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Weak solutions and weak-strong uniqueness for a thermodynamically
consistent phase-field model

Robert Lasarzik, Elisabetta Rocca, Giulio Schimperna

Abstract

In this paper we prove the existence of weak solutions for a thermodynamically consistent phase-field
model introduced in [26] in two and three dimensions of space. We use a notion of solution inspired by [18],
where the pointwise internal energy balance is replaced by the total energy inequality complemented with
a weak form of the entropy inequality. Moreover, we prove existence of local-in-time strong solutions and,
finally, we show weak-strong uniqueness of solutions, meaning that every weak solution coincides with a
local strong solution emanating from the same initial data, as long as the latter exists.
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1 Introduction

This paper is concerned with the analysis of the initial boundary-value problem for the following PDE system:

θt + θϕt − κ∆θ = |ϕt|2 in Ω× (0, T ) , (1a)

ϕt −∆ϕ+ F ′(ϕ) = θ in Ω× (0, T ) , (1b)

which describes phase transition phenomena occurring in a bounded connected container Ω ⊂ Rd, d ∈ {2, 3},
with sufficiently smooth boundary and fixing a reference time interval [0, T ]. The state variables are the abso-
lute temperature θ and the order parameter (or phase-field) ϕ describing the locally attained phase. We have

DOI 10.20347/WIAS.PREPRINT.2608 Berlin 2019
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denoted by F the interaction potential entering the free energy functional and by κ > 0 the heat conductivity,
assumed to be constant. This system is equipped with homogeneous NEUMANN boundary conditions, i.e.,

nnn · ∇θ = 0 = nnn · ∇ϕ on ∂Ω× (0, T ) (1c)

and initial conditions

θ(0) = θ0 , ϕ(0) = ϕ0 in Ω . (1d)

System (1a)-(1b) can be seen as one of the simplest diffuse-interface models describing non-isothermal phase
transition processes in a thermodynamically consistent setting in the case when no external heat source is
present. More precisely, thermodynamic consistency holds for a wide range of temperature values and not only
in proximity of the equilibrium temperature. Nonetheless, the global-in-time well posedness of the model is still
open both in 2 and in 3 space dimensions.

There are various ways to derive equations (1a)-(1b) from the laws of Thermodynamicas. We sketch here an
approach that follows the lines of the so-called FRÉMOND theory of phase transitions (cf. [26, p. 5]) for a particular
choice of the free-energy functional and of the pseudo-potential of dissipation. An alternative physical derivation
is provided in the paper [1].

We start from the following expression for the volumetric free energy:

Ψ(θ, ϕ,∇ϕ) = cV θ(1− log θ)− λ

θc
(θ − θc)ϕ+ F (ϕ) +

ν

2
|∇ϕ|2, (2)

where the constants cV , θc , and ν > 0 represent, respectively, the specific heat, the equilibrium tempera-
ture, and the interfacial energy coefficient, while λ stands for the latent heat of the system. The term F (ϕ) +
(ν/2)|∇ϕ|2 accounts for a mixture or interaction free-energy. Hereafter, for simplicity, we shall set cV = ν =
λ/θc = 1 and we incorporate the term θcϕ into F (ϕ). Indeed, since in the following the potential F will be
assumed to be a λ-convex function, we may suppose without loss of generality that θcϕ contributes to the
non-convex part. A typical example of a potential F that we can include in our analysis is the so-called “regular
double-well potential” F (r) = (r2 − 1)2. Dissipation effects are described by means of a pseudo-potential of
dissipation Φ depending on the dissipative variables∇θ and ϕt:

Φ(∇θ, ϕt) =
1

2
|ϕt|2 +

h(θ)|∇θ|2

2θ
, (3)

where h stands for a positive function representing the heat conductivity of the process and, for the sake of
simplicity, the other physical parameters have been set equal to 1.

The evolution of the phase variable ϕ is ruled by an equation derived from a generalization of the principle of
virtual power (cf. [26, Sec. 2]):

B − divH = 0 (4)

in case the volume amount of mechanical energy provided to the domain by the external actions (which do
not involve macroscopic motions) is zero. Here B (a density or energy function) and H (an energy flux vector)
represent the internal microscopic forces responsible for the mechanically induced heat sources:

B =
∂Ψ

∂ϕ
+
∂Φ

∂ϕt
= −θ + F ′(ϕ) + ϕt , H =

∂Ψ

∂∇ϕ
= ∇ϕ. (5)

With trivial computations, from (4)–(5) we derive exactly (1b). Moreover, if the surface amount of mechanical
energy provided by the external local surface actions (not involving macroscopic motions) is zero as well, then
the natural boundary condition for this equation of motion is exactly the second one in (1c).

Finally, the energy balance equation reads

et + divq = Bϕt + H · ∇ϕt , (6)
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where e, the (specific) internal energy, is linked to the free energy Ψ by the standard HELMHOLTZ relation

e = Ψ + θs, s = −∂Ψ

∂θ
, (7)

in which we have denoted by s the specific entropy of the system. Following FRÉMOND’s perspective (cf. [26]), on
the right-hand side of (6) there appears the mechanically induced heat sources, related to microscopic stresses,
while the heat flux q is defined by the following constitutive relation (cf. (3)):

q = −θ ∂Φ

∂∇θ
= −h(θ)∇θ. (8)

Using the no-flux boundary condition and the FOURIER heat flux law (i.e. setting h(θ) ≡ κ), we get the first
boundary condition in (1c) and equation (1a).

This model turns out to be thermodynamically consistent in the sense that it complies with the Second Principle
of Thermodynamics: indeed, the CLAUSIUS–DUHEM inequality

st + div
(q
θ

)
≥ 0 (9)

holds true. To check (9), it is sufficient to note that the internal energy balance (6) can be expressed in terms of
the entropy s in this way:

θ
(
st + div

(q
θ

))
= |ϕt|2 −

q

θ
· ∇θ = |ϕt|2 + h(θ)

|∇θ|2

θ
, (10)

where we used (8) and the formal identity et −Bϕt −H · ∇ϕt = θst − |ϕt|2, which follows from (5) and (7).
Therefore, (9) ensues from the positivity of θ, a fact that we shall prove in the sequel.

Coming to our results, in this paper we shall first prove existence of weak solutions (θ, ϕ). These will comply
with equation (1b) satisfied almost everywhere in the space-time domain Ω × (0, T ) and supplemented with
homogeneous NEUMANN boundary conditions and initial conditions. Moreover, weak solutions will satisfy the
total energy inequality:

E(t) ≤ E(0), for a.e. t ∈ (0, T ), where E ≡
∫

Ω

(
θ + F (ϕ) +

1

2
|∇ϕ|2

)
dxxx (11)

together with the following entropy inequality:

−
∫

Ω
ϑ(t)(log θ(t) + ϕ(t)) dxxx+

∫
Ω
ϑ(0)(log θ0 + ϕ0) dxxx+

∫ t

0

∫
Ω
ϑ

(
κ|∇ log θ|2 +

|ϕt|2

θ

)
dxxx d t

≤
∫ t

0

∫
Ω

(κ∇ log θ · ∇ϑ− ϑt(log θ + ϕ)) dxxx d t , (12)

for a.e. t ∈ (0, T ) and for every sufficiently regular nonnegative function ϑ. Inequality (12) implies that the
entropy is controlled by the dissipation of the system. It is worth noticing that the weak formulation corresponds
to the underlying physical laws, the two Thermodynamic Principles, i.e., energy conservation and entropy pro-
duction in the case of (11) and (12), respectively.

From the mathematical viewpoint, initial-boundary value problems for equations (1a)-(1b) or variations of them
have been addressed in a number of apers. Starting from the pioneering work [7], there is a comprehensive
literature on the models of phase change with microscopic movements proposed by FRÉMOND (we may refer to
the PhD thesis [45] and the references therein).

However, system (1) needs to be carefully handled, mainly because of the the presence of the terms ϕt θ and
|ϕt|2 in (1a). Due to the difficulties arising from these two higher order nonlinearities, there has not been any
global-in-time well-posedness result for the initial-boundary value problem related to system (1) in the two or
three-dimensional case. A global existence result for system (1) has only been proved in the one-dimensional
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setting in [34, 35], while in [22] (cf. also [21]) a global-in-time well-posedness result has been obtained in the 2
and 3D cases only for power-like type growth of the heat flux law (h(θ) ∼ θη , for η ≥ 3 for θ large).

Other approaches to phase transition models based on various forms of the entropy balance and possibly
including mechanical effects are available in the literature. A possibility (cf. [3, 4, 5, 6]) consists in coupling
an entropy equation (instead of the standard internal energy balance equation (1a)) with a microscopic motion
equation. Within this approach the resulting PDE system couples an equation for ϕ of the type (1b) with an
entropy balance equation, which can be written as st + div

(q
θ

)
= R and which is obtained rewriting the

internal energy balance in terms of s by means of the standard HELMHOLTZ relation (7) and assuming the right-
hand sideR, which now has the meaning of an entropy source, to be known. Note that in [2] the entropy source
is allowed to depend (somehow singularly) on θ. A second approach has been used in [38, 39, 40, 41]: the
main novelty of these contributions lies in the fact that the equations for θ and ϕ (analogous to our (1a) and
(1b)) are coupled to a hyperbolic stress-strain relation for the displacement variable u. In the 3D case in [38]
a local-in-time well-posedness result is obtained, whereas in [41] entropic solutions have been proved to exist,
but only in the case of a power-like type heat flux law (h(θ) ∼ θκ, with κ > 1 for θ large). Finally, in [39] the
global existence and the long-time behavior of solutions are investigated in the 1D case.

Since weak solutions of system (1) are not known to be unique, and the source of non-uniqueness stems
from insufficient regularity properties holding in the setting of weak solutions, a natural concept generalizing
uniqueness is the so-called weak-strong uniqueness. It is fulfilled whenever every weak solution coincides with
a local strong solution emanating from the same initial data, as long as the latter exists. In this way, the property
also guarantees that the generalized solution concept is indeed a generalization of strong solutions.

There are prominent examples in the context of fluid dynamics for these kinds of results, such as SERRIN’s
uniqueness result [44] for LERAY’s weak solutions [32] to the incompressible NAVIER–STOKES equation in three
space dimensions, or the weak-strong uniqueness for suitable weak-solutions to the incompressible NAVIER–
STOKES system [19] or to the full NAVIER–STOKES–FOURIER system [20].

A recurrent tool to prove such a weak-strong uniqueness result is the formulation of a relative energy. For
thermodynamical systems this idea goes back to DAFERMOS [10]. In the context of fluid dynamics, the relative
energy approach has also been used to show the stability of a stationary solution [17], the convergence to a
singular limit [23], or to derive a posteriori estimates for simplified models [25].

In the article at hand, this approach is adapted to a λ-convex energy functional. Actually, there are very few
articles dealing with the relative energy approach for nonconvex energies, and all of them seem to pertain to
the context of liquid crystals. Actually, the paper [24] deals with a Q-tensor model equipped with a λ-convex
energy and the authors are able to show weak-strong uniqueness for dissipative solutions. The weak-strong
uniqueness for weak solutions to the penalized ERICKSEN–LESLIE model in three space dimensions has been
proved in [16]. In [31], weak-strong uniqueness of weak solutions (measure-valued [30] and dissipative [29])
has been shown for the ERICKSEN–LESLIE model equipped with the OSEEN–FRANK energy, which is an energy
with nonconvex leading order term.

Our proofs of existence and of weak-strong uniqueness for system (1a)-(1b) combine the use of more or less
established methods in the mathematical theory of phase transition models with two new ideas, which constitute
the key points of our argument:

- a proper notion of weak solutions to (1), which is based on a new a-priori estimate holding for polyno-
mial potentials F : actually, the estimates following from the total energy inequality (11) and (12) are not
sufficient in order to pass to the limit in a suitable regularized problem;

- a concept of relative energy which combines the natural contribution of the “physical” energy with an
additional L1-term. Indeed, the latter is crucial in order to overcome the nonconvex character of the
physical energy functional and to obtain an effective estimate.

The plan of the paper is as follows: in the next Section 2 we give our precise assumptions on data and state
our main results. The remainder of the paper is devoted to proofs: in Section 3, we show our global existence
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result for weak solutions; in Section 4, we deal with weak-strong uniqueness; finally, in Section 5, we prove
local-in-time existence for strong solutions.

2 Assumptions and main results

We start this section by presenting our basic hypotheses on the nonlinear function F . These assumptions are
collected, together with a number of notable consequences of them, in the following statement. It is worth noting
that, despite the length of what follows, it is very easy to check that the usual double-well potentials of polynomial
growth (as the commonly used quartic potential F (r) = (r2 − 1)2) satisfy all the assumptions (A)-(D) listed
below.

Hypothesis 2.1. (A) We let F ∈ C2(R,R) ∩ C2,1
loc (R,R).

(B) We assume F to be λ-convex, i.e., convex up to a quadratic perturbation. Namely there exists a constant
λ > 0 such that F ′′(y) ≥ −λ for all y ∈ R. We can then define a convex modification of F , subsequently
named G, as

G(y) = F (y) + λy2 y ∈ R . (13)

By construction, G is “strongly convex”, i.e., G′′(y) ≥ λ > 0 for all y ∈ R. Moreover, it is not restrictive to
assume G to be nonnegative and so normalized that G′(0) = 0.

(C) Next, we assume a minimal coercivity assumption at∞, namely

lim inf
|y|→∞

F ′(y) sign y > 0. (14)

As a consequence of (14), we can first observe that F (y) ≥ −c for some constant c > 0 and every y ∈ R.
Moreover, it is easy to verify that the physical energy controls theH1-norm of ϕ from above. Namely, there exist
γ > 0 and c ≥ 0 such that

1

2
‖∇ϕ‖2L2(Ω) +

∫
Ω
F (ϕ) dxxx ≥ γ‖ϕ‖H1(Ω) − c, (15)

for every ϕ ∈ H1(Ω) such that F (ϕ) ∈ L1(Ω).

(D) Finally, a growth condition is assumed to hold, i.e., there exists a constant c > 0 such that

|F ′(y)| log(e+ |F ′(y)|) ≤ c(1 + |F (y)|) for all y ∈ R . (16)

Possibly modifying the value of c one can see that the analogue of (16) holds also for the convex modificationG,
i.e., we have

|G′(y)| log(e+ |G′(y)|) ≤ c(1 +G(y)) for all y ∈ R . (17)

To check that (16) implies (17), a number of straightforward but somehow technical computations would be
required. We leave them to the reader because no real difficulty is involved.

We can now define weak solutions to our system in a rigorous way:

Definition 2.2. A couple (θ, ϕ) is called a weak solution to (1) over the time interval (0, T ) if the following
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conditions are satisfied. First, there hold the regularity properties

θ ∈ L∞(0, T ;L1(Ω)) with θ(xxx, t) > 0 a.e. in Ω× (0, T ) , (18a)

θ log θ ∈ L1(Ω× (0, T )) , (18b)

log θ ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)), (18c)

∂t log θ ∈ (M(Ω× [0, T ]) + L2(0, T ; (W 1,2(Ω)∗)) , (18d)

ϕ ∈ L∞(0, T ;H1(Ω)) ∩W 1,1(0, T ;L1(Ω)) , (18e)

∆ϕ ∈ L1(0, T ;L1(Ω)) , (18f)

F (ϕ) ∈ L∞(0, T ;L1(Ω)) , (18g)

θ−1/2∂tϕ ∈ L2(0, T ;L2(Ω)) . (18h)

Next, the entropy inequality holds in the integral form

−
∫

Ω
ϑ(t)(log θ(t) + ϕ(t)) dxxx+

∫
Ω
ϑ(0)(log θ0 + ϕ0) dxxx

+

∫ t

0

∫
Ω
ϑ
(
κ|∇ log θ|2 + |θ−1/2∂tϕ|2

)
dxxx d t

≤
∫ t

0

∫
Ω

(κ∇ log θ · ∇ϑ− ∂tϑ(log θ + ϕ)) dxxx d t , (19)

for a.e. t ∈ (0, T ) and for every ϑ ∈ C0([0, T ] × Ω) ∩ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that
ϑ(t,xxx) ≥ 0 for every t ∈ [0, T ] and xxx ∈ Ω. Moreover, the phase field equation

∂tϕ−∆ϕ+ F ′(ϕ) = θ (20)

holds a.e. in Ω× (0, T ) with the initial and boundary conditions

ϕ(0) = ϕ0, nnn · ∇ϕ = 0 (21)

in the sense of traces respectively in Ω and on ∂Ω× (0, T ). Finally, we require validity of the energy inequality
for a.e. t ∈ (0, T ):∫

Ω

(
1

2
|∇ϕ(t)|2 + F (ϕ(t)) + θ(t)

)
dxxx ≤

∫
Ω

(
1

2
|∇ϕ0|2 + F (ϕ0) + θ0

)
dxxx . (22)

Remark 2.1. Note that the traces are well-defined a.e. in Ω and on ∂Ω×(0, T ), respectively. Indeed, from (18e)
we observe that ϕ ∈ Cw([0, T ];H1(Ω)). Moreover, the normal-trace operator is well-defined as a mapping
from W 2,1(Ω) to L1(∂Ω), see for instance [9, Thm. 2.7.4, (2.7.10) with (2.7.4)], [13, Prop. 3.80], or [14].

The first result of this paper is devoted to proving the global in time existence of weak solutions in the sense
of Definition 2.2. As noted in the introduction, this seems to be the first rigorous existence result for system
(1a)-(1b) in absence of regularizing power-like terms in the heat equation (cf. [21]).

Theorem 2.3. Let Ω be sufficiently smooth and let Hypothesis 2.1 be fulfilled. Let us also assume

θ0 ∈ L1(Ω), θ0 > 0 a.e. in Ω, log θ0 ∈ L1(Ω) , (23a)

ϕ0 ∈ H1(Ω), F (ϕ0) ∈ L1(Ω), ϕ0 log θ0 ∈ L1(Ω) , (23b)

ϕ0(xxx) ≥ −K > −∞ for some K ≥ 0 and a.e. xxx ∈ Ω . (23c)

Then, there exists at least one weak solution in the sense of Definition 2.2. Moreover, if we have in addition

ess infxxx∈Ω θ0(xxx) > 0 , (24)
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then there follows the minimum principle property

ess infΩ×(0,T ) θ(xxx, t) > 0 , (25)

providing also the additional regularity

log θ ∈ BV(0, T ; (W 1,p(Ω))∗) ∩ L∞(0, T ;Lq(Ω)) for p > 3 and q ∈ (1,∞) , (26)

so that in particular the entropy inequality (19) holds for every (and not just a.e.) t ∈ [0, T ].

Observe that (26) yields that there exists a countable set D ⊂ [0, T ], such that log θ ∈ C0([0, T ] \
D; (W 1,p(Ω))∗).

The second result of this paper states the local-in-time existence of strong solutions. Here and below we note
as H2

nnn(Ω) the space of the functions in H2(Ω) having zero normal derivative on the boundary. We also need
an additional assumption on F :

Hypothesis 2.4. Let F be three times continuously differentiable, i.e., F ∈ C3(R;R).

Theorem 2.5. Let Hypotheses 2.1 and 2.4 hold true. Moreover, let us assume the following additional conditions
on the initial data:

θ0 ∈ H1(Ω), ess infxxx∈Ω θ0(xxx) > 0 , (27a)

ϕ0 ∈ H2
nnn(Ω), ϕ1 := ∆ϕ0 − F ′(ϕ0) + θ0 ∈ H1(Ω) (27b)

(notice that the latter is equivalent to just assuming ϕ0 ∈ H3(Ω) ∩H2
nnn(Ω)). Then, there exists a local-in-time

solution to the system (1), namely, a couple (θ, ϕ) satisfying the regularity properties

θ ∈ C0([0, T ∗);H1(Ω)) ∩ L2(0, T ∗;H2(Ω)) ∩W 1,2(0, T ∗;L2(Ω)) , (28a)

ϕ ∈ C0([0, T ∗);H2(Ω)) ∩ C1([0, T ∗);H1(Ω)) ∩W 1,2(0, T ∗;H2(Ω)) , (28b)

for a certain T ∗ > 0. Moreover, the analogue of (25) holds on the interval [0, T ∗) and the strong solution fulfills
a supplementary initial condition in the sense that ‖ϕt(t)− ϕ1‖H1 → 0 as t↘ 0. Finally, the strong solution
satisfies the energy equality (22) with equality sign for any t ∈ [0, T ∗).

Actually, the regularity proved above for strong solution is not sufficient for our purposes. However, it is easy to
prove additional results. For instance we have the following

Corollary 2.6. Let the assumptions of Theorem 2.5 hold and let, in addition,

θ0 ∈ H2
nnn(Ω). (29)

Then, the local strong solution provided by Theorem 2.5 satisfies the additional regularity condition

θ ∈ C0([0, T ∗);H2(Ω)) ∩W 1,2(0, T ∗;H1(Ω)). (30)

Proof. It is sufficient to observe that, thanks to (28a)-(28b), (1a) can be rewritten as

θt − κ∆θ = (∂tϕ)2 − θ∂tϕ ∈ L2(0, T ∗;H1(Ω)). (31)

Hence, the assertion follows from the standard theory of linear parabolic equations by also using the regularity
(29) of the initial datum (the a-priori estimate used here corresponds to testing (31) by −∆θt and using the
regularity of the right-hand side resulting from (28a)–(28b)).
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Remark 2.2. Via standard bootstrap arguments, one can even deduce more regularity for the local-strong
solution, e.g. that all terms appearing in (1) are even continuous in the case that θ0, ϕ0 ∈ C2(Ω). Indeed, from
ϕ, θ ∈ C0([0, T ∗);H2(Ω)) we infer by the SOBOLEV-embedding theorem that ϕ, θ ∈ C0(Ω× [0, T ∗)). The
continuity of the function F ′ implies that

∂tϕ−∆ϕ = θ − F ′(ϕ) ∈ C0(Ω× [0, T ∗)) ,

which grants together with the regularity of the heat equation (see [46, Prop. 1.1A]) that there exists some
0 < T̃ < T ∗ such that ϕ ∈ C1([0, T̃ ]; C0(Ω)) ∩ C0([0, T̃ ]; C2(Ω)), i.e., ∂tϕ, ∆ϕ ∈ C0(Ω × [0, T̃ ]). This
in turn implies that the right-hand side of (31) is even in C0(Ω × [0, T̃ ]) such that, we may infer the regularity
θ ∈ C1([0, T̃ ]; C0(Ω)) ∩ C0([0, T̃ ]; C2(Ω)), (see [46, Prop. 1.1A]), i.e. ∂tθ, ∆θ ∈ C0(Ω × [0, T̃ ]). This
regularity is then sufficient to give a sense to all terms appearing in the weak-strong uniqueness proof (see
Sec. 4) and especially to bound the right-hand side of the inequality (89). It is worth noticing that this regularity
is exactly what is needed to fulfill the system (1) in a classical sense, i.e., pointwise.

We can finally state our second main result providing weak-strong uniqueness for system (1a)-(1b). We may
note that the proof of this result neither requires Hypothesis 2.4, nor any additional assumption on F and on
the initial data leading to the validity of (1a)-(1b) in L∞ according to the above remark. On the other hand, such
additional conditions are needed in the construction of local strong solutions with the desired properties (see
Theorem 2.5 above).

Theorem 2.7. Let Hypothesis 2.1 hold true. Let (θ, ϕ) be a weak solution according to Definition 2.2 and
(θ̃, ϕ̃) a strong solution according to Theorem 2.5 and satisfying (1a)–(1b) in the C0-sense. Let us also assume
that (θ, ϕ) and (θ̃, ϕ̃) start from the same initial data assumed to fulfill (27a)-(27b) and (29) and that they are
defined over the same reference interval (0, T ). Then the two solutions coincide, i.e., θ ≡ θ̃ and ϕ ≡ ϕ̃
a.e. in Ω× (0, T ).

It is worth observing that, in view of (29), the strong solution additionally satisfies (30); moreover, thanks to the
last condition in (27a), both the weak and the strong solution comply with (25).

Remark 2.3. The two main theorems of this article, i.e., Theorem 2.3 and Theorem 2.7, are not restricted to
the space dimensions two and three. Actually, the proofs of these results do not use any dimension-depending
inequality. Only Theorem 2.5 makes explicit use of the restriction onto at most three space dimensions, since
several dimension-dependent embeddings are crucial. Nevertheless, we expect that the local existence might
be generalized to higher space dimensions up to technical variants in the proof.

The rest of the paper is devoted to the proof of the above results, along the scheme outlined at the end of the
introduction.

3 Existence of weak solutions

In this section, we prove the existence of weak solutions according to Definition 2.2.

3.1 Regularized system

As a regularized system to approximate (1), we consider

∂tθ − κ∆θ + εθp + θ∂tϕ = |∂tϕ|2 , (32a)

∂tϕ−∆ϕ+ F ′(ϕ) = θ , (32b)

where ε ∈ (0, 1) is intended to pass to 0 in the limit and p ∈ (3,∞) is arbitrary but fixed. The system is
equipped with the boundary conditions

nnn · ∇ϕ = 0 = nnn · ∇θ .
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In order to prove existence of weak solutions according to Definition 2.2, we follow the standard path of first
proving existence of solutions to the regularized system (32) (see Subsection 3.2) (complemented with regular-
ized initial data), then deriving a priori estimates (see Subsection 3.3) uniform with respect to ε, and showing
convergence in the end (see Subsection 3.4).

3.2 Existence of solutions to the regularized system

We consider the following regularized decoupled system

∂tθ − κ∆θ + ε(θ)p + θ∂tϕ = |∂tϕ|2 , (33a)

∂tϕ−∆ϕ+ F ′(ϕ) = θ , (33b)

equipped with the boundary conditions (1c) and initial data θε0 ∈ C2(Ω) with θε0(xxx) ≥ cε > 0 and ϕε0 ∈ C2(Ω)
for every ε > 0 such that θε0 and ϕε0 strongly converge to θ0 and ϕ0 in the spaces indicated in (23a) and (23b),
respectively. Additionally, we assume that ε‖ϕ0‖pLp(Ω) ≤ c and that the product ϕε0 log θε0 remains bounded

in L1(Ω). Here and below, for r ∈ R and σ > 1, we use the notation (r)σ = |r|σ−1r. This assures that the
associated operator is monotone. This is necessary in this step, because we have not established yet that θ is
positive.

We prove the existence of local solutions by means of the SCHAUDER fixed point argument. To do this, we define
the set

MR :=
{
θ ∈ Lp(Ω× (0, Tε))

∣∣‖θ‖Lp(Ω×(0,Tε)) ≤ R
}
,

where the radius R > 0, possibly depending on ε, and the final time Tε > 0 will be specified in the course of
the procedure.

The operator T :MR→MR is defined by the following procedure. For given θ ∈ MR, solve (33b) with the
boundary condition (1c) and the initial value ϕε0 so obtaining ϕ in a proper regularity class.

Then, for given ∂tϕ, solve (33a) with the boundary condition (1c) and the initial value θε0 obtaining θ. Corre-
spondingly, we set T (θ) = θ. Then, to be able to apply the SCHAUDER fixed point theorem, we need to prove
several claims.

Claim 1: The operator T is well defined and mapsMR into itself. Since showing the existence of weak
solutions to the two equations separately is a standard procedure (one may use ROTHE’s method or a suitable
GALERKIN discretization like in [42, chapter 8]), we rather focus on the relevant estimates.

First of all, recalling (13) and testing (33b) by (ϕ)p−1/p, we find

d

d t
‖ϕ‖pLp(Ω) +

4(p− 1)

p3
‖∇(ϕ)p/2‖2L2(Ω) +

1

p

∫
Ω
G′(ϕ)(ϕ)p−1 dxxx

≤ 2λ

p
‖ϕ‖pLp(Ω) +

1

p2
‖θ̄‖pLp(Ω) +

p− 1

p2
‖ϕ‖pLp(Ω) .

Due to the monotonicity of G′ and to the assumption G′(0) = 0, the GRONWALL inequality shows that

‖ϕ‖L∞(0,Tε;Lp(Ω)) ≤ ‖ϕε0‖Lp(Ω) + c‖θ̄‖Lp(0,Tε;Lp(Ω)) ≤ ‖ϕε0‖Lp(Ω) + cR . (34)

Here and below, the constant c, whose value may vary on occurrence, is allowed to depend both on ε and, in a
monotonic way, on the final time Tε to be chosen later.

Let us now set

Gp(s) :=

∫ s

0
(G′(r))p−1 d r (35)
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and note that, by construction, Gp is convex and coercive at infinity. Then, testing (33b) by (G′(ϕ))p−1, we
observe by YOUNG’s inequality that

d

d t

∫
Ω
Gp(ϕ) dx+ (p− 1)

∫
Ω
|∇ϕ|2G′′(ϕ)|G′(ϕ)|p−2 dxxx+ ‖G′(ϕ)‖pLp(Ω)

≤ 1

2
‖G′(ϕ)‖pLp(Ω) + c

(
‖θ̄‖pLp(Ω) + ‖ϕ‖pLp(Ω)

)
.

We then obtain

‖G′(ϕ)‖Lp(Ω×(0,Tε)) ≤
∫

Ω
Gp(ϕ

ε
0) dxxx+ c

(
‖θ̄‖Lp(Ω×(0,Tε)) + ‖ϕ‖Lp(Ω×(0,Tε)) + 1

)
.

Comparing terms in (33b) and using the maximal Lp-regularity of the operator associated to the heat equation
(see [15]), we conclude that there exists a constant c > 0 such that

‖∂tϕ‖Lp(Ω×(0,Tε)) + ‖∆ϕ‖Lp(Ω×(0,Tε))

≤ c(‖ϕε0‖C0(Ω) + ‖ϕε0‖W 2−2/p,p(Ω) + ‖θ̄‖Lp(Ω×(0,Tε))) ≤ c(1 +R) . (36)

In the following, we may consider equation (33a) for ∂tϕ ∈ Lp(Ω × (0, T )). We define q = p2/2 and test
equation (33a) by θ(q−p) to find

1

(q − p+ 1)

d

d t
‖θ‖q−p+1

L(q−p+1)(Ω)
+

4κ(q − p)
(q − p+ 1)2

‖∇(θ(q−p+1)/2)‖2L2(Ω) + ε‖θ‖qLq(Ω)

=

∫
Ω
|∂tϕ|2θ(q−p) − ∂tϕθ(q−p+1) dxxx

≤ ε

2
‖θ‖qLq(Ω) + cε

(
‖∂tϕ‖pLp(Ω) + ‖∂tϕ‖q/(p−1)

Lq/(p−1)(Ω)

)
.

Note that p ≥ 2 such that q/(p− 1) ≤ p. Integrating in time, we conclude that

‖θ‖p
2/2

Lp2/2(Ω×(0,Tε))
≤ cε

(
‖θε0‖

(p2−2p+2)/2

L(p2−2p+2)/2(Ω)
+ ‖∂tϕ‖pLp(Ω×(0,Tε))

)
. (37)

The previous estimates and maximal Lp/2-regularity results for the operator associated to the heat equation
allow us to infer that

‖∂tθ‖Lp/2(Ω×(0,Tε)) + ‖∆θ‖Lp/2(Ω×(0,Tε)) ≤ c . (38)

Using interpolation, it is now not difficult to verify (we leave details to the reader) that there exists an s > 0 such
that

‖θ‖W s,2p(0,Tε;Lp(Ω)) ≤ Q(‖ϕε0‖C2(Ω), ‖θ
ε
0‖C2(Ω), R) ,

whereQ is a computable nonnegative-valued and continuous function, which is monotone inR. As the previous
constants c, also the expression ofQmay depend on Tε. However, this dependence is monotonic, hence taking
a small final time Tε does not alter the expression of Q. Further on, we can find a β > 0 such that

‖θ‖Lp(Ω×(0,Tε)) ≤ cT βε ‖θ‖W s,2p(0,Tε;Lp(Ω)).

Hence, we may conclude that for R big enough, we can take Tε so small that

‖θ‖Lp(Ω×(0,Tε)) ≤ cT βε ‖θ‖W s,2p(0,Tε;Lp(Ω)) ≤ T βε Q(‖ϕε0‖C2(Ω), ‖θ
ε
0‖C2(Ω), R) ≤ R .

Claim 2: The image of T is compact inMR. The above estimate (38) allows us to apply the LIONS–AUBIN

compactness lemma (cf. [33, p. 58]) granting compactness inLp/2(Ω×(0, T )). Combining this with the bound-
edness (37), we obtain compactness in Lp(Ω× (0, T )). Note that we used p > 2 such that p2 > 2p.
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Claim 3: The operator T is continuous. Assume that ϕ1 and ϕ2 are the solutions to (33b) corresponding to
two different right-hand sides θ1 and θ2, respectively. Subtracting the equations from each other and testing the
difference by ϕ1 − ϕ2, we find

1

2

d

d t
‖ϕ1 − ϕ2‖2L2(Ω) + ‖∇ϕ1 −∇ϕ2‖2L2(Ω) +

∫
Ω

(
G′(ϕ1)−G′(ϕ2)

)
(ϕ1 − ϕ2) dxxx

≤ 1

2
‖θ1 − θ2‖2L2(Ω) +

(
1

2
+ 2λ

)
‖ϕ1 − ϕ2‖2L2(Ω) ,

which grants the continuity of the solution operator to the equation (33b) fromL2(Ω×(0, T )) toL∞(0, T ;L2(Ω)).

This fact, together with the previous estimates and the standard theory of the heat equation, guarantees that
the solution operator to (33b) maps θ to ∂tϕ continuously from L2(Ω × (0, T )) to L2(Ω × (0, T )). Since
we already established the boundedness in a better space (see (36)), we even find that the solution operator
to (33b) maps θ to ∂tϕ continuously from Lp(Ω× (0, T )) to Lq(Ω× (0, T )) for some q < p, for instance for
q = p/(p− 2).

Assume now that θ1 and θ2 are the solutions to (33a) corresponding to two different inputs ∂tϕ1 and ∂tϕ2.
Subtracting the equations from each other and testing the difference by θ1 − θ2, we then find

1

2

d

d t
‖θ1 − θ2‖2L2(Ω) + κ‖∇θ1 − θ2‖2L2(Ω) + ε

∫
Ω

((θ1)p − (θ2)p)(θ1 − θ2) dxxx

=

∫
Ω

(|∂tϕ1|2 − |∂tϕ2|2 − ∂tϕ1θ1 + ∂tϕ2θ2)(θ1 − θ2) dxxx

≤ ‖∂tϕ1 − ∂tϕ2‖Lp/(p−2)(Ω)

(
‖∂tϕ1‖Lp(Ω) + ‖∂tϕ2‖Lp(Ω)

)
‖θ1 − θ2‖Lp(Ω)

+ ‖∂tϕ1‖Lp(Ω)‖θ1 − θ2‖2L2p/(p−1)(Ω)
+ ‖θ2‖Lp(Ω)‖∂tϕ1 − ∂tϕ2‖Lp/(p−2)(Ω)‖θ1 − θ2‖Lp(Ω) .

(39)

Since the function s 7→ (s)p is strongly monotone, there exists a cp > 0 such that

((θ1)p − (θ2)p)(θ1 − θ2) ≥ cp|θ1 − θ2|p+1 .

This allows us to absorb the terms ‖θ1−θ2‖Lp(Ω) on the right-hand side of (39) via YOUNG’s inequality into the
corresponding term on the left-hand side. The estimation of the other terms in (39) is simpler and hence it is left
to the reader. Note that p > 3, so that 2p/(p − 1) > p. Then, a number of straightforward checks permits us
to conclude that the solution operator to (33a) is continuous as a mapping from Lp/(p−2)(0, T ;Lp/(p−2)(Ω))
to L∞(0, T ;L2(Ω)) ∩ Lp+1(0, T ;Lp+1(Ω)) ∩ L2(0, T ;H1(Ω)). Eventually, we have obtained that T is a
continuous mapping fromMR toMR, as desired.

Claim 4: The solution θ is positive. We observe that from (33a) there follows

∂tθ − κ∆θ = −ε(θ)p + |∂tϕ|2 − ∂tϕθ

≥ −ε(θ)p +
1

2
|∂tϕ|2 −

1

2
θ2 ≥ −(θ)p − 1

2
θ2.

Then, one may check that, for every ε ∈ (0, 1), the solution to the ODE

∂th+ (h)p +
1

2
h2 = 0 , h(0) := ess infxxx∈Ω θ

ε
0(xxx) ,

is a positive subsolution to (33a) on Ω × (0, T ). Consequently, θ(xxx, t) ≥ h(t) > 0 for all xxx ∈ Ω and
t ∈ (0, T ). Moreover, it is worth observing that the above bound is, in the case of the additional assumption (24),
independent of ε. This fact is not essential here, but it will be in the sequel.

As an outcome of the proved Claims 1–4, we may now apply SCHAUDER’s fixed point theorem to the map T .
Hence, for every ε > 0 there exists a local-in-time solution (θε, ϕε) to the regularized system (32), where the
local existence interval (0, Tε) may actually depend on ε.
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Remark 3.1. We have only established local-in-time existence of solutions to the approximate system. On the
other hand, all the a priori estimates we shall perform in the next subsection will be independent of Tε. Hence,
as a consequence of standard extension arguments (details are left to the reader) the weak solution we obtain
in the limit will be in fact defined on the whole reference interval (0, T ) given in the beginning.

3.3 A priori estimates

In order to find a priori bounds independent of ε, we derive a number of estimates. Firstly, testing the equa-
tion (32a) and (32b) with 1 and ϕt, respectively, and adding the results, we obtain the energy equality

1

2
‖∇ϕε(t)‖2L2(Ω) +

∫
Ω
F (ϕε(t)) + θε(t) dxxx+ ε

∫ t

0

∫
Ω
θpε dxxx d s

=
1

2
‖∇ϕε0‖2L2(Ω) +

∫
Ω
F (ϕε0) + θε0 dxxx , (40)

where θε0 and ϕε0 are the regularized initial data for system (33).

Similarly, testing (32a) by −ϑ/θε, we find the entropy production rate

−
∫

Ω
(log θε(t) + ϕε(t))ϑ(t) dxxx+

∫ t

0

∫
Ω
κ|∇ log θε|2ϑ+

∣∣∣∣∂tϕε√
θε

∣∣∣∣2 ϑ− εθp−1
ε ϑ dxxx d s

= −
∫

Ω
(log θε0 + ϕε0)ϑ(0) dxxx+

∫ t

0

∫
Ω
κ∇ log θε · ∇ϑ− (log θε + ϕε)∂tϑ dxxx d s , (41)

holding true for every ϑ ∈ C0([0, T ]×Ω)∩H1(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) such that ϑ(t,xxx) ≥ 0 for
every t ∈ [0, T ] and xxx ∈ Ω.

Using the boundedness of F from below (see Hypothesis 2.1), we conclude from the energy equality (40) that

‖∇ϕε‖2L∞(0,T ;L2(Ω)) + ‖F (ϕε)‖L∞(0,T ;L1(Ω)) + ‖θε‖L∞(0,T ;L1(Ω)) + ε‖θε‖pLp(0,T ;Lp(Ω)) ≤ c . (42)

Then, on account of (15), we have more precisely

‖ϕε‖L∞(0,T ;H1(Ω)) ≤ c . (43)

From (42) and Hypothesis 2.1, we observe that

‖F ′(ϕε) log(e+ |F ′(ϕε)|)‖L∞(0,T ;L1(Ω)) ≤ c . (44)

Choosing now ϑ = 1 in (41) and using (42), we obtain the bounds

‖ log θε‖L∞(0,T ;L1(Ω)) + ‖∇ log θε‖L2(0,T ;L2(Ω)) +

∥∥∥∥∂tϕε√
θε

∥∥∥∥
L2(0,T ;L2(Ω))

≤ c . (45)

As observed in the introduction, the above information (which is the direct outcome of the basic laws of Thermo-
dynamics) is not sufficient to provide a control of the temperature uniformly with respect to ε in a space better
than L1 with respect to the space variables. This is a critical issue and it is the reason why existence of weak
solutions to system (1a)-(1b) has been proved so far only in space dimension 1, or in the case when the heat
flux law has a power-like expression [22], i.e., the diffusion term in (1a) has the form−κ∆θb, for b large enough.
In what follows we actually deduce a new a-priori estimate that will allow us to show that∫ T

0

∫
Ω
θε log θε dxxx d t ≤ c . (46)
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Such a uniform integrability property, which is a somehow unexpected fact because it does not seem to be
linked to any physical principle, will be the key for showing that (a subsequence of) θε converges strongly in L1

to a limit temperature. In turn, this will imply solvability of the limit system in the sense of weak solutions with no
occurrence of defect measures. It is worth noting that, in order for this argument to work, assuming a polynomial
growth of the potential (16) is a crucial point.

That said, we first observe that the solution to

∂tϕ−∆ϕ+ F ′(ϕ) = ∂tϕ−∆ϕ+G′(ϕ)− 2λϕ = 0 with ϕ(0) = −K (47)

is a subsolution to (32b), because we have proved that θ ≥ 0. Note that we have chosen the initial value ϕ(0)
to be constant in Ω, where the constant K is given in (23c).

Then, assuming for simplicity but without loss of generality that G′(0) = 0, for the solution of (47), we observe
by testing with ϕ that

1

2

(
d

d t
|ϕ|2 −∆|ϕ|2

)
= −|∇ϕ|2 −G′(ϕ)ϕ+ 2λ|ϕ|2 ≤ 2λ|ϕ|2 with |ϕ(0)|2 = K2 ,

which permits us to conclude that the solution to the ODE ∂th = 4λh with h(0) = K2 is a supersolution to
|ϕ|2 and deduce that |ϕ(xxx, t)|2 ≤ K2e4λT for all (xxx, t) ∈ Ω× (0, T ). This in turn gives a lower bound on the
solution of (32b), i.e., there exists a constant K ′ > 0 such that

ϕε(xxx, t) ≥ −K ′ for all (xxx, t) ∈ Ω× (0, T ) . (48)

Multiplying now (32a) by 1/θε, we find the entropy production rate for the approximate system:

∂t log θε + ∂tϕε − κ∆ log θε − κ|∇ log θε|2 + εθp−1
ε =

|∂tϕε|2

θε
.

Testing this equation by ϕε +K ′, we observe∫
Ω

(ϕε +K ′)∂t log θε dxxx+
1

2

d

d t
‖ϕε +K ′‖2L2(Ω)

+

∫
Ω
κ∇ log θε · ∇ϕε − κ(ϕε +K ′)|∇ log θε|2 − (ϕε +K ′)

|∂tϕε|2

θε
+ εθp−1

ε (ϕε +K ′) dxxx = 0 .

(49)

Now, we test (32b) by log θε, which implies∫
Ω

log θε∂tϕε +∇ϕε · ∇ log θε + F ′(ϕε) log θε dxxx =

∫
Ω
θε log θε dxxx . (50)

Adding (49) and (50) and integrating in time, we may observe∫ T

0

∫
Ω
θε log θε dxxx d t+

∫ T

0

∫
Ω

(ϕε +K ′)

(
κ|∇ log θε|2 +

|∂tϕε|2

θε

)
dxxx d t

=
1

2
‖ϕε +K ′‖2L2(Ω)

∣∣∣T
0

+

∫
Ω

log θε(ϕε +K ′) dxxx
∣∣∣T
0

+

∫ T

0

∫
Ω

(κ+ 1)∇ log θε · ∇ϕε + F ′(ϕε) log θε + εθp−1
ε (ϕε +K ′) dxxx d t . (51)

Now, we provide a control of the various terms on the right-hand side of the above relation. First of all, the lower
bound on {ϕε} (see (48)) allows us to observe that∫ t

0

∫
Ω

(ϕε +K ′)

(
κ|∇ log θε|2 +

|∂tϕε|2

θε

)
dxxx d s ≥ 0 .
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Moreover, the term ‖ϕε(t)‖2L2(Ω) in (51) is controlled due to the L∞(0, T ;H1(Ω))-bound of {ϕε} established
in (43). Next, using Hölder’s inequality, we have∫ t

0

∫
Ω

(κ+ 1)∇ϕε · ∇ log θε dxxx d t ≤ c‖∇ϕε‖L2(0,T ;L2(Ω))‖∇ log θε‖L2(0,T ;L2(Ω)) ,

where the right-hand side is bounded due to (42) and (45). The regularizing term can be estimated as follows:

ε

∫ t

0

∫
Ω
θp−1
ε ϕε dxxx d t ≤

(
ε1/p‖θε‖Lp(0,T ;Lp(Ω))

)p−1
ε1/p‖ϕε‖Lp(0,T ;Lp(Ω)) ≤ c ,

where we also used (42) and (34).

Considering the second term on the right-hand side of (51), we distinguish the cases for the different signs of
log θε: ∫

Ω
log θε(ϕε +K ′) dxxx =

∫
{θε≤1}

log θε(ϕε +K ′) dxxx+

∫
{θε>1}

log θε(ϕε +K ′) dxxx , (52)

where all terms are evaluated at the time t (the counterparts at t = 0 are controlled thanks to the assump-
tions (23b) and the assumptions on the regularized initial data below formula (33)). Thanks to the lower bound
(48) on {ϕε}, we find ∫

{θε≤1}
log θε(ϕε +K ′) dxxx ≤ 0 .

Additionally, we may estimate the last term on the right-hand side of (52) using the LEGENDRE–FENCHEL–
YOUNG inequality for the convex function ψ(r) = er and its convex conjugate ψ∗(s) = s log s− s (where we
intend that ψ∗(0) = 0 and ψ∗(s) ≡ +∞ for s < 0):∫

{θε>1}
log θε(ϕε +K ′) dxxx ≤

∫
{θε>1}

ψ(log θε) + ψ∗(ϕε +K ′) dxxx

=

∫
{θε>1}

θε + (ϕε +K ′) log(ϕε +K ′)− (ϕε +K ′) dxxx ≤ c ,

the last inequality following from (42) and (43).

We now focus on the term depending on F ′ in (51). Actually, by (48) and (14), it is clear that F ′(ϕε) ≥ −c
a.e. in Ω× (0, T ) and for all ε > 0. Hence, we can decompose that term as∫ t

0

∫
Ω
F ′(ϕε) log θε dxxx d s =

∫∫
{θε≤1}

F ′(ϕε) log θε dxxx d s+

∫∫
{θε>1}

F ′(ϕε) log θε dxxx d s

≤ c
∫∫
{θε≤1}

| log θε| dxxx d s+

∫∫
{θε>1}

|F ′(ϕε)| log θε dxxx d s .

The first term on the right-hand side is estimated thanks to (45), whereas the second term can be controlled
once more by using the LEGENDRE–FENCHEL–YOUNG inequality with the same ψ as before. Namely, we have∫∫

{θε>1}
|F ′(ϕε)| log θε dxxx d s ≤

∫∫
{θε>1}

ψ∗(|F ′(ϕε)|) + ψ(log θε) dxxx d s

≤
∫∫
{θε>1}

|F ′(ϕε)|(log |F ′(ϕε)| − 1) + θε dxxx d s ,

and the right-hand side is controlled thanks to the growth assumption (16) of Hypothesis 2.1 and the bound (42).
Inserting everything back into (51), we eventually obtain∫ t

0

∫
Ω
θε log θε dxxx d s ≤ c ,
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which proves the estimate (46).

In order to improve our bound for ∂tϕε, we consider a new convex function ψ : R → [1,+∞] defined as
ψ(r) = (1/4)(r2(2 log r − 1) + 1), where it is intended that ψ(1) = 0 and ψ(r) ≡ +∞ as r < 1.
Determining the precise expression of the conjugate function ψ∗(s) is difficult, but we can at least estimate it
appropriately. We recall that

ψ∗(s) = max
r∈R

(
sr − ψ(r)

)
and a simple computation shows that the maximum is attained at s = r log r. Hence, if r is the maximizer,
using first that s = r log r and then that s+ 1 ≤ r2 (which holds as r ≥ 1), we have

ψ∗(s) = r2 log r − ψ(r) =
1

2
r2 log r +

1

4
r2 − 1

4
=

s2

log r2
+

s2

log2 r2
− 1

4

≤ s2

log(s+ 1)
+

s2

log2(s+ 1)
− 1

4
.

Additionally, we observe for ψ∗ that for any y ∈ [2,∞) it holds

ψ∗(y log1/2 y) ≤ y2 log y

log
(

1 + y log1/2 y
) +

y2 log y

log2
(

1 + y log1/2 y
) − 1

4
≤ c(y2 + 1) , (53)

since the function

y 7→ log y

log
(

1 + y log1/2 y
) +

log y

log2
(

1 + y log1/2 y
)

is bounded for y ∈ [2,∞), which is obvious for any compact subset in [2,∞) and also holds as y ↗∞ as an
easy check shows.

Now, setting for simplicity u :=
√
θε + 1 and v := |∂tϕε|+ 2u, we have

v log1/2 v =
v

u

[
log
(v
u

)
+

1

2
log(u2)

]1/2

u

≤ v

u

[
log1/2

(v
u

)
+

1√
2

log1/2(u2)

]
u

≤ v

u
log1/2

(v
u

)
u+

1√
2

v

u
u log1/2(u2)

≤ ψ∗
(v
u

log1/2
(v
u

))
+ ψ(u) +

1√
8

(
v2

u2
+ u2 log(u2)

)
≤ c

(
v2

u2
+ 1

)
+

1

4
u2(2 log(u2)− 1) +

1

4
+

1√
8

(
v2

u2
+ u2 log(u2)

)
≤ c

(
v2

u2
+ u2 log(u2) + 1

)
, (54)

where we used calculation rules for the logarithm, properties of the square root under the additional observation
that log(v/u) ≥ 0, the LEGENDRE–FENCHEL–YOUNG inequality as well as the standard YOUNG’s inequality,
and (53) as well as the definition of ψ. Finally, integrating (54) over Ω× (0, T ), we observe that the right-hand
side is bounded due to (45) and (46). From the left-hand side, we deduce with the bound (46) that∫ T

0

∫
Ω
|∂tϕε| log1/2

(
1 + |∂tϕε|

)
dxxx d t ≤ c. (55)

Collecting the above estimates and comparing terms in the equality (41), we also obtain an estimate for the time
derivatives of log θε, i.e.,

‖∂t log θε‖L1(0,T ;(W 1,p(Ω))∗) ≤ c for p > 3 .
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3.4 Convergence of the approximate solutions

The a priori estimates deduced above allow us to infer that there exists a (nonrelabelled) subsequence of ε↘ 0
such that the following convergence relations hold:

ϕε
∗
⇀ ϕ in L∞(0, T ;H1(Ω)) , (56)

log θε ⇀ ` in L2(0, T ;H1(Ω)) , (57)

∂t log θε
∗
⇀ ∂t` inM([0, T ]; (W 1,p(Ω))∗) for p > 3 , (58)

where (57) comes from combining the estimates of the first two quantities in (45).

By estimate (55), the family {∂tϕε} is uniformly integrable. Hence, by the DUNFORD-PETTIS theorem (cf. [11,
Thms. 21, 22]) we have

∂tϕε ⇀ ∂tϕ in L1(0, T ;L1(Ω)) . (59)

Then, the generalized LIONS-AUBIN Lemma (cf. [42, Cor. 7.9] or [27, Thm. 3.19]) allows us to extract strongly
converging subsequences:

ϕε→ϕ in L2(0, T ;L2(Ω)) , (60)

log θε→ ` in L2(0, T ;L2(Ω)) . (61)

In particular, up to extracting further subsequences, {ϕε} and {log θε} converge to ϕ and ` pointwise a.e. in
Ω × (0, T ). Using estimates (44) and (46), we obtain that the families {F ′(ϕε)} and {θε} are also uniformly
integrable. Hence, noting that F ′(ϕε) → F ′(ϕ) pointwise a.e. in Ω × (0, T ) by continuity of F ′ and that
θε → e` =: θ pointwise a.e. in Ω× (0, T ), and applying VITALI’s theorem (cf. [47]), we obtain

θε→ θ in L1(0, T ;L1(Ω)) , (62)

F ′(ϕε)→F ′(ϕ) in L1(0, T ;L1(Ω)) (63)

and in particular we identify ` = log θ in (57)-(58).

Comparing terms in (32b), we obtain that also {∆ϕε} is uniformly integrable. Hence,

∆ϕε ⇀ ∆ϕ in L1(0, T ;L1(Ω)) . (64)

We can thus pass to the limit in all terms in (32b) and attain the equation (20).

In the next step, we want to pass to the limit in the energy equality (40). First, we observe that εθp ≥ 0. Hence,
removing that term we get an inequality at the approximate level.

From (56) and (59) we deduce that

ϕε→ϕ in Cw([0, T ];H1(Ω)) , (65)

i.e., the sequence is converging pointwise in [0, T ] with respect to the weak topology in L2(Ω). The weakly-
lower semi-continuity of the L2(Ω)-norm grants that, for every t ∈ [0, T ],

‖∇ϕ(t)‖2L2(Ω) ≤ lim inf
ε>0

‖∇ϕε(t)‖2L2(Ω) .

Finally, using pointwise (a.e.) convergence of {log θε} and {ϕε} as well as FATOU’s lemma, we find that∫
Ω
F (ϕ(t)) + θ(t) dxxx ≤ lim inf

ε→ 0

∫
Ω
F (ϕε(t)) + θε(t) dxxx a.e. in (0, T ) .

Therefore, the limit fulfills the energy inequality (22).
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It remains to pass to the limit in the entropy inequality (41) for ϑ ≥ 0. To remove the regularizing term, we
observe that ∫ t

0

∫
Ω
εθp−1
ε ϑ dxxx d t ≤ ε1/p

(
ε1/p‖θε‖Lp(Ω×(0,T ))

)p−1
‖ϑ‖Lp(Ω×(0,T ))→ 0

as ε→ 0, where again the bound (42) is used. Additionally, combining estimate (45) with the pointwise conver-
gence resulting from (62) and (59), we infer

∂tϕε√
θε

⇀
∂tϕ√
θ

in L2(0, T ;L2(Ω)) .

Considering now the equality (41), we find from the two previous convergences, (57) and the weak lower semi-
continuity of convex functions (cf. [23, Thm. 10.20] or [28]) that

lim inf
ε→ 0

∫ t

0

∫
Ω
κ|∇ log θε|2ϑ+

∣∣∣∣∂tϕε√
θε

∣∣∣∣2 ϑ− εθp−1
ε ϑ dxxx d s ≥

∫ t

0

∫
Ω
κ|∇ log θ|2ϑ+

∣∣∣∣∂tϕ√θ
∣∣∣∣2 ϑ dxxx d s ,

(66)

where, from now on, we consider ϑ ∈ C0([0, T ] × Ω) ∩ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that
ϑ(t,xxx) ≥ 0 for every t ∈ [0, T ] and xxx ∈ Ω. Then, the convergence (57) allows us to pass to the limit in the
second term on the right-hand side of (41):

lim
ε→ 0

∫ t

0

∫
Ω
κ∇ log θε · ∇ϑ− (log θε + ϕε)∂tϑ dxxx d s

=

∫ t

0

∫
Ω
κ∇ log θ · ∇ϑ− (log θ + ϕ)∂tϑ dxxx d s for all t ∈ [0, T ] . (67)

Due to the choice of the approximation of the initial values (below formula (33)) together with (23a) as well
as (23b), also the first term on the right-hand side of (41) converges appropriately.

From (65), we find that

lim
ε→ 0

∫
Ω
ϕε(t)ϑ(t) dxxx =

∫
Ω
ϕ(t)ϑ(t) dxxx for all t ∈ (0, T ) . (68)

Finally, we consider the first term in (41). Decomposing the logarithm in its positive and negative part,

log θε = log+ θε − log− θε ,

we may observe that the positive part is bounded in Lp(Ω) for any p ∈ (0,∞). Indeed, by the estimate
yq ≤ cey for any q ≥ 0, we find∫

Ω
| log+ θε(t)|q dxxx ≤

∫
Ω
celog+ θε(t) dxxx ≤ c

∫
Ω
θε(t) dxxx (69)

for q ∈ (0,∞) and a.e. t ∈ (0, T ), where the right-hand side is bounded due to (42). This implies that the
sequence {log+ θε(xxx, t)} is weakly compact in L1(Ω) for a.e. t ∈ (0, T ) (see for instance [43, Thm. 1.4.5]
for different characterizations of weak compactness in L1) . The Theorem by VITALI (cf. [47]) implies by the
pointwise (a.e.) strong convergence of {log θε} to log θ that

log+ θε(t)→ log+ θ(t) in Lq(Ω) for q ∈ [1,∞) and a.e. t ∈ (0, T ) . (70)

From the a.e. pointwise convergence of {log θε} to log θ and FATOU’s Lemma, we deduce from the positivity of
log− and of ϑ that∫

Ω
log− θ(t)ϑ(t) dxxx ≤ lim inf

ε↘0

(∫
Ω

log− θε(t)ϑ(t) dxxx

)
a.e. in (0, T ) . (71)
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Finally, going to the limit in the entropy inequality (41) for ϑ ≥ 0 using (66)–(71), we attain relation (19).

Note that the pointwise lower bound on the approximate solutions of Claim 4 in Sec. 3.2 does not depend on
ε in the case of the additional assumption (24). The strong convergence (62) preserves this pointwise lower
bound, which results in (25). In this case, the sequence {log θε} is bounded in L∞(0, T ;Lq(Ω)) due to the
lower bound and (69). This allows us to infer from convergence (58) and [27, Lemma 2.17] that

log θε
∗
⇀ log θ in BV(0, T ; (W 1,p(Ω))∗) ∩ L∞(0, T ;Lq(Ω)) for p > 3 and q ∈ (1,∞) ,

which proves regularity (26). From [41, Thm. A.5] with the choices Y = W 1,p(Ω) and V = Lq(Ω) we also
deduce that

log θε(t)⇀ log θ(t) in Lq(Ω) for q ∈ (1,∞) and a.e. t ∈ (0, T ) .

Moreover, using a generalization of HELLY’s theorem (cf., e.g., [36, Thm. 3.1] or [12, Lemma 7.2]) we also obtain

log θε(t)
∗
⇀ ¯̀(t) in (W 1,p(Ω))∗ for all t ∈ (0, T ).

It is easy then to check that ¯̀coincides with log θ almost everywhere. Hence, up to changing the representative
of log θ, we may assume that ¯̀= log θ everywhere on [0, T ].

4 Weak-strong uniqueness

In this section we prove Theorem 2.7. In order to do that we first introduce a proper relative energy functional
E (cf. (72)), which plays the role of a distance between a solution (θ, ϕ) and a generic couple (θ̃, ϕ̃). Then
we estimate in a suitable way the various terms appearing in the expression of E , assuming that (θ̃, ϕ̃) is a
strong solution of our problem, with the aim of finding a suitable relative energy inequality (cf. (82)). With proper
manipulations, we will then see that the relative energy inequality can be interpreted as a differential inequality
to which a Gronwall-type argument (cf. (89)) can be applied. As a consequence of that, we will obtain that any
weak solution necessarily coincides with a strong solution originating from the same initial data on the existence
interval of the latter.

4.1 Relative energy inequality

We use the relative energy approach (see FEIREISL, JIN and NOVOTNÝ [19]) to prove weak-strong uniqueness.
In the case of a convex energy functional, this idea goes back to DAFERMOS [10] in the context of thermody-
namical systems.

We define the relative energy for system (1) as

E(θ, ϕ|θ̃, ϕ̃) :=
1

2
‖∇ϕ−∇ϕ̃‖2L2(Ω) +M‖ϕ− ϕ̃‖2L1(Ω) − λ‖ϕ− ϕ̃‖

2
L2(Ω) (72a)

+

∫
Ω
G(ϕ)−G(ϕ̃)−G′(ϕ̃)(ϕ− ϕ̃) dxxx+

∫
Ω

Λ(θ|θ̃) dxxx , (72b)

which plays the role of a distance between a solution (θ, ϕ) and a generic couple (θ̃, ϕ̃). In (72) we defined for
convenience

Λ(θ|θ̃) := θ − θ̃ − θ̃(log θ − log θ̃) . (73)

Moreover, the constantM > 0 is taken big enough so that, from the GAGLIARDO-NIRENBERG inequality (cf. [37,

p. 125]) ‖φ‖L2(Ω) ≤ c(‖∇φ‖αL2(Ω)‖φ‖
(1−α)
L1(Ω)

+ ‖φ‖L1(Ω)) for an α ∈ (0, 1) and the YOUNG inequality,
line (72a) can be estimated from below by

E(θ, ϕ|θ̃, ϕ̃) ≥ 1

4
‖∇ϕ−∇ϕ̃‖2L2(Ω) + ‖ϕ− ϕ̃‖2L1(Ω) . (74)
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Moreover, due to convexity of G, we may conclude that the first term in line (72b) is nonnegative.

We can also observe that, thanks to definition (13),

G(ϕ)−G(ϕ̃)−G′(ϕ̃)(ϕ− ϕ̃) = F (ϕ)− F (ϕ̃)− F ′(ϕ̃)(ϕ− ϕ̃)

+ λ(|ϕ|2 − |ϕ̃|2 − 2ϕ̃(ϕ− ϕ̃))

= F (ϕ)− F (ϕ̃)− F ′(ϕ̃)(ϕ− ϕ̃) + λ|ϕ− ϕ̃|2 .

Finally, we note that also the second term in (72b) (cf. (73)) is nonnegative thanks to convexity of the exponential.

Hence, regrouping of some terms in (72) gives

E(θ, ϕ|θ̃, ϕ̃) =

∫
Ω

1

2
|∇ϕ|2 + F (ϕ) + θ dxxx−

∫
Ω

1

2
|∇ϕ̃|2 + F (ϕ̃) + θ̃ dxxx

+

∫
Ω
∇ϕ̃ · (∇ϕ̃−∇ϕ) + F ′(ϕ̃)(ϕ̃− ϕ) dxxx (75a)

−
∫

Ω
θ̃(log θ + ϕ)− θ̃(log θ̃ + ϕ̃) dxxx

+

∫
Ω
θ̃(ϕ− ϕ̃) dxxx+M‖ϕ− ϕ̃‖2L1(Ω) . (75b)

Then, we assume that (θ̃, ϕ̃) is a strong solution of our problem with the aim of finding a suitable relative energy
inequality. First, we observe by the energy inequality (22) for the weak solution and the energy equality ((22)
with equality) for the strong solution that∫

Ω

1

2
|∇ϕ(t)|2 + F (ϕ(t)) + θ(t) dxxx−

∫
Ω

1

2
|∇ϕ̃(t)|2 + F (ϕ̃(t)) + θ̃(t) dxxx

≤
∫

Ω

1

2
|∇ϕ0|2 + F (ϕ0) + θ0 dxxx−

∫
Ω

1

2
|∇ϕ̃0|2 + F (ϕ̃0) + θ̃0 dxxx . (76)

Note that the energy equality is valid for the strong solution since its regularity suffices to test the equations (1a)
and (1b) by 1 and ϕ̃t, respectively. For brevity, we denote the time derivative by the subscript t.

Next, we choose ϑ = θ̃ in (19). Note that this is possible on account of Corollary 2.6 and Remark 2.2.

We then get

−
∫

Ω
θ̃(log θ + ϕ) dxxx

∣∣∣t
0

+

∫ t

0

∫
Ω
θ̃

(
κ|∇ log θ|2 +

|ϕt|2

θ

)
dxxx d t

≤
∫ t

0

∫
Ω
κ∇ log θ · ∇θ̃ − θ̃t(log θ + ϕ) dxxx d t . (77)

Testing now equation (1a) for the strong solution (θ̃, ϕ̃) by 1 and observing that θ̃t+ ϕ̃tθ̃ = ∂t(θ̃(log θ̃+ ϕ̃))−
θ̃t(log θ̃ + ϕ̃), we find∫

Ω
θ̃(log θ̃ + ϕ̃) dxxx

∣∣∣t
0
−
∫ t

0

∫
Ω
|ϕ̃t|2 dxxx d t =

∫ t

0

∫
Ω
θ̃t(log θ̃ + ϕ̃) dxxx d t .

Note that the diffusive term of (1a) vanished due to the homogeneous NEUMANN boundary conditions (see (1c)).
Similarly, we find by testing equation (1a) for the strong solution (θ̃, ϕ̃) by (θ − θ̃)/θ̃ that∫ t

0

∫
Ω

(θ − θ̃)
(
κ|∇ log θ̃|2 + κ∆ log θ̃ +

|ϕ̃t|2

θ̃

)
dxxx d t =

∫ t

0

∫
Ω

(θ − θ̃)∂t(log θ̃ + ϕ̃) dxxx d t .
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Adding the last two equations leads to

∫
Ω
θ̃(log θ̃ + ϕ̃) dxxx

∣∣∣t
0

+

∫ t

0

∫
Ω

(θ − θ̃)
(
κ|∇ log θ̃|2 + κ∆ log θ̃ +

|ϕ̃t|2

θ̃

)
− |ϕ̃t|2 dxxx d t

=

∫ t

0

∫
Ω
θ̃t(log θ̃ + ϕ̃) dxxx d t+

∫ t

0

∫
Ω

(θ − θ̃)∂t(log θ̃ + ϕ̃) dxxx d t . (78)

Applying the fundamental theorem of calculus, we may infer for the terms in line (75a) that

∫
Ω

(
∇ϕ̃ · (∇ϕ̃−∇ϕ) + F ′(ϕ̃)(ϕ̃− ϕ)

)
dxxx
∣∣∣t
0

=

∫ t

0

∫
Ω

(
∇ϕ̃t · (∇ϕ̃−∇ϕ) + F ′′(ϕ̃)ϕ̃t(ϕ̃− ϕ)

)
dxxx d s

−
∫ t

0

∫
Ω

(ϕ̃t − ϕt)(∆ϕ̃− F ′(ϕ̃)) dxxx d s .

(79)

Note that the procedure leading to equality (79) is formal, but it could be easily made rigorous by density
arguments.

Next, writing (1b) both for the strong solution (θ̃, ϕ̃) and for the weak solution (θ, ϕ) (indeed, the expression
(20) in the definition of weak solutions is equivalent), taking the difference, and testing it by ∂tϕ̃, we deduce

∫ t

0

∫
Ω
∇ϕ̃t · (∇ϕ̃−∇ϕ) dxxx d s

=

∫ t

0

∫
Ω

(θ̃ − θ)ϕ̃t − ϕ̃t(F ′(ϕ̃)− F ′(ϕ)) dxxx d s−
∫ t

0

∫
Ω

(ϕ̃t − ϕt)ϕ̃t dxxx d s .

Similarly, we find by testing equation (1b) for the strong solution (θ̃, ϕ̃) with (ϕ̃t − ϕt) that

−
∫ t

0

∫
Ω

(∆ϕ̃− F ′(ϕ̃))(ϕ̃t − ϕt) dxxx d s =

∫ t

0

∫
Ω
θ̃(ϕ̃t − ϕt)− ϕ̃t(ϕ̃t − ϕt) dxxx d s .

Inserting the latter two relations into (79), we may conclude that

∫
Ω

(
∇ϕ̃ · (∇ϕ̃−∇ϕ) + F ′(ϕ̃)(ϕ̃− ϕ)

)
dxxx
∣∣∣t
0

=

∫ t

0

∫
Ω
ϕ̃t
(
F ′′(ϕ̃)(ϕ̃− ϕ)− F ′(ϕ̃) + F ′(ϕ)

)
dxxx d s

+

∫ t

0

∫
Ω

(θ̃ − θ)ϕ̃t dxxx d s−
∫ t

0
2

∫
Ω

(ϕ̃t − ϕt)ϕ̃t − (ϕ̃t − ϕt)θ̃ dxxx d s .

(80)

To handle the first term in line (75b), we apply again the fundamental theorem of calculus, leading to

∫
Ω
θ̃(ϕ− ϕ̃) dxxx

∣∣∣t
0

=

∫ t

0

∫
Ω
θ̃t(ϕ− ϕ̃) + (ϕt − ϕ̃t)θ̃ dxxx d s . (81)
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Now, we insert (76), (77), (78), (80), and (81) back into (75), which leads to the estimate

E(θ(t), ϕ(t)|θ̃(t), ϕ̃(t)) +

∫ t

0

∫
Ω
θ̃
|ϕt|2

θ
+ (θ − θ̃) |ϕ̃t|

2

θ̃
− |ϕ̃t|2 + 2(ϕ̃t − ϕt)ϕ̃t dxxx d s

+κ

∫ t

0

∫
Ω
θ̃|∇ log θ|2 −∇ log θ · ∇θ̃ + (θ − θ̃)|∇ log θ̃|2 + ∆ log θ̃(θ − θ̃) dxxx d s

≤ E(θ0, ϕ0|θ̃0, ϕ̃0) +

∫ t

0

∫
Ω
ϕ̃t
(
F ′′(ϕ̃)(ϕ̃− ϕ)− F ′(ϕ̃) + F ′(ϕ)

)
dxxx d s

−
∫ t

0

∫
Ω
θ̃t(log θ + ϕ)− θ̃t(log θ̃ + ϕ̃) dxxx d s

+

∫ t

0

∫
Ω

(θ − θ̃)∂t(log θ̃ + ϕ̃) + (θ̃ − θ)ϕ̃t dxxx d s

+

∫ t

0

∫
Ω

(ϕ̃t − ϕt)θ̃ + θ̃t(ϕ− ϕ̃) + (ϕt − ϕ̃t)θ̃ dxxx d s+M‖ϕ(t)− ϕ̃(t)‖2L1(Ω) .

(82)

For the last three lines of the forgoing estimate, we observe due to several cancellations that

−
∫

Ω

(
θ̃t(log θ + ϕ)− θ̃t(log θ̃ + ϕ̃)−(θ − θ̃)∂t(log θ̃ + ϕ̃)− (θ̃ − θ)ϕ̃t

)
dxxx

+

∫
Ω

(ϕ̃t − ϕt)θ̃ dxxx+

∫
Ω
θ̃t(ϕ− ϕ̃) dxxx+

∫
Ω

(ϕt − ϕ̃t)θ̃ dxxx

= −
∫

Ω
θ̃t(log θ + ϕ)− θ̃t(log θ̃ + ϕ̃)− θ̃t(ϕ− ϕ̃) dxxx

+

∫
Ω

(θ − θ̃)∂t(log θ̃ + ϕ̃) + (θ̃ − θ)ϕ̃t dxxx

=

∫
Ω
∂t(log θ̃)(θ − θ̃ − θ̃(log θ − log θ̃)) dxxx

=

∫
Ω

(∂t log θ̃)Λ(θ|θ̃) dxxx .

Here and below, we are actually using notation (73).

4.2 Estimates for the dissipative terms and the nonconvex part

For the dissipative terms due to heat conduction, i.e., the terms in the second line of (82), we observe with some
algebraic transformations that

θ̃|∇ log θ|2 −∇ log θ · ∇θ̃ + (θ − θ̃)|∇ log θ̃|2 + ∆ log θ̃(θ − θ̃)

=
(
θ̃∇ log θ · (∇ log θ −∇ log θ̃) + (θ − θ̃)|∇ log θ̃|2 + ∆ log θ̃(θ − θ̃)

)
= θ̃

(
|∇ log θ −∇ log θ̃|2 +∇ log θ̃ · (∇ log θ −∇ log θ̃)

)
+
(
θ − θ̃ − θ̃(log θ − log θ̃)|∇ log θ̃|2 + θ̃(log θ − log θ̃)|∇ log θ̃|2

)
+ ∆ log θ̃(θ − θ̃ − θ̃(log θ − log θ̃)) + ∆ log θ̃(θ̃(log θ − log θ̃)) .

From an integration-by-parts on the last term, using the fact that∇ log θ̃ ·nnn = (∇θ̃ ·nnn)/θ̃ = 0 on the boundary
(see (1c)), and the product rule, we may infer∫

Ω
θ̃∇ log θ̃ · (∇ log θ −∇ log θ̃) + θ̃(log θ − log θ̃)|∇ log θ̃|2 dxxx

−
∫

Ω
∇ log θ̃ · ∇(θ̃(log θ − log θ̃)) dxxx = 0 .
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We may conclude that∫
Ω
θ̃|∇ log θ|2 −∇ log θ · ∇θ̃ + (θ − θ̃)|∇ log θ̃|2 + ∆ log θ̃(θ − θ̃) dxxx

=

∫
Ω
θ̃|∇ log θ −∇ log θ̃|2 dxxx+

∫
Ω

Λ(θ|θ̃)(|∇ log θ̃|2 + ∆ log θ̃) dxxx .

Thanks to the above manipulations, the estimate (82) may be written as

E(θ(t), ϕ(t)|θ̃(t), ϕ̃(t)) + κ

∫ t

0

∫
Ω
θ̃|∇ log θ −∇ log θ̃|2 dxxx d s

+

∫ t

0

∫
Ω
θ̃
|ϕt|2

θ
+ (θ − θ̃) |ϕ̃t|

2

θ̃
− |ϕ̃t|2 + 2(ϕ̃t − ϕt)ϕ̃t dxxx d s

≤ E(θ0, ϕ0|θ̃0, ϕ̃0) +

∫ t

0

∫
Ω
ϕ̃t
(
F ′′(ϕ̃)(ϕ̃− ϕ)− F ′(ϕ̃) + F ′(ϕ)

)
dxxx d s

+

∫ t

0

∫
Ω

(∂t(log θ̃)− κ|∇ log θ̃|2 − κ∆ log θ̃)Λ(θ|θ̃) dxxx d s

+M‖ϕ(t)− ϕ̃(t)‖2L1(Ω) .

(83)

For the terms in the second line of the right-hand side of the previous estimate, we find with equation (1a) for
the strong solution (θ̃, ϕ̃)

(log θ̃)t − κ|∇ log θ̃|2 − κ∆ log θ̃ =
θ̃t − κ∆θ̃

θ̃
=
|ϕ̃t|2 − ϕ̃tθ̃

θ̃
=
|ϕ̃t|2

θ̃
− ϕ̃t .

Moreover, rearranging the terms in the second line of (83), we obtain∫ t

0

∫
Ω
θ̃
|ϕt|2

θ
+ (θ − θ̃) |ϕ̃t|

2

θ̃
− |ϕ̃t|2 + 2(ϕ̃t − ϕt)ϕ̃t dxxx d s

=

∫ t

0

∫
Ω
θ̃
|ϕt|2

θ
+ θ
|ϕ̃t|2

θ̃
− 2ϕtϕ̃t dxxx d s

=

∫ t

0

∫
Ω

∣∣∣∣∣∣
√
θ̃

θ
ϕt −

√
θ

θ̃
ϕ̃t

∣∣∣∣∣∣
2

dxxx d s .

(84)

Proposition 4.1. Let (θ, ϕ) be a weak solution according to Definition 2.2 and let (θ̃, ϕ̃) be a strong solution
according to Theorem 2.5. Then it holds

‖ϕ− ϕ̃‖2L1(Ω)

∣∣∣t
0
≤ (4λ+ 2)

∫ t

0
‖ϕ− ϕ̃‖2L1(Ω) d s+

∫ t

0
‖Λ(θ|θ̃)‖2L1(Ω) d s

+

∫ t

0

(∫
Ω
θ̃| log θ − log θ̃| dxxx

)2

d s ,

for all t ∈ [0, T ].

Proof. The idea of the proof is to use sign(ϕ− ϕ̃) as a test function in equation (20) and subtract equation (1b)
for the strong solution equally tested with sign(ϕ− ϕ̃). Since all terms in (20) are elements of L1(Ω× (0, T )),
this procedure is allowed. Setting ϕ̂ = ϕ− ϕ̃, we then find∫

Ω
∂tϕ̂ sign(ϕ̂)−∆ϕ̂ sign(ϕ̂) + (F ′(ϕ)− F ′(ϕ̃)) sign(ϕ̂) dxxx =

∫
Ω

(θ − θ̃) sign(ϕ̂) dxxx .

Moreover, it is clear that

∂tϕ̂ sign(ϕ̂) = ∂t|ϕ̂|
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and the λ-convexity of F guarantees that

(F ′(ϕ)− F ′(ϕ̃)) sign(ϕ̂) = (G′(ϕ)−G′(ϕ̃))(sign ϕ̂)− 2λ|ϕ̂| ≥ −2λ|ϕ̂| .

Additionally, proceeding by approximation it is not difficult to show that

−
∫

Ω
∆ϕ̂ sign(ϕ̂) dxxx ≥ 0 ,

where we point out that the boundary conditions (1c) of ϕ are crucial for this argument.

Collecting the above relations, observing additionally that | sign(ϕ̂)| ≤ 1, we find

∂t

∫
Ω
|ϕ̂| dxxx ≤ 2λ

∫
Ω
|ϕ̂| dxxx+

∫
Ω
|θ − θ̃| dxxx

≤ 2λ

∫
Ω
|ϕ̂| dxxx+

∫
Ω

Λ(θ|θ̃) dxxx+

∫
Ω
θ̃| log θ − log θ̃| dxxx .

Multiplying the above relation by ‖ϕ̂‖L1(Ω) and applying YOUNG’s inequality, we may conclude that

d

d t
‖ϕ̂‖2L1(Ω) ≤ 2(2λ+ 1)‖ϕ̂‖2L1(Ω) +

(∫
Ω

Λ(θ|θ̃) dxxx

)2

+

(∫
Ω
θ̃| log θ − log θ̃| dxxx

)2

for a.e. t ∈ (0, T ). Integrating in time provides the assertion.

Proposition 4.2. Let θ be a weak solution provided by Theorem (2.3) and θ̃ a strong solution according to
Theorem 2.5, both originating from the same initial data satisfying (27a)-(27b) and (29) and defined over the
same time interval (0, T ). Then there exists a constant c > 0 such that

‖ log θ − log θ̃‖2L1(Ω) ≤ c
∫

Ω
Λ(θ|θ̃) dxxx , (85)

where c only depends on the given data of the system.

Proof. In view of the second condition (27a), (25) is satisfied both by θ and by θ̃. Setting η = log θ and
η̃ = log θ̃, using Taylor’s expansion, we can directly compute

Λ(θ|θ̃) = eη − eη̃ − eη̃(η − η̃) =
1

2
eξ(η − η̃)2, (86)

where the above formula holds at a.e. point (xxx, t) ∈ Ω × (0, T ) and ξ = ξ(xxx, t) lies between η(xxx, t) and
η̃(xxx, t).

In view of (25), there exists δ > 0 depending only on the initial data and on T such that θ(xxx, t) ≥ δ and
θ̃(xxx, t) ≥ δ. As a consequence, we also have ξ ≥ log δ. Thus, rewriting (86) in terms of θ and θ̃ and
integrating in space, we readily obtain (85) (which is stated in term of the L1-rather than L2-norm just for later
convenience).

4.3 Estimate of the convex modification

It remains to control the term resulting from the nonlinear potential F , i.e., the second term on the right-hand
side of (83): ∫ t

0

∫
Ω
ϕ̃t(F

′′(ϕ̃)(ϕ̃− ϕ)− F ′(ϕ̃) + F ′(ϕ)) dxxx d s

=

∫ t

0

∫
Ω
ϕ̃t(G

′′(ϕ̃)(ϕ̃− ϕ)−G′(ϕ̃) +G′(ϕ)) dxxx d s,
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the equality holding as a consequence of (13). We first observe that, by (28b) and standard Sobolev embed-
dings, there exists ϕ > 0 depending only on the data of the problem such that |ϕ̃(x, t)| ≤ ϕ a.e. in Ω×(0, T ).
For simplicity, we setR(ϕ, ϕ̃) := G′′(ϕ̃)(ϕ̃−ϕ)−G′(ϕ̃) +G′(ϕ) and, for M > ϕ to be chosen below, we
also define

Ω−(t) :=
{
x ∈ Ω : |ϕ(t,xxx)| ≤M

}
and, correspondingly, Ω+(t) := Ω\Ω−(t). It is then clear that for a.e. t ∈ (0, T ) and xxx ∈ Ω−(t), there holds

∣∣R(ϕ, ϕ̃)
∣∣ =

∣∣∣∣G′′(ϕ̃)(ϕ̃− ϕ)−
∫ 1

0
G′′(ϕ̃+ (1− s)(ϕ− ϕ̃)) d s(ϕ̃− ϕ)

∣∣∣∣
≤
∫ 1

0
|G′′(ϕ̃)−G′′(ϕ̃+ (1− s)(ϕ− ϕ̃))| d s|ϕ̃− ϕ|

≤
∫ 1

0
c(‖F‖C2,1 , ϕ,M)|ϕ̃− ϕ̃− (1− s)(ϕ− ϕ̃)| d s|ϕ̃− ϕ|

≤ 1

2
c(‖F‖C2,1 , ϕ,M)|ϕ− ϕ̃|2

=: c|ϕ̃− ϕ|2,

the last constant c depending on M , ϕ and the problem data. On the other hand, for xxx ∈ Ω+(t), thanks to the
growth condition (17) of Hypothesis 2.1 we have

|R(ϕ, ϕ̃)| ≤ |G′′(ϕ̃)||ϕ̃− ϕ|+ |G′(ϕ)|+ |G′(ϕ̃)|
≤ c(1 + |ϕ− ϕ̃|2) + |G′(ϕ)|
≤ c(1 + |ϕ− ϕ̃|2 +G(ϕ)) .

As a consequence of the above argument, we deduce∫ t

0

∫
Ω
|ϕ̃t|(G′′(ϕ̃)(ϕ̃− ϕ)−G′(ϕ̃) +G′(ϕ)) dxxx d s (87)

≤ c
∫ t

0
‖ϕ̃t‖L∞(Ω)

(
‖ϕ̃− ϕ‖2L2(Ω) +

∫
Ω+(s)

G(ϕ) dxxx+ |Ω+(s)|

)
d s ,

where, recalling (74) and using the GAGLIARDO–NIRENBERG (cf. [37, p. 125]) and YOUNG inequalities, the
difference in the L2-norm can be estimated by

‖ϕ− ϕ̃‖2L2(Ω) ≤ c
(
‖∇ϕ−∇ϕ̃‖2L2(Ω) + ‖ϕ− ϕ̃‖2L1(Ω)

)
≤ cE(θ, ϕ|θ̃, ϕ̃) .

Let us also notice that, by Hypothesis 2.1 (see in particular (14)), we can chooseM so large thatG(r) ≥ λr2/2
for every |r| ≥M . As a consequence, for xxx ∈ Ω+(t) there holds

1

2
G(ϕ)−G(ϕ̃)−G′(ϕ̃)(ϕ− ϕ̃) ≥ λ

4
ϕ2 −G(ϕ̃) +G′(ϕ̃)ϕ̃− λ

8
ϕ2 − 2

λ
G′(ϕ̃)2

≥ λ

8
ϕ2 − c(ϕ) ≥ λ

8
M

2 − c(ϕ) ≥ K(M,ϕ, λ),

where the last inequality follows for suitable K > 0 by possibly taking a larger value of M (still in a way that
only depends on ϕ, hence on the fixed data of the problem). We eventually conclude that

E(θ, ϕ|θ̃, ϕ̃)(s) ≥
∫

Ω+(s)

(
G(ϕ)−G(ϕ̃)−G′(ϕ̃)(ϕ− ϕ̃)

)
dxxx

≥ 1

2

∫
Ω+(s)

G(ϕ) dxxx+K|Ω+(s)| ,
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so that (87) gives∫ t

0

∫
Ω
|ϕ̃t|(G′′(ϕ̃)(ϕ̃− ϕ)−G′(ϕ̃) +G′(ϕ)) dxxx d s ≤ c

∫ t

0
‖ϕ̃t‖L∞(Ω)E(θ, ϕ|θ̃, ϕ̃) d s . (88)

Putting everything together and going back to relation (83), we may observe

E(θ(t), ϕ(t)|θ̃(t), ϕ̃(t)) + κ

∫ t

0

∫
Ω
θ̃|∇ log θ −∇ log θ̃|2 +

∣∣∣∣∣∣
√
θ̃

θ
ϕt −

√
θ

θ̃
ϕ̃t

∣∣∣∣∣∣
2

dxxx d s

≤ E(θ0, ϕ0|θ̃0, ϕ̃0) + c

∫ t

0
‖ϕ̃t‖L∞(Ω)E(θ, ϕ|θ̃, ϕ̃) +

(∥∥∥∥ |ϕ̃t|2θ̃
∥∥∥∥
L∞(Ω)

+ ‖ϕ̃t‖L∞(Ω)

)
Λ(θ|θ̃) d s

+M

∫ t

0
(4λ+ 2)‖ϕ− ϕ̃‖2L1(Ω) + ‖Λ(θ|θ̃)‖2L1(Ω) + ‖θ̃‖L∞(Ω)‖ log θ − log θ̃‖2L1(Ω) d s .

We point out that E(θ, ϕ|θ̃, ϕ̃) is bounded in L∞(0, T ) by a constant only depending on the given data of the
system. Moreover, by (30), ‖θ̃‖L∞(Ω) is controlled uniformly in time. This in turn also holds for ‖Λ(θ|θ̃)‖L1(Ω).
Hence we may arrive with Proposition 4.2 at

E(θ(t), ϕ(t)|θ̃(t), ϕ̃(t)) +

∫ t

0
W(θ, ϕ|θ̃, ϕ̃) d s ≤ E(θ0, ϕ0|θ̃0, ϕ̃0) + c

∫ t

0
K(θ̃, ϕ̃)E(θ, ϕ|θ̃, ϕ̃) d s ,

where we have defined

W(θ, ϕ|θ̃, ϕ̃) =

∫
Ω

κθ̃|∇ log θ −∇ log θ̃|2 +

∣∣∣∣∣∣
√
θ̃

θ
ϕt −

√
θ

θ̃
ϕ̃t

∣∣∣∣∣∣
2
 dxxx

and

K(θ̃, ϕ̃) = c

(
‖ϕ̃t(s)‖L∞(Ω) +

∥∥∥∥ |ϕ̃t(s)|2θ̃(s)

∥∥∥∥
L∞(Ω)

+ 1

)
.

Applying GRONWALLâĂŹs inequality, we conclude that

E(θ(t), ϕ(t)|θ̃(t), ϕ̃(t)) +

∫ t

0
W(θ(s), ϕ(s)|θ̃(s), ϕ̃(s))e

∫ t
s K(θ̃(τ),ϕ̃(τ)) d τ d s

≤ E(θ0, ϕ0|θ̃0, ϕ̃0)e
∫ t
0 K(θ̃(s),ϕ̃(s)) d s . (89)

The above estimate concludes the proof of Theorem 2.7.

Remark 4.1. It is worth noting that the previous estimate (89) could also be adapted to provide a result on the
continuous dependence of the weak solution on the initial datum, holding as long as a strong solution exists.

Remark 4.2. In the case when the polynomial growth condition (16) fails but F has at most exponential growth
(in such a way that |F ′| is somehow controlled by |F |, so excluding the so-called “singular” potentials), it may
be still possible to prove existence of some notion of weak solution. However one expects the occurrence of
defect measures in the phase field equation because the uniform integrability estimates for θ, ϕt and F ′(ϕ)
are now expected to fail. On the other hand, strong positivity (25) of θ is still likely holding under the additional
assumption (24), but it should be reinterpreted in the sense of measures. Note, however, that in such a setting,
the interpretation of the term ϕ2

t /θ in the (weak analogue of the) entropy inequality (19) may be troublesome
because both ϕt and θ are now measure-valued objects. Extending weak-strong uniqueness to this weakened
regularity framework seems also a nontrivial issue; indeed, with the occurrence of defect measures, several
terms we could treat by taking advantage of L1-regularity may become difficult to be managed.
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5 Local strong solutions

In what follows, we focus on the proof of Theorem 2.5.

To prove local solvability, we derive some local-in-time estimates. In order to avoid technical complications, we
work directly on system (1a)-(1b). It is however easy to check that the argument could be reproduced and made
fully rigorous by working on the regularized system (32). In the sequel, for notational simplicity, we will write, for
instance, ‖ · ‖L2 in place of ‖ · ‖L2(Ω).

Differentiating (1b) in time leads to

ϕtt −∆ϕt + F ′′(ϕ)ϕt = θt . (90)

Testing (90) by −∆ϕt + ϕt provides

d

d t

1

2
‖ϕt‖2H1 + ‖∆ϕt‖2L2 + ‖∇ϕt‖2L2 =

∫
Ω
F ′′(ϕ)ϕt(∆ϕt − ϕt) dxxx−

∫
Ω
θt(∆ϕt − ϕt) dxxx

= −
∫

Ω
F ′′(ϕ)

(
|∇ϕt|2 + |ϕt|2

)
+ F ′′′(ϕ)ϕt∇ϕ · ∇ϕt dxxx−

∫
Ω
θt(∆ϕt − ϕt) dxxx

≤ λ‖ϕt‖2H1 +

∫
Ω
F ′′′(ϕ)ϕt∇ϕ · ∇ϕt dxxx+

9

16
‖θt‖2L2 +

1

2
‖∆ϕt‖2L2 + 4‖ϕt‖2L2 .

(91)

In the above formula we used the λ-convexity of F (see Hypothesis 2.1) together with HÖLDER’s and YOUNG’s
inequalities.

Testing now equation (1a) with θt, we obtain

d

d t

κ

2
‖∇θ‖2L2 + ‖θt‖2L2 =

∫
Ω
|ϕt|2θt − θθtϕt dxxx

≤ ‖ϕt‖2L4‖θt‖L2 + ‖θt‖L2‖θ‖L4‖ϕt‖L4

≤ 1

8
‖θt‖2L2 + 6‖ϕt‖4L4 + 2‖θ‖4L4 ,

(92)

where we used again HÖLDER’s and YOUNG’s inequalities. With the chain rule, HÖLDER’s and YOUNG’s inequal-
ities, we observe the estimates

d

d t

1

2
‖∆ϕ‖2L2 =

∫
Ω

∆ϕt∆ϕ dxxx ≤ 1

4
‖∆ϕt‖2L2 + ‖∆ϕ‖2L2 ,

d

d t

1

2
‖ϕ‖2L2 =

∫
Ω
ϕtϕ dxxx ≤ 1

2
‖ϕt‖2L2 +

1

2
‖ϕ‖2L2 ,

d

d t

κ

2
‖θ‖2L2 = κ

∫
Ω
θtθ dxxx ≤ 1

16
‖θt‖2L2 + 4κ2‖θ‖2L2 .

(93)

Adding (91), (92), and (93) and using on H2
nnn the norm ‖ · ‖2

H̃2 := ‖ · ‖2L2 + ‖∆ · ‖2L2 , which is equivalent to

the standard H2-norm as far as functions in H2
nnn are considered, we obtain the inequality

d

d t

1

2

(
‖ϕt‖2H1 + κ‖θ‖2H1 + ‖ϕ‖2

H̃2

)
+

1

4

(
‖∆ϕt‖2L2 + ‖θt‖2L2

)
≤ c

(
‖ϕt‖2H1 + ‖ϕ‖2

H̃2 + ‖θ‖2L2

)
+

∫
Ω
F ′′′(ϕ)ϕt∇ϕ · ∇ϕt dxxx+ 6‖ϕt‖4L4 + 2‖θ‖4L4 .

(94)

For the term including the nonconvex potential, we observe that∫
Ω
F ′′′(ϕ)ϕt∇ϕ · ∇ϕt dxxx ≤ ‖∇ϕt‖L2‖∇ϕ‖L3‖ϕt‖L6‖F ′′′(ϕ)‖L∞

≤ c‖ϕt‖2H1‖∇ϕ‖L3

(
max

s∈[−‖ϕ‖L∞ ,‖ϕ‖L∞ ]
|F ′′′(s)|

)
≤ c‖ϕt‖2H1Q(‖ϕ‖H̃2).
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Here and below, Q : [0,∞)→ [0,∞) denotes a computable, continuous and increasingly monotone function
whose expression may vary on occurrence. Here, in the specific, we used the condition that F ′′′ is continuous
(see Hypothesis 2.4) and the continuity of the embedding of H2 into L∞.

Defining now ξ(t) = 1
2

(
‖ϕt‖2H1 + κ‖θ‖2H1 + ‖ϕ‖2

H̃2

)
, we find with the continuous embedding H1(Ω) ↪→

L4(Ω) that the inequality
d

d t
ξ(t) ≤ c (1 +Q(ξ(t))) (95)

holds forQ : [0,∞)→[0,∞) with the properties specified above. Then, a simple application of the comparison
principle for ODE’s guarantees the existence of T ∗ > 0 and C0 > 0 such that

‖ξ‖L∞(0,T ∗) ≤ C0. (96)

We used here conditions (27a)-(27b) on the initial data. Indeed, it is not difficult to verify that the finiteness of
the initial value ξ|t=0 corresponds exactly to the regularity of θ0, ϕ0 and ϕ1 = ϕt(0) specified in (27a)-(27b).
Then, using (96) and subsequently integrating (94) over (0, T ∗), we deduce the properties (28a)-(28b), with the
exception of the regularity condition θ ∈ L2(0, T ∗;H2(Ω)). The latter, however, can be inferred a posteriori
by comparing terms in (1a) and applying standard elliptic regularity results. Note, finally, that the energy equality
(22) is valid for the strong solution with equality sign because its regularity suffices to test the equations (1a)
and (1b) by 1 and ϕt, respectively. This concludes the proof of Theorem 2.5.
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