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Effective diffusion in thin structures via generalized gradient
systems and EDP-convergence

Thomas Frenzel, Matthias Liero

Abstract

The notion of Energy-Dissipation-Principle convergence (EDP-convergence) is used to derive
effective evolution equations for gradient systems describing diffusion in a structure consisting of
several thin layers in the limit of vanishing layer thickness. The thicknesses of the sublayers tend
to zero with different rates and the diffusion coefficients scale suitably. The Fokker–Planck equa-
tion can be formulated as gradient-flow equation with respect to the logarithmic relative entropy
of the system and a quadratic Wasserstein-type gradient structure. The EDP-convergence of the
gradient system is shown by proving suitable asymptotic lower limits of the entropy and the total
dissipation functional. The crucial point is that the limiting evolution is again described by a gradi-
ent system, however, now the dissipation potential is not longer quadratic but is given in terms of
the hyperbolic cosine. The latter describes jump processes across the thin layers and is related
to the Marcelin-de Donder kinetics.

1 Introduction

In this text, we study the limit of a diffusion equation on a sandwich-like domain Ωε ⊂ Rd consisting
of three thin layers whose thicknesses tend to zero when ε ↓ 0. In particular, we assume that the
middle layer is even thinner than the top and bottom layers, i.e., its thickness is of higher order in ε.
The equation that we consider is of Fokker–Planck-type and reads

∂tu(t, x) = div
(
Aε(x)(∇u(t, x) + u(t, x)∇Vε(x))

)
in Ωε. (1)

The diffusion matrix Aε(x) ∈ Rd×d is of order one in the top and bottom layers and satisfies a
suitable scaling assumption in the middle layer such that a non-trivial limit arises. The potential Vε is
assumed to be uniformly bounded and converges to a limit. No-flux boundary conditions complement
the equation. Such a setting can be observed for example in thin-film organic light-emitting diodes,
where organic semiconductor materials with comparably bad conductivity parameter is sandwiched
between well conducting electrodes.

The derivation of the limit problem for (1) on the level of PDEs is straightforward, and we refer to e.g.
to [AMP+12, AP87, DMFZ18, NRJ07] for related problems. In our case, the effective system of PDEs
is given by two reaction-diffusion equations for the top and bottom densities, respectively. The reaction
terms are linear exchange reactions which model the transmission of particles through the middle
layer, namely

∂tu
+
0 = div′

(
B+
(
∇′u+

0 + u+
0∇′V̄ +

0

))
+ A∗

(
u+

0

w+
0

− u−0
w−0

)
∂tu
−
0 = div′

(
B−
(
∇′u−0 + u−0∇′V̄ −0

))
+ A∗

(
u−0
w−0
− u+

0

w+
0

)  on Σ, (2)
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T. Frenzel, M. Liero 2

where Σ ⊂ Rd−1 is the cross-section, u+
0 and u−0 are the limit densities on the upper and lower layer

and A∗ is the effective transmission coefficient, see (49).

Here, however, we are interested in the convergence of the (generalized) gradient systems associated
with the equation. By the latter we mean the following: A gradient system for the equation (1) is a triple
(Xε, Eε,Rε), where Xε is a Riemannian state space, Eε : X→ R∪{∞} is a driving functional, and
Rε : TX → [0,∞] is a dissipation potential (non-negative, convex, and lower semicontinuous) on
the tangent bundle such that the evolution is equivalently described by DEε(u) + ∂u̇Rε(u; u̇) 3 0.

It is well-known since the seminal works [JKO97, Ott98, Ott01a] that the Fokker-Planck equation
in (1) can be written as the gradient-flow equation with respect to the driving functional Eε(u) =´

Ωε
EB(u/wε)wε dx, where EB(z) = z log z − z + 1 and wε is the steady state associated with Vε,

and the Wasserstein metric (see also [Lis09] for the case of variable coefficients). The latter can be
written in terms of the Legendre transform of Rε in the form R∗ε(u, ξ) = 1

2

´
ε
∇ξ · Aε(x)∇ξu dx.

In particular, the evolution is entirely formulated in terms of functionals. Hence, the natural question
arises, whether we can use variational methods such as Γ-convergence to derive the effective evolu-
tion. The umbrella term evolutionary Γ-convergence covers several notions of convergence and indi-
cates that evolutionary problems are treated with variational methods, see e.g. [Ste08, Ser11, Bra13,
Vis13, Mie16] and the references therein.

In this work, we use the notion of EDP-convergence as introduced in [LMPR17] (see also [DFM18,
MMP18]). It is based on De Giorgi’s energy-dissipation principle (in our case it should be called
entropy-entropy production principle), which in turn is based on the Legendre–Fenchel equivalences
and the chain rule for t 7→ Eε(u(t)), namely

Eε(u(t)) +

ˆ t

0

{
Rε(u; u̇) +R∗ε(u;−DEε(u))

}
dt = Eε(u(0)). (3)

In particular, it states that the entropy at time t and the entropy production given by the integral term
(which we call De Giorgi functional and denote by Dε in the following) is equal to the initial entropy, we
refer to Subsection 2.1 for more details. The notion of EDP-convergence (see Definition 2.2 in Subsec-
tion 2.2) requires to establish the Γ-limits of Eε and of Dε and, in addition, that Dε is again ofR⊕R∗
form. By requiring only the Γ-convergence of Dε, instead of separate lower estimates forRε(uε; u̇ε)
and R∗ε(uε;−DEε(uε)) as in the Sandier–Serfaty approach [SS04], we allow for an interplay of the
statics and dynamics (given by Eε andRε, respectively) to obtain an effective dissipation potentialReff

in the macroscopic limit which is different from the limit ofRε. Moreover, we do not work with the solu-
tions of the gradient-flow equation directly but consider convergence along general “fluctuation paths”
with bounded entropy and total dissipation. Under the assumption of well-prepared initial conditions,
i.e., Eε(uε(0)) → E0(u0(0)) ∈ R, the convergence of the solutions to (1) then follows from suitable
a priori bounds, using the Γ-liminf estimate in (3) and exploiting the chain rule to show that the limits
satisfy the differential inclusion ∂ξR∗eff(u;−DE0(u)) 3 u̇, which is formally equivalent to the linear
reaction-diffusion system (2).

After introducing the concrete geometric setting for problem (1) in Section 3, we perform the limit
passage in Section 4. First, we introduce the gradient system, which is rescaled in Subsection 4.1
by blowing up the domain Ωε to a domain of fixed thickness. In Subsection 4.2 we derive a priori
bounds. In particular, we rely only on the Wasserstein gradient structure of the equation which gives
compactness in the space of measures only. The lower lim inf estimates for the entropies and the
De Giorgi functionals is then proven in Subsection 4.3. The crucial point is that in the limit ε → 0 the
time derivative on the middle layer vanishes due to the different time scales. Hence, by performing an
inner minimization over all density profiles across the middle layer with fixed boundary conditions, we
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Effective diffusion in thin structures via EDP-convergence 3

obtain the effective dissipation functional, whose R ⊕ R∗ structure follows directly from the explicit
formula.

Indeed, in the problem given by (1), the effective dissipation potential is not quadratic (in the rates)
anymore. Instead, the transmission through the middle layer is given in terms of the function C ∗(ζ) =
4(cosh(1

2
ζ)− 1) such that the effective dual dissipation potential reads

R∗eff(u, ξ) =
1

2

ˆ
Σ

{
∇′ξ+ ·B+∇′ξ+u+ +∇′ξ− ·B−∇′ξ−u−

}
dx

+

ˆ
Σ

A∗C ∗(ξ+−ξ−)
√
u+u− dx.

The first term describes the lateral diffusion in the upper and lower layer and is of Wasserstein type.
The second term gives the dissipation due to jump processes across the middle layer. The linear
reaction terms in the effective PDE system arising from this term follow from the calculation rules for
the logarithm and the fact, that the derivative of the cosh function can be written as exponentials.

Finally, in Section 5 we discuss the limit system. In particular, in Subsection 5.2 we rephrase our
convergence result in the stronger notion of tilted EDP-convergence which was recently introduced in
[MMP18]. In the tilted EDP-convergence arbitrary perturbations of the driving functionals Eε (so-called
tilts) are considered. The idea is that due to the arbitrariness of the tilts, we can uniquely recover the
(Reff,R∗eff) structure of the effective system. However, we show that in our case the effective dissipa-
tion potential depends non-trivially on the tilt. In Subsection 5.3, we compare the EDP-convergence
result of the Wasserstein structure with the EDP-convergence of the H−1 gradient structure which in
the case Vε ≡ 0 gives a different gradient structure of (1) with quadratic dissipation potentials and
driving functionals. We show that in the latter case also the effective dissipation is quadratic. However,
let us emphasize that also in the case of the logarithmic entropy we can provide a quadratic gradi-
ent structure for the effective equation. This follows from the framework for general reaction-diffusion
equations presented in [Mie11], see Subsection 5.4. In Subsection 5.5, we connect our derived effec-
tive gradient system to large deviation principles for Markovian jump processes. For the latter it was
shown in [MPR14] that the rate functional is given in terms of a generalized gradient system, where
the dual dissipation potential is also given in terms of the cosh function.

2 Abstract setting

2.1 Abstract gradient flow formulation

We call a triple (X, E ,R) a generalized gradient system, where X is a Riemannian space containing
the states of the system, E : X → R∪{∞} is a driving functional, and R : TX → [0,∞] is
a dissipation potential defined on the tangent bundle TX. A dissipation potential R satisfies that
v 7→ R(u, v) is convex, lower semi-continuous, andR(u, 0) = 0. We say that an abstract evolution
equation u̇ = V(u) has a gradient structure if there exists a gradient system (X, E ,R) such that the
evolution can be equivalently written as

u̇ = V(u) ⇐⇒ ∂vR(u, u̇) + DE(u) 3 0, (4)

where ∂u̇R(u, u̇) ⊂ T∗uX denotes the usual convex sub-differential containing “frictional” forces and
DE(u) is a suitable notion of differential of E giving the driving forces for the evolution.
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T. Frenzel, M. Liero 4

In case of u̇ 7→ R(u, u̇) being quadratic, i.e., R(u, u̇) = 1
2
〈G(u)u̇, u̇〉 with a state-dependent,

symmetric, and positive semi definite operator G(u) : TuX→ T∗uX, we speak of a classical gradient
system (X, E ,R). In particular, in this case G(u) has to be seen as a Riemannian metric, whose
inverse K(u) = G(u)−1 gives the gradient of E , namely,

u̇ = −K(u)DE(u) = −∇KE(u).

In connection to [Ons31, OM53] we call K Onsager operator. In many applications it is advantageous
to use the Onsager operator K instead of G , and we refer to [Mie11, Mie13] for a detailed discussion
of the above framework for thermodynamic consistent modeling of reaction-diffusion systems. We
emphasize, that an evolutionary system u̇ = V(u) can have more than one gradient structure see
e.g. Subsection 5.4.

The Legendre transform ofR, also called dual dissipation potential, is given via

R∗ : T∗X→ [0,∞]

R∗(u, ξ) = sup
{
〈ξ, v〉 − R(u, v)

∣∣ v ∈ TuX
}
.

We easily check that in the quadratic case it holdsR∗(u, ξ) = 1
2
〈ξ,K(u)ξ〉. The primal and the dual

dissipation potential satisfy the Legendre–Fenchel equivalences, i.e.

(i) ξ ∈ ∂u̇R(u, u̇) ⇐⇒ (ii) u̇ ∈ ∂ξR∗(u, ξ)
⇐⇒ (iii)R(u, u̇) +R∗(u, ξ) = 〈ξ, u̇〉.

(5)

With (ii) we obtain an equivalent formulation of the gradient flow formulation in (4), namely

u̇ ∈ ∂ξR∗(u,−DE(u)). (6)

The notion of evolutionary Γ-convergence used in the subsequent sections is based on a third equiv-
alent formulation of (4), which we call Entropy-Dissipation Balance (EDB). For this, we use (iii) and
assume that a chain rule for t 7→ E(u(t)) holds such that

E(u(T ))− E(u(0)) =

ˆ T

0

〈DE(u), u̇〉 dt

(iii)
= −
ˆ T

0

{
R(u, u̇) +R∗(u,−DE(u))

}
dt.

(7)

On the other hand, if (7) and a chain rule holds, it is easy to see by the equilvalences in (5) that also
(4) is satisfied.

Note that the Entropy-Dissipation Principle (EDP), also called De Giorgi’s (R,R∗) formulation, is a
scalar identity in contrast to (4) and (6). In particular, the rich toolbox of Calculus of Variations can be
exploited to derive effective limits for multiscale systems.

2.2 Evolutionary Γ-convergence

Let us now consider a sequence of functionals Eε, Rε depending on a small parameter ε > 0 which
describes for example the ratio between the microscopic and macroscopic length scales. We are
interested in deriving effective equations for the case ε → 0. Following the survey paper [Mie16] this
derivation is based on evolutionary Γ-convergence of the generalized gradient systems (X, Eε,Rε),
which is defined as follows.
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Effective diffusion in thin structures via EDP-convergence 5

Definition 2.1. For ε ≥ 0 let uε be the flow induced by (X, Eε,Rε). We say that (X, Eε,Rε) con-
verges in the sense of evolutionary Γ-convergence with well-prepared initial conditions (called pE-
convergence in [Mie16]) to (X, E0,R0) if from uε(0)

τ→ u0(0) and Eε(uε(0)) → E0(u0(0)) < ∞
it follows that uε(t)

τ→ u0(t) and Eε(uε(t)) → E0(u0(t)) for all t ∈ ]0, T ] and with respect to a
topology τ on X.

In [SS04] (see also [Ser11]), abstract conditions for the convergence of the functionals Eε andRε were
formulated to establish the evolutionary Γ-convergence of the gradient systems by passing to the limit
in the Entropy-Dissipation Balance (7). The crucial conditions are the two separate liminf estimates

ˆ T

0

R0(u0(t), u̇0(t)) dt ≤ lim inf
ε→0

ˆ T

0

Rε(uε(t), u̇ε(t)) dt and

R∗0(u0,−DE0(u0)) ≤ lim inf
ε→0

R∗ε(uε,−DEε(uε)).

However, it turns out that these conditions are too strict for our problem of thin heterostructures with
a Wasserstein-type gradient structure. Instead, we prove a lower estimate for the De Giorgi functional´ T

0
Mε(uε, u̇ε) dt whereMε is ofRε ⊕R∗ε form, i.e.,Mε(u, v) = Rε(u, v) +R∗ε(u,−DEε(u)).

Note that in general, it is not clear that the limiting integrandM0 is again of the formR⊕R∗. In the
case of the thin heterostructures considered in this text it is possible to establish theR⊕R∗ form of
the limiting De Giorgi functional, where the disspation potentials are not longer quadratic.

We follow [LMPR17] and define the De Giorgi functional Dε : W1,1([a, b]; X)→ [0,∞] via

Dε(u; [a, b]) :=

ˆ b

a

{
Rε(u, u̇) +R∗ε(u,−DEε(u))

}
dt. (8)

As in [SS04] we consider a sense S of convergence, i.e., uε
S→ u. For the context of this paper the

sense S is given by the convergence of Rεuε ⇀ u for some Rε : X → Y . In particular, uε and u do
not belong to the same space. Since the De Giorgi functional is an fundamental object in our analysis,
we need a sense Ss for the static convergence Rεuε(t) ⇀ u(t) and a sense Se for the evolutionary
convergence of the curves {t 7→ Rεuε(t)}⇀ {t 7→ u(t)}.

Definition 2.2. The generalized gradient systems (X, Eε,Rε) EDP-converge to (X, E0,Reff) with
respect to sense Ss on X and the sense Se on L∞(0, T ; X), respectively, if we have

(i) (X, E0,Reff) satisfies a chain rule,

(ii) Eε
Ss-Γ−→ E0 and Dε

Se-Γ−→ Deff ,

(iii) Deff(u; [a, b]) =
´ b
a
Reff(u, u̇) +R∗eff

(
u,−DE0(u)

)
dt.

Note that in contrast to [LMPR17], we additionally require the existence of recovery sequences for the
De Giorgi functionals Dε. In particular, we do not consider the convergence of the functionals along
solutions of the gradient flow equation but Dε and Deff are evaluated along general “fluctuation paths”
u : [0, T ]→ X. Moreover, it is natural to restrict ourselves to fluctuation paths with finite entropies and
De Giorgi functional. Note that this definition of EDP-convergence is called “simple” EDP-convergence
in [MMP18].

Assuming that we are able to extract a subsequence of the solutions uε to the gradient system
(X, Eε,Rε) that converge in the same topology in which the Γ-limits are computed, the convergence
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ε

ε1+δ

ε

Ω−ε

Ω0
ε

Ω+
ε

Figure 1: Sketch of the domain Ωε ⊂ Rd with cross section Σ ⊂ Rd−1. The diameter of Σ is
considered to be large compared to the thickness of the domain Ωε. The domain is decomposed into
a top layer Ω+

ε , center layer Ω0
ε, and bottom layer Ω−ε , whose thicknesses are given by ε, ε1+δ for a

fixed δ > 0, and ε, respectively.

to a solution of the effective problem can be shown as follows: With the Γ-liminf estimate of Dε and
Eε and the well-prepared initial conditions we can pass to the limit in (7) via

E0

(
u(T )

)
+ Deff(u; [0, T ]) ≤ lim inf

ε→0
Eε
(
uε(T )

)
+ lim inf

ε→0
Dε(uε; [0, T ])

≤ lim
ε→0
Eε
(
uε(0)

)
= E0

(
u(0)

)
.

With the Fenchel–Young estimate for the integrand of Deff and the chain rule we conclude the equality
Deff(u; [0, T ]) = E0

(
u(0)

)
−E0

(
u(T )

)
, i.e., the limit u of solutions uε is indeed the flow induced by

the gradient system (X, E0,Reff) and we furthermore obtain the evolutionary Γ-convergence in the
sense of Definition 2.1.

3 Diffusion in a thin hetero structure

We investigate a drift-diffusion equation in a thin domain, which is given by a cross section Σ ⊂ Rd−1

and consists of three thin layers. In particular, the thicknesses of the individual layers are assumed
to be small compared to the diameter of the cross section so that we introduce the small parameter
ε > 0 related to the thicknesses. The crucial assumptions is that the middle layer scales differently
than the upper and lower layer: We define the sets I+

ε := ε1+δ/2 + ]0, ε[, I0
ε :=

]
−ε1+δ/2, ε1+δ/2

[
for a fixed δ > 0, and I−ε := −ε1+δ/2+]−ε, 0[. Hence, for Ωε = Σ×

]
−(ε+ ε1+δ/2), ε+ ε1+δ/2

[
we have the decomposition into the upper, middle, and lower layer

Ωε = Ω
+

ε ∪Ω
0

ε ∪Ω
−
ε with


Ω+
ε = Σ× I+

ε ,

Ω0
ε = Σ× I0

ε ,

Ω−ε = Σ× I−ε .

We will write x̂ = (y, ẑ) ∈ Ωε such that y ∈ Σ for the lateral and −ε − ε1+δ/2 < ẑ < ε + ε1+δ/2
for the vertical variable.

For a given fixed potential V̂ε : Ωε → R (for the precise assumptions on V̂ε see Section 4), we
consider in Ωε the scalar drift-diffusion equation

∂tû(t, x̂) = div
(
Aε(x̂)(∇û(t, x̂) + û(t, x̂)∇V̂ε(x̂))

)
in Ωε (9)
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Effective diffusion in thin structures via EDP-convergence 7

with no-flux boundary condition Aε(∇û + û∇V̂ε) · νε = 0 on ∂Ωε and initial condition û(0) =
û0. In particular, we have conservation of total mass, and we assume without loss of generality that´

Ωε
û dx̂ = 1.

The symmetric and positive semi-definite coefficient matrix Aε ∈ L∞(Ωε;Rd×d
spd ) has the form

Aε(x̂) =

(
Bε(x̂) 0

0 aε(x̂)

)
, (10)

where Bε ∈ L∞(Σ;R(d−1)×(d−1)
spd ) and aε ∈ L∞(Σ;R>0) are assumed to be piecewise constant,

namely,

Bε(x̂) =


B+ on Ω+

ε ,

εγB0 on Ω0
ε,

B− on Ω−ε ,

and aε(x̂) =


a+ on Ω+

ε

ε2+δa0 on Ω0
ε

a− on Ω−ε

(11)

with γ ≥ 0, B+, B0, B− ∈ R(d−1)×(d−1)
spd and a+, a0, a− > 0 being fixed and constant.

Note that the discontinuity set ofAε is closed and a Lebesgue null set. Thus,Aε is almost everywhere
equal to a matrix Ãε whose inverse satisfies that the map x 7→ Ã−1

ε (x̂)ξ · ξ is lower semicontinuous
for all ξ ∈ Rd. This property is crucial for the purely metric approach presented in [Lis09].

Remark 1. The choice of the scaling εγ with γ ≥ 0 in the middle layer Ω0
ε for the lateral directions

does not matter in the effective system as diffusion and drift will vanish in the limit ε → 0 (in fact
γ > −δ is sufficient). In contrast, the scaling ε2+δ in the vertical direction can be justified as follows:
The relative densities ρ̂ε are of order 1, however the reference density ŵε is of order ε−1 and the
vertical derivatives of ρ̂ε in the middle layer are of order ε−(1+δ). Hence, we have that the integrand in
the Fischer information R̂ε(ν̂ε,−DÊε(ν̂ε)) satisfies in the middle layer the scaling |∂ẑ log ρ̂ε|2ρ̂εŵε ∼
ε−(3+2δ). Since the thickness of the middle layer is ε1+δ, we arrive at the critical order ε2+δ.

It is well known, that several gradient systems induce the diffusion equation (9). Below, we consider
the Wasserstein gradient system in Section 4 with Boltzmann entropy and the purely quadratic H−1

gradient sytem in Section 5.3. For both gradient systems we apply techniques of evolutionary Γ-
convergence and derive the variational formulation of the limit flow. However, the De Giorgi functional
Dε is quadratic in the case of the H−1 gradient system. By the general theory of Γ-convergence
(cf. [Bra06, Prop 2.13]) we expect the effective dissipation potential to be also quadratic. In fact, the

methods developed in [SS04] apply and we have Rε
Γ
⇀ Reff . In particular, the effective dissipation

potential is also quadratic. Whereas the De Giorgi functional Dε associated with the Wasserstein
gradient system is not quadratic. In this case, we obtain that the effective dissipation potential is not
quadratic, since R∗eff involves exponential terms. In particular, the limiting variational formulation can
not be cast into a metric formulation involving the Wasserstein distance.

4 Entropic gradient structure

It is well known since the seminal work of Otto [Ott01b, JKO97], that certain diffusion equations can
be interpreted as gradient-flow equations with respect to a driving functional E and the Wasserstein
distanceW2. The rigorous treatment of the evolution equation in (9) as Wasserstein gradient flow with
variable coefficient can be found in [Lis09]. Therein, the problem on the full space Rd was considered,
however, our setting is recovered by setting V̂ε(x̂) = +∞ outside of Ωε (see [Lis08, Ch. 4]). We
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T. Frenzel, M. Liero 8

consider the relative Boltzmann entropy functional defined on the space of probability measures Xε =
Prob(Ωε)

Êε(ν̂) =


ˆ

Ωε

EB

(
ρ̂(x̂)

)
dλ̂ε(x̂) if ν̂ = ρ̂λ̂ε,

+∞ otherwise,
(12)

where EB(z) = z log z − z + 1 and ρ̂ = dν̂/ dλ̂ε denotes the relative density of ν̂ ∈ Xε with
respect to the reference measure λ̂ε ∈ Xε. The latter is given by λ̂ε = ŵεLd, where ŵε(x̂) =
exp(−V̂ε(x̂))/Zε with the normalization constant Zε :=

´
Ωε

exp(−V̂ε(x̂)) dx̂.

We assume that the potential V̂ε is sufficiently smooth and there exist a constantCV > 0 independent
of ε > 0 such that for almost every x̂ ∈ Ωε we have −CV ≤ V̂ε(x) ≤ CV . Note that Ld(Ωε) =
ε(2+εδ)Ld−1(Σ) =: εβε. Thus, we have the estimates

βεe
−CV ≤ Zε/ε ≤ βεe

CV with βε → β0 = 2Ld−1(Σ). (13)

Following [Lis09], the primal dissipation potential R̂ε is defined as

R̂ε(ν̂, ˙̂ν) =
1

2

ˆ
Ωε

Aε(x̂)v̂ · v̂ dν̂ with 〈 ˙̂ν, ϕ〉 =

ˆ
Ωε

Aε(x̂)v̂ · ∇ϕ dν̂ (14)

for all ϕ ∈ C∞(Ωε) where the velocity field satisfies v̂ ∈ L2(Ωε; ν̂(dx̂)). With this, we define the
De Giorgi functional D̂ε for a curve [0, T ] 3 t 7→ ν̂(t) ∈ Prob(Ωε) via

D̂ε(ν̂; [a, b]) =

ˆ b

a

{
R̂ε

(
ν̂(t), ˙̂ν(t)

)
+ R̂∗ε

(
ν̂(t),−DÊε(ν̂(t))

)}
dt,

where DÊε(ν̂) = log(ρ̂ε) = log(dν̂/dλ̂ε). In particular, the so-called Fisher information takes the
form

R̂∗ε
(
ν̂,−DÊε(ν̂)

)
=

ˆ
Ωε

1

2ρ̂2
· Aε(x̂)∇ρ̂ · ∇ρ̂ dν̂ = 2

ˆ
Ωε

Aε(x̂)∇
√
ρ̂ · ∇

√
ρ̂ dλ̂ε,

if ρ̂ =
dν̂

dλ̂ε
with

√
ρ̂ ∈ H1(Ωε).

Theorem 1.1 in [Lis09] guarantees for ε > 0 fixed and given initial value ν̂0 = û0Ld ∈ Xε the ex-
istence of a curve t 7→ ν̂ε(t) ∈ Xε which is absolutely continuous with respect to the 2-Wasserstein
distance and metric time derivative in L2(0, T ). Moreover, t 7→ Êε(ν̂(t)) is locally absolutely contin-
uous and for almost every in t ∈ [0,∞) the local energy identity holds

d

dt
Êε(ν̂ε(t)) + R̂ε

(
ν̂ε(t), ˙̂νε(t)

)
+ R̂∗ε

(
ν̂ε(t),−DÊε(ν̂ε(t))

)
= 0.

Finally, the Lebesgue density ûε of ν̂ε satisfies (9) in the distributional sense.

4.1 Transformation of the domain

To make the dependence on the parameter ε > 0 explicit, we rescale the domain Ωε in the vertical
direction, such that the top, middle, and bottom layer are each of constant thickness 1. For this, we
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introduce the Lipschitz map Sε : Ωε → Ω1, which is defined via Sε(x̂) = (y,Φε(ẑ)) with

Φε(ẑ) =


(2ẑ+ε1+δ)/(2ε)− 1/2 if ẑ ∈ I−ε := ]−ε− ε1+δ

2
,− ε1+δ

2
[,

ẑ/ε1+δ if ẑ ∈ I0
ε := [− ε1+δ

2
, ε

1+δ

2
],

(2ẑ−ε1+δ)/(2ε) + 1/2 if ẑ ∈ I+
ε := ] ε

1+δ

2
, ε+ ε1+δ

2
[.

(15)

We use the push-forward of the reference measure λ̂ε ∈ Xε under the map Sε to obtain the new
reference measure λε ∈ X1 = Prob(Ω1), i.e., λε := (Sε)#λ̂ε. In particular, we have that λε is given
by λε = wεLd with wε(x) = (ε/Zε)mε(x) exp(−Vε(x)) and V̂ε(x̂) = Vε(Sε(x̂)), and the volume
factor mε : Ω1 → R+ satisfies

mε(x) =

{
1 for x ∈ Ω±1 := Σ× (I+

1 ∪ I−1 ),

εδ for x ∈ Ω0
1 := Σ× I0

1 .
(16)

Obviously, Vε satisfies the same upper and lower bounds as V̂ε, and we assume moreover that Vε →
V0 in C0(Ω1). Thus, as Zε/ε → Z0 =

´
Ω±1

exp(−V0(x)) dx for ε → 0, we have λε → λ0 in X1,

where the limiting reference measure λ0 ∈ X1 has the Lebesgue densityw0(x) = exp(−V0(x))/Z0

if x ∈ Ω±1 and w0(x) = 0 for x ∈ Ω0
1.

Clearly, the density wε is not continuous at {xd = ±1/2} due to the definition of mε. Instead, we use
the rescaled density Wε and the associated measure Λε ∈ Meas(Ω1) defined via

Wε(x) :=
ε

Zε
exp(−Vε(x)), Λε = WεLd.

Obviously, the latter is not a probability measure anymore. We have the convergence Λε → Λ0 in
Meas(Ω1) where the limiting measure is given by the densityW0(x) = exp(−V0(x))/Z0. Moreover,
note that due to the assumptions on Vε we have that

exp(−2CV )

βε
≤ Wε(x) ≤ exp(2CV )

βε
. (17)

For a measure ν̂ ∈ Xε with relative density ρ̂ ∈ L1(Ωε) with respect to λ̂ε, i.e. ν̂ = ρ̂λ̂ε, we have
that the associated transformed measure ν = (Sε)#ν̂ ∈ X1 has the relative density ρ = ρ̂ ◦ S−1

ε ∈
L1(Ω1) with respect to the rescaled reference measure λε such that ν = ρλε. In particular, due to
mass conservation the density ρ satisfies

ν(Ω1) =

ˆ
Ω1

ρ(x) dλε =

ˆ
Ω1

ρ(x)mε(x)Wε(x) dx = 1. (18)

Using the transformation above in the driving functional Êε and the dissipation potentials R̂ε leads to
the new gradient system (X1, Eε,Rε) defined via

Eε(ν) = Êε(ν̂) =


ˆ

Ω1

EB(ρ(x)) dλε if ν = ρλε,

+∞ otherwise,
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and, with Bε ∈ L∞(Ω1;R(d−1)×(d−1)) and aε ∈ L∞(Ω1) given in (10),

R∗ε(ν; ξ) =
1

2

ˆ
Ω1

{
Bε(x)∇′ξ · ∇′ξ + aε(x)Φ′ε(z)2|∂zξ|2

}
dν

=
1

2

ˆ
Ω+

1

{
B+∇′ξ·∇′ξ +

a+

ε2
|∂zξ|2

}
dν +

1

2

ˆ
Ω−1

{
B−∇′ξ·∇′ξ +

a−

ε2
|∂zξ|2

}
dν

+
1

2

ˆ
Ω0

1

{
εγB0∇′ξ · ∇′ξ +

a0

εδ
|∂zξ|2

}
dν,

where∇′ξ = (∂1ξ, . . . , ∂d−1ξ)
> denotes the lateral gradient. In the following we will use the notation

Ω±1 = Ω+
1 ∪Ω−1 as well as the definition B±(x) = B+ if y ∈ Ω+

1 and B±(x) = B− if y ∈ Ω−1 (and
analogously for a±) for notational simplicity.

In particular, we have for the transformed Fischer information and ν = ρλε the formula

R∗ε
(
ν;−DEε(ν)

)
=

1

2

ˆ
Ω1

{
Bε(x)∇′ log ρ · ∇′ log ρ+ aε(x)Φ′ε(z)2|∂z log ρ|2

}
dν

=
1

2

ˆ
Ω±1

{B±(x)∇′ρ · ∇′ρ
ρ

+
a±(x)|∂zρ|2

ε2ρ

}
dλε

+
1

2

ˆ
Ω0

1

{εγB0∇′ρ · ∇′ρ
ρ

+
a0|∂zρ|2

εδρ

}
dλε

The primal dissipation potentialRε, defined via the Legendre transform ofR∗ε, takes the form

Rε(ν; ν̇) =
1

2

ˆ
Ω±1

{
B±(x)v′ · v′ + a±(x)

ε2
|vd|2

}
dν +

1

2

ˆ
Ω0

1

{
εγB0v′ · v′ + a0

εδ
|vd|2

}
dν,

where the rate ν̇ and the velocity field v = (v′, vd)
> ∈ L2(Ω1; dν)d satisfy the kinetic relation

〈ν̇, ϕ〉 =

ˆ
Ω±1

{
B±(x)v′ · ∇′ϕ+

a±(x)

ε2
vd ∂zϕ

}
dν

+

ˆ
Ω0

1

{
εγB0v′ · ∇′ϕ+

a0

εδ
vd ∂zϕ

}
dν (19)

for all ϕ ∈ C1
pw(Ω1) := {ϕ̃ ∈ C0(Ω1) | ϕ̃|Ω±1 ∈ C1(Ω±1 ) and ϕ̃|Ω±0 ∈ C1(Ω0

1)}.
Remark 2. Note that in the continuity equation (19) we consider test function ϕ from the larger space
C1

pw(Ω1) instead of the space C1(Ω1). This is due to the fact, that the transformation Sε is only
Lipschitz continuous and test functions ϕ̂ defined on the domain Ωε are mapped to test functions
ϕ = ϕ̂ ◦ S−1

ε whose gradient is not defined at {yd = ±1/2}. However, the measure ν is absolutely
continuous if the De Giorgi functional is finite. Thus, (19) is well defined.

Clearly, if t 7→ ν̂ε(t) ∈ Xε is a solution to the gradient flow equation associated with the gradient sys-
tem (Xε, Êε, R̂ε), then the transformed curve t 7→ νε(t) := (Sε)#ν̂ε(t) is a solution to the gradient
flow equation induced by (X1, Eε,Rε). In particular, it satisfies De Giorgi’s (Rε,R∗ε)-formulation for
t > 0

Eε(νε(t)) + Dε(νε; [0, t]) = Eε(νε(0)), (20)

where the De Giorgi functional is given via Dε(ν; [a, b]) =
´ b
a
Rε ⊕R∗ε dt as before (see (8))

In the sequel, we establish the evolutionary Γ-convergence and the EDP-convergence of the rescaled
gradient system (X1, Eε,Rε). However, first we identify the topologies that are used in the computa-
tion of the Γ-limits of the entropy and De Giorgi functional by deriving a priori estimates.
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4.2 A priori estimates

The crucial point is to establish uniform bounds for the rescaled measures νε/εδ in the middle layer Ω0
1.

In the following we only use the gradient structure of the problem and work in the space of measures.
In particular, we do not need L∞-bounds on the densities.

We assume wellprepared initial conditions, i.e., the initial measures νε(0) = ν0
ε ∈ X1 satisfy ν0

ε ⇀ ν0
0

in Prob(Ω1) and Eε(νε)→ E0(ν0
0) <∞, where the Γ-limit E0 is given via

E0(ν) =


ˆ

Ω1

EB

(
ρ(x)

)
dλ0 if ν = ρλ0,

+∞ otherwise.

In particular, since λ0 vanishes in Ω0
1 so must every ν ∈ X1 with finite relative entropy.

Without loss of generality we can assume that supε>0 Eε(νε(0)) < ∞ such that with (20) we imme-
diately obtain for T > 0

sup
ε>0

sup
t∈[0,T ]

Eε(νε(t)) <∞ and sup
ε>0

Dε(νε; [0, T ]) <∞, (21)

Lemma 4.1. Assume that the family of curves t 7→ νε(t) = ρε(t)λε ∈ X1 satisfies the uniform
bounds (21). Then, ρε satisfies the estimates

ˆ T

0

ˆ
Ω0

1

(
|ρε|+ |∂zρε|

)
dx dt < C and

ˆ T

0

ˆ
Ω±1

(
|∇′ρε|+

|∂zρε|
ε

)
dx dt < C (22)

with a constant C > 0 independent of ε. Moreover, the family {∇ρε|Ω±1 }ε>0 ⊂ L1([0, T ]×Ω±1 ) is
equi-integrable.

Proof. For an arbitrary ρ̃ ∈ C1(Ω1) with ρ̃ ≥ 0 and y ∈ Σ, −3/2 < z1, z2 < 3/2 we have

ρ̃(y, z2)− ρ̃(y, z1) =

ˆ z2

z1

∂z ρ̃(y, z) dz.

Thus, integrating first over y ∈ Σ and then over z1 ∈ I0
1 = [−1/2, 1/2] and z2 ∈ I+

1 ∪ I−1 leads to
the estimate

2

ˆ
Ω0

1

ρ̃(x) dx ≤
ˆ

Ω±1

ρ̃(x) dx+ 2

ˆ
Ω1

|∂zρ̃(x)| dx. (23)

Using Young’s inequality, we arrive at the estimate
ˆ

Ω1

|∂zρ̃(x)| dx =

ˆ
Ω1

|∂zρ̃(x)|√
ρ̃(x)

√
ρ̃(x) dx ≤ 1

2

ˆ
Ω1

|∂zρ̃(x)|2

ρ̃(x)
dx+

1

2

ˆ
Ω1

ρ̃(x) dx

Hence, with (23) we obtain the estimate
ˆ

Ω0
1

ρ̃(x) dx ≤ 2

ˆ
Ω±1

ρ̃(x) dx+

ˆ
Ω1

|∂zρ̃(x)|2

ρ̃(x)
dx.

Obviously, this estimate also holds for almost every t ∈ [0, T ] for the reletive densities ρε(t) of the
measures νε, hence, after integration over time t ∈ [0, T ] we get

ˆ T

0

ˆ
Ω0

1

ρε(t, x) dx dt ≤ C
(
1 + Dε(νε; [0, T ])

)
,
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T. Frenzel, M. Liero 12

where we also used the mass conservation in (18) and the lower bound for the rescaled reference
density Wε in (17).

Finally, the estimate (22) for ∂zρε/ε and the equi-integrability of ∇ρε on Ω±1 follows from standard
arguments, see e.g., [Lis09].

Remark 3. Considering the measures Nε := ρεL1|[0,T ] ⊗ Λε ∈ M([0, T ]× Ω1) as well as Gε :=
∂zρεL1|[0,T ] ⊗ Λε ∈ M([0, T ] × Ω1), Lemma 4.1 gives the relative compactness of Nε and Gε in
M([0, T ]× Ω1).

Next, we prove uniform estimates for the solutions of the gradient flow equation that allow us to pass
to the limit for every t ∈ [0, T ]. However, due to the behavior of νε on the middle layer Ω0

1, we cannot
expect uniform estimates in the space of absolutely continuous curves in the 2-Wasserstein space as
e.g. in [AMP+12].

Due to the second estimate in (22), the weak limit of ρε is constant in the vertical direction in the upper

and lower layers Ω+
1 and Ω−1 , respectively. Hence, we define the reduction map R : Ω1 → Ω

0

1 via

R(y, z) =


(y, 1/2) for z ∈ [1/2, 3/2],

(y, z) for z ∈ ]−1/2, 1/2[

(y,−1/2) for z ∈ [−3/2,−1/2].

By considering the push-forward of measures ν ∈ Prob(Ω1) under the map R we arrive at reduced

measures η := R#ν ∈ Prob(Ω
0

1) for which we will consider the following decomposition

η := R#ν = η+ ⊗ δ1/2 + η0 + η− ⊗ δ−1/2, (24)

where η+, η− ∈M(Σ) with η+(A) = ν(A× I+

1 ) and η− = ν(A× I−1 ) for a Borel set A ⊂ Σ and
η0 = ν|Ω0

1
∈M(Ω0

1).

We prove uniform pointwise BV regularity of the curve t 7→ ηε(t) = R#νε(t), where νε is a curve
with bounded De Giorgi functional. Using a Helly-type argument we obtain a weak∗ limit η0 such that
ηε(t) ⇀

∗ η0(t) for every t ∈ [0, T ]. Moreover, continuity of the limiting curve t 7→ η0(t) is concluded
a posteriori using the representation of η̇0 via the limiting continuity equation.

Lemma 4.2. Let t 7→ νε(t) ∈ X1 be such that

sup
ε

sup
t∈[0,T ]

Eε(νε(t)) <∞ and sup
ε

Dε(νε; [0, T ]) <∞.

Then the total variation of the reduced measures t 7→ ηε(t) = R#νε(t) with respect to the 1-

Wasserstein metricW1 on Prob(Ω
0

1) given via

VarW1(ηε; [0, T ]) := sup
{ N∑

j=1

W1

(
ηε(tj), ηε(tj−1)

) ∣∣∣ 0 = t0 < . . . < tN = T
}

is uniformly bounded, i.e., supε>0 VarW1(ηε; [0, T ]) <∞.

Proof. We exploit the well known dual formulation of the 1-Wasserstein distance in terms of 1-Lipschitz
continuous function [AGS05], i.e., for probability measures η1, η2 ∈ Prob(Ω

0

1) we have that

W1(η1, η2) = sup
{ˆ

Ω
0
1

ϕ(x) dη1(x)−
ˆ

Ω
0
1

ϕ(x) dη2(x)
∣∣∣ϕ ∈ CLip(Ω

0

1), Lip(ϕ) ≤ 1
}
.
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For a given ϕ ∈ CLip(Ω
0

1) with Lip(ϕ) ≤ 1 let us denote by ϕ̄ its extension to Ω1, i.e., ϕ̄(x) :=
ϕ(R(x)). Then, by the kinetic relation between ν̇ε and vε in (19) we obtain

ˆ
Ω

0
1

ϕ(x) dηε(tj)−
ˆ

Ω0
1

ϕ(x) dηε(tj−1) =

ˆ tj

tj−1

ˆ
Ω±1

B±(x)∇′ϕ̄(x) · v′ε(t, x) dνε(t) dt

+

ˆ tj

tj−1

ˆ
Ω0

1

{
B0∇′ϕ̄(x) · v′ε(t, x) +

a0

εδ
∂zϕ̄(x) vε,d(t, x)

}
dνε(t) dt.

Using the Fenchel–Young inequality, we arrive at the estimate

ˆ
Ω0

1

ϕ(x) d(ηε(tj)−ηε(tj−1)) ≤
ˆ tj

tj−1

{
R∗ε(νε; ϕ̄) +Rε(νε; ν̇ε)

}
dt.

The time integral of the primal dissipation potential along the curve νε is uniformly bounded by as-
sumption. To estimate the time integral of the slope term, we use that |∇ϕ| ≤ 1 almost everywhere
in Ω1 such that ˆ tj

tj−1

R∗ε(νε;ϕ) dt ≤ C

ˆ tj

tj−1

ˆ
Ω1

ρε(t, x) dΛε dt.

Hence, we arrive at

N∑
j=1

W1(ηε(tj), ηε(tj−1)) ≤ C

( ˆ T

0

Rε(νε(t); ν̇ε(t)) dt+

ˆ T

0

ˆ
Ω1

ρε(t, x) dΛε dt

)
.

Applying Lemma 4.1 finishes the proof of this lemma.

The following a priori estimate follows directly from (22) and the assumptions on the coefficients in
(11).

Lemma 4.3. Let t 7→ νε(t) ∈ X1 satsify (22) then the velocity field vε = (v′ε, vε,d) : [0, T ]× Ω1 →
Rd satisfy

ˆ T

0

ˆ
Ω±1

{
|v′ε|2 +

v2
ε,d

ε2

}
dνε dt+

ˆ T

0

ˆ
Ω0

1

{
εγ+δ|v′ε|2 + v2

ε,d

} dνε
εδ

dt ≤ C.

4.3 Limit passage

Here we prove the lower Γ-limits for the entropies and the De Giorgi functionals. The construction of
the recovery sequence can be found in the thesis [Fre19]. In order to pass to the limit ε→ 0 in (20) we
use the a priori estimates in Lemmas 4.1, 4.2, 4.3 to extract converging subsequences. In particular,
we find (non-relabeled) subsequences and limits such that

L1|[0,T ] ⊗ νε ⇀∗ ν0 and Nε := L1|[0,T ] ⊗ ρεΛε ⇀
∗ N0 inM([0, T ]×Ω1). (25)

Since νε(t) = Nε(t) on Ω±1 we also have that N0 = ν0 on [0, T ] × Ω±1 . Moreover, since the
relative entropies are superlinear and bounded, there exists u0 ∈ L1([0, T ]×Ω1) such that u0 is the
Lebesgue density of ν0. With the reference measure λε vanishing on Ω0

1 we have that ν0 ≡ 0 and
u0 ≡ 0 on Ω0

1, too.
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Exploiting Lemma 4.2, Helly’s selection principle (see also [DM09]) gives up to a subsequence a
pointwise limit

R#νε(t) = ηε(t) ⇀
∗ R#ν0(t) = η0(t) in Prob(Ω

0

1) for every t ∈ [0, T ]. (26)

We easily see that η0(t) satisfies for all t ∈ [0, T ] the decomposition

η0(t) = η+
0 (t)⊗ δ1/2 + η−0 ⊗ δ−1/2, (27)

where η+
0 (t) ∈ M(Σ) and η−0 (t) ∈ M(Σ) are absolutely continuous with respect to the Lebesgue

measure on Σ and their densities are given by

u+
0 (t, y) =

ˆ 3/2

1/2

u0(t, y, z) dz and u−0 (t, y) =

ˆ −1/2

−3/2

u0(t, y, z) dz. (28)

Moreover, by (22) we have for the relative densities ρε additionally that

ρε|(0,T )×Ω±1
⇀ ρ0 and ∇ρε|(0,T )×Ω±1

⇀ ∇ρ0 in L1((0, T )× Ω±1 ) (29)

In fact, on the upper and lower layer Ω+
1 and Ω−1 the limiting relative densities are constant in the

vertical direction as
∂zρε|(0,T×Ω±1 ) → 0 in L1((0, T )× Ω±1 ). (30)

Finally, we can assume that also

Gε := L1|[0,T ] ⊗ (∂zρεΛε) ⇀
∗ G0 inM([0, T ]×Ω1). (31)

We define the reduced reference measures inM(Σ) for the upper and lower layer, denoted ϑ+
0 =

w+
0 Ld−1 and ϑ−0 = w+

0 Ld−1, via their Lebesgue densities w+
0 and w−0 , where

w+
0 (y) =

ˆ 3/2

1/2

w0(y, z) dz and w−0 (y) =

ˆ −1/2

−3/2

w0(y, z) dz. (32)

Setting ϑ0 = ϑ+
0 ⊗ δ1/2 + ϑ−0 ⊗ δ−1/2 ∈ Prob(Ω

0

1) , such that ϑ0 = limε→0R#λε, we define the

limit entropy functional on Prob(Ω
0

1)

E0(η) = E0(η+, η−) :=


ˆ

Ω
0
1

EB(ρ) dϑ0 if η = ρϑ0

∞ else,
(33)

In particular, we have the decomposition E0(η) =
´

Σ
EB(ρ+) dϑ+

0 +
´

Σ
EB(ρ−) dϑ−0 for η satisfying

η � ϑ0.

We arrive at the following lower estimates for the relative entropies Eε and the De Giorgi functional
Dε.

Proposition 1 (Lower estimate). Let the family t 7→ νε(t) and satisfy the convergences in (25) – (30).
Then, we have the following lower estimates for the relative entropies Eε and the De Giorgi functionals
Dε

∀ t ∈ [0, T ] : lim inf
ε→0

Eε(νε(t)) ≥ E0(η0(t)) (34)

lim inf
ε→0

Dε(νε; [0, T ]) ≥ Dlat

(
N0; [0, T ]

)
+ Dvert

(
(N0, G0); [0, T ]

)
(35)
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where the limit of the De Giorgi functional is decomposed into lateral and vertical parts, which are
given via

Dlat(N0; [0, T ]) =
1

2

ˆ T

0

ˆ
Σ

{
B+v+

0 · v+
0 +

B+∇′ρ+
0 · ∇′ρ+

0

(ρ+
0 )2

}
dη+

0 dt

+
1

2

ˆ T

0

ˆ
Σ

{
B−v−0 · v−0 +

B−∇′ρ−0 · ∇′ρ−0
(ρ−0 )2

}
dη−0 dt

Dvert

(
(N0, G0); [0, T ]

)
=
a0

2

ˆ
[0,T ]×Ω

0
1

{
(γ0

0)2 +
∣∣∣ dG0

dN0

∣∣∣2} dN0.

(36)

iff ∂zρ0 ≡ 0 in Ω±1 and +∞ otherwise. The triple (v+
0 , v

−
0 , γ

0
0), consisting of the vector fields

v±0 (t, y) ∈ Rd−1 and the scalar field γ0
0(t, x) ∈ R, satisfies the reduced continuity equation

0 =

ˆ T

0

ˆ
Σ

(
∂tϕ

+ +B+∇′ϕ+ · v+
0

)
dη+

0 dt+

ˆ T

0

ˆ
Σ

(
∂tϕ

− +B−∇′ϕ− · v−0
)

dη−0 dt

+

ˆ
[0,T ]×Ω

0
1

a0∂zϕ(t, x)γ0
0(t, x) dN0 (37)

for all ϕ ∈ C1
(
(0, T )× Ω1

)
with (∂zϕ)|

Ω1\Ω0
1

≡ 0 and ϕ±(y) := ϕ(y,±1/2).

Proof. 1. Lower limit for the entropies. Due to the convexity of z 7→ EB(z), Jensen’s inequality and
EB(z) ≥ 0 lead to the estimate

Eε(νε(t)) ≥
ˆ

Σ

EB

(
u+
ε (t)

w+
ε

)
w+
ε dy +

ˆ
Σ

EB

(
u−ε (t)

w−ε

)
w−ε dy

=

ˆ
Σ

EB

(
dη+

ε (t)

dϑ+
ε

)
dϑ+

ε +

ˆ
Σ

EB

(
dη−ε (t)

dϑ−ε

)
dϑ−ε = E0(ηε),

where the quantities u+
ε , u

−
ε as well as w+

ε and w−ε are defined as in (28) and (32).

The liminf estimate (34) follows from lower semicontinuity of the relative entropy (η, ϑ) 7→ H(η|ϑ) =´
Σ
EB( dη/ dϑ) dϑ under weak∗ convergence, which is well known, see e.g., [AGS05, Lemma 9.4.3].

2. Lower limit for the De Giorgi functionals. To prove the lower estimate in (35), we consider first the
term arising from the primal dissipation potential, i.e.

´ T
0
Rε(νε, ν̇ε) dt. Indeed, due to the estimate

in 4.3 and Nε ⇀
∗ N0 in M([0, T ]×Ω1), Theorem 5.4.4 in [AGS05] gives the existence of limits

ṽ+
0 ∈ L2((0, T )×Ω+

1 ; dN0)d−1, ṽ−0 ∈ L2((0, T )×Ω−1 ; dN0)d−1, and γ0
0 ∈ L2((0, T )×Ω−1 ; dN0)

such that v′εNε ⇀
∗ ṽ±N0 inM([0, T ]×Ω

±
1 )d−1 and vε,dN0 ⇀

∗ γ0
0N0 inM([0, T ]×Ω

0

1) as well
as the lower estimates

lim inf
ε→0

ˆ T

0

ˆ
Ω±1

v′ε ·B±v′ε dNε dt ≥
ˆ

[0,T ]×Ω
0
1

ṽ±0 ·B±ṽ±0 dN0, (38)

lim inf
ε→0

ˆ T

0

ˆ
Ω0

1

a0|vε,d|2 dNε dt ≥
ˆ

[0,T ]×Ω
0
1

a0|γ0
0 |2 dN0 (39)

In particular, passing to the limit in the continuity equation (19), we obtain

0 =

ˆ
[0,T ]×Ω

0
1

{
∂tϕ+ ṽ± ·B±∇′ϕ±

}
dN0 +

ˆ
[0,T ]×Ω

0
1

a0γ0
0∂zϕ dN0
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for all ϕ ∈ C1
(
(0, T ) × Ω1

)
with (∂zϕ)|

Ω1\Ω0
1

≡ 0. We easily check, that we can replace ṽ±0 by the
averages

v±0 (t, y) =

ˆ
I±1

ṽ±0 (t, y, z)
w0(y, z)

w±0 (y)
dz,

which solves the continuity equation (37) with respect to the measures η±0 defined in (27). Moreover,
by Jensen’s inequality we have the lower estimate

ˆ
[0,T ]×Ω

0
1

ṽ±0 ·B±ṽ±0 dN0 ≥
ˆ T

0

ˆ
Σ

v±0 ·B±v±0 dη±0 dt. (40)

Next, we consider the term in the De Giorgi functionals Dε arising from the Fischer information, i.e.´ T
0
R∗ε(νε,−DEε(νε)) dt.

Using the joint convexity of (ρ, ξ) 7→ B±ξ · ξ/ρ and the convergences in (29) we immediately obtain
with a Ioffe-type argument the lower estimate

lim inf
ε→0

1

2

ˆ T

0

ˆ
Ω±1

B±∇′ρε · ∇′ρε
ρε

dΛε dt ≥ 1

2

ˆ T

0

ˆ
Ω±1

B±∇′ρ0 · ∇′ρ0

ρ0

dΛ0 dt.

Since ∂zρ0 ≡ 0, we can integrate over z ∈ I±1 to arrive with (38) and (40) at (35) for Dlat (the
terms containing the vertical derivatives ∂zρε are non-negative and hence can be estimated by 0 from
below). Finally, using the second part of Theorem 9.4.3 in [AGS05] we get with (31) and (25)

lim inf
ε→0

ˆ T

0

ˆ
Ω0

1

a0

2

|∂zρε|2

ρε
dΛε dt = lim inf

ε→0

ˆ T

0

ˆ
Ω0

1

a0

2

∣∣∣dGε

dNε

∣∣∣2 dNε

≥
ˆ

[0,T ]×Ω
0
1

a0

2

∣∣∣dG0

dN0

∣∣∣2 dN0,

which, with (39), is (35) for Dvert.

4.4 Identification of the limit gradient structure

In the last subsection, we proved that the limits obtained in (25) – (31) satisfy for T > 0 the estimate

E0(η0(T )) + Dlat(N0; [0, T ]) + Dvert

(
(N0, G0); [0, T ]

)
≤ E0(η0(0)). (41)

In this section we derive the final form of the limit system. In particular, the evolution on the middle
layer Ω0

1 is given in (41) only via (N0, G0) in Dvert. To arrive at the effective limit system we first
identify G0 to be the vertical derivative of N0 in a weak sense and second minimize over all profiles
z 7→ N0((·, z)) to obtain the limit dissipation functional describing jumps across the middle layer.

The crucial technique is the disintegration theorem (see also [AGS05, Sect. 5.3]), which allows us to
integrate over each fiber {y} × I1 for y ∈ Σ. In fact, let us introduce the map π′ : [0, T ] × Ω0

1 →
[0, T ]× Σ as the projection on the time variable t and the lateral component y of the spatial variable

x = (y, z), i.e., π′(t, x) = (t, y). With the limiting measure N0 ∈M([0, T ]×Ω
0

1), we associate the
averaged measure η̄ = π′#N0 ∈ M([0, T ]×Σ) and consider the related disintegration of N0, i.e.,

there is a η̄-a.e. uniquely determined family of fiber probability measures µ̄t,y ∈ Prob(I1) such that
for all ϕ ∈ C([0, T ]× Ω1)ˆ

[0,T ]×Ω
0
1

ϕ(t, x) dN0(t, x) =

ˆ
[0,T ]×Σ

ˆ
I1

ϕ(t, (y, z)) dµ̄t,y(z) dη̄(t, y). (42)
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Remark 4. If the measure N0 is absolutely continuous with respect to the Lebesgue measure on
[0, T ]× Ω1, i.e., N0 = u0Ld+1, then we have for the disintegration that

η̄ =

(ˆ
I1

u0(·, ·, z) dz

)
Ld and µ̄t,y =

u0(t, y, ·)´
I1
u0(t, y, z) dz

L1.

By the boundedness of the De Giorgi functionals Dε, we deduce W1,1-regularity of the fiber measure
µ̄t,y for η̄-a.e. (t, y).

Lemma 4.4. Let N0 and G0 be given by (25) and (31) such that

ˆ
[0,T ]×Ω

0
1

∣∣∣ dG0

dN0

∣∣∣2 dN0 <∞,

and let
´
µ̄t,y dη̄ be the disintegration of N0 as in (42). Then, for η̄-a.e. (t, y) ∈ [0, T ] × Σ there

exists ρt,y ∈ W1,1(I1) such that µ̄t,y = ρt,yW0(t, y, ·)L1 and dG0

dN0
= ∂zρt,y/ρt,y. In particular, we

have ˆ
[0,T ]×Ω

0
1

∣∣∣ dG0

dN0

∣∣∣2 dN0 =

ˆ
[0,T ]×Σ

ˆ
I0
1

(∂zρt,y)
2

ρt,y
W0 dz dη̄. (43)

Proof. The relative density ρε satisfies the identity

∀ϕ ∈ C1
c((0, T )× Ω1) :

ˆ T

0

ˆ
Ω1

ϕ∂zρε dx dt = −
ˆ T

0

ˆ
Ω1

ρε∂zϕ dx dt

Using the definition and the convergence of Gε in (31), of Nε in (25) and Wε → W0 in C(Ω1), we
arrive for ε→ 0 at ˆ

[0,T ]×Ω1

ϕ

W0

dG0 = −
ˆ

[0,T ]×Ω1

∂zϕ

W0

dN0.

Denoting the density of G0 with respect to N0 with g0 and using the disintegration of N0 as above, we
obtain that η̄-a.e. in [0, T ]× Σ

ˆ
I1

ϕg0

W0

dµ̄t,y = −
ˆ
I1

∂zϕ

W0

dµ̄t,y

Hence, we have that for η̄-a.e. (t, y) the measure µ̄t,y/W0(t, y, ·) has a weak derivative inM(I1)
given by g0(t, y, ·)/W0(t, y, ·)µ̄t,y. In particular, by [AFP00, Thm 3.30] there exists for η̄-a.e. (t, y) a
BV-function ρt,y : I1 → R such that µ̄t,y/W0(t, y, ·) = ρt,yL1|I1 and the derivative reads ∂zρt,y =
g0(t, y, ·)/W0(t, y, ·)µ̄t,y. However, this means that ∂zρt,y is also absolutely continuous with respect
to the Lebesgue measure on I1 and we infer ρt,y ∈W1,1(I1) and ∂zρt,y = g0(t, y, ·)ρt,y.

Clearly, on I+
1 ∪ I−1 we must have ∂zρt,y ≡ 0 due to (30). On the middle layer given by I0

1 , we
conclude that the identity in (43) holds.

Using the characterization of (G0, N0) on [0, T ] × Ω
0

1 from the above lemma and choosing in (37)
the test function ϕ such that ϕ ≡ 0 in Ω±1 yields

ˆ
[0,T ]×Σ

ˆ
I0
1

γ0
0ρt,yW0∂zϕ dz dη̄ = 0.
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Hence, we conclude that the vertical flux through the middle layer given by a0γ0
0ρt,yW0 is constant in

z ∈ I0
1 for η̄-a.e. (t, y). Denoting the latter by κ̃(t, y) we can rewrite (37) to get

0 =

ˆ T

0

ˆ
Σ

(
∂tϕ

+ +B+∇′ϕ+ · v+
0

)
dη+

0 dt+

ˆ T

0

ˆ
Σ

(
∂tϕ

− +B−∇′ϕ− · v−0
)

dη−0 dt

+

ˆ
[0,T ]×Σ

κ̃(ϕ+ − ϕ−) dη̄. (44)

Moreover, Dvert given in (36) can be written as

Dvert

(
(N0, G0); [0, T ]

)
=

ˆ
[0,T ]×Σ

ˆ
I0
1

{
κ̃2

2a0W0ρt,y
+
a0W0(∂zρt,y)

2

2ρt,y

}
dz dη̄. (45)

The main structure in the limit model given by E0 and Dvert and Dlat is that Dvert does not depend
on the time derivative Ṅ0|[0,T ]×Ω

0
1
. Moreover, the vertical flux κ̃ is constant in z. Hence, typical for Γ-

convergence methods, the final step in the derivation of the effective system consists of minimizing (45)
over all profiles ρt,y : I0

1 → R subject to fixed boundary conditions ρt,y(±1/2): We write the inner
integral in (45) as a functional of ρt,y and denote it by Gκ̃(ρt,y) with κ̃ treated as a fixed parameter.

G̃(κ̃; r, s) := min
{
Gκ̃(ρ̃)

∣∣ ρ̃ ∈W1,1(I0
1 ) with ρ̃(1/2) = r, ρ̃(−1/2) = s

}
.

It turns out, that this minimization problem can be explicitly solved. We introduce the transmission
coefficient via the harmonic mean of W0 across I0

1 , i.e.

K∗(y) = a0 harmI0
1
[W0] (y), where harmI0

1
[W0]−1 =

ˆ
I0
1

1

W0(·, z)
dz. (46)

In particular, for a large barrier V0(·, z) across the middle layer, the transmission coefficient becomes
A∗ beomes indeed small.

We refer to [LMPR17, Proposition A.2] for a proof of the following Lemma.

Lemma 4.5. For fixed r ≥ 0, s ≥ and k̃ ∈ R we have the identity

G̃(k̃; r, s) = K∗
√
rsC

( k̃

K∗
√
rs

)
+K∗

√
rsC ∗

(
log

r

s

)
where C ∗ is the Legendre transform of C and given by C ∗(ξ) = 4

(
cosh(ξ/2)− 1

)
.

With the transformation k := k̃/(K∗
√
rs), we can rewrite the above result as

G(k; r, s) := G̃(k̃; r, s) = K∗
√
rs
(
C (k) + C ∗

(
log(r/s)

))
.

Note that (C ∗)′(ξ) = 2 sinh(ξ/2) = eξ/2 − e−ξ/2. In particular, with this we compute the crucial
identity

√
rs (C ∗)′

(
log(r/s)

)
=
√
rs
(√r

s
−
√
s

r

)
= r − s (47)

We show the following identity for the traces of the measure N0 at the interfaces z± = ±1/2√
ρt,y(z+)ρt,y(z−)µ =

√
ρ0(·, z+)ρ0(·, z−)L|[(0,T )×Σ],
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i.e., Lemma 4.5 leads to the geometric mean GM(η+, η−) ∈ M(Σ) of positive measures η+ ∈
M(Σ) and η− ∈M(Σ). It is defined via

GM(η+, η−) :=

√
dη−

d(η+ + η−)

dη+

d(η+ + η−)
(η+ + η−).

Lemma 4.6. Let the assumptions of Lemma 4.4 hold true. Then, we have√
ρ·,·(z+)ρ·,·(z−)η̄ =

√
ρ+ρ−Ld and ρ+(t, y)ρt,y(z

−) = ρ−(t, y)ρt,y(z
+).

Proof. With the same arguments as in the proof of Lemma 4.4, we find ρ1
t,y ∈ W1,1(I1) such that

N0 = (ρ1
t,yW0(t, y, ·)L1) ⊗ η̄1 with η̄1 = π′#N0 ∈ M([0, T ] × Σ), where π′(t, x) = (t, y) for

x ∈ Ω1. By taking the one sided limits we obtain

lim
h→0

1

h
N0(A× [z+ − h, z+]) = lim

h→0

1

h
N0(A× [z+, z+ + h]) =

ˆ
A
ρ1
t,y(z

+)W0(y, z+) dη̄1.

Moreover, by Lemma 4.4 we also find

lim
h→0

1

h
N0(A× [z+ − h, z+]) =

ˆ
A
ρt,y(z

+)W0(y, z+) dη̄

and

lim
h→0

1

h
N0(A× [z+, z+ + h]) =

ˆ
A
ρ+(t, y)W0(y, z+) d(y, t).

Since W0 ∈ C(Ω
1

1), we conclude ρ·,·(z+)η̄ = ρ+Ld. Similarly, we conclude also for the other
interface that ρ·,·(z−)η̄ = ρ−Ld.
We denote η̄± := ρ·,·(z

±)η̄ and compute√
ρ·,·(z+)ρ·,·(z−)η̄ = GM(η̄+, η̄−) = GM(ρ+Ld, ρ−Ld) =

√
ρ+ρ−Ld.

The relation ρ±(t, y)ρt,y(z
∓) = ρ∓(t, y)ρt,y(z

±) follows from

ρ+ρ·,·(z
−)Ld = ρ·,·(z

+)ρ·,·(z
−)η̄ = ρ−ρ·,·(z

+)Ld.

Introducing the new variable κ(t, y) = κ̃(t, y)/
(
K∗(y)

√
ρt,y(z+)ρt,y(z−)

)
, the continuity equation

(44) reads

0 =

ˆ T

0

ˆ
Σ

(
∂tϕ

+ +∇′ϕ+ ·B+v+
0

)
dη+

0 dt+

ˆ T

0

ˆ
Σ

(
∂tϕ

− +∇′ϕ− ·B−v−0
)

dη−0 dt

+

ˆ T

0

ˆ
Σ

K∗κ(ϕ+ − ϕ−)
√
ρ−0 ρ

+
0 dy dt (48)

for all ϕ ∈ C1
(
(0, T )× Σ;R2

)
with ϕ(0, ·)|Σ = ϕ(T, ·)|Σ = 0.
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In the following, we show continuity of t 7→ η0(t) and that it has a time derivative in a suitable sense.
Indeed, with (48) we conclude continuity and weak differentiability of η0 as follows. We pass to the limit
in (19) with fixed ϕ ∈ C1(Ω1) such that (∂zϕ)|

Ω1\Ω
0
1

≡ 0 and obtain for 0 ≤ t1 < t2 that

〈
η0(t2)−η0(t1), ϕ

〉
=

ˆ t2

t1

ˆ
Σ

∇′ϕ+ ·B+v+
0 dη+

0 dt+

ˆ t2

t1

ˆ
Σ

∇′ϕ− ·B−v−0 dη−0 dt

+

ˆ t2

t1

ˆ
Σ

K∗κ(ϕ+ − ϕ−)
√
ρ−0 ρ

+
0 dy dt.

Hence, we infer that ‖η0(t2)− η0(t1)‖∗ → 0 as (t2 − t1)→ 0, where

‖η‖∗ = sup
{
〈η, ϕ〉

∣∣ ‖∇′ϕ±‖L∞(Σ) ≤ 1, ‖ϕ+−ϕ−‖L∞(Σ) ≤ 1
}
.

Moreover, we obtain weak differentiability of η0. To show this, we define X to be the closure of
C1
(
(0, T )× Σ;R2

)
with respect to the norm

‖ϕ‖Y = ‖∇′ϕ+‖L2(η+
0 ,ΣT ) + ‖∇′ϕ−‖L2(η−0 ,ΣT ) + ‖ϕ+−ϕ−‖LC∗ (η̄0,ΣT ),

where ΣT := (0, T )×Σ and we have set η̄0 = GM(η+
0 , η

−
0 ) for brevity. By taking the quotient space

with respect to the equivalence relation ∼ defined via ϕ1 ∼ ϕ2 ⇔ ‖ϕ1 − ϕ2‖Y = 0 we define the
Banach space Y := X/∼. With Hölder’s inequality we find that η̇0 ∈ Y ∗. The Orlicz norm is then
defined as follows

‖f‖LC∗ (η̄0,(0,T )×Σ) := inf
{
k > 0

∣∣∣ ˆ
(0,T )×Σ

C ∗(f/k) dη̄0 ≤ 1
}
.

For an introduction to Orlicz spaces we refer to [RR91]. In addition to η̇0 ∈ Y ∗, we also have
‖η̇0(t)‖Y ∗

η0(t)
∈ L1(0, T ) with

‖ϕ‖Yη = ‖∇′ϕ+‖L2(η+,Σ) + ‖∇′ϕ−‖L2(η−,Σ) + ‖ϕ+−ϕ−‖LC∗ (η̄,Σ).

This follows from the fact (cf. [RR91]) that

‖κ‖LC (η̄0(t),Σ) ≤ 1 +

ˆ
Σ

C (κ) dη̄0(t).

Note that the continuity equation (48) gives rise to the natural decomposition into lateral and transmis-
sion rates η̇ = η̇v + η̇κ where in the distributional sense

〈η̇v, ϕ〉 =

ˆ
Σ

v− ·B−∇′ϕ− dη− +

ˆ
Σ

w+ ·B+∇′ϕ+ dη+

and

〈η̇κ, ϕ〉 =

ˆ
Σ

A∗[V0]κ(ϕ+ − ϕ−) dGM(η−, η+)

for all ϕ = (ϕ−, ϕ+) ∈ C1(Σ;R2) with the effective coefficient A∗ (written here as a nonlinear
operator A∗ : L∞(Ω1)→ L∞(Σ))

A∗[V0] :=
K∗√
w+

0 w
−
0

=
a0
( ´

I0
1

eV0(·,z) dz
)−1( ´

I+
1

e−V0(·,z) dz
)1/2( ´

I−1
e−V0(·,z) dz

)1/2
. (49)
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Note that, indeed by Corollary 4.6 we have

K∗

√
ρ·,·(z−)ρ·,·(z+)η̄ = K∗

√
ρ+

0 ρ
−
0 Ld = A∗[V0] dGM(η−, η+).

In particular, it holds that

ˆ
[0,T ]×Σ

G
(
κ̃; ρt,y(1/2), ρt,y(−1/2)

)
dη̄ =

ˆ T

0

ˆ
Σ

G(κ; ρ+
0 , ρ

−
0 ) dy dt.

Moreover, with Lemma 4.5 we obtain that
ˆ

Σ

G(κ; ρ+
0 , ρ

−
0 ) dy = Rmemb(η, η̇κ) +R∗memb

(
η,− log

(ρ+
0

ρ−0

))
with

Rmemb(η, η̇) =


ˆ

Σ

A∗[V0]C (κ) dGM(η−, η+) if η̇ = η̇κ,

∞ else.
(50)

Since Dlat(N0; [0, T ]) given in (36) is ofRbulk ⊕R∗bulk form with

Rbulk(η, η̇) =


ˆ

Σ

1

2
w+ ·B+w+ dη+ +

ˆ
Σ

1

2
w− ·B−w− dη− if η̇ = η̇v,

∞ else,

we conclude that the effective dissipation potential is then given by the inf-convolution of Rmemb and
Rbulk, that is

Reff(η, η̇) = inf
{
Rbulk(η, η̇v) +Rmemb(η, η̇κ)

∣∣ η̇ = η̇v + η̇κ
}
.

In particular, we obtain from Proposition 1 the Γ-liminf for the De Giorgi functionals Dε and as a
consequence pE-convergence.

Theorem 4.7. Let the family of measures νε ∈ M+([0, T ] × Ω1) satisfy (21) and converge in the
sense of (25) – (31). Then, we have the following Γ-liminf estimate for the De Giorgi functionals Dε

lim inf
ε→0

Dε(νε; [0, T ]) ≥ Deff(η0; [0, T ])

with

Deff(η0; [0, T ]) =

ˆ T

0

Reff(η0, η̇0) +R∗eff

(
η0,−DE0(η0)

)
dt.

The remainder of this subsection is devoted to the chain rule, which is used below to conclude the
differential inclusion (53) for the limit of solutions. The chain rule is proved by time regularization.

Lemma 4.8 (Chain rule). For t 7→ η(t) ∈M(Σ)×M(Σ) assume

Deff(η; [0, T ]) <∞ and sup
t∈[0,T ]

|E0(η(t))| <∞.

Then, the chain rule holds, i.e.,

d

dt
E0

(
η(t)

)
= 〈DE0

(
η(t)

)
, η̇(t)〉 for a.a. t ∈ (0, T ).
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Proof. 1. Regularization of entropy functional. For α > 0, we replace the Boltzmann entropy density
EB(z) = z log z − z + 1 by E(α)

B (z) := EB(z + α). By the dominated convergence theorem, we

check that for the related driving functionals we have E (α)
0 (η)→ E0(η) as α→ 0

Step 2. Time regularization. Fix 0 < t1 < t2 < T and define ηn(t) ∈M(Σ)×M(Σ) via convolution
of η with the kernel δn(t) = nδ(nt), where δ(t) = 1−max{2|t|, 1}, namely

ηn(t) =

ˆ T

0

δn(τ−t)η(τ) dτ for t ∈ [t1, t2]

and constantly extended for t ∈ [0, T ] \ [t1, t2]. Note that due to the boundedness of the De Giorgi
functionals we have ∇

√
ρ± ∈ L2(ΣT ). In particular, ρ± ∈ Lp(ΣT ) for some p > 1. However, this

also gives ηn ∈ Lp(ΣT ;R2) and η̇n ∈ Lp(ΣT ;R2). In particular, with [MRS13, Prop. 2.4] it follows
that for 0 ≤ s < t ≤ Tˆ t

s

ˆ
Σ

{
η̇+
n log(α + ρ+

n ) + η̇−n log(α + ρ−n )
}

dy dr = E (α)
0

(
ηn(t)

)
− E (α)

0

(
ηn(s)

)
. (51)

Note that if (v+, v−, κ) satisfy (48) for η then

v±n (t) =


(v±(t)η±) ∗ δn(t)

η±n (t)
for t ∈ [t1, t2],

0 for t ∈ [0, T ] \ [t1, t2]

and

κn(t) =


(
κ(t)

√
η+(t)η−(t)

)
∗ δn(t)√

η+
n (t)η−n (t)

for t ∈ [t1, t2],

0 for t ∈ [0, T ] \ [t1, t2]

satisfy (48) for ηn.

Step 3. Passing to the limit α → 0. Using the continuity equation and the uniform bound on the De
Giorgi functionals, and exploiting that u/(u + αw)2 ≤ 1/u for u > 0 and α 7→ C ∗(1

2
log((ρ+ +

α)/(ρ− + α))) is non-increasing, we conclude again by Young’s inequality and the dominated con-
vergence theorem that we can pass to the limit α→ 0 in the identity (51) to arrive at

E (α)
0

(
ηn(s)

)
− E (α)

0

(
ηn(t)

)
=

ˆ t

s

ˆ
Σ

∇′ log ρ+
n ·B+v+

n dη+
n dτ

+

ˆ t

s

ˆ
Σ

∇′ log ρ−n ·B−v−n dη−n dτ +

ˆ t

s

ˆ
Σ

K∗κ(ϕ+ − ϕ−)
√
ρ−n ρ

+
n dy dτ.

Step 4. Passing to the limit n→∞. We carry out the limit passage in terms of the continuity equation.
By convexity of the maps

Rd−1 × R+ 3 (a, b) 7→
∣∣∣a
b

∣∣∣2b and R3
+ 3 (a, b, c) 7→ C

(
a√
bc

)√
bc

and convexity of the slope term η 7→ Reff(η,−DE0(η)), we have the estimate (cf. [AGS05, Lem.
8.1.9, 8.1.10])

Reff(ηn, η̇n) ≤ Reff(η, η̇) and R∗eff

(
ηn,−DE0(ηn)

)
≤ R∗eff

(
η,−DE0(η)

)
.

Hence, we conclude ˆ t

s

〈η̇n, log ρn〉 dτ →
ˆ t

s

〈η̇, log ρ〉 dτ,

where we used again the dominated convergence theorem.
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5 Discussion

In this section, we discuss the effective limit system obtained in the previous section. In particu-
lar, we derive the system of PDEs that is formarly equivalent to the evolutionary system given by
(X, E0,Reff). It consists of two drift-diffusion equations for the upper and lower layer coupled by a
linear exchange reaction term which models jump processes from the upper to the lower layer and
vice versa, see (54).

Moreover, in [MMP18] a stronger notion of EDP-convergence, called tilted EDP-convergence, is in-
troduced. Hence, the question arises whether this stronger convergence also holds in our case. We
answer this question in Subsection 5.2.

In the case that we do not have drift, i.e. Vε ≡ 0, the equation in (9) can be written as a gradient-
flow equation with respect to an H−1-type gradient structure with quadratic driving functional. We
show that also in this case EDP-convergence can be shown. However, in contrast to the logarithmic
entropy functional and the Wasserstein gradient structure, the resulting effective limit gradient system
still features a quadratic dissipation potential, see Subsection 5.3. Though the effective PDE system is
the same. In particular, there is no unique gradient structure for the limit PDE model. In fact, we show
in Subsection 5.4 that also for the logarithmic relative entropy in (33) with potential V0 a different,
quadratic dissipation potential exists which leads to the same evolution equation.

Finally, we connect our limit derivation to recent results for stochastic Markovian jump processes
[MPR14]. In particular, we highlight in Subsection 5.5 that our limit problem with non-quadratic dis-
sipation arises in a natural way from large deviation principles, see also [LMPR17].

5.1 Linear drift-diffusion-reaction system

Note that νε satisfy (21). Hence, we conclude up to a subsequence that νε converges in the sense
(25) – (31). In particular, for well prepared initial conditions νε(0) with R#νε(0) ⇀∗ η0(0) such that
Eε
(
νε(0)

)
→ E0

(
η0(0)

)
we obtain pointwise convergence R#νε(t) ⇀

∗ η0(t) for all t ∈ (0, T ).
Passing to the limit in (20) we obtain

E0

(
η0(T )

)
+ Deff(η0; [0, T ]) ≤ E0

(
η0(0)

)
. (52)

By the Fenchel–Young estimate for Dε and by the chain rule (see Lemma 4.8) we conclude equality in
(52) and Eε

(
νε(t)

)
→ E0

(
η0(t)

)
for all t ∈ (0, T ]. Moreover, it follows that η0 satisfies the differential

inclusion
η̇0(t) ∈ ∂R∗eff

(
η0(t),−DE0(η0(t))

)
(53)

for almost all t ∈ (0, T ). Thus, we conclude EDP-convergence (X1, Eε,Rε) to (X0, E0,Reff) in the
sense of Definition 2.2, where

X0 =
{

(η−, η+) ∈M≥0(Σ)×M≥0(Σ)
∣∣ η− + η+ ∈ Prob(Σ)

}
.

Using (47), we infer that (53) is formally equivalent to the limiting system of PDEs

∂tu
+
0 = div′

(
w+

0 B
+∇′ u

+
0

w+
0

)
+ A∗

( u+
0

w+
0

− u−0
w−0

)
,

∂tu
−
0 = div′

(
w−0 B

−∇′ u
−
0

w−0

)
+ A∗

( u−0
w−0
− u+

0

w+
0

)
,

DOI 10.20347/WIAS.PREPRINT.2601 Berlin 2019



T. Frenzel, M. Liero 24

where the reference states w+
0 and w−0 are defined in (32). In particular, introducing the effective

potentials V̄ ±0 = − log(Z̄0w
±
0 ), with Z̄0 =

´
Σ

(e−V̄
+
0 +e−V̄

−
0 ) dy, and assuming V̄ ±0 to be sufficiently

smooth, we arrive at the drift-diffusion-reaction system

∂tu
+
0 = div′

(
B+
(
∇′u+

0 + u+
0∇′V̄ +

0

))
+ A∗

( u+
0

w+
0

− u−0
w−0

)
,

∂tu
−
0 = div′

(
B−
(
∇′u−0 + u−0∇′V̄ −0

))
+ A∗

( u−0
w−0
− u+

0

w+
0

)
.

(54)

On the boundary ∂Σ, we have no-flux conditions.

5.2 EDP-convergence with tilting

In [MMP18] a stronger version of EDP convergence was introduced, which guarantees the EDP con-
vergence to an effective gradient system with the same effective dissipation potentialReff for all “tilts”,
i.e. perturbations, of the driving functionals Eε. The latter is defined via Eζε (ν) = Eε(ν)− 〈ζ, ν〉 for a
tilt ζ ∈ X∗. The point of introducing the tilts ζ is that the space in which gradient systems are explored
is enlarged. In particular, by the arbitrariness of the tilts ζ we can uniquely recover the (Reff,R∗eff)

structure of the Γ-limit Dζ
0(ν; [a, b]) =

´ b
a
N0(ν, ν̇, ζ) dt of the tilted De Giorgi functionals

Dζ
ε(ν; [a, b]) =

ˆ b

a

Rε(ν, ν̇) +R∗ε(ν, ζ −DEε(ν)) dt.

In stochastic fluctuation theory, the system is pushed out of equilibrium by an external force ζ to
explore the solutions away from the deterministic limit. In this sense tilts are a counterpart to stochastic
fluctuations. The resulting dissipation potential may be different than those obtained by more classical
methods, and in some cases better represent the modeling aspects of the limit.

Definition 5.1. We say the generalized gradient system (X, Eε,Rε) EDP-converges with tilting to
(X, E0,Reff) with respect to the sense Ss on X, the sense Se on L∞(0, T ; X) and with respect to
the class C ⊂ X∗ of tilts ζ ∈ C if

(i) (X, E0,Reff) is the evolutionary Γ-limit of (X, Eε,Rε)

(ii) Eε
Ss-Γ−→ E0 and Dζ

ε
Se-Γ−→ Dζ

eff for all ζ ∈ C

(iii) Dζ
eff(u; [a, b]) =

´ b
a
Reff(u, u̇) +R∗eff

(
u,−DE0(u) + ζ

)
dt.

Note that this definition is more demanding than Definition 2.2 since the choice of Reff must be
independent of ζ . In [DFM18, MMP18] it is shown that in general, we may have M0(u, v, ξ) 6=
R(u, v) +R∗(u, ξ) for any dissipation potentialR, whereM0 is given by the integrand of the Γ-limit
of Dε Note that Definition 2.2 requires the identity

M0(u, v,−DE(u)) = R(u, v) +R∗(u,−DE(u))

only for the equilibrium driving force ξ = −DE(u).

In our setting, the tilt ζ corresponds to the change of the reference measure λε = wεLd, i.e.,

Eζε (ν) =


ˆ

Ω1

EB

(u e−ζ

wε

) wε
e−ζ

dx if ν = uLd,

+∞ otherwise.
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We have two choices to introduce the tilt: (i) in the original gradient system in (12) and (14), and (ii)
in its transformed counterpart introduced in Subsection 4.1. The limit passage for both cases can be
carried out as in the last section. However, since the tilt ζ must not develop a microstructure in the limit
ε→ 0, i.e. is not allowed to depend on ε, we obtain ζ+ = ζ−. This means, that the tilt only “sees” the
lateral transport in the upper and lower layer but not the coupling of both viaRmemb. Hence, we do not
have tilted EDP-convergence in this case.

In the second case, the tilt ζ enters the effective coefficient A∗ defined in (49) via the harmonic mean
on I0

1 and the arithmetic means on I+
1 and I−1 of W0eζ . In particular, the dissipation potential Reff

cannot be chosen indepedent of ζ . Hence, also in this case we do not have tilted EDP-convergence.

However, when restricting to the class of tilts ζ ∈ C1(Ω1) such that A∗[V0] = A∗[V0 + ζ], we have
that the effective dissipation potential is independent of ζ and thus the tilted EDP-convergence with
respect to this class.

5.3 Effective limit for H−1 gradient structures

Let us consider the case Vε ≡ 0. It is well known, that in this case the diffusion equation in (9)
has a gradient structure of H−1 type with the state space Xε = H1(Ωε)

∗. The energy and the dual
dissipation potential are given by

Êε(û) =


|Ωε|

2

ˆ
Ωε

û2 dx̂ if û ∈ L2(Ωε),

∞ if û ∈ H1(Ωε)
∗ \ L2(Ωε),

and

R̂∗ε(ξ̂) =
1

2|Ωε|

ˆ
Ωε

∇ξ̂ · Aε(x̂)∇ξ̂ dx̂.

In relation to the logarithmic gradient systems, we also define the relative density ρ̂ = |Ωε|û. The
equation (9) is the gradient-flow equation induced by (Xε, Êε, R̂ε), namely

u̇(t) ∈ ∂R∗ε
(
−DEε(u(t))

)
.

We observe that both, the energy and the dissipation potential are quadratic. In particular, the De Giorgi
functional D̂ε(u; [a, b]) =

´ b
a
R̂ε(u̇) + R̂∗ε(−DEε(u)) dt is also quadratic. Hence, by the general

theory of Γ-convergence (cf. [Bra06, Prop 2.13]), we expect the effective dissipation potential to be
quadratic as well in contrast to the Wasserstein case.

As before, we rescale the domain Ωε via the map Φε : Ωε → Ω1 defined in (15) and introduce the
transformed variables ξ = ξ̂ ◦ Φ−1

ε and u = εmε(û ◦ Φ−1
ε ), where mε is defined as in (16). The

transformed gradient system reads

Eε(u) =


1

2

ˆ
Ω1

|Ωε|
εmε

u2 dx if u ∈ L2(Ω1),

∞ if u ∈ H1(Ω1)∗ \ L2(Ω1)

with relative density ρ = (|Ωε|/(εmε))u and

R∗ε(ξ) =
1

2

ˆ
Ω±1

ε

|Ωε|

{
∇′ξ ·B±∇′ξ +

a±

ε2
|∂zξ|2

}
dx

+
1

2

ˆ
Ω0

1

ε

|Ωε|

{
εδ+γ∇′ξ ·B0∇′ξ + a0|∂zξ|2

}
dx.
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In particular, for ρ̂ ∈ H1(Ωε) we have that ρ ∈ H1(Ω1) as well while the same does not hold for
û and u as mε is discontinuous. The De Giorgi functionals are defined by inserting the driving force
ξ = −DEε(u) = −ρ, i.e.,

Dε(u; [0, T ]) =

ˆ T

0

{
Rε(u̇) +R∗ε

(
−DEε(u)

)}
dt.

Note that the functionals Dε are quadratic with respect to curves t 7→ u(t). To derive the limiting
gradient system, we use the Sandier-Serfaty approach [Ser11] to evolutionary Γ-convergence. We
introduce the limit driving functional given by

E0(u) =


|Σ|
2

ˆ
Σ

(u−)2 + (u+)2 dy if u ∈ L2(Σ;R2),

∞ if u ∈ H1(Σ;R2)∗ \ L2(Σ;R2).

Next, for ξ = (ξ+, ξ−) ∈ H1(Σ;R2), we introduce the effective dual dissipation potential

R∗eff(ξ) =
1

2|Σ|

ˆ
Σ

{
∇′ξ± ·B±∇′ξ± + a0(ξ+ − ξ−)2

}
dy.

and prove that this gives rise to the limiting gradient structure.

In the following, we denote by Y0 ⊂ L2(Ω1) the space given by

Y0 = {ξ ∈ L2(Ω1) | ∂zξ ∈ L2(Ω1), ξ|Ω±1 ∈ H1(Ω±1 ), ∂zξ|Ω±1 = 0}.

Theorem 5.2. Let the family of curves t 7→ uε(t) ∈ X be such that and

sup
ε>0

{
D(uε; [0, T ]) + sup

t∈[0,T ]

Eε(t)
}
<∞.

Then, we have for all t ∈ (0, T ]

lim inf
ε→0

Eε
(
uε(t)

)
≥ E0

(
u(t)

)
(55)

and

lim inf
ε→0

ˆ T

0

Rε(u̇ε) dt ≥
ˆ T

0

Reff(u̇) dt (56)

lim inf
ε→0

ˆ T

0

R∗ε
(
−DEε(uε(t))

)
dt ≥

ˆ T

0

R∗eff

(
−DE0(u(t))

)
dt. (57)

Proof. The lower estimate for the driving functionals Eε is straightforward. For ε > 0 we define the
average u±ε (t, y) =

´
I±1
uε(t, y, z) dz and exploit standard estimates allowing us to extract a subse-

quence such that u±ε (t)→ u±0 (t) in L2(Σ) for each t ∈ (0, T ]. Jensen’s inequality gives

Eε(uε(t)) ≥
|Ωε|
2ε

ˆ
Σ

(u+
ε (t))2 + (u−ε (t))2 dy.

For ε→ 0 the lim inf estimate follows. Note that due to the uniform bound on the driving functionals
Eε(uε(t)) we have that uε(t)|Ω0

1
→ 0 in L2(Ω0

1).

Next, we prove the lower estimate for the primal dissipation potential in (56). Again by standard es-
timates, we have that u̇ε ⇀ u̇0 in L2(0, T ;Y ∗0 ). In particular, there exists a ξ0 ∈ Y0 such that
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u̇0 = −div′(B±∇′ξ0) in Ω±1 and u̇0 = −a0∂2
zξ0 in Ω0

1. Since u0 ≡ 0 in (0, T )× Ω0
1, we have that

ξ0 is affine in z and thus, we obtain

lim inf
ε→0

ˆ T

0

Rε(u̇ε) dt ≥ 1

2

ˆ T

0

ˆ
Ω±1

∇′ξ0 ·B±∇′ξ0 dt

+
a0

2

ˆ T

0

ˆ
Σ

(ξ0(·, z+)− ξ0(·, z−))2 dt =

ˆ T

0

Reff(u̇) dt.

Finally, we show the liminf estimate for the dual part of the De Giorgi functionals. Due to the bounded-
ness of the dissipation, we can find subsequences and a limit ρ0 such that for ρε = |Ω1|/(εmε)uε we
have ∇′ρε|(0,T )×Ω±1

⇀ ∇′ρ0|(0,T )×Ω±1
in L2((0, T ) × Ω±1 ) and ∂zρε ⇀ ∂zρ0 in L2((0, T ) × Ω1),

where ∂zρ0 = 0 in (0, T )× Ω±1 . Moreover, the limit ρ0 satisfies ρ0(t, y, z) = u±0 (t, y) for almost all
(t, y, z) ∈ (0, T )× Ω±1 . By weak lower semicontinuity and Jensen’s inequality we arrive at

lim inf
ε→0

ˆ T

0

R∗ε(−DEε(uε)) dt ≥ 1

2

ˆ T

0

ˆ
Ω±1

∇′ρ0 ·B±∇′ρ0 dt

+
a0

2

ˆ T

0

ˆ
Ω0

1

(∂zρ0)2 dt

Using Jensen’s inequality once again with respect to z ∈ (−1/2, 1/2) in the last term gives (57) and
concludes the proof.

Since solutions uε to the gradient-flow equation associated with Eε and Rε are precompact with
respect to the topologies used in the proof of Theorem 5.2, we can pass to the limit in the EDB and
obtain

E0

(
u0(T )

)
+ Deff(u0; [0, T ]) ≤ E0

(
u0(0)

)
(58)

for well prepared initial conditions and Eε
(
uε(0)

)
→ E0

(
u(0)

)
. Moreover, with the chain rule we

conclude equality in (58) and that

Dε(uε; [0, T ])→ Deff(u0; [0, T ]) and Eε
(
uε(t)

)
→ E0

(
u0(t)

)
for all t ∈ [0, T ].

In particular, u0 is a solution to the flow induced by (H1(Σ;R2)∗, E0,Reff). This associated effective
PDE system reads as

∂tu
+ = div

(
B+∇′u+

)
− a0(u+ − u−),

∂tu
− = div

(
B−∇′u−

)
+ a0(u+ − u−),

with homogeneous Neumann boundary conditions. Hence, the effective PDE is the same as in (54).

5.4 A quadratic gradient structure for the limit equation

The crucial feature of the effective limit system (X, E0,Reff) is the non-quadratic dependence of the
dissipation potentialReff on the thermodynamic driving force ξ. However, it was shown in [Mie11] that
for reaction-diffusion systems with reactions following the mass-action law and fulfilling the detailed-
balance condition gradient systems with quadratic dissipation potential exist. In particular, with the
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same driving functional E0 defined in (33) we introduce for u = (u+, u−) and ξ = (ξ+, ξ−)

R∗quad(u; ξ) =
1

2

ˆ
Σ

{
∇ξ+ ·B+∇ξ+u+ +∇ξ− ·B−∇ξ−u−

+ A∗Λ
( u+

w+
0

,
u−

w−0

)
(ξ+ − ξ−)2

}
dy

where Λ(a, b) = (a − b)/ log(a/b) for a 6= b and Λ(a, a) = 0 denotes the logarithmic mean of
a ≥ 0 and b ≥ 0. Indeed, with Λ(a, b) log(a/b) = (a − b) we easily check that the equation
u̇ = ∂ξR∗quad(u;− log(u/w0)) is (formally) equivalent to (54).

5.5 Connection to large deviation principles

The large deviation principles for stochastic processes offer a method to generate gradient structures
(see [MPR14]). In particular, the dissipation potential Rmemb in (50) describing the jump across the
vanishing middle layer is directly linked to a large deviation principle for a Markovian jump process
on a finite state space. Here we briefly recall the results of [MPR14, Section 4.1] (see also [LMPR17,
Section 2.4.2]).

We introduce the state space S = {z+, z−} and, with K∗ from (46) and reference states w+, w−,
we define the rates Q+− = K∗/w

+ and Q−+ = K∗/w
− for a jump from z+ to z− and vice versa.

LetX1(t), X2(t), . . . , Xn(t) ∈ S be independent realizations of the underlying Markov process, and
define the associated empirical measure via

u(n)(t) =
1

n

n∑
j=1

δXj(t) ∈ P(S).

Under suitable assumptions it can be shown, that the empirical process u(n) satisfies the large devia-
tion principle

Prob
(
u(n)(·) ≈ u(·)

)
∼

n→∞
e−nI(u) with I(u) =

ˆ T

0

L
(
u(t), u̇(t)

)
dt,

where for κ = u̇+/
√
u+u−Q+−Q−+ we have

L (u, u̇) =
1

2
K∗

√
u+u−

w+w−

(
C (κ) + C ∗(−[[log(u/w)]])

)
.

Hence, the tilted EDP-limit derived in Section 4 is consistent with the gradient structure arising from
the large deviation principle.

Finally, let us emphasize that the form of the dissipation potential is related to the so-called Marcelin-
de Donder kinetics in chemistry, see [Fei72, Def. 3.3], [GKZD00, Eqn. (11)], and [Grm10, Eqn. (69)].
The latter states that chemical reaction rates are given via exponentials of the thermodynamic driving
forces ξ. This further highlights that the gradient structure derived in this work has a more physical
relevance than the quadratic one described in Subsection 5.4.
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