the log-Laplace equation (15), 

Using the expectation formula in Lemma 4 (b), we may continue.with 
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But this non-negative expression is non-increasing1) in T. Hence, the limit 
of llvo(-T, ·)111 exists (for the fixed e) and determines (note that the family 
{ Q~ : T ~ O} is tight, see (23) below) a log-Laplace functional of a random 
measure, its law denoted by Q~. This gives the convergence claim in (b ), 
and by averaging over e, also the convergence claim of (a) follows. 

2° (expectations) For almost all e, from the expectation formula in Lemma 
6 (c), 

(23) 

which implies that 

jQ~ (dµ) µ ~ l, hence j1PQ~ (dµ) µ ~ l. (24) 

Consequently, the limiting intensity measures in (b) and (a) are bounded by 
£. 
3°( variances) Let again f E B~. Given e, by the variance formula in 
Lemma 6(c), 

In view of the expectation formula (17), we continue with 

which monotonously converges to 

2it1: dr jer(db) [S-rf(b)] 2 as T too. (25) 

Integrating additionally e with IP, by the expectation formula (12) we get 
the monotone convergence 

IPVar~l (XT,f) / 2jl(dx)f(x)j£(dy)f(y) t'°drp2r(x,'y). (26) 
' Ttoo Jo 

l) Note that this monotonicity would be violated if we started {} at time -T with 
f!-T =I.. That is, the present method only works for the time-stationary process f! on the 
whole time axis R. 
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Note that by (12), the l.h.s. is the variance of (XT, !) with respect to the 
annealed law P. On the other hand, the r.h.s. is the variance expression 
related to the classical steady state X~ (see, e.g. [Daw77]), hence is finite. 
Therefore also the limit (25) is finite IP-a.s. But this implies that in (24) 
even equalities must hold. In other words, we get persistence in both cases 
(a) and (b). This finishes the proof. • 
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