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Orthogonality of fluxes in general nonlinear reaction networks
D. R. Michiel Renger, Johannes Zimmer

Abstract

We consider the chemical reaction networks and study currents in these systems. Reviewing recent decompo-
sition of rate functionals from large deviation theory for Markov processes, we adapt these results for reaction
networks. In particular, we state a suitable generalisation of orthogonality of forces in these systems, and derive
an inequality that bounds the free energy loss and Fisher information by the rate functional.

1 Introduction

It is now becoming widely accepted that fluxes hold a key to understanding many phenomena in
non-equilibrium thermodynamics. Typically, non-equilibrium systems are forced out of equilibrium by
external forces. Since such forces may cause ‘divergence-free’ fluxes, the forces can not be balanced
by changes in mass densities unless one takes the full fluxes into account. In fact, a lot of thermo-
dynamic information can be extracted from microscopic fluctuations of fluxes on the large-deviations
scale; this idea is the basis of Macroscopic Fluctuation Theory (MFT) [3].

Although the setting of our paper will be slightly different, we briefly describe the typical setting con-
sidered in MFT. One considers a random particle system with particle density C(n)(x, t) (we write
C instead of ρ as usual for a density to emphasise the analogy for what follows) and particle flux
J (n)(x, t) connected via the continuity equation Ċ(n)(t) = − div J (n)(t), where div is a divergence
operator. The parameter n controls the number of elements in the system. When this number is sent
to infinity, this can lead — in a suitable scaling of space and time – to a macroscopic limit:

ċ(t) = Γj(t), with (1.1)

j(t) = κ(c(t)), (1.2)

for some model-specific operator κ; here Γξ = − div ξ (we will consider similar structures on the
level of chemical networks below, see (2.2) below). The microscopic fluctuations around this macro-
scopic limit are often characterised by a large-deviation principle. In the context considered here, this
means that the probability of observing trajectories which deviate from the macroscopic limit converges
exponentially:

Prob
(
(c(n), j(n)) ≈ (c, j)

) n→∞∼ exp

(
−n
[
I0(c(0)) +

∫ T

0

‖j(t)− κ(c(t))‖2
c(t) dt

])
, (1.3)

for some model-specific Hilbert norm ‖·‖c(t) on fluxes; I0 is a functional depending on the initial
data (c(n)(0))n. The corresponding inner product is a very powerful tool that can be used to define
orthogonal decompositions of fluxes into “reversible” and “irreversible” parts. With this decomposition
the large-deviation rate function also decomposes,

‖j(t)− κ(c(t))‖2
c(t) = ‖j(t)rev − κrev(c(t))‖2

c(t) + ‖jirr(t)− κirr(c(t))‖2
c(t). (1.4)
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D. R. M. Renger, J. Zimmer 2

Moreover, by duality one also obtains an inner product on (generalised) forces, allowing to orthogonally
decompose forces into reversible and irreversible parts.

In this work we consider a similar setting, however for a class of systems with a different noise so that
the large deviations are entropic rather than quadratic,

Prob
(
(c(n), j(n)) ≈ (c, j)

) n→∞∼ exp

(
−n
[
I0(c(0)) +

∫ T

0

S
(
j(t) | κ(c(t))

)
dt

])
, (1.5)

see (2.8) below for the precise definition. To facilitate the intuitive picture, we interpret these systems
as models for chemical reactions, although the range of applicability is much wider. In particular, these
models are more natural than white-noise driven models when the underlying state space remains
discrete. Their non-quadratic fluctuation costs do not suggest a natural inner product, and so it is not
evident how to meaningfully decompose the cost as in (1.4) for the quadratic case.

Recently, a new concept of generalised orthogonality was introduced for entropic cost functions corre-
sponding to independent particles [5]. In that case, the operator κ is linear and the continuity operator
will be the negative discrete divergence Γ = − div. In this work we extend this orthogonality concept
to the more general case of randomly inter(re-)acting particles. In Sections 2 and 3, we collect results
from the literature, adapting and extending them where needed to the context of chemical reaction
networks. We therefore omit the proofs and sometimes the precise technical assumptions, which can
be found in the quoted literature. Sections 4 and 5 give orthogonal decomposition results and bounds
on the entropy and a term resembling the Fisher information in the classical setting.

2 Microscopic model, macroscopic limit and large deviations

As mentioned we study a model for chemical reactions, although the mathematical structure is more
widely applicable. Let Y be the set of reactants involved, for example Y := {Na,CL2,NaCL}. We
denote byR the set of reactions, in the example

R := {2Na + CL2 → 2NaCL, 2NaCL→ 2Na + CL2} .

The stoichiometric information of a reaction r is captured in the state change vector γ(r) ∈ RY , which
describes with negative entries how many reactants of each species are consumed and with positive
entries the creation of products, for example γ(r) := (−2,−1, 2) for the reaction r : 2Na + CL2 →
2NaCL. We shall assume that R is the disjoint union of the set of forward reactions Rfw, in this
example Rfw := {2Na + CL2 → 2NaCL}, and the set of backward reactions Rbw, such that for
each forward reaction r ∈ Rfw there is exactly one backward reaction bw(r) ∈ Rbw with:

γbw(r) = −γ(r). (2.1)

This assumption is no loss of generality, as we can always introduce phantom reactions with zero
reaction rates, i.e., reactions that exist on paper but do not take place. We sometimes also write
bw(r) ∈ Rfw for r ∈ Rbw. The state change vectors are collected in the matrix Γ := [γ(r)]r∈R ∈
RY×R. We deliberately use the same notation as in (1.1), to emphasise the analogy of that equation
to (2.2) below.

We now further specify the microscopic particle system that models such reaction network, and intro-
duce the time-reversed process. Next, we describe the macroscopic limit and the corresponding large
deviations. We then briefly summarise in the remainder of this section some results from [13] which
will be needed in the current work: time-reversal symmetries and the relations between forward and
backward reaction rates that can be derived.

DOI 10.20347/WIAS.PREPRINT.2609 Berlin 2019



Orthogonality of fluxes in general nonlinear reaction networks 3

2.1 Microscopic model

The microscopic model will be a Markov jump process consisting of randomly reacting particles in a
large volume of size V , which now controls number of particles in the system. We assume that there
is no spatial dependence of the reactions. The empirical concentration measure is

C(V )

y (t) :=
1

V
#
{

particles of species y present at time t
}
.

A reaction r ∈ R occurs randomly with concentration-dependent intensity k(V )
r = k(V )

r (C(V )(t)),
upon which the concentration is updated with C(V )(t) := C(V )(t−) + V −1γ(r). These intensities k(V )

r

are also called the jump rates or propensities. In addition, we would like to introduce a reaction flux
J (V )
r (t) that measures the amount of reactions taking place at time t. However, since the process has

jumps, it is mathematically easier to introduce the (time-)integrated flux,

W (V )

r (t) :=
1

V
# {reactions r occurred in time (0, t]} .

The fluxes and concentrations are then related by the continuity equation C(V )(t) = C(V )(0) +
ΓW (V )(t), or formally

Ċ(V )(t) = ΓẆ (V )(t) = ΓJ (V )(t). (2.2)

We point out that this equation is the equivalent for chemical reactions to (1.1), for the MFT setting
sketched in the introduction. The pair (C(V )(t),W (V )(t)) is now a Markov process in RY × RR; its
generator is given by

(Q(V )f)(c, w) :=
∑
r∈R

k(V )

r (c)
[
f(c+ 1

V
γ(r), w + 1

V
1r)− f(c, w)

]
.

We remark that these are the sole reasons for considering integrated fluxes: although the concen-
tration C(V )(t) is a Markov process, C(V )(t) paired with the non-integrated flux J (V )(t) is not, and
moreover, (2.2) only holds in a weak, measure-valued sense. However in the macroscopic regime
V → ∞, these issues do not play a role anymore, so that later we can focus on the non-integrated
fluxes.

We collect the needed technical assumptions on the Markov chain as follows.

Assumption 2.1. Assume that for all V the process C(V )(t) is non-explosive on (0, T ) (that is,
for almost all starting points, almost all trajectories do not exhibit infinitely many jumps in (0, T )),
irreducible and positive recurrent, with unique, coordinate-wise positive invariant measure 0 < π(V ) ∈
P( 1

V
NI

0). Integrated fluxes are assumed to satisfy W (V )(0) = 0 almost surely in V .

Example 2.2. The typical example that is used to model microscopic chemical reactions is k(V )
r (c) =

ω(r)V
∏

y∈Y(1/V )α
(r)
y α(r)

y !
(cyV
α
(r)
y

)
, where ω(r) is a reaction-specific constant and α(r)

y are the num-

ber of y-reactants consumed in reaction r. In that case the master equation for the Markov process
C(V )(t) is called the “Chemical Master Equation”, and in many cases the invariant measure π(V ) is
explicitly known [2].

2.2 The time-reversed process

Here we introduce the time-reversed process which will be crucial throughout the paper. For a path
(C(V )(t),W (V )(t)) and the given final time T , we define the time-reversed path as(←−

C (V )(t),
←−
W (V )(t)

)
:=
(
C(V )(T − t),W (V )T(T )−W (V )T(T − t)

)
,
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D. R. M. Renger, J. Zimmer 4

where W (V )T
bw(r)(t) := W (V )

r (t); by construction, these time-reversed integrated fluxes
←−
W (V )(t)

remain non-negative, non-decreasing, and initially calibrated at 0, as the original integrated fluxes←−
W (V )(t).

Theorem 2.3 ([13, Proposition 4.1], time-reversal). Let P(V )

Q(V ),π(V ) be the path measure of the Markov

process (C(V )(t),W (V )(t)) with generatorQ(V ) and initial distribution π(V ) × δ0. Then

P(V )

Q(V ),π(V )

(
(
←−
C (V )(t),

←−
W (V )(t)) ∈ A

)
= P(V )

←−
Q (V ),π(V )

(
(C(V )(t),W (V )(t)) ∈ A

)
, (2.3)

where the reversed generator is

(
←−
Qf)(w) =

∑
r∈R

←−
k (V )

bw(r)(c)
[
f(c+ 1

V
γbw(r), w + 1

V
1bw(r))− f(c, w)

]
, (2.4)

and the reversed rates are related to the forward rates through

←−
k (V )

bw(r)(c) :=
π(V )(c+ 1

V
γbw(r))

π(V )(c)
k(V )

r (c+ 1
V
γbw(r)). (2.5)

Remark 2.4. A special role is played for systems that satisfy “microscopic detailed balance”, i.e., for
V > 0:

π(V )(c)k(V )

r (c) = π(V )(c+ 1
V
γ(r))k(V )

r (c+ 1
V
γ(r)) for all c ∈ RY and r ∈ R.

Indeed, by (2.5), this is equivalent to
←−
k (V )
r (c) = k(V )

r (c), and hence to the reversibility of the Markov

process, i.e.,
←−
Q (V ) = Q(V ) in (2.3) (not to be confused with thermodynamic reversibility). As we

will see, on a macroscopic level this condition corresponds to conservative forces, or the absence
of external forces. Since we are mainly interesting in the behaviour of systems undergoing external
forces, we shall not assume this condition, but merely use it as a validity check at some places.

2.3 Macroscopic limit and large deviations

We now study the macroscopic behaviour of the system in the limit V → ∞. To this aim we need to
make the following assumption.

Assumption 2.5. Let the jump rates converge in average to reaction rates, that is, supc|V −1k(V )
r (c)−

κr(c)| → 0 as V → ∞. Furthermore, we assume that the rates κr satisfy the assumptions of [12]
allowing for a large-deviation principle; in particular, a rate κr(c) has to vanish if the associated re-
action would lead to negative concentrations, and the mapping c 7→ κr(c) must be non-decreasing
and superhomogeneous. Finally, we require the invariant distributions π(V ) ∈ P( 1

V
NY0 ) to satisfy a

large-deviation principle

π(V )(C(V ) ≈ c)
V→∞∼ exp

(
− V I0(c)

)
, (2.6)

for some I0 : RY+ → [0,∞].

By a straightforward extension of Kurtz’ Theorem [6], in the limit V →∞, the random path
(
C(V )(t),W (V )(t)

)
converges (in measure) to the deterministic solution of the coupled equations

ċ(t) = Γẇ(t), and ẇ(t) = κ
(
c(t)
)
, (2.7)
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Orthogonality of fluxes in general nonlinear reaction networks 5

which is the chemical reaction equivalent of (1.1) and (1.2).

Since the noise is essentially a re-scaled Poissonian, a large-deviations principle holds, which we now
recall (see [12] for the precise statement). In the following theorem and throughout the paper we adapt
the notation of the relative entropy:

S(j | κ(c)) :=
∑
r∈R

jr log
jr

κr(c)
− jr + κr(c). (2.8)

Theorem 2.6 ([12]). As in Theorem 2.3, let P(V )

Q(V ),π(V ) be the path measure of the Markov pro-

cess (C(V )(t),W (V )(t)) with generator Q(V )and initial distribution π(V ) × δ0. Then for any (c, w) ∈
W 1,1(0, T ;RY × RR)

P(V )

Q(V ),π(V )((C
(V ),W (V )) ≈ (c, w))

V→∞∼ exp

(
−V
[
I0(c(0)) +

∫ T

0

S
(
ẇ(t) | κ(c(t))

)
dt

])
.

The non-negative cost functional
∫ T

0
S
(
ẇ(t) | κ(c(t))

)
dt can be interpreted as the free energy

required to force the system to follow a given path, (c, w) rather than the path that solves the macro-
scopic equation (2.7), whereas I0 measures the cost of deviating from the given initial data. This
interpretation goes back to [11]; see also [9] for a more detailed account.

Example 2.7. For the Chemical Master Equation discussed in Example 2.2, the corresponding reac-

tion rates are κ(r)(c) = ω(r)
∏

y∈Y c
α
(r)
y
y . This specific form of the reaction rates is called mass-action

kinetics [6, 2]. Moreover, in that case I0(c) := S(c | ceq), where ceq is the equilibrium concentration
0 = Γκ(ceq) [9].

2.4 Time reversal symmetries and implications

The large-deviation result Theorem 2.6 also applies to the time-reversed process (
←−
C (V )(t),

←−
W (V )(t)).

Combining this with the time reversal result of Theorem 2.3 yields the following time-reversal symme-
try:

Corollary 2.8. For any path (c, w) ∈ W 1,1(0, T ;RY × RR), it holds

I0(c(0)) +

∫ T

0

S
(
ẇ(t) | κ(c(t))

)
dt = I0(c(T )) +

∫ T

0

S
(
ẇ | ←−κ (c(t))

)
dt, (2.9)

or (using ċ = Γẇ), for any (c, j) = (c, ẇ) ∈ RY × RR:

S(j | κ(c)))− S(j | ←−κ (c)) = ∇I0(c) · Γj. (2.10)

Although the reversed propensities
←−
k (V )
r (c) are explicitly known by (2.5) if the invariant measure π(V )

is known, the reversed reaction rates ←−κr(c) may generally not be explicit. However, using the fact
that (2.10) holds for all j, one finds the relations [13, Section 4.2]

∇I0(c) · γ(r) = log
←−κbw(r)(c)

κr(c)
, (2.11)∑

r∈R

κr(c) =
∑
r∈R

←−κr(c), (2.12)

κr(c)κbw(r)(c) =←−κr(c)←−κbw(r)(c). (2.13)

DOI 10.20347/WIAS.PREPRINT.2609 Berlin 2019
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We mention that (2.13) was not stated in [13] but follows directly from (2.11) and the antisymme-
try (2.1).

Remark 2.9. Building further upon Remark 2.4, if microscopic detailed balance holds, then this is also
true for the reaction rates:←−κ (c) = κ(c), which is often called chemical detailed balance, or in case
of mass-action kinetics, the Wegscheider condition.

3 Force structures

In this section, we introduce force structures; these can be seen as a non-equilibrium generalisation
of gradient flows. Such structure does in general not exist unless we consider net fluxes. Therefore,
we first introduce net fluxes, then force structures, and we finally discuss the force structure that
corresponds to the reversed dynamics.

3.1 Net fluxes: macroscopic limit and large deviations

Since reactions are ordered in forward-backward pairs with opposite state change vectors (2.1), one
can also introduce the net integrated fluxes as W̄ (V )(t) := W (V )(t)−W (V )(t)T, i.e.,

W̄ (V )

r (t) := W (V )

r (t)−W (V )

bw(r)(t), for r ∈ Rfw. (3.1)

Keeping in mind that these net fluxes are only defined for r ∈ Rfw, we can use the same notation for
the continuity equation, cf. (2.2):

Ċ(V )(t) = ΓẆ (V )(t) =
∑
r∈Rfw

γ(r)Ẇ (V )

r (t) + γbw(r)Ẇ (V )

bw(r)(t)

=
∑
r∈Rfw

γ(r) ˙̄W (V )

r (t) = Γ ˙̄W (V )(t).

Again, by Kurtz’ Theorem [6], the pair (C(V )(t), W̄ (V )(t)) converges in the macroscopic limit as V →
∞ to

ċ(t) = Γ ˙̄w(t), and ˙̄wr(t) = κr
(
c(t)
)
− κbw(r)

(
c(t)
)
, (3.2)

and, by a contraction principle also satisfies the following large-deviation principle.

Corollary 3.1.

P(V )

Q(V ),π(V )

(
(C(V )(t), W̄ (V )(t)) ≈ (c, w̄)

)
V→∞∼ exp

(
−V
[
I0(c) +

∫ T

0

L
(
c(t), ˙̄w(t)

)
dt

])
,

where for (c, ̄) ∈ RY × RRfw :

L(c, ̄) := inf
j:(0,T )→RR:

̄=j−jT

S(j | κ(c)), (3.3)

=
∑
r∈Rfw

jr log
jr

κr(c)
− jr + κr(c) + (jr − ̄r) log

jr − ̄r
κbw(r)

− (jr − ̄r) + κbw(r),

where jr := 1
2
̄r +

√
1
4
̄2r + κr(c)κbw(r)(c).

DOI 10.20347/WIAS.PREPRINT.2609 Berlin 2019



Orthogonality of fluxes in general nonlinear reaction networks 7

3.2 Decomposition of the force structure

Following [15, 8, 7, 5, 13], we now rewrite the cost functionL in terms of forces, affinities and energies.
As will be clear from the formulas, these forces are only defined for concentrations that satisfy the
following condition:

κr(c) �� κbw(r)(c) :⇐⇒
(
κr(c) = 0 ⇐⇒ κbw(r)(c) = 0 for all r ∈ Rfw

)
. (3.4)

Systems for which this condition holds for any concentration c are sometimes said to be in weak
detailed balance. Observe that due to (2.11) and (2.13), condition (3.4) is equivalent to←−κr(c) = 0
holding if and only if←−κbw(r)(c) = 0.

For any c for which (3.4) holds, the thermodynamic forces are defined as (setting 0/0 = 1)

Fr(c) :=
1

2
log

κr(c)

κbw(r)(c)
, for c satisfying (3.4) and r ∈ Rfw; (3.5)

these are the affinities of Schnakenberg [15]. We also define the dual and primal dissipation potentials
(which are Legendre duals of each other):

Φ∗(c, ζ) := 2
∑
r∈Rfw

√
κr(c)κbw(r)(c)

(
cosh(ζr)− 1

)
, and (3.6)

Φ(c, ̄) := sup
ζ∈RRfw

ζ · ̄− Φ∗(c, ζ)

=
∑
r∈Rfw

2
√
κr(c)κbw(r)(c)

(
cosh∗

(
̄r

2
√
κr(c)κbw(r)(c)

)
+ 1

)
.

We can then decompose the cost function L as follows.

Theorem 3.2 ([8, 7, 5, 13]). For any c ∈ RY+ for which κr(c) �� κbw(r)(c) and any ̄ ∈ RRfw ,

L(c, ̄) = Φ(c, ̄) + Φ∗
(
c, F (c)

)
− F (c) · ̄, (3.7)

and this choice of Φ∗,Φ and F is unique (assuming Φ∗(c, 0) = 0 = Φ(c, 0) and Φ(c, ·),Φ∗(c, ·)
are Legendre duals of each other [10, Proposition 2.1]).

This decomposition has the following physical interpretation. The solution to (3.2) is the zero-cost flow
L(c(t), ̄(t)) = 0, which is equivalent to

̄(t) = ∇ζ Φ∗
(
c(t), F (c(t))

)
. (3.8)

Since Φ∗ is not quadratic, this represents a non-linear response between forces and fluxes. Indeed,
this also means that the force F must be scaled to be dimensionless; see [9] for the correct scaling
with physical constants. Of particular interest is the Fisher information:

Φ∗
(
c, F (c)

)
=
∑
r∈Rfw

(√
kr(c)−

√
kbw(r)(c)

)2
.

We interpret this as a Fisher information since for the case of independent Brownian particles Φ∗(c, F (c)) =∫
Rd|∇

√
c(x)|2 dx, see also [1, 10]; the expression above has the same form, but with a discrete gra-

dient and non-linear rates. The Fisher information will be discussed in more detail in Section 5.

DOI 10.20347/WIAS.PREPRINT.2609 Berlin 2019
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Remark 3.3. If chemical detailed balance←−κ = κ holds, see Remark 2.9, then from (3.5) and (2.11)
we find that the last term in (3.7) reads:

−F (c) · ̄ = 1
2
ΓT∇I0(c) · ̄ = 1

2
∇I0(c) · ċ,

so that the force is indeed conservative as anticipated in Remark 2.4. In this case, (3.8) describes
a nonlinear gradient flow, either in the space of concentrations [9] or in the space of integrated net
fluxes [14].

3.3 Force structure for the reversed dynamics

We can also give a similar decomposition applied to the reversed dynamics, explained in Sections 2.2
and 2.4. First, we apply Corollary 3.1 to the reversed dynamics, using (2.3):

Corollary 3.4. Set
←−̄
W (V )(t) := −W̄ (V )(T ) + W̄ (V )(T − t), cf. (3.1). Then:

P(V )

Q(V ),π(V )

(
(
←−
C (V )(t),

←−̄
W (V )(t)) ≈ (c, w̄)

)
V→∞∼ exp

(
−V
[
I0(c) +

∫ T

0

←−
L
(
c(t), ˙̄w(t)

)
dt

])
,

where for (c, ̄) ∈ RY × RRfw :

←−
L (c, ̄) := inf

j:(0,T )→RR:

̄=j−jT

S(j | ←−κ (c)). (3.9)

We may then also decompose the reverse cost function
←−
L as a force structure.

Corollary 3.5 ([13]). For any c ∈ RY+ for which κr(c) �� κbw(r)(c) and any ̄ ∈ RRfw ,

←−
L (c, ̄) = Φ(c, ̄) + Φ∗

(
c,
←−
F (c)

)
−
←−
F (c) · ̄,

where Φ,Φ∗ are given by (3.6), and

←−
Fr(c) =

1

2
log

←−κr(c)
←−κbw(r)(c)

,

and this choice of Φ∗,Φ and
←−
F is unique.

Observe that the potentials Φ,Φ∗ are the same for the reversed dynamics due to (2.13). In fact also

for the Fisher information Φ∗
(
c, F (c)

)
= Φ∗

(
c,
←−
F(c)

)
due to (2.12) and (2.13).

4 Orthogonal decomposition

We now mimic the arguments from [5] for the case of general nonlinear reactions. First we explain
how the dual dissipation potentials can be decomposed; next we discuss how the forces can be de-
composed accordingly.
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4.1 Orthogonal decomposition of the dual dissipation potentials

The idea of this short subsection is to decompose Φ∗(c, ξ + ζ) in a similar fashion as one would do
in a Hilbert space: 1

2
‖ξ + ζ‖2 = 1

2
‖ξ‖2 + 〈ξ, ζ〉+ 1

2
‖ζ‖2, see for example [3, Section IIC]. However,

since Ψ∗ is not quadratic, the construction is a bit more involved: the pairing between forces becomes
nonlinear, and one of the dual dissipation potentials must be modified:

θc(ξ, ζ) := 4
∑
r∈Rfw

√
κr(c)κbw(r)(c) sinh(ξr) sinh(ζr),

Φ∗ζ(c, ξ) := 2
∑
r∈Rfw

√
κr(c)κbw(r)(c) cosh(ζr)

(
cosh(ξr)− 1

)
.

We can now write the decomposition as follows.

Proposition 4.1. For any c ∈ RY and ξ, ζ ∈ RR,

Φ∗(c, ξ + ζ) = Φ∗ζ(c, ξ) + θc(ξ, ζ)+ Φ∗(c, ζ)

= Φ∗(c, ξ) + θc(ξ, ζ)+ Φ∗ξ(c, ζ), and

θc(ξ, ζ)= Φ∗(c, ξ + ζ)− Φ∗(c, ξ − ζ).

Proof. Both statements follow from the identity

cosh(ξ + ζ) = cosh(ξ) cosh(ζ) + sinh(ξ) sinh(ζ).

We stress that there is the choice which one of the two dissipation potentials on the right-hand side is
modified. By a slight abuse of notation, we shall also write Φ∗F (c, ξ) = Φ∗F (c)(c, ξ) for a force field F .

4.2 Orthogonal decomposition of the forces

The force and its reversed counterpart are connected via the relations (2.11), (2.12), (2.13), see [13,
Section 4.6]:

Fr(c) +
←−
Fr(c) = −

(
ΓT∇I0(c)

)
r
, (4.1)

which is twice the force that one would have under chemical detailed balance, see Remark 3.3.
This motivates the splitting of general forces into a symmetric and an antisymmetric part F (c) =
F sym(c) + F asym(c):

F sym
r (c) := 1

2

(
Fr(c) +

←−
Fr(c)

)
= 1

2
log

κr(c)
←−κbw(r)(c)

= −1
2
(ΓT∇I0(c))r and

F asym
r (c) := 1

2

(
Fr(c)−

←−
Fr(c)

)
= 1

2
log
←−κbw(r)(c)

κbw(r)(c)
,

where the latter indeed vanishes if chemical detailed balance κ =←−κ holds. More generally, the anti-
symmetric force measures how far the system is from chemical detailed balance. We briefly note that
in case of linear reactions, the antisymmetric force is a constant, independent of the concentration [5],
which is no longer true for nonlinear reactions.

The two force fields F sym, F asym are indeed ‘orthogonal’ to each other if we use the nonlinear pairing
θ·(c, ·) introduced above, as the next statement shows.
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Proposition 4.2 (Generalisation of [5, Lemma 1]). For any c ∈ RY+ for which κr(c) �� κbw(r)(c),

θc(F
sym(c), F asym(c))= 0.

Proof. This follows from (2.12) and (2.13).

As a consequence of this and Proposition 4.1, the Fisher information can be decomposed as follows:

Corollary 4.3 (Generalisation of [5, Lemma 2 and Corollary 4]). For any c ∈ RY+ for which κr(c) �� κbw(r)(c),

Φ∗
(
c, F sym(c) + F asym(c)

)
= Φ∗F asym

(
c, F sym(c)

)
+ Φ∗

(
c, F asym(c)

)
= Φ∗

(
c, F sym(c)

)
+ Φ∗F sym

(
c, F asym(c)

)
,

and hence for any c ∈ RY+ for which κr(c) �� κbw(r)(c) and any ̄ ∈ RRfw ,

L(c, ̄) = Φ(c, ̄) + Φ∗
(
c, F asym(c)

)
− F asym(c) · ̄

+ Φ∗F asym

(
c, F sym(c)

)
+ 1

2
∇I0(c) · Γ̄ (4.2)

= Φ(c, ̄) + Φ∗
(
c, F sym(c)

)
+ 1

2
∇I0(c) · Γ̄

+ Φ∗F sym

(
c, F asym(c)

)
− F asym(c) · ̄. (4.3)

5 Fisher and entropy bounds

It turns out that many terms in (4.2) and (4.3) remain well-defined even when κr(c) �� κbw(r)(c) is
violated and/or F sym(c) and F asym(c) are not defined. More precisely, we may introduce the following
notation, where the equalities on the right are true if κr(c) �� κbw(r)(c):

Fisa(c) :=
1

2

∑
r∈Rfw∪Rbw

(√
κr(c)−

√
←−κbw(r)(c)

)2

= Φ∗F asym

(
c, F sym(c)

)
, and

Fias (c) :=
1

2

∑
r∈Rfw∪Rbw

(√
κr(c)−

√
←−κr(c)

)2

= Φ∗F sym

(
c, F asym(c)

)
.

Remark 5.1. If we interpret the differences as abstract gradients, then both quantities are of the form
1
2

∑
r(∇

√
κ(c))2 which coincides with the usual continuous-space Fisher information 1

2

∫
|∇
√
c(x)|2 dx =

1
2

∫ |∇c(x)|2
c(x)

dx. Recalling Remark 2.9, the second quantity Fias (c) measures how far the system is from
being in detailed balance.

The following proposition then generalises Corollary 4.3 to all concentrations, which possibly violate
κr(c) �

� κbw(r)(c). Inequalities of this type, bounding Fisher information and entropy by the rate
functional are known as FIR inequalities, see for example [4]. One important difference to those works
is that our FIR-type inequality involves 1

2
I0 rather than I0, and that at least for paths that stay away

from the boundary, the gap in the inequality is exactly quantified by (4.2).

Proposition 5.2. Assume that κ satisfies the conditions of [12] needed for the large-deviations Theo-
rem 2.6 to hold. Then for any path (c, ̄) ∈ W 1,1(0, T ;RY+ × RR) such that I0 is everywhere lower
semicontinuous, and continuous in a neighbourhood of c(0),∫ T

0

L
(
c(t), ̄(t)

)
dt ≥

∫ T

0

Fisa
(
c(t)
)
dt+ 1

2
I0

(
c(T )

)
− 1

2
I0

(
c(0)

)
.
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Proof. Recall the distinction between one-way fluxes j and net fluxes ̄ introduced in Section 3.1.
Without loss of generality we may assume that

∫ T
0
L
(
c(t), ̄(t)

)
dt < ∞. We can then exploit that

any path (c, j) for wich the one-way flux rate functional
∫ T

0
S
(
j(t) | κ(c(t))

)
dt is finite may be

approximated by curves (cε, jε) such that [12, Cor. 3.6] (always assuming that the continuity equations
ċ = Γj, ċε = Γjε holds):

� κr(cε(t)) �� κbw(r)(c
ε(t)),

�
∫ T

0
S
(
jε(t) | κ(cε(t))

)
dt→

∫ T
0
S
(
j(t) | κ(c(t))

)
dt,

� cε
L1

−→ c and jε
vague−−−→ j, that is, against test functions in C0(0, T ;RY × RR).

� I0(cε(0))→ I0(c(0)) (by the assuming continuity).

For this approximated sequence we can employ (4.2), where we note that by convex duality Φ(c, ̄) +
Φ∗
(
c, F asym(c)

)
− F asym(c) · ̄ ≥ 0. Exploiting the lower semicontinuity of c(T ) 7→ I0(c(T )) and

of c 7→
∫ T

0
Fisa(c(t)) dt in the abovementioned topology, we find that

∞ >

∫ T

0

L
(
c(t), ̄(t)

)
dt = inf

̄=j−jT

∫ T

0

S
(
j(t) | κ(c(t))

)
dt

= inf
̄=j−jT

lim
ε→0

∫ T

0

S
(
jε(t) | κ(cε(t))

)
dt ≥ lim inf

ε→0

∫ T

0

L
(
cε(t), ̄ε(t)

)
dt

≥ lim inf
ε→0

∫ T

0

Fisa
(
cε(t)

)
dt+ 1

2
I0

(
cε(T )

)
− 1

2
I0

(
cε(0)

)
≥
∫ T

0

Fisa
(
c(t)
)
dt+ 1

2
I0

(
c(T )

)
− 1

2
I0

(
c(0)

)
.

We can now also derive an inequality that bounds the other Fisher information together with the irre-
versible work.

Proposition 5.3. Assume that κ satisfies the conditions of [12] needed for the large-deviations Theo-
rem 2.6 to hold. Then for any path (c, ̄) ∈ W 1,1(0, T ;RY+×RR) such that κr(c(t)) ��

←−κ r(c(t)) for
all t ∈ (0, T ) and r ∈ R,∫ T

0

L
(
c(t), ̄(t)

)
dt ≥

∫ T

0

Fias
(
c(t)
)
dt−

∫ T

0

F asym(c(t)) · ̄(t) dt.

Proof. This is the same argument as Proposition (5.2), but starting from (4.3) rather then (4.2). Note
that the condition κr(c(t)) ��

←−κ r(c(t)) is now needed for F asym(c) to be well-defined.

We finally remark that the irreversible work
∫ T

0
F asym(c(t)) · ̄(t) dt does not necessarily have a sign,

but in the other direction we have by convex duality∫ T

0

F asym(c(t)) · ̄(t) dt ≤
∫ T

0

Φ
(
c(t), ̄(t)

)
dt+

∫ T

0

Φ∗
(
c(t), F asym(c(t))

)
dt.
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