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On decomposition of embedded prismatoids in R? without
additional points
Hang Si

ABSTRACT. This paper considers three-dimensional prismatoids which can be embedded in R3. A
subclass of this family are twisted prisms, which includes the family of non-triangulable Schénhardt
polyhedra [12] [10]. We call a prismatoid decomposable if it can be cut into two smaller prismatoids
(which have smaller volumes) without using additional points. Otherwise it is indecomposable. The
indecomposable property implies the non-triangulable property of a prismatoid but not vice versa.

In this paper we prove two basic facts about the decomposability of embedded prismatoid in R3
with convex bases. Let P be such a prismatoid, call an edge interior edge of P if its both endpoints are
vertices of P and its interior lies inside P. Our first result is a condition to characterise indecomposable
twisted prisms. It states that a twisted prism is indecomposable without additional points if and only if
it allows no interior edge. Our second result shows that any embedded prismatoid in R? with convex
base polygons can be decomposed into the union of two sets (one of them may be empty): a set of
tetrahedra and a set of indecomposable twisted prisms, such that all elements in these two sets have
disjoint interiors.

1. INTRODUCTION

Decomposing a geometric object into simpler parts is one of the most fundamental problems in com-
putational geometry.

In 2d, this problem is well-solved. Given a polygonal region, whose boundary is a planar straight line
graph G = (V, E), there are many efficient algorithms to create a constrained triangulation of G
whose vertex set is 1/ and it contains all edges of E. Moreover, no additional vertices is needed.
Lee and Lin [8] and Chew [4] independently proved that there exists a triangulation of (G, called the
constrained Delaunay triangulation, such that it is as close as to the Delaunay triangulation of V/,
while it preserves all edges of E. Moreover, Chew showed that this triangulation can be constructed
in optimal O(n log n) time [4].

The problem of triangulating 3d polyhedra is very difficult, even we restricted ourself to only consider
simple polyhedra (without holes). It is known that not all simple polyhedra can be triangulated without
adding new vertices, so-called Steiner points. The famous example of Schénhardt [12] (known as
the Schénhardt polyhedron) shows that a twisted non-convex triangular prism cannot be triangulated
without adding new vertices, see Figure [1| Left. Other examples of non-triangulable polyhedra are
constructed, see e.g. [1, 16, 3], [10} 2} [13].

>
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b
FIGURE 1. Left: The Schénhardt polyhedron. Right: A Chazelle polyhedron.

The existence of non-triangulable polyhedra is a major difficulty in many 3d problems. Ruppert and
Seidel [11] proved that the problem to determine whether a simple non-convex polyhedron can be
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triangulated without Steiner points is NP-complete. It is necessary to use additional points, so-called
Steiner points, to triangulate 3d polyhedra. Chazelle [3] constructs a family of polyhedra and proved
that they require a large number of Steiner points to be triangulated, see Figure [1] Right.

Despite the fact that such polyhedra exist, there is not much study about the geometry and topology of
such polyhedra. Rambau [10] first showed that any non-convex twisted prisms over an n-gon (n. > 3)
cannot be triangulated without Steiner points. Furthermore, he showed that the non-triangulability of
such polyhedra does not depend on how much it is twisted. This generalised Schénhardt polyhedron
into a family of polyhedra with such property. We call polyhedra of this family Rambau polyhedra. The
Schénhardt polyhedron is the simplest case of a Rambau polyhedron.

The geometry of a Rambau polyhedron is a special prism such that its top and base polygons are (i)
planar, (ii) congruent, and (iii) parallel to each other. In general, a twisted prism is not necessarily a
Rambau polyhedron. Indeed, a slightly perturbed Rambau polyhedron whose base polygon has more
than 3 vertices might become triangulable. On the other hand, if a prism (not necessarily a Rambau
polyhedron) is twisted sufficiently large, the result prism will not be triangulable without Steiner points.
The proof of this fact is rather simple. A basic fact (proved in Section [3) is that for a prism whose
base polygon has more than 5 vertices, it needs interior edges to be decomposed. When a prism is
twisted sufficiently large, it will reach a state that no interior edge can be inserted. Hence it must be
non-triangulable. Note that a Rambau polyhedron might allow interior edges to be inserted. Motivated
by this phenomenon, we want to find the critical conditions between the existence and non-existence
of a tetrahedralisation for this kind of polyhedra.

This paper considers three-dimensional prismatoids which can be embedded in R3. A subclass of this
family are twisted prisms, which includes the family of non-triangulable Schénhardt polyhedra [12] [10].

We call a prismatoid decomposable if it can be cut into two smaller prismatoids (which have smaller
volumes) without using additional points. Otherwise it is indecomposable. The indecomposable prop-
erty implies the non-triangulable property of a prismatoid but not vice versa.

In this paper we prove two basic facts about the decomposability of embedded prismatoid in R? with
convex bases. Let P be such a prismatoid, call an edge interior edge of P if its both endpoints are
vertices of PP and its interior lies inside P. Our first result is a condition to characterise indecomposable
twisted prisms. It states that a twisted prism is indecomposable without additional points if and only if
it allows no interior edge. Our second result shows that any embedded prismatoid in R? with convex
base polygons can be decomposed into the union of two sets (one of them may be empty): a set of
tetrahedra and a set of indecomposable twisted prisms, such that all elements in these two sets have
disjoint interiors.

Outline. The rest of this paper is organised as follows: Section [2gives the necessary definitions of the
family of prismatoids and twisted prismatoids studied in this paper. Section |3|presents the new results
of this paper.

2. PRELIMINARIES

2.1. Prisms, Antiprisms, Prismatoids. In geometry, a prism is a solid that has two polygonal faces
that are parallel and congruent [7} [14]. In other words, it is a 3d polyhedron comprising an n-sided
polygonal base (possibly non convex), a second base which is a translated copy (rigidly moved with-
out rotation) of the first, and n other faces (necessarily all parallelograms) joining corresponding sides
of the two bases. All cross-sections parallel to the bases are translations of the bases. Antiprisms are
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FIGURE 2. The family of prismatoids. Right-bottom shows some common figures
which are not prismatoids. Figures are from WWW internet.

similar to prisms except the bases are twisted relative to each other, and that the side faces are trian-
gles, rather than quadrilaterals. Formally, an n-sided antiprism is a 3d polyhedron composed of two
parallel copies of an n-sided polygonal base (possibly non convex), connected by an alternating band
of triangles. Both prisms and antiprisms are subclasses of prismatoids. In geometry, a prismatoid is
a polyhedron whose vertices all lie in two parallel planes. lts lateral faces can be trapezoids or trian-
gles [7, [14]. The family of prismatoids includes many common geometric shapes, such as pyramids,
wedges, prisms, antiprisms, frusta (truncated pyramids), etc. Figure [2 shows various examples in the
family of prismatoids as well as some common solids which are not prismatoids by its definition.

2.2. S, ,-Prismatoids. This section defines a family of prismatoids considered in this paper. Simply
saying, these prismatoids have convex bases which are connected by a band of triangular facets.
Additionally they can be embedded in R? without self-intersections. The precise definition is given
below.

Without loss of generality, we will place a prismatoid in such a way such that the two base facets are
parallel to the horizontal plane Hy := {(z,4,0) ; x,y € R}. Moreover, one of its facets, called bot-
tom facet, lies in H, and the other facet, called top facet, lies in the plane Hy, := {(z,y, h) ; x,y,h €
R, h > 0}.

Let n, m be two integers satisfying (1) 1 < n,1 < m and (2) n + m > 4. We define an S, -
prismatoid (or shortly S,, ,,,) P, as a 3d solid such that:

(i) its top facet is a convex n-gon in H, its bottom facet is a convex m-gon in Hy;
(ii) the side facets of P between its bottom and top facets are all triangles; and
(iii)y P is topologically a 3-ball embedded in R?.
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FIGURE 3. Prismatoids on the left are Smm-prismatoids, while those on the right are
not. Figures are from WWW internet.

Many prismatoids are .S, ,,-prismatoids. For examples, Sy ,,’s (m > 3) are pyramids. Ss,,,’s (m >
2) are wedges with triangular facets. In particular, both 5173’3 and 52,2 are tetrahedra. Antiprisms
which can be embedded in R3 with no self-intersected facets are Snm-prismatoids, see Figure Left.
However, all prisms as well as many of other prismatoids are not .S, ,,,-prismatoids, see Figure
Right. Obviously, if a non S,, ,,,-prismatoid satisfies (iii), i.e., it can be embedded in R? without self-
intersection, it will become an .S, ,,, by a slight perturbation in its vertex set.

Given an S,, ,,,-prismatoid P, there are n + m triangles in its band. There is a bijection between the
band of triangles and a binary string of n + m 0/1 bits. This transformation is first constructed in [5].

We first construct a flattened band D of triangles in the plane. It is done by cutting the band of P along
one of its edges and then flatten it into the plane. There are n + 1 vertices and n edges on the top of
D, and m + 1 vertices and m edges on the bottom of D. These edges are one-to-one correspond
to the boundary edges of the top and bottom facets of P. The two vertical boundary edges of D are
identified as the same edge which we cut open. The triangles of the band are bijectively mapped into
the triangles of D, i.e., the images of the triangles of the band triangulates D. We label each triangle
in D as ‘0’ if it has an edge on the top and a vertex on the bottom, as ‘1’ if it has an edge on the
bottom and a vertex on the top. Now the set of triangles from left to right corresponds to a string like
“0100101...". An example of this transformation is shown in Figure [4]

Qg

I/

a az as aq ai

“0110101011”

b
1 Dy y

FIGURE 4. An S, g-prismatoid is shown in the left and the binary string corresponds
to its band of triangles is shown in the right.
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With this transformation, the combinatorial structure of an .S, ,,, can be characterised by a binary
string. However, this string does not recognise the geometry of the prismatoid. For example, a convex
and a non-convex .5, ,,,’s may have exactly the same binary string.

2.3. Twisted Prisms. We use the above transformation to define a special class of .5,, ,,-prismatoids.
Recall that an antiprism can be obtained by twist a prism. There are two directions, clockwise or
counterclockwise, in the plane. Depending on which direction it is twisted. We will get two non-convex
antiprisms which are similar but with combinatorially different boundary facets, see Figure [5 We call
an S, ,-prismatoid a twisted prism if the band of its triangles corresponds to a binary string which
contains no two consecutive 0’s or 1’s, i.e., a string like “01010101...", or “10101010...".

as a4
ag a3
ay a2z
b
6 bs
b1 b2
ay az agz a4 Aas ag ai asg a1 G2 a3z a4 A5 Qg a; Q9 az a4 as ag Qa1
by b2 b3 by bs bs by by by b3 ba bs by by bg b1 b2 by by bs bg
“101010101010” “010101010101” “101010101010”

FIGURE 5. Twisted prisms (top), bands (middle), and strings (bottom). Left is a convex
hexagonal antiprism. Right are two non-convex antiprisms resulted by twisting the top
facet of left counterclockwise or clockwise, respectively.

The degree of a vertex of an \S,, ,,,-prismatoid is the number of edges shared at this vertex. An equiv-
alent definition of a twisted prism is: a twisted prism is an S,, ,,-prismatoid whose vertices all have
degree 4.

Note that a twisted prism might be convex or non-convex. We are interesting a special type of non-
convex twisted prisms. Let P be a non-convex twisted prism whose base is an n-gon. We call P a
pure non-convex twisted prism if there are exactly n non-convex edges in its boundary. For examples,
the two non-convex prisms in Figure [5]are pure. In particular, all Rambau’s non-convex twisted prisms
are pure.

We comment that our definition of twisted prisms is slightly more general than Rambau’s definition [10]
in such a way that it does not require that the top and bottom facets are strictly congruent. They may
be two different convex n-gons.

2.4. Decompositions of S,, ,,-Prismatoids. Let P be a prismatoid. a triangulation T of P is a 3d
geometric simplicial complex such that the union of all simplices of 7 is P, i.e., the underlying space
of T is P. A triangulation of P may contain additional vertices, which are not vertices of P. These
vertices are called Steiner points of P. In this paper, we are only interested in those triangulations
of P which contain no Steiner points. We say a prismatoid is triangulable if it admits a triangulation
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without Steiner points. Otherwise, it is non-triangulable. It is well-known that some prismatoids are
non-triangulable, such as the Schénhardt polyhedron as well as Rambau polyhedra.

Let P, and P, be two S, ,,-prismatoids, respectively. Let Vert(P; ) and Vert() be the vertex sets of
Py and P, respectively, and let Vol(P;) and Vol(P,) be the volumes of P, and P, respectively We
say that P, is smaller than P, if

(1) Vert(Py) C Vert(F;); and
(2) VO](Pl) < VOI(PQ)

(1) means that P, and P, share the same vertex set of P, while (2) means that the volume of P, is
strictly less than that of P. Note that (2) must hold if the number of vertices of P is strictly less than
that of P, i.e., Vert(P;) C Vert(P,) Note that if P; and P» have different vertices, than they are not
comparable.

We say that an S,, ,,,-prismatoid is decomposable if it is either a single tetrahedron (i.e, an S 3 or S5 2)
or there exists a partition of it into two smaller .S,, ,,,-prismatoids without using Steiner point such that
the two prismatoids share no interior points, i.e., they only share at their common boundary facets.
Otherwise, it is indecomposable.

triangulable «— | — not triahgulable

— | Rambaufpolyhedra
| N\
/ A\/ G Sch&‘mhan’it polyhedron

decomposable €«— | —»
indecomposable

FIGURE 6. An illustration of the difference of the definitions of being triangulable and
decomposable of a prismatoid.

The difference of being triangulable and being decomposable for a given prismatoid is following (see
Figure [6): a triangulable prismatoid is also decomposable but not vice versa. A non-triangulable pris-
matoid might still be decomposable. While an indecomposable prismatoid must be non-triangulable.

3. NEW RESULTS ON DEGOMPOSITION OF S, 'S

In this section, we will prove two theorems about the decomposability of .S;, ,,,’s.

Theorem 1. A twisted prism is indecomposable if and only if it does not contain interior edges.

DOI 10.20347/WIAS.PREPRINT.2602 Berlin 2019
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Theorem 2. An S, ,,,-prismatoid P can be decomposed with no Steiner points into the union of two
sets T and P, where T is a set of tetrahedra and P is a set of indecomposable twisted prisms. All
elements in T and P have disjoint interiors.

3.1. Outline of the proof. Recall an ear of a two-dimensional polygon is defined as a vertex v of this
polygon such that the line segment between the two neighbors of v lies entirely in the interior of the
polygon The two-ears-theorem [9] states that every simple polygon with more than three vertices has
at least two ears, vertices that can be removed from the polygon without introducing any crossings.
This theorem can be used to show that every two-dimensional simple polygon can be triangulated.

The analogue of “an earéf a 3d polyhedron is a degree 3 vertex, which has exactly 3 boundary edges
of this polyhedron connecting to it, see Figure [7| Left. The following lemma shows that if an .S,, .,
contains a degree 3 vertex then it can be reduced to a smaller prismatoid which does not contain that
vertex. In other words, a degree 3 vertex can be removed from it, see Figure [7] Right.

FIGURE 7. Left: an S,, ,,,-prismatoid contains a degree 3 vertex a;. Right: this prisma-
toid is separated by the tetrahedron {a;_1, a;, a;+1,b;} and a (n — 1, m)-prismatoid.

Lemma 3. /fan S, ., -prismatoid with more than 5 vertices contains a degree 3 vertex, then it can be
dissected into a tetrahedron and a smaller Sn,m -prismatoid without Steiner point.

Proof. Let P be an Sn,m. A triangular face is an interior face of P if its three vertices are vertices of
P and it is not a boundary facet of . We prove this lemma in the following two steps:

(1) adegree 3 vertex defines an interior face of P; and
(2) P can be separated by cutting along this interior face.

Without loss of generality, we assume P contains a degree 3 vertex a; in its top facet, and the three
boundary edges of P containing a; are {a;, a;—1}, {a;, ai11}, {a;, b;}. Thenthe face {a;_1, a;+1,b;}
is an interior face, see Figure|/| Left.

Our proof of (2) is based on the following observation. Let our eye be at a;, and we're looking into
the interior of P. Our viewing volume is restricted by a cone with apex a; and three boundary faces
f1 = {ai, a;—1, bj}, f2 = {CLZ‘, (7 bj}, and fg = {ai, a;—1, ai+1}. Note that f17 f2 are original
boundary facets of P. Since the edge {a;_1, a;+1} lies in the interior of the top facet, the triangle f3
is an ear in top facet. By the property (i) of P, which requires that P contains no self-intersected
boundary facets.

The above facts together imply the fact that all interior points of the tetrahedron {a;_1, a;, a; 1, b]-} are
interior points of P. Furthermore, the visibility to the four corners from any interior point of {a;_1, a;,
Ait1, bj} is not block by any boundary facet of P.

Therefore, the tetrahedron {ai,l, Ay Qit 1, bj} can be separated from P which results an an,m-
prismatoid P’ with {a;_1, a;+1, b;} as its boundary facet. O
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By the above lemma, as long as an .S, ,,-prismatoid contains a degree 3 vertex, it is decomposable.
Since a wedge can not be a twisted prism. The above lemma immediately implies the following fact.

Corollary 4. All Sy ,,,-prismatoids, m > 2, can be triangulated without Steiner points.

If a twisted prism which is not pure can still be decompose by removing a tetrahedron. Therefore we
can easily get the following corollary.

Corollary 5. All S, ,,,-prismatoids except pure non-convex twisted prisms are decomposable.

Since not all pure non-convex twisted prisms are indecomposable, we still need to find the condition to
characterise whether a pure non-convex twisted prism is indecomposable or not. Consider a twisted
prism P. Call an edge {a;, b;} an interior edge of P if both a; and b; are vertices of P and {a;, b; }
is not a boundary edge of P, and the interior of {a;, b;} lies in P, see Figure [14] Left. The following
lemma is crucial to reach this condition. It shows as long as there exists an interior edge of P, then P
is decomposable. An example of this lemma is shown in Figure |14] Right. The proof of this lemma is

given in Section

FIGURE 8. A twisted prism (left) (an Ss g) contains an interior edge {a;, bj} (shown in
pink). It is decomposed into two prismatoids, an S4 5 and an S5 ¢ (right) at this interior
edge {a;, b; } and two chosen interior faces {a;, a,, b; } and {a;, by, b; } of the prism.

Lemma 6. If a pure non-convex twisted prism contains an interior edge, then it can be decomposed
into two smaller prismatoids without Steiner point.

Theorem(i]is then proved by the reserve of Lemmal6]

Proof of Theorem[2] This theorem can be proven by combining Lemma [3|and Lemma 6]

Proof. Given an S,, ,,,, as long as it is not a twisted prism, it can be dissected into a set of tetrahedra
and a twisted prism. If the twisted prism admits at least one interior edge, it can be dissected into
two smaller simplicial prismatoids. The above process can be repeated until either no twisted prism is
remaining or the remaining twisted prisms are indecomposable. 0

3.2. Proof of Lemmal6l We will prove this lemma by showing: if an interior edge exists, then there

must exist four interior faces which share at this edge, and the original twisted prism can be separated
into two smaller prismatoids by these faces on their boundary.

Let PP be a pure non-convex twisted prism whose base is a convex n-gon, n > 3. Without loss of
generality, we assume that the top facet of P is twisted counterclockwise against its bottom facet, see
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a; a;
b; b
bit1 bit1
An a1 --- Q;_1 Q4 s aj;—1 a; --- An—1 Ap
bl T bz bi—i—l s bj bj+1 e bn bl

FIGURE 9. The labelling of vertices of a pure non-convex twisted prism (top) and its
transformed band in the plane (bottom). Red edges are locally non-convex edges of
this prism. The edge {a;, b;} is an interior edge. Left: the four edges in the band of
the prism. Right: the four faces at the interior edge {a;, b, }.

Figure [9] Also, we label the vertices of the top and bottom facets of P in a way such that the edge
{ai, b;} are locally non-convex edge of P,i = 1,--- , n, see Figure[d|

Let {a;, b;} be an interior edge of P. The indices 7 and j are within the cyclic sequence {1,--- ,n}.
By our specific labelling of the vertices, i.e., {a;, b;} refers to a non-convex edge, ¢ and j must satisfy
the following condition (additions and subtractions of indices are all modulo n):

(1) Jj & {i,i+ 1,1+ 2} (equivalently i & {j,7 — 1,7 — 2}).
Consider the edges connecting at vertices a; and b; in the band, which are:
@) Qi ‘ {ai, bi} {ai, bii1}
bj [ {bj.a;1} {bj, a5}

Each of these boundary edges forms a face which share at the edge {a;, b;}. There are four faces,
which can be sorted into two groups, F,,, which are faces containing two vertices in the top facet, and
Fb]. which are faces containing two vertices in the bottom facet (see Figure @ ie.,
@) Fy, | {ai,a;-1,b;} {ai,a;,0;}

Fy, | {ai, b, b;} {ai, biy1, b5}

Given a pair of distinct indices i, € {1,--- ,n} satisfying (1), the four faces in Table (3) exist and
they are distinct.

We prove that these four faces in Table (3) are interior faces of P. It is sufficient to show that all these
faces satisfy the following two facts:

(i) they do not intersect any boundary facet of P in its interior, and
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(i) all interior vertices of these faces are interior vertices of P.

Our proof of these two facts is based on observation, which suggests an intuitive geometric proof.

FIGURE 10. Projecting the twisted prism P onto a plane orthogonal to the line direc-
tion of the edge {a;, b;}.

We project the prism P along the line containing the edge a;b; onto a plane further than 0;, see
Figure This plane’s normal is defined by the edge vector. Denote a; be the projection of a; in
this plane, and the same for other vertices of P. This projection of P (in the plane) has the following
properties:

B P is projected into a (non-convex) region, denoted as R, in this plane, i.e, the shaded area in
Figure[10]

M The projection of the edge {a;, b; } is coincident at one point in R. The four faces in Table
are projected into the four edges, shown in blue in Figure[10]

B Each side facet of P is projected into either a triangle or a line segment in R, an example of
the facet {a; 2, b; 2, b1} and its projection {a_,, b’ ,,b;_,} is highlighted in Figure In
particular, a facet is projected into a line segment if it is parallel to the edge {a;, bj}.

By this particular projection, we can verify the geometric fact: if the projection of a side facet of P in
R does not cross the projection of the four faces, then they do not intersect in their interior in R,
Observing the image of the projection of P (Figure [10| Right). The four edges {a, b}, {a}_;, )},
{al, b;} and {a;,, b;} are not overlapping any other projected triangles in the plane. This phenom-
enon implies that the interior of these two faces do not intersect any other boundary facets of P in R3.
From this observation, let us formally prove this fact.

DOI 10.20347/WIAS.PREPRINT.2602 Berlin 2019
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FIGURE 11. Proof of Lemmal6] Projecting a pure non-convex twisted prism (left) onto
a plane orthogonal to the line direction of the edge {a;, bj} (right).

The projections of the top and bottom polygons of P in the plane are two convex polygons which must
intersect each other. In general, there are two intersection points, one of them must be the double-
point, a; and b’;, which is the projection of the edge {a;, b, }, see Figure It is possible that these two
polygons intersect at only one point. In this case, this point must be the double-point, see Figure [10]
Based on this double-point, a; and b’;, we can divide the projected vertices of P into four sets:

Ay = {a;’aﬁli-kl"" Oy Oyt G
Ay = {CL;,(I;JA,"' 7a971};

By = {b;7b;+17"' 7b;z—1’b;z"" 7b§};
By = {b;+17b2+2v"‘ 7b;‘}§

We prove that any projected boundary facet of P must not cross the four edges {a}, b}, {a], b},
{a}, b}, and {a}, b ,}. Let t be a boundary triangular facet of P, and ' be the projected triangle
(may be an edge) in the plane. The vertices of ¢’ must be one of the following cases:

(1) The vertices of t’ are in A; U By. All vertices are on the projected base polygons of P. Due to
the convexity of the base polygons of P, ¢’ must not cross any of the four edges.

(2) The vertices of ¢’ are in A; U B,. This case is not possible. Without less of generality, let
t' = {a,,, b, b, }, see Figure[12 Since a], € Ay, then j < u/ < i+ n. Since b, € By,
then i < u’ < j. A contradiction.

(3) The vertices of ¢’ are in A, U By. This case is not possible due to the same reason as case (2).

(4) The vertices of ¢’ are in A, U B,. Assume t’ is a triangle (not an edge). We show that ¢’ must
not intersect any of these four edges. Assume the contrary, t’ does cross these edges. Without
loss of generally, let t' := {a, b, ]}, where a}, € Ay and b, b/, ,, € By, and assume t'

v v

intersect the edges {0}, a;} and {a’;_,,b}}, see Figure If this happens, there must exists
a boundary facet of P which cuts the edge {a;, b; }, which implies that {a;, b; } is not an interior

edge of P, a contradiction.

Hence the projection of these two faces in the plane must be two edges which are not crossing by
any other projected facets of P in this plane. By the property (iii) of an S,, ,,,, i.e., P is embedded in
R3, it contains no self-intersected boundary faces. This shows that the two faces {ai, a;,bj, } and
{ai,a;_1,b;, } do not intersect other side facets of P in their interiors. This proves (i).
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Y
bi+1 /
L> x bi bé-&-l

FIGURE 12. Proof of Lemma@ The facet {a.,, by, b, +1} cannot exist in the boundary
of P.

i ° o Yy
Zy biy1 b, bv+1 W . bl
x T i+1

FIGURE 13. Proof of Lemma @ Since {a;, b;} is an interior edge of P , the facet
{ay, by, by11} whose interior intersects {a;, b; } cannot exist in the boundary of P.

Observe that the edges {a’;, b’;} and {a’;_,, I, } lie inside the image of the projection of P. This shows

that all interior points of the faces {a;, a;, b; } and {a;, a;11, b; } must lie inside P. This proves (ii).

Therefore the four faces in table (3) must be interior faces of P.

Indeed, we also proved that the interiors of the two triangles {a, b}, b, } and {a}, a’;_,, )} do not

intersect any projected triangles of P. This shows that the interiors of the following two tetrahedra,
{ai, a;,a5-1,b5} and {a;, bi, b1, b5},

must not intersect any boundary facets of P. Hence they can be removed from P. This shows that P
is decomposable. However, our goal is to separate P into two prismatoids with convex bases.
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Now it is easy to show that any combination of two faces, one from F},; and one from Fbj will dissect
the prism P into two smaller prismatoids. For example, by choosing the pair of faces:

{ai,au,bj} I~ Fai, and {ai,bv,bj} € Fbj>

where v = {j — 1,j} and v = {i,i + 1}. The edge {a;, a,} will divide the top facet (a n-gon)
into two convex polygons, an n;-gon and an ns-gon. The edge {b,, bj} will divide the bottom facet
(a n-gon) into another two convex polygons, an n1-gon and an ns-gon. Therefore, the original prism
is cut into two smaller twisted prismatoids, an Sy, ,,,, and an Sy, ., see Figure [14]for an example.
Without loss of generality, assume 7 < u and v < j, then ny, n9, m1, mo < n can be calculated:

n = u—1t+1

Ng ‘= Nn—nj+2
(4) mp = j—v+1

My == n—mq+2

whereuw = {j — 1,j} and v = {i,i + 1}.

a;  aj-1
Qn—1
o
Un o
aie b; bnl—gon
a; 0 J
b;
mi-gon
bit1

FIGURE 14. Decompose a non-convex twisted prism, an S, ,, (left), along an interior
edge {a;, b;}. The result (right) is two prismatoids, an Sy, ,,, and an S, ,,.,, respec-
tively.

Since there are total 4 possible combinations of faces from F,, and Fbj, therefore there are four
possible dissections of this prism.
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