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Effective diffusion in thin structures via generalized gradient
systems and EDP-convergence

Thomas Frenzel, Matthias Liero

Abstract

The notion of Energy-Dissipation-Principle convergence (EDP-convergence) is used to derive
effective evolution equations for gradient systems describing diffusion in a structure consisting of
several thin layers in the limit of vanishing layer thickness. The thicknesses of the sublayers tend
to zero with different rates and the diffusion coefficients scale suitably. The Fokker—Planck equa-
tion can be formulated as gradient-flow equation with respect to the logarithmic relative entropy
of the system and a quadratic Wasserstein-type gradient structure. The EDP-convergence of the
gradient system is shown by proving suitable asymptotic lower limits of the entropy and the total
dissipation functional. The crucial point is that the limiting evolution is again described by a gradi-
ent system, however, now the dissipation potential is not longer quadratic but is given in terms of
the hyperbolic cosine. The latter describes jump processes across the thin layers and is related
to the Marcelin-de Donder kinetics.

1 Introduction

In this text, we study the limit of a diffusion equation on a sandwich-like domain 2. C R? consisting
of three thin layers whose thicknesses tend to zero when ¢ | 0. In particular, we assume that the
middle layer is even thinner than the top and bottom layers, i.e., its thickness is of higher order in €.
The equation that we consider is of Fokker—Planck-type and reads

du(t, z) = div(A-(z)(Vu(t, z) + u(t,z)VVi(z))) in Q.. (1)

The diffusion matrix A.(x) € R%*? is of order one in the top and bottom layers and satisfies a
suitable scaling assumption in the middle layer such that a non-trivial limit arises. The potential V. is
assumed to be uniformly bounded and converges to a limit. No-flux boundary conditions complement
the equation. Such a setting can be observed for example in thin-film organic light-emitting diodes,
where organic semiconductor materials with comparably bad conductivity parameter is sandwiched
between well conducting electrodes.

The derivation of the limit problem for (1) on the level of PDEs is straightforward, and we refer to e.g.
to [AMP ™12, /AP87, IDMFZ18|, INRJ07] for related problems. In our case, the effective system of PDEs
is given by two reaction-diffusion equations for the top and bottom densities, respectively. The reaction
terms are linear exchange reactions which model the transmission of particles through the middle
layer, namely

dyug = diV,(B+(V’u3“ +uarv/‘70+)> +A*<% _ %>
Oyug = div’(B* (V/UE +u5v/f/0—)> +A*<i _ %) on X, (2)
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T. Frenzel, M. Liero 2

where ¥ C R is the cross-section, u:{ and u, are the limit densities on the upper and lower layer
and A* is the effective transmission coefficient, see (49).

Here, however, we are interested in the convergence of the (generalized) gradient systems associated
with the equation. By the latter we mean the following: A gradient system for the equation (1) is a triple
(Xe, &, R.), where X. is a Riemannian state space, &, : X — R U{oo} is a driving functional, and
R : TX — [0, 0] is a dissipation potential (non-negative, convex, and lower semicontinuous) on
the tangent bundle such that the evolution is equivalently described by DE. (u) 4+ 03 R (u; ) 3 0.

It is well-known since the seminal works [JKO97, |O1t98, |Ott01a] that the Fokker-Planck equation
in can be written as the gradient-flow equation with respect to the driving functional & (u) =
st Fg(u/w.)w. dz, where Eg(z) = zlog z — z + 1 and w. is the steady state associated with V,
and the Wasserstein metric (see also [Lis09] for the case of variable coefficients). The latter can be
written in terms of the Legendre transform of R. in the form R (u,§) = § [ V& - A.(2)VEu dx.
In particular, the evolution is entirely formulated in terms of functionals. Hence, the natural question
arises, whether we can use variational methods such as I'-convergence to derive the effective evolu-
tion. The umbrella term evolutionary I'-convergence covers several notions of convergence and indi-
cates that evolutionary problems are treated with variational methods, see e.g. [Ste08, ISer11, Brai3,
Vis13, [Mie16] and the references therein.

In this work, we use the notion of EDP-convergence as introduced in [LMPR17] (see also [DEM18|,
MMP18]). It is based on De Giorgi’'s energy-dissipation principle (in our case it should be called
entropy-entropy production principle), which in turn is based on the Legendre—Fenchel equivalences
and the chain rule for t — & (u(t)), namely

u(®) + [ {Rewsd) + Refus ~DE.(w)  dt = Ex(u(0)) ®

In particular, it states that the entropy at time ¢ and the entropy production given by the integral term
(which we call De Giorgi functional and denote by ®. in the following) is equal to the initial entropy, we
refer to Subsection[2.1]for more details. The notion of EDP-convergence (see Definition[2.2)in Subsec-
tion [2.2) requires to establish the I'-limits of £, and of D and, in addition, that ©. is again of R & R*
form. By requiring only the T'-convergence of ©., instead of separate lower estimates for R (u.; 1. )
and R} (u.; —DE.(u.)) as in the Sandier-Serfaty approach [SS04], we allow for an interplay of the
statics and dynamics (given by £, and R, respectively) to obtain an effective dissipation potential R
in the macroscopic limit which is different from the limit of R.. Moreover, we do not work with the solu-
tions of the gradient-flow equation directly but consider convergence along general “fluctuation paths”
with bounded entropy and total dissipation. Under the assumption of well-prepared initial conditions,
i.e., & (us(0)) = &E(up(0)) € R, the convergence of the solutions to () then follows from suitable
a priori bounds, using the I'-liminf estimate in (3) and exploiting the chain rule to show that the limits
satisfy the differential inclusion ¢ R’ (u; —DE&y(u)) > @, which is formally equivalent to the linear
reaction-diffusion system (2).

After introducing the concrete geometric setting for problem in Section [3, we perform the limit
passage in Section [4] First, we introduce the gradient system, which is rescaled in Subsection [4.1
by blowing up the domain €. to a domain of fixed thickness. In Subsection [4.2] we derive a priori
bounds. In particular, we rely only on the Wasserstein gradient structure of the equation which gives
compactness in the space of measures only. The lower lim inf estimates for the entropies and the
De Giorgi functionals is then proven in Subsection The crucial point is that in the limit ¢ — 0 the
time derivative on the middle layer vanishes due to the different time scales. Hence, by performing an
inner minimization over all density profiles across the middle layer with fixed boundary conditions, we
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Effective diffusion in thin structures via EDP-convergence 3

obtain the effective dissipation functional, whose R & R* structure follows directly from the explicit
formula.

Indeed, in the problem given by (1), the effective dissipation potential is not quadratic (in the rates)
anymore. Instead, the transmission through the middle layer is given in terms of the function €*(() =
4(cosh(3¢) — 1) such that the effective dual dissipation potential reads

Re(u,§) = %/ {V’§+ - BYV'¢TuT + V¢ B_V’f_u_} dx
s
+/A*<€*(§+—§_)\/u+u— dz.
)

The first term describes the lateral diffusion in the upper and lower layer and is of Wasserstein type.
The second term gives the dissipation due to jump processes across the middle layer. The linear
reaction terms in the effective PDE system arising from this term follow from the calculation rules for
the logarithm and the fact, that the derivative of the cosh function can be written as exponentials.

Finally, in Section |5 we discuss the limit system. In particular, in Subsection we rephrase our
convergence result in the stronger notion of tilted EDP-convergence which was recently introduced in
[MMP18]. In the tilted EDP-convergence arbitrary perturbations of the driving functionals &£, (so-called
tilts) are considered. The idea is that due to the arbitrariness of the tilts, we can uniquely recover the
(Rer, RY) structure of the effective system. However, we show that in our case the effective dissipa-
tion potential depends non-trivially on the tilt. In Subsection [5.3] we compare the EDP-convergence
result of the Wasserstein structure with the EDP-convergence of the H~! gradient structure which in
the case V. = 0 gives a different gradient structure of with quadratic dissipation potentials and
driving functionals. We show that in the latter case also the effective dissipation is quadratic. However,
let us emphasize that also in the case of the logarithmic entropy we can provide a quadratic gradi-
ent structure for the effective equation. This follows from the framework for general reaction-diffusion
equations presented in [Mie11], see Subsection In Subsection|5.5 we connect our derived effec-
tive gradient system to large deviation principles for Markovian jump processes. For the latter it was
shown in [MPR14] that the rate functional is given in terms of a generalized gradient system, where
the dual dissipation potential is also given in terms of the cosh function.

2 Abstract setting

2.1 Abstract gradient flow formulation

We call a triple (X, £, R) a generalized gradient system, where X is a Riemannian space containing
the states of the system, £ : X — RU{oo} is a driving functional, and R : TX — [0,00] is
a dissipation potential defined on the tangent bundle TX. A dissipation potential R satisfies that
v — R(u,v) is convex, lower semi-continuous, and R (u, 0) = 0. We say that an abstract evolution
equation &« = V(u) has a gradient structure if there exists a gradient system (X, £, R) such that the
evolution can be equivalently written as

t=V(u) <= 0J,R(u,u)+ DE(u) >0, (4)
where 0; R(u,u) C T:X denotes the usual convex sub-differential containing “frictional” forces and

D& (u) is a suitable notion of differential of £ giving the driving forces for the evolution.
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T. Frenzel, M. Liero 4

In case of & — R(u,u) being quadratic, i.e., R(u,u) = 3(G(u)u,u) with a state-dependent,
symmetric, and positive semi definite operator G(u) : T, X — T X, we speak of a classical gradient
system (X, &, R). In particular, in this case G(u) has to be seen as a Riemannian metric, whose

inverse K(u) = G(u) ™! gives the gradient of £, namely,
i =—K(u)DE(u) = —Vk&(u).

In connection to [Ons31], [OM53] we call IK Onsager operator. In many applications it is advantageous
to use the Onsager operator K instead of G , and we refer to [Mie11}, Mie13] for a detailed discussion
of the above framework for thermodynamic consistent modeling of reaction-diffusion systems. We
emphasize, that an evolutionary system @ = )(u) can have more than one gradient structure see
e.g. Subsection 5.4

The Legendre transform of R, also called dual dissipation potential, is given via
R*: T*X — [0, o]
R*(u, &) = sup {(f,v> — R(u,v) ‘ v E TUX}.

We easily check that in the quadratic case it holds R*(u, &) = (&, K(u)). The primal and the dual
dissipation potential satisfy the Legendre—Fenchel equivalences, i.e.

(i) € OuR(u, i) <= (i)t € R (u,f)

= (i) R(u,w) + R*(u, &) = (&, ). (5)

With (ii) we obtain an equivalent formulation of the gradient flow formulation in (4), namely
U € 0¢R* (u, —DE(u)). (6)

The notion of evolutionary I'-convergence used in the subsequent sections is based on a third equiv-
alent formulation of (4), which we call Entropy-Dissipation Balance (EDB). For this, we use (iii) and
assume that a chain rule for ¢ — £(u(t)) holds such that

E(u(T)) — E(u(0)) = / (DE(u), 1) dt
R (7)
W _ / {R(u,u)+7z*(u, —DE(u))}dt.

On the other hand, if (7) and a chain rule holds, it is easy to see by the equilvalences in that also
is satisfied.

Note that the Entropy-Dissipation Principle (EDP), also called De Giorgi's (R, R*) formulation, is a
scalar identity in contrast to (4) and (6). In particular, the rich toolbox of Calculus of Variations can be
exploited to derive effective limits for multiscale systems.

2.2 Evolutionary I'-convergence

Let us now consider a sequence of functionals &., R. depending on a small parameter £ > 0 which
describes for example the ratio between the microscopic and macroscopic length scales. We are
interested in deriving effective equations for the case ¢ — 0. Following the survey paper [Mie16] this
derivation is based on evolutionary I"-convergence of the generalized gradient systems (X, &, R.),
which is defined as follows.
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Effective diffusion in thin structures via EDP-convergence 5

Definition 2.1. For ¢ > 0 let u. be the flow induced by (X, &, R.). We say that (X, &, R.) con-
verges in the sense of evolutionary I'-convergence with well-prepared initial conditions (called pE-
convergence in [Mie16]) to (X, &, Ro) if from u.(0) = uo(0) and & (u-(0)) — E(ue(0)) < oo
it follows that u.(t) — wuo(t) and & (u.(t)) — Eo(uo(t)) for all t € ]0,T] and with respect to a
topology 7 on X.

In [SS04] (see also [Ser11]), abstract conditions for the convergence of the functionals £, and R. were
formulated to establish the evolutionary I"-convergence of the gradient systems by passing to the limit
in the Entropy-Dissipation Balance (7). The crucial conditions are the two separate liminf estimates

/ Ro(uo(t), up(t)) dt < hmlnf/ R (us(t),u-(t))dt and
Ro(ug, —DEy(up)) < limlglfRE(uE, —DE (ue)).
e—

However, it turns out that these conditions are too strict for our problem of thin heterostructures with
a Wassersteln -type gradient structure. Instead, we prove a lower estimate for the De Giorgi functional
fo (ue, 1) dt where M. is of R, & R form, i.e., M (u,v) = R.(u,v) + R:(u, —DE(u)).
Note that in general, it is not clear that the limiting integrand M, is again of the form R & R*. In the
case of the thin heterostructures considered in this text it is possible to establish the R & R* form of
the limiting De Giorgi functional, where the disspation potentials are not longer quadratic.

We follow [LMPR17] and define the De Giorgi functional ©. : W' ([a, b]; X) — [0, oc] via
b
0. (uifat) i= | {Rufusi) + Refu, ~DE. () } . ®

As in [SS04] we consider a sense .S of convergence, i.e., u. i u. For the context of this paper the
sense S is given by the convergence of R.u. — u for some R, : X — Y. In particular, u. and u do
not belong to the same space. Since the De Giorgi functional is an fundamental object in our analysis,
we need a sense S; for the static convergence R.u.(t) — u(t) and a sense S, for the evolutionary
convergence of the curves {t — R.u.(t)} — {t — u(t)}.

Definition 2.2. The generalized gradient systems (X, &, R.) EDP-converge to (X, &, Reg) with
respect to sense .S on X and the sense S, on L.>°(0, T'; X), respectively, if we have

(i) (X, &, Retr) satisfies a chain rule,
i) & 25 & and D, 25 D4,
(iil) Deogr(u; [a,b]) = fab Reir(u, @) + Ry (v, —DEo(u)) dt.

Note that in contrast to [LMPR17], we additionally require the existence of recovery sequences for the
De Giorgi functionals ®.. In particular, we do not consider the convergence of the functionals along
solutions of the gradient flow equation but ®. and ¢ are evaluated along general “fluctuation paths”
u : [0,7] — X. Moreover, it is natural to restrict ourselves to fluctuation paths with finite entropies and
De Giorgi functional. Note that this definition of EDP-convergence is called “simple” EDP-convergence
in [MMP18].

Assuming that we are able to extract a subsequence of the solutions u. to the gradient system
(X, &, R.) that converge in the same topology in which the I'-limits are computed, the convergence
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T. Frenzel, M. Liero 6

Q7
Figure 1: Sketch of the domain Q. C R? with cross section ¥ C R The diameter of ¥ is
considered to be large compared to the thickness of the domain 2. The domain is decomposed into
a top layer Qj center layer Qg, and bottom layer {1_, whose thicknesses are given by ¢, e fora
fixed 0 > 0, and ¢, respectively.

to a solution of the effective problem can be shown as follows: With the I'-liminf estimate of ©. and
&, and the well-prepared initial conditions we can pass to the limit in (7) via

Eo(w(T)) + Dese(u; [0, T]) < lim inf & (uo(T)) + lim inf D. (uz; [0, 7))
< lim & (u:(0)) = & (u(0)).

e—0
With the Fenchel-Young estimate for the integrand of ® .4 and the chain rule we conclude the equality
Dot (13 [0,T]) = E(w(0)) — & (u(T)), i.e., the limit u of solutions u. is indeed the flow induced by
the gradient system (X, &, Re) and we furthermore obtain the evolutionary I'-convergence in the
sense of Definition[2.1]

3 Diffusion in a thin hetero structure

We investigate a drift-diffusion equation in a thin domain, which is given by a cross section ¥ C R?%~!
and consists of three thin layers. In particular, the thicknesses of the individual layers are assumed
to be small compared to the diameter of the cross section so that we introduce the small parameter
€ > 0 related to the thicknesses. The crucial assumptions is that the middle layer scales differently
than the upper and lower layer: We define the sets I := 12 /2 +]0,¢[, 12 := | —£'10 /2, €'+ /2
forafixed d > 0,and I := —e'™/2+]—¢,0[. Hence, for Q2. = X x| —(e +£'70/2),e + £!7/2
we have the decomposition into the upper, middle, and lower layer

Qf =¥ xIT,
Q=0 U UG with {Q0 =% x IO,
Q- =YX x1I;.

We will write 2 = (y, 2) € (). such that y € . for the lateral and —¢ — e'+%/2 < 2 < ¢ 4 £119/2
for the vertical variable.

For a given fixed potential ffa : €. — R (for the precise assumptions on Vg see Section , we
consider in €, the scalar drift-diffusion equation

~

dvit(t, &) = div(A(2)(Vat, &) + a(t, #)VV.(2))) in Q. ©)
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Effective diffusion in thin structures via EDP-convergence 7

with no-flux boundary condition A.(Vu + ﬁVIA/a) - Ve = 0 on 0f). and initial condition ©(0) =
. In particular, we have conservation of total mass, and we assume without loss of generality that
fﬂs udzr = 1.

The symmetric and positive semi-definite coefficient matrix A. € L°(Q.; RL:?) has the form
B.(z) 0
A(z)=("° R 1
E(x) ( 0 aa(ZE)) ) ( 0)

where B, € L>®(%; Rgggl)x(dq)) and a. € L*(X;R.) are assumed to be piecewise constant,
namely,

Bt onQf, at onQF
B.(2) =< &'B° on Y, and  a.(%)=<¢ £*a® on P (11)
B~  on§), a” onf€)”

withy > 0, B, B°, B~ € Riﬁd‘”x(d‘” and a™, a’, a~ > 0 being fixed and constant.

Note that the discontinuity set of A, is closed and a Lebesgue null set. Thus, A, is almost everywhere
equal to a matrix A. whose inverse satisfies that the map = — A_1(Z)¢ - £ is lower semicontinuous
for all ¢ € RY. This property is crucial for the purely metric approach presented in [Lis09].

Remark 1. The choice of the scaling ” with v > 0 in the middle layer 2 for the lateral directions
does not matter in the effective system as diffusion and drift will vanish in the limit ¢ — 0 (in fact
~v > —4 is sufficient). In contrast, the scaling £2%9 in the vertical direction can be justified as follows:
The relative densities p. are of order 1, however the reference density . is of order e~ ! and the
vertical derivatives of p. in the middle layer are of order e~(1+9) Hence, we have that the integrand in
the Fischer information ﬁs(ﬁg, —Dc‘fs(ﬁs)) satisfies in the middle layer the scaling |0; log p. | p.1b. ~
£~ (%29 Since the thickness of the middle layer is €17, we arrive at the critical order £272.

It is well known, that several gradient systems induce the diffusion equation (9). Below, we consider
the Wasserstein gradient system in Section with Boltzmann entropy and the purely quadratic H™?
gradient sytem in Section For both gradient systems we apply techniques of evolutionary I'-
convergence and derive the variational formulation of the limit flow. However, the De Giorgi functional
D, is quadratic in the case of the H™! gradient system. By the general theory of I'-convergence
(cf. [Bra06l, Prop 2.13]) we expect the effective dissipation potential to be also quadratic. In fact, the

methods developed in [SS04] apply and we have R, I Reg- In particular, the effective dissipation
potential is also quadratic. Whereas the De Giorgi functional 2. associated with the Wasserstein
gradient system is not quadratic. In this case, we obtain that the effective dissipation potential is not
quadratic, since R involves exponential terms. In particular, the limiting variational formulation can
not be cast into a metric formulation involving the Wasserstein distance.

4 Entropic gradient structure

It is well known since the seminal work of Otto [Ott01b, JKO97], that certain diffusion equations can
be interpreted as gradient-flow equations with respect to a driving functional £ and the Wasserstein
distance Ws. The rigorous treatment of the evolution equation in (9) as Wasserstein gradient flow with
variable coefficient can be found in [Lis09]. Therein, the problem on the full space R¢ was considered,
however, our setting is recovered by setting VE(:%) = 400 outside of ). (see [Lis08, Ch. 4]). We
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T. Frenzel, M. Liero 8

consider the relative Boltzmann entropy functional defined on the space of probability measures X, =

Prob(£2.)

R Fa(p(a \A(2) ifD = p)
£.(9) = / B(p(x)) d\.(2) if D = pA., (12

€

+0o0 otherwise,

where Fg(2) = zlogz — 2+ land p = di/ d). denotes the relative density of 7 € X. with
respect to the reference measure A € X.. The latter is given by A)\E = W.L% where 0.(2) =
exp(—VZ(Z))/Z. with the normalization constant Z. := [, exp(—V.(2)) di.

We assume that the potential VE is sufficiently smooth and there exjst a constant C'yy > 0 independent
of £ > 0 such that for almost every & € 2. we have —Cy < V.(x) < Cy. Note that £4(€2,) =
£(24+€%)L¥71(X) =: ef.. Thus, we have the estimates

ﬁge’CV < Z.Je < Bgec" with 5. — [y = 2£d’1(2). (13)

Following [Lis09], the primal dissipation potential 7A2€ is defined as

- 1

Rg(p,ﬁ)zﬁ/g A (&) -0dp with (ﬁ,@:/ﬂ A (2)D - Vi dp (14)

for all o € C*(£2.) where the velocity field satisfies 0 € L*(§2; #(d#)). With this, we define the

De Giorgi functional ©. for a curve [0, 7] 5 t — (t) € Prob(§2.) via

0.3 fa.t) = | {Ru(6(0).5(0)) + RE(5(0), ~DEo(1) }

where DE. () = log(p.) = log(dir/d).). In particular, the so-called Fisher information takes the
form

Rz (0, —DE.(D)) _/ %ﬁQ-AE(i)Vﬁ-Vﬁdﬁ_z ) A2)VAp -V pdA.,

U
if p = —— with /p € H' ().
r== p (Q)

€

Theorem 1.1 in [Lis09] guarantees for ¢ > 0 fixed and given initial value 7° = 4°L? € X, the ex-
istence of a curve t — .(t) € X, which is absolutely continuous with respect to the 2-Wasserstein
distance and metric time derivative in L2(0, T'). Moreover, t — E.(i7(t)) is locally absolutely contin-
uous and for almost every in t € [0, co) the local energy identity holds

%é’a(ﬁe(t)) +R(De(t), e (t)) + RE(9:(t), —=DE(0(1))) = 0.

Finally, the Lebesgue density . of 1. satisfies (9) in the distributional sense.

4.1 Transformation of the domain

To make the dependence on the parameter ¢ > (0 explicit, we rescale the domain (), in the vertical
direction, such that the top, middle, and bottom layer are each of constant thickness 1. For this, we
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Effective diffusion in thin structures via EDP-convergence 9

introduce the Lipschitz map S. : €. — €2y, which is defined via S. () = (y, ®.(2)) with

(22+61+5)/(25)_1/2 ifzel” ZZ]—Z‘T_#a_#[’
D.(5) = z/els 2 €10 := [~ 557, (19
(26—e1)/(2e) +1/2 W2 €I} =] e+ 5

We use the push-forward of the reference measure ;\5 € )gg under the map S, to obtain the new
reference measure \. € X; = Prob(€2y),i.e., A\. := (S:)xA.. In particular, we have that ). is given
by Ao = w.L with w. () = (¢/Z.) m.(z) exp(—V.(z)) and V(%) = V.(S.(&)), and the volume
factor m. : Q; — R, satisfies

m.(z) = (16)

1 forz e QF =Y x (I UI),
e forz e Q=% x IY.

Obviously, V satisfies the same upper and lower bounds as Va and we assume moreover that 1, —
Vo in C°(Qy). Thus, as Z. /e — Zy = fQI‘L exp(—Vo(z)) dx fore — 0, we have A. — g in Xy,
where the limiting reference measure \g € X; has the Lebesgue density wy(z) = exp(—Vo(x))/Zo
if £ € QF and wy(x) = 0 for z € Q.

Clearly, the density w. is not continuous at {z4 = £1/2} due to the definition of m.. Instead, we use

the rescaled density 1V, and the associated measure A. € Meas({2;) defined via

W.(z) == Ziexp(—Vs(x)), A = WL

Obviously, the latter is not a probability measure anymore. We have the convergence A, — Ag in

Meas(£2;) where the limiting measure is given by the density W (x) = exp(—Vy(z))/Zo. Moreover,
note that due to the assumptions on V. we have that

exp(—2Cy) < W) < exp(2Cy)

. 17
5= ) a7

For a measure € X. with relative density p € L!(€2.) with respect to A, ie. = p., we have
that the associated transformed measure v = (S.) 40 € X; has the relative density p = po S-! €
Ll(Ql) with respect to the rescaled reference measure A, such that v = pA.. In particular, due to
mass conservation the density p satisfies

v() = /Q p(x)dA. = /Q p(x) mo(x)W.(x)de = 1. (18)

Using the transformation above in the driving functional c‘:'e and the dissipation potentials 725 leads to
the new gradient system (X, &, R.) defined via

)= ) = | o, A A 0=

+00 otherwise,
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and, with B, € L>(Q; R@=D*(d=1) and a. € L>(£,) given in (70),

Ri6) = 3 | {BAa)V'E- T+ anlo)i(e70u6 v

_1 +x7/ ! CL+ 2 1 -7/ 1 a- 2
_§/QT{B V£.V§+€—2\8z5\ }du+§/91_{3 VEVE+ = 10.£| }dy

1 a®
Z TBV'¢ .V — 2
+2/§2?{ng5 vg+€5|az£! }du,

where V'€ = (01€, ..., 04-1€) " denotes the lateral gradient. In the following we will use the notation
Qf = Qf UQ as well as the definition B*(x) = Bt ify € Q) and B*(x) = B~ ify € Q] (and
analogously for a*) for notational simplicity.

In particular, we have for the transformed Fischer information and v = pA. the formula

1
R:(v;—DE.(v)) = 5/0 {Bs(x)v’ log p - V'log p + a.(x)®.(2)?9. log p\Q} dv

+ [P v/ + 2
1/ {B (@)V'p-Vp | a”(2)|0:p] }dAa
QF

2 p e2p
1 'yBOv/ .v/ Oaz 2
_/ {5 p p+a\6p|}dAa
2 Jao p ep

The primal dissipation potential /., defined via the Legendre transform of R}, takes the form

1 - 1 i
Ro(v:v) = 5 /Qi{Bi(x)v’ v+ ag—(2x)|21d|2} dv + 5 /QO{S“’BOUI v+ %’Ud‘z} dv,
1

1

where the rate 7 and the velocity field v = (v, v4) " € L%(€2;; dv)? satisfy the kinetic relation

(v, ) = /Qi {Bi(x)v' Vo + Mvd 8290} dv

-2
a0
- / {5'7801/ Vo + —uq 8ng} dv (19)
Q0 €

for all o € C1, (1) = {$ € COC)| Plgs € () and Pl € ().

Remark 2. Note that in the continuity equation (19) we consider test function ¢ from the larger space
C3,(€)) instead of the space C*(Q;). This is due to the fact, that the transformation S is only
Lipschitz continuous and test functions ¢ defined on the domain (). are mapped to test functions
¢ = o S whose gradient is not defined at {y, = 4-1/2}. However, the measure v is absolutely

continuous if the De Giorgi functional is finite. Thus, is well defined.

Clearly, if t — 7.(t) € X, is a solution to the gradient flow equation associated with the gradient sys-
tem (X., ., R.), then the transformed curve t — 1. (t) := (S.)40.(t) is a solution to the gradient
flow equation induced by (X1, &, R.). In particular, it satisfies De Giorgi's (R., R)-formulation for
t>0

E(ve(t)) + De(ve; [0, 1]) = E-(v:(0)), (20)

where the De Giorgi functional is given via ©.(v; [a, b]) = fab R @& R:dt as before (see (8))

In the sequel, we establish the evolutionary I'-convergence and the EDP-convergence of the rescaled
gradient system (X3, &, R.). However, first we identify the topologies that are used in the computa-
tion of the I'-limits of the entropy and De Giorgi functional by deriving a priori estimates.
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4.2 A priori estimates

The crucial point is to establish uniform bounds for the rescaled measures v, /? in the middle layer €29.
In the following we only use the gradient structure of the problem and work in the space of measures.
In particular, we do not need L°°-bounds on the densities.

We assume wellprepared initial conditions, i.e., the initial measures v.(0) = 10 € X; satisfy ! — 1/{
in Prob(£2;) and €. (v.) — & (1)) < oo, where the T-limit & is given via

/ Es(p(z)) dXo ifv = pA,
1971

“+00 otherwise.

Eo(v) =

In particular, since \q vanishes in 20 so must every v € X with finite relative entropy.

Without loss of generality we can assume that sup,., £:((0)) < oo such that with we imme-
diately obtain for T" > 0

sup sup E(ve(t)) <oo and supD.(v.;[0,7]) < oo, (21)
>0 t€[0,T) e>0

Lemma 4.1. Assume that the family of curves t — v.(t) = p.(t)\. € Xy satisfies the uniform
bounds (21). Then, p. satisfies the estimates

g r 0. pe|
//(|p5]+|azp5|)dxdt< C  and // (|V’p5| + >dxdt <C (22
0 JQo 0o Jof

€

with a constant C' > 0 independent of €. Moreover, the family {¥V pc|qgz }e>0 C LY([0, T]xQ%) is
equi-integrable.

Proof. For an arbitrary p € C1(Q;) with p > 0andy € ¥, —3/2 < 21, 20 < 3/2 we have

By, 22) — By, 1) = / 9. iy, =) dz.

1

Thus, integrating first over y € ¥ and then over z; € I) = [—1/2,1/2] and 2z, € I;” U I; leads to
the estimate
) / A(z) da < / A de +2 [ 10.5(2)] da. (23)
Q0 of ™

Using Young’s inequality, we arrive at the estimate

0.5(x) | da = /Q %\/ﬁ@) ar < /Q % dr+ ) /Q pla) da

Hence, with we obtain the estimate

1971

/Q?/S(x)dx§2/Qliﬁ(x)dx+/glmzﬁﬁ(—(5))‘2dx.

Obviously, this estimate also holds for almost every ¢ € [0, T for the reletive densities p.(t) of the
measures v, hence, after integration over time ¢ € [0, T'] we get

/T /O p=(t, ) dzdt < C(1+D.(v.;[0,T])),
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where we also used the mass conservation in and the lower bound for the rescaled reference
density IV in (7).

Finally, the estimate for 0,pe/e and the equi-integrability of V. on Q5 follows from standard
arguments, see e.g., [Lis09]. O

Remark 3. Considering the measures N, := pgﬁ[oﬂ ® A, € M([0,T] x Q1) as well as G :=

0.pL 0,11 ® A € M([0,T] x ©), Lemma 4.1/ gives the relative compactness of N, and G in
M(0,T] x ).

Next, we prove uniform estimates for the solutions of the gradient flow equation that allow us to pass
to the limit for every ¢ € [0, T']. However, due to the behavior of v, on the middle layer Y, we cannot
expect uniform estimates in the space of absolutely continuous curves in the 2-Wasserstein space as
e.g. in [AMP™12].

Due to the second estimate in (22), the weak limit of p. is constant in the vertical direction in the upper
and lower layers Qf and {27, respectively. Hence, we define the reduction map R : Q0 — ﬁ? via

(y,1/2)  forz € [1/2,3/2],
R(y,z) =< (y, 2) forz € ]—1/2,1/2]
(y,—1/2) forz € [-3/2,—1/2].

By considering the push-forward of measures v € Prob({2;) under the map R we arrive at reduced
measures 1) := Ryv € Prob(ﬁ(l)) for which we will consider the following decomposition

ni=Ryv=0" @015 +n0" + 1" ®0_1p, (24)
where nt, 1~ € M(Z) with 7+ (A) = v(A x T, ) and = = v(A x I, ) for a Borel set A C ¥ and
n’ = Vlgo € M(2).

We prove uniform pointwise BV regularity of the curve ¢ +— 1.(t) = Ryuv.(t), where v, is a curve
with bounded De Giorgi functional. Using a Helly-type argument we obtain a weak™ limit 79 such that
ne(t) —* no(t) for every t € [0, T']. Moreover, continuity of the limiting curve ¢ — 10(¢) is concluded
a posteriori using the representation of 7y via the limiting continuity equation.

Lemma 4.2. Lett — v (t) € X, be such that

sup sup E.(ve(t)) < oo and supD.(v.;[0,7T]) < oo.
€ t€[0,T] €

Then the total variation of the reduced measures t — n.(t) = Ryuv.(t) with respect to the 1-

, , =0\ . ,
Wasserstein metric VW, on Prob(£,) given via

Varyy, (7e; [0, T1) := sup { Zwl (n=(t5),m=(tj-1)) ’ 0=ty <...<ty= T}

=1

is uniformly bounded, i.e., sup,-, Vary, (1.; [0,7]) < oo.

Proof. We exploit the well known dual formulation of the 1-Wasserstein distance in terms of 1-Lipschitz
—0
continuous function [AGS05], i.e., for probability measures 71, 172 € Prob({2;) we have that

Wi(n1,112) = sup { /QO p(x)dm(z) — /QO plx) dnp(x) | ¢ € CP(Q)), Lip(p) < 1}-
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For a given ¢ € CP(€2)) with Lip(¢) < 1 let us denote by  its extension to (21, i.e., ¢(z) :=
©(R(x)). Then, by the kinetic relation between . and v, in we obtain

/9(1,90(93) dne(t;) — /{2990(33) dn.(tj—1) = /:1 /Q% BE(2)V'@(z) - v.(t, x) dv.(t) dt

t; 0
+ / / {BVp(0) Lt 2) + S0-0() vealt, 1) } ()
tj—1J QY
Using the Fenchel-Young inequality, we arrive at the estimate

[ ettt = [ (R R}

7j—1

The time integral of the primal dissipation potential along the curve v, is uniformly bounded by as-
sumption. To estimate the time integral of the slope term, we use that |[V®| < 1 almost everywhere

in €24 such that
tj
/t'l

J

tj
Rt <c [ [ peayarar
Q1

Hence, we arrive at

Zwlne ) 1:(tj—1)) <C</ R (v-(t); v (t) dt—i—//pgtdidt)
951

Applying Lemma [4.1]finishes the proof of this lemma. O

The following a priori estimate follows directly from and the assumptions on the coefficients in

(11).

Lemma 4.3. Lett — v.(t) € X; satsify then the velocity field v, = (v.,v.q) : [0, 1] x Q —

R? satisfy
/ / AREE dz/E dt—l—/ /QO 5’7+5|v ]2+v€d}

4.3 Limit passage

Here we prove the lower I'-limits for the entropies and the De Giorgi functionals. The construction of
the recovery sequence can be found in the thesis [Fre19]. In order to pass to the limite — 0 in we
use the a priori estimates in Lemmas [4.] [4.2] [4.3]to extract converging subsequences. In particular,
we find (non-relabeled) subsequences and limits such that

‘C1|[O,T} X 1. — 140 and Ne = £1|[0,T] X p5A€ —F NO in M([O, T] Xﬁl). (25)

Since v.(t) = N.(t) on QF we also have that Ny = 15 on [0,7] x Q5. Moreover, since the
relative entropies are superlinear and bounded, there exists ug € L' ([0, T] x Q1) such that u is the
Lebesgue density of . With the reference measure . vanishing on Q? we have that vy = 0 and
ug = 0 on 029, too.
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Exploiting Lemma Helly’s selection principle (see also [DMQ9]) gives up to a subsequence a
pointwise limit

Rauve(t) = 1.(t) —=* Ryuw(t) = no(t) in Prob(C}) for every ¢ € [0, T). (26)

We easily see that 1y (t) satisfies for all t € [0, T'] the decomposition
Mo(t) =15 (1) ®@ 012 + 15 @ d_1/2, (27)
where 75 (1) € M(X) and 7, (t) € M(X) are absolutely continuous with respect to the Lebesgue

measure on X and their densities are given by

—-1/2

3/2
i (ty) = /1/2 wit.y2)dz and ug(ty) = [ L, Pl 28)

Moreover, by we have for the relative densities p. additionally that
/76|(0,T)xﬂf — po and V/)E‘(o,T)foE = Vpoin L((0,T) x ) (29)

In fact, on the upper and lower layer Qf and (2] the limiting relative densities are constant in the
vertical direction as
0pel (0 ey — 0 in L'((0,T) x QF). (30)

Finally, we can assume that also

G. = El’[O,T] ® (azpaAe) —* Gy in M([()? T] Xﬁl)' (31)

We define the reduced reference measures in M(f) for the upper and lower layer, denoted 193 =
wg L9 and ¥, = wi L£471, via their Lebesgue densities wy and wy , where

3/2 ~1/2

wy (y) = / wo(y,z)dz and  wq (y) = / wo(y, z) dz. (32)
1/2 —3/2

Setting ¥y = 193 ®d1/2 + 05 ®o_1y2 € Prob(ﬁ(l)) , such that ¥y = lim._,o Rz \., we define the

limit entropy functional on Prob(Q?)

E dd ifn = pd
Eo(n) = &yt ") = /Qg w(p)ddo ity = pdo (33)

o0 else,

In particular, we have the decomposition £ (1) = 5. Eg(p*) dig + [, Eg(p~) dvy for 1 satisfying
n <KL 190.

We arrive at the following lower estimates for the relative entropies £. and the De Giorgi functional
D..

Proposition 1 (Lower estimate). Let the familyt — v.(t) and satisfy the convergences in - (30).
Then, we have the following lower estimates for the relative entropies £, and the De Giorgi functionals
OF

Vtel0,T]: lim_jglf E(v(t)) = E(no(t)) (34)
hl;n_}glf QE(VE; [07 T]) 2 glat (N07 [07 T]) + Qvert<(N07 G0)7 [07 T]) (35)
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where the limit of the De Giorgi functional is decomposed into lateral and vertical parts, which are
given via

BYV'pt - Vot
Dae (N3 [0, T1) / / BWO g+ (p1)2 Po }dng dt
Po

B~V -Vo:
// B vy sy + Vp(i Vpo}dngdt (36)

(po)?
| o 4Gy
@vert((NOJ G0)7 [07T]) - 2 /[;)J"]Xﬁ(l) {< + ’ dN()

} dNp.

iff 0.po = 0 in QF and +oo otherwise. The triple (vg, vy, 7)), consisting of the vector fields
v (t,y) € R4! and the scalar field v (t, z) € R, satisfies the reduced continuity equation

T
0:/ /<ag0 + BVt %)dn dt+/ / B~ + B V' v0>d770 dt
0 b

+/ a’0.o(t, )Y (t,z) dNy (37)
[0 T]xﬁ(l)
forall o € C'((0,T) x Q1) with (0-0) 1, 0 = 0 and 0t (y) == p(y, £1/2).

Proof. 1. Lower limit for the entropies. Due to the convexity of z — FEg(z), Jensen’s inequality and
Eg(z) > 0 lead to the estimate

) [ () wray+ [ () ay
— /zEB (%ﬁﬁ) dvt +/EEB (%p) d0= = &(n.),

where the quantities u., u_ as well as w and w_ are defined as in (28) and ([32).

The liminf estimate (34) follows from lower semicontinuity of the relative entropy (1, ¢) — H(n|¥) =
Js Es(dn/dv)dv under weak™* convergence, which is well known, see e.g., [AGS05, Lemma 9.4.3].

2. Lower limit for the De Giorgi functionals. To prove the Iower estimate in (35), we consider first the
term arising from the primal dissipation potential, i.e. fo (v, 7.) dt. Indeed, due to the estimate
in|4.3 and N. —* Ny in M([0,T]x;), Theorem 5.4.4 in [AGS05] gives the existence of limits
Td € L2((0,T) x QF 1 dNo )L, T5 € L2((0,T) x 7 : dNp)4—1, and 42 € L2((0, T) x 7 : dNp)
such that v/ N. —* =Ny in /\/l([O,T]xﬁli)d_1 and v. 4Ny —* 7I Ny in M([O,T]xﬁ?) as well
as the lower estimates

T
lim inf / / vl - B¥vl AN, dt > / v - BEog dINg, (38)
=0 Jo Jof 0,7 %525

T
liminf/ / aolvg,deNEth/ a®|yg]* ANy (39)
=0 Jo Jao [0,7]x52)

In particular, passing to the limit in the continuity equation (19), we obtain

0= / {8,:@ Lot Biv/wi} d Ny —{—/ a voﬁzap dNy
0,7 x50} [0,7]x 0
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forall o € C*((0,T) x €;) with (0:0)|,, o0 = 0. We easily check, that we can replace Uy by the
averages '

~ wO(y>Z)
i) = [ T as
R 0

which solves the continuity equation (37) with respect to the measures 776: defined in (27). Moreover,
by Jensen’s inequality we have the lower estimate

T
/[ - vy - B¥oy ANy > / /Z vE - BFoT dnF dt. (40)
0,7 %82y 0

Next, we consider the term in the De Giorgi functionals ®. arising from the Fischer information, i.e.

[ R (v, —DE.(v.)) dt

Using the joint convexity of (p, &) — B~E - £/p and the convergences in we immediately obtain
with a loffe-type argument the lower estimate

47/ / +17/ /
lim inf - / / BN P Vipe an ar > L / /iB Viro Vo g6, at.
of Q

Pe Po

Since d.py = 0, we can integrate over z € I to arrive with and at for Dy (the
terms containing the vertical derivatives 0, p. are non-negative and hence can be estimated by 0 from
below). Finally, using the second part of Theorem 9.4.3 in [AGS05] we get with and

T 0 o 2 T 0 dG. 2
liminf/ / a—ﬂdAsdt:liminf/ / l : -
=0 Jo Jao 2 pe =0 Jo Jao 2
01d@
Z/ O’ dN07
[OT]XQO 2
which, with (39), is for Dert. O

4.4 Identification of the limit gradient structure

In the last subsection, we proved that the limits obtained in - satisfy for " > 0 the estimate
Eo(no(T)) + Drae(No; [0, T1) + Dyert (No, Go); [0, T]) < E(mo(0)). (41)

In this section we derive the final form of the limit system. In particular, the evolution on the middle
layer ) is given in only via (N, Gg) in Dyeq. To arrive at the effective limit system we first
identify GGy to be the vertical derivative of NV in a weak sense and second minimize over all profiles
z +— No((+, z)) to obtain the limit dissipation functional describing jumps across the middle layer.

The crucial technique is the disintegration theorem (see also [AGS05, Sect. 5.3]), which allows us to
integrate over each fiber {y} x I, for y € X. In fact, let us introduce the map 7’ : [0, 7] x QY —
[0, T] x 3 as the projection on the time variable ¢ and the lateral component y of the spatial variable
r = (y,2),i.e, 7 (t,x) = (t,y). With the limiting measure Ny € M([0, T xﬁ?), we associate the
averaged measure 7 = 7, Ny € M([0,T]xX) and consider the related disintegration of N, i.e.,

there is a 77-a.e. uniquely determined family of fiber probability measures i, , € Prob(Tl) such that
forall o € C([0,T] x Q)

/ o(t,x) dNy(t, ) / / 2)) A, (2) dn(t, y). (42)
[0,7]x 2} 0.7]xE JT,
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Remark 4. If the measure N is absolutely continuous with respect to the Lebesgue measure on
[0,7] x €, i.e., Ng = ugL*?, then we have for the disintegration that

— — taya )
— o 2dz 1 2% and _ ol 1
n (/I; uO( ) 72) Z)‘C an Kty ffl Uo(t7y, Z) dZE

By the boundedness of the De Giorgi functionals ® ., we deduce W !-regularity of the fiber measure
[ty for 7-a.e. (t, ).

Lemma 4.4. Let Ny and Gy be given by and such that

/[O,Tlxﬂ?

and let [ fi,, dij be the disintegration of Ny as in @2). Then, for j-a.e. (t,y) € [0,T] x X there
exists py,, € WH(I}) such that jir,, = pi,Wo(t,y, ) L' and g—gg = 0.pty/pry- In particular, we

have 4G
/ 0‘ AN, = / / (G (43)
0,7]x0} 0,7]x% J 19

Pty
Proof. The relative density p. satisfies the identity

T T
Ve CL(0,T) x Q) : / / 00, p. dx dt = —/ / p0,pda dt
0 (o7 0 951

Using the definition and the convergence of G in (31), of V. in and W, — Wy in C(), we

arrive for ¢ — 0 at 5
P o)

dGO / dNO
/[OT]Xm Wo [0,T]x W

Denoting the density of GG with respect to /Ny with gy and using the disintegration of [V, as above, we
obtain that 77-a.e. in [0, 7] X X

d 2
ﬁ‘ AN, < oo,

9090 z‘p
du / dfiey
. Wo v T

Hence, we have that for 7j-a.e. (¢, y) the measure ji;,,/W(t,y, ) has a weak derivative in M (1)
given by go(t,y,-)/Wo(t,y, )iy In particular, by [AFP0O0, Thm 3.30] there exists for -a.e. (¢, y) a
BV-function p;,, : I; — R such that fi;,,/Wo(t,y, ) = pry L1, and the derivative reads ,p;, =
go(t,y,-)/Wo(t,y, )i, However, this means that 0, p; , is also absolutely continuous with respect
to the Lebesgue measure on I; and we infer p,,, € WH(I1) and 0.1y = go(t, Y, ) pry-

Clearly, on I;" U I] we must have d,p;, = 0 due to (30). On the middle layer given by I?, we
conclude that the identity in holds. O

Using the characterization of (G, Ny) on [0, 7] X ﬁ(l) from the above lemma and choosing in
the test function ¢ such that ¢ = 0 in QF yields

/ / vgptvyWOE)Zgo dzdn = 0.
0,71x% J 19
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Hence, we conclude that the vertical flux through the middle layer given by aofygpuno is constant in
z € I for 7j-a.e. (t,y). Denoting the latter by % (¢, ) we can rewrite to get

0—/ / Oyt + BTV ot UO dng dt—l—/ / 0o~ + B V'~ O’)dno’dt
+ / Rt =) dR. (44)
[0,7]

Moreover, D given in (36) can be written as

a"Wo(9:p1y)?
Dvert ((No, Go); [0, 7)) / / { + =Y }dzd‘. 45
t(< o 0,T]xZ J 19 2a"Wopry 2Py ! @)

The main structure in the limit model given by &, and ® .. and D,y is that D, does not depend
on the time derivative N0| 0.7]x 0" Moreover, the vertical flux & is constant in z. Hence, typical for I'-
convergence methods, the final step in the derivation of the effective system consists of minimizing (45)
over all profiles p;, : I — R subject to fixed boundary conditions p; ,(+1/2): We write the inner
integral in as a functional of p; , and denote it by Gz (py,,) with & treated as a fixed parameter.

G(R;r,s) == min {Ga () | 5 € WHH(ID) with 5(1/2) = 7, p(—1/2) = s}.

It turns out, that this minimization problem can be explicitly solved. We introduce the transmission
coefficient via the harmonic mean of 1, across I, i.e.

1
K.(y) = a® harmjo [Wo! (y), where harm;o [WO]_1 = —dz. (46)
! ! 19 WO(" Z)

In particular, for a large barrier V; (-, z) across the middle layer, the transmission coefficient becomes
A, beomes indeed small.

We refer to [LMPR17, Proposition A.2] for a proof of the following Lemma.

Lemma 4.5. For fixedr > 0, s > and k € R we have the identity

G(k;r,s) = K\/_CK< >+K*\/ﬁ<€*<log£>

KoJis
where 6™ is the Legendre transform of ¢’ and given by €*(§) = 4(cosh(£/2) — 1).
With the transformation k := k/(K,\/rs), we can rewrite the above result as

G(k;r,s) = G(k;r,s) = K*\/E<(€(k;) + %*(log(r/s)))

Note that (€*)'(¢) = 2sinh(£/2) = e¥/2 — e~¢/2. In particular, with this we compute the crucial

identity
Vi () (logtr/s) = vis (1 = [2) =r = )

We show the following identity for the traces of the measure N at the interfaces z = +1/2

\/Pt,y(zwt)/)my = \/Po ,21)po (s 22 ) L0,y x sy,
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i.e., Lemma |4.5| leads to the geometric mean GM(n*,n~) € M(X) of positive measures n* €
M(E) andn~ € M(X). Itis defined via

+ =) dn” dn* + 4o
GMG )'_\/d(n“rn) d(??“r?f)o7 )

Lemma 4.6. Let the assumptions of Lemmal4.4) hold true. Then, we have

Voo () = Vot £ and pt(ty)py (=) = o7 (6 y)ony(2F).

Proof. With the same arguments as in the proof of Lemma 4.4 we find p;,, € W"!(I;) such that
No = (pt,Wo(t,y,-) L") @ 7" with 7' = 7, Ny € M([0,T] x X), where «'(t,z) = (t,y) for
z € Q. By taking the one sided limits we obtain

1 1
lim —No(A x [z7 — h,27]) = lim —No(A x [z7, 2" +h]) = [ p, (z")Wo(y, 2zT) di'.
h—0 h h—0 h A i
Moreover, by Lemma[4.4]we also find

1
lim —No(A x [zF = h,2"]) = / Py () Wo(y, 27)dp
h—0 h A

and

lim 1]\/Y()(./Ll X [Z+, Z+ + h]) == / p+(t,y)W0(y> Z+) d(yat)
h—0 h A

Since W, € C(ﬁi) we conclude p..(21)7 = pTL4% Similarly, we conclude also for the other
interface that p..(27)7 = p~ L7

We denote 77~ := p..(2%)7] and compute

Vo0 (270 = GM(TH ) = GM(p* L2, p £%) = /T p £,

The relation p* (¢, y) i, (2F) = pT(t, y)pry (%) follows from

O

Introducing the new variable x(t,y) = &(t,y)/ (K. (y)\/pry(24)pey(2-)), the continuity equation
(44) reads

T T
0:/ /(5t¢++V’90+'B+UJ)dUJdt+/ /(8t90_+v’<p‘-B‘vg) dng dt
0 b 0 )
T
+/ /K*/f(sf—so‘) po Py dydt (48)
0 ¥
0

forallp € C'((0,7) x Z;R?) with (0, )1y, = (T, )|z =
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In the following, we show continuity of ¢ — 7)(¢) and that it has a time derivative in a suitable sense.
Indeed, with we conclude continuity and weak differentiability of 7)) as follows. We pass to the limit
in with fixed ¢ € C*(€;) such that (8Z<p)‘ o = = 0 and obtain for 0 < t; < to that

to
<770(t2)—770(t1)7<,0>=/ /ZV’§0+-B+ dng dt+/ /V’gp - BTwy dng dt
t1

to
/ /K% v )\ Po po dy dt.

Hence, we infer that ||no(t2) — 10(t1)]]« — 0 as (t2 — t1) — 0, where

Inlls = sup {(n, o) | Ve Iy < 11107 =9 L) < 1}

Moreover, we obtain weak differentiability of 79. To show this, we define X to be the closure of
C'((0,T) x ¥;IR?) with respect to the norm

lelly = 1V g w0y T 1V s 0y T 107 =07 Lo o, 20);

where X7 := (0, T') X 3 and we have set 7jp = GM(n, 77, ) for brevity. By taking the quotient space
with respect to the equivalence relation ~ defined via ¢1 ~ s < ||p1 — 2|y = 0 we define the
Banach space Y := X/.. With Hélder’s inequality we find that 77y € Y™*. The Orlicz norm is then
defined as follows

Il uoryes =t {k > 0| [ @ (p/myam <1},
(0,7)x%

For an introduction to Orlicz spaces we refer to [RR91]. In addition to 70 € Y™, we also have
170(t) Vi € L1(0,T) with

lelly, = IV L2 sy + IV 2 + 1" =@ e 5

This follows from the fact (cf. [RR91]) that
Il < 1+ [ ) dm()
b

Note that the continuity equation gives rise to the natural decomposition into lateral and transmis-
sion rates 1) = 1), + 1),, where in the distributional sense

(1o, ) Z/v‘-B‘V’so‘ dn‘+/w+-B+V’¢+dn+
by Y
and

(s = [ AVaIR(e" = o) dGMG )
>
forall o = (¢, p") € CHX;R?) with the effective coefficient A, (written here as a nonlinear
operator A, : L>(£2;) — L*(X))
K, ao(f eV0(+2) dz)_1

‘/wgw(J_ N (fIfL e—Vo(-2) )1/2(f17 —Vo(: dz)l/Q.

A Vo] =
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Note that, indeed by Corollary [4.6|we have

K/ p.(z2)p..(z0)0 = K/ pg po L7 = A Vo] AGM (™, nT).

In particular, it holds that

T
/ G(R;pt,y(l/Q)mt,y(—l/?))dﬁ=/ /G(H;p37pa)dydt-
(0,T]x3 0o Jx

Moreover, with Lemma[4.5|we obtain that
_ Po
/ G(; g Po ) Y = Ranem (1, 1) + Rmemb( —log ( ° ))
b Po
with
/A [Vol€ (k) AGM(n ™, ") if 1) = s,

else.

Rmemb 7] 77
Since D14 (No; [0, T]) given in is of Rpuik © Ry, form with

1 1
/ —wt - Btwtdn*t —I—/ —w” - BTw dn™  ifn=mn,,
5 2 5 2
o0 else,

Rouk(n, 1) =

we conclude that the effective dissipation potential is then given by the inf-convolution of R emp and
Rbulka that is

Reff(n7 77) = inf {Rbulk(n7 T]v) + Rmemb(n) ’I'],{) ’ 77 = 7.71) + nn}

In particular, we obtain from Proposition (1| the I'-liminf for the De Giorgi functionals ©. and as a
consequence pE-convergence.

Theorem 4.7. Let the family of measures v. € M ([0, T] x ) satisfy and converge in the
sense of — (B1). Then, we have the following I'-liminf estimate for the De Giorgi functionals © .

lim ionf D (v [0, T]) > Der(n0; [0, 7))

with
T
Dot (0; [0, T]) = / Ret(osi0) + R (10, —DEy(10)) .
0

The remainder of this subsection is devoted to the chain rule, which is used below to conclude the
differential inclusion for the limit of solutions. The chain rule is proved by time regularization.

Lemma 4.8 (Chain rule). Fort — n(t) € M(X) x M(X) assume

Der(n:[0,T]) <00 and  sup |E(n(t))] < oo.
te(0,7)

Then, the chain rule holds, i.e.,

d

&0 (n(t) = (DE(n(1)) i) foraa.t € (0,7).
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Proof. 1. Regularization of entropy functional. For o > (), we replace the Boltzmann entropy density
Fg(z) = zlogz — z+ 1 by E(a)( ) := FEg(z + «). By the dominated convergence theorem, we
check that for the related driving functionals we have Eéa)(n) — &(m)asa — 0

Step 2. Time regularization. Fix 0 < t; < t, < T and define 1,,(t) € M(X) x M (%) via convolution
of ) with the kernel 6,,(t) = nd(nt), where 6(t) = 1 — max{2|t|, 1}, namely

M () :/0 n(T=t)n(T)dr  fort € [t1,19]

and constantly extended for ¢ € [0, 7] \ [t1, t2]. Note that due to the boundedness of the De Giorgi
functionals we have V+/p* € L%(Zr). In particular, p* € LP(Xr) for some p > 1. However, this
also gives 1), € LP(Xr;R?) and 7, € LP(X;R?). In particular, with [MRS13, Prop. 2.4] it follows
thatfor0 < s <t < T

/ / {0} log(a+ pi) + 0, log(a+ p,)} dydr = €5 (a(0) = & (ma(s). (61)
Note that if (vt, v, k) satisfy for 1 then

(0=(O)n*) * dn(t)

V() = (0 fort € [t1, ta],
0 fort € [0,7]\ [t1,t2]
and
(K ()= (1)) * du(t) fort € [t1, ]
() = THOIRO) o
0 fort € [0,T]\ [t1, 2]
satisfy for 1,,.

Step 3. Passing to the limit o« — 0. Using the continuity equation and the uniform bound on the De
Giorgi functionals, and exploiting that u/(u + aw)? < 1/uforu > 0 and v — €~ (1 log((p™ +
a)/(p~ + «))) is non-increasing, we conclude again by Young’s inequality and the dominated con-
vergence theorem that we can pass to the limit &« — 0 in the identity to arrive at

t
& (1 (s)) = &7 ) = [ [ V10wl - B gt ar

¢ t
—i—/ / V'log p,, - B~ v, dn, dr +/ / K.x(ot — o )/ pypt dydr.
s JX s JX

Step 4. Passing to the limitn — oco. We carry out the limit passage in terms of the continuity equation.
By convexity of the maps

R xR, 3 (a,b) ‘ )b and R? > (a,b,c)H%<L>\/E

Vbe

and convexity of the slope term 1 +— Re(n, —DEy(n)), we have the estimate (cf. [AGS05, Lem.
8.1.9, 8.1.10))

Reﬂ(ﬁna nn) S Reff(na 77) and RZH (77m _Dg(](nn)) S R:ﬂf (777 _D‘S'O(n))

Hence, we conclude . .
/ (1, log prn) dT — / (1, log p) dr,

where we used again the dominated convergence theorem. O
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5 Discussion

In this section, we discuss the effective limit system obtained in the previous section. In particu-
lar, we derive the system of PDEs that is formarly equivalent to the evolutionary system given by
(X, &, Resr)- It consists of two drift-diffusion equations for the upper and lower layer coupled by a
linear exchange reaction term which models jump processes from the upper to the lower layer and
vice versa, see (54).

Moreover, in [MMP18] a stronger notion of EDP-convergence, called tilted EDP-convergence, is in-
troduced. Hence, the question arises whether this stronger convergence also holds in our case. We
answer this question in Subsection

In the case that we do not have drift, i.e. V. = 0, the equation in (9) can be written as a gradient-
flow equation with respect to an H~'-type gradient structure with quadratic driving functional. We
show that also in this case EDP-convergence can be shown. However, in contrast to the logarithmic
entropy functional and the Wasserstein gradient structure, the resulting effective limit gradient system
still features a quadratic dissipation potential, see Subsection Though the effective PDE system is
the same. In particular, there is no unique gradient structure for the limit PDE model. In fact, we show
in Subsection that also for the logarithmic relative entropy in with potential 1} a different,
quadratic dissipation potential exists which leads to the same evolution equation.

Finally, we connect our limit derivation to recent results for stochastic Markovian jump processes
[MPR14]. In particular, we highlight in Subsection that our limit problem with non-quadratic dis-
sipation arises in a natural way from large deviation principles, see also [LMPR17].

5.1 Linear drift-diffusion-reaction system

Note that v, satisfy (21). Hence, we conclude up to a subsequence that v. converges in the sense
— (@1). In particular, for well prepared initial conditions /. (0) with Rx2.(0) —* 10(0) such that
E-(v:(0)) — & (no(0)) we obtain pointwise convergence Ry, (t) —* no(t) for all ¢ € (0,T).
Passing to the limit in we obtain

Eo(mo(T)) + Dest (n0; [0, T1]) < Eo(10(0)). (52)

By the Fenchel-Young estimate for ®. and by the chain rule (see Lemma we conclude equality in
and & (v:(t)) — & (no(t)) forall t € (0, T]. Moreover, it follows that 7, satisfies the differential
inclusion

io(t) € IR (no(t), =D& (mo(t))) (53)

for almost all t € (0,7T"). Thus, we conclude EDP-convergence (X, &, R.) to (Xo, £y, Resr) in the
sense of Definition where

XO = {(T]_,T]+) c Mzo(i) X Mzo(i) }7]_ + 77+ c PTOb(E)}

Using (47), we infer that is formally equivalent to the limiting system of PDEs

+ + —
. Ug « [ Ug U

atua_ = le/ (wS_B+v,w—8_> + A (w—(_)i_ - w—o_>,
- - +

Oy = div’ (waB_V'u—O_> + A*(u—o_ - u_gr>’
Wy Wy Wy
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where the reference states wy and w, are defined in (32). In particular, introducing the effective
potentials Vg = — log(Zowg), with Zo = [;,(e™% +e~"% ) dy, and assuming V;;" to be sufficiently
smooth, we arrive at the drift-diffusion-reaction system

Do = div’(B+(V/u0+ + @V’VJ)) + A" (w—: - Z—O)

0 0 (54)
iy = aiv' (B (Vg + 097 )) + A1 - 1),

0 0

On the boundary 0%, we have no-flux conditions.

5.2 EDP-convergence with tilting

In [MMP18] a stronger version of EDP convergence was introduced, which guarantees the EDP con-
vergence to an effective gradient system with the same effective dissipation potential R for all “tilts”,
i.e. perturbations, of the driving functionals £.. The latter is defined via £$(v) = E.(v) — (¢, v) fora
tilt ¢ € X*. The point of introducing the tilts ( is that the space in which gradient systems are explored
is enlarged. In particular, by the arbitrariness of the tilts { we can uniquely recover the (Reg, Ri;)

structure of the T-limit D§(v; [a, b]) = fab No(v, v, ) dt of the tilted De Giorgi functionals
b
D¢(v; [a, b)) = / R.(v,0) + R (v, ¢ — DE.(v)) dt.

In stochastic fluctuation theory, the system is pushed out of equilibrium by an external force ( to
explore the solutions away from the deterministic limit. In this sense tilts are a counterpart to stochastic
fluctuations. The resulting dissipation potential may be different than those obtained by more classical
methods, and in some cases better represent the modeling aspects of the limit.

Definition 5.1. We say the generalized gradient system (X, £., R.) EDP-converges with tilting to
(X, &, Remr) with respect to the sense S on X, the sense S, on L>°(0, 7"; X) and with respect to
the class € C X* of tilts ( € € if

(i) (X, &, Resr) is the evolutionary I-limit of (X, &, R.)
(i) & 25 & and DS 25 D forall ¢ € €
(i) D (u; [a,0]) = [ Regr(u, @) + Rig (u, —DE(u) + ¢) dt.

Note that this definition is more demanding than Definition since the choice of R.g must be
independent of (. In [DEM18, IMMP18] it is shown that in general, we may have Mg(u,v,ﬁ) +
R(u,v) +R*(u, &) for any dissipation potential R, where M is given by the integrand of the I'-limit
of . Note that Definition requires the identity

Mo(u,v, =DE(u)) = R(u,v) + R*(u, —DE(u))
only for the equilibrium driving force £ = —DE (u).

In our setting, the tilt ( corresponds to the change of the reference measure \. = w.L% e,

we S\ we , J
() = /§21E8< . )e—C if v =ul®,

+00 otherwise.
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We have two choices to introduce the tilt: (i) in the original gradient system in and (14), and (i)
in its transformed counterpart introduced in Subsection The limit passage for both cases can be
carried out as in the last section. However, since the tilt  must not develop a microstructure in the limit
e — 0, i.e. is not allowed to depend on &, we obtain (* = (. This means, that the tilt only “sees” the
lateral transport in the upper and lower layer but not the coupling of both via Ryems- Hence, we do not
have tilted EDP-convergence in this case.

In the second case, the tilt { enters the effective coefficient A, defined in via the harmonic mean
on 19 and the arithmetic means on I;” and I; of WWyeS. In particular, the dissipation potential Reg
cannot be chosen indepedent of (. Hence, also in this case we do not have tilted EDP-convergence.

However, when restricting to the class of tilts ¢ € C'(€2;) such that A.[Vp] = A.[Vj + (], we have
that the effective dissipation potential is independent of ( and thus the tilted EDP-convergence with
respect to this class.

5.3 Effective limit for H~! gradient structures

Let us consider the case V. = 0. It is well known, that in this case the diffusion equation in (9)
has a gradient structure of H™! type with the state space X. = H!().)*. The energy and the dual
dissipation potential are given by

|Q€| ~2 14 oA 2
P u*dz ifa e Lo(€Q,),
EE(U) = 2 Qe ( )
00 if i € H'(Q.)* \ L?(Q.),

and 1
R = 57 [ VE-Ae)VEs
2‘98’ Qe
In relation to the logarithmic gradient systems, we also deAfineA the relative density p = |{).|a. The
equation (9) is the gradient-flow equation induced by (X, &, R.), namely

u(t) € ORE(—DE-(u(t))).
We observe that both, the energy and the dissipation potential are quadratic. In particular, the De Giorgi
functional ©.(u; [a,b]) = fab Re(u) + RE(—DE.(u)) dt is also quadratic. Hence, by the general
theory of I'-convergence (cf. [Bra06l, Prop 2.13]), we expect the effective dissipation potential to be
quadratic as well in contrast to the Wasserstein case.

As before, we rescale the domain 2. via the map ®. : (2. — (2; defined in and introduce the
transformed variables ¢ = £ o @21 and u = em_(u o ®_!), where m. is defined as in (16). The
transformed gradient system reads

1 Q.
—/ uzﬂdx if u € L2(Qy),
E(u) = 2 Jq, eEm.

00 if u e H'(Qq)* \ L2()

with relative density p = (|€2|/(em.))u and

R*(g):1 c v’g-Biv’§+f|a§|2 dz
e 2 Jor || g2 7®

1 € S+yvr/ 0w/ 0 2
— — - B dzx.
+2/Q?|Q€|{e V' V§+a|8z§|} x
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In particular, for p € H'(€).) we have that p € H'(£2;) as well while the same does not hold for
@ and u as m. is discontinuous. The De Giorgi functionals are defined by inserting the driving force

& =-DE(u) = —p,ie,

D.(u;]0, 7)) = /OT {Ra(u) +R:(~DE.(u)) } dt.

Note that the functionals ©. are quadratic with respect to curves ¢ — u(t). To derive the limiting
gradient system, we use the Sandier-Serfaty approach [Ser11] to evolutionary I'-convergence. We
introduce the limit driving functional given by

by
Xl / ?dy ifu € L2(%;R?),
itu € H'(D;R2)* \ L2(3; R?).

Eolu

Next, for £ = (£1,£7) € HY(X; R?), we introduce the effective dual dissipation potential

(@) = g7 [ {7 BVE e -

and prove that this gives rise to the limiting gradient structure.

In the following, we denote by Y, C L*(£2) the space given by
Yo = {€ € L() ] 8.6 € LA (), €|+ € HY(Q), 0:€gx = 0.

Theorem 5.2. Let the family of curves t — u.(t) € X be such that and

sup {@(ug; [0,7]) + sup €£(t)} < 00.

>0 te[0,T)

Then, we have for allt € (0,T]

lim inf & (u<(t)) > & (u(t)) (55)
and
hmlglf R () dt > / Regr (U (56)
e— 0
lim inf / R:(~DE.(u.(t))) dt > / (=D& (u(t))) dt. (57)
E—r 0 0

Proof. The lower estimate for the driving functionals &, is straightforward. For ¢ > 0 we define the
average u= (t,y) = f[i ue(t,y, z) dz and exploit standard estimates allowing us to extract a subse-
1

quence such that uZ (t) — u (t) in L?(X) for each ¢t € (0, T). Jensen’s inequality gives

£t ) = 2 [ 2 + 2.

For ¢ — 0 the lim inf estimate follows. Note that due to the uniform bound on the driving functionals
E-(uc(t)) we have that u.(t)[qo — 0in L*(Q).

Next, we prove the lower estimate for the primal dissipation potential in (56). Again by standard es-
timates, we have that u. — g in L2(0,T;Y(). In particular, there exists a & € Yj such that

DOI 10.20347/WIAS.PREPRINT.2601 Berlin 2019



Effective diffusion in thin structures via EDP-convergence 27

iy = —div/(BTV'&) in Q5 and g = —a’0?&, in QY. Since up = 0in (0,7) x QY, we have that
& is affine in z and thus, we obtain

lim inf / Ro(i.)dt > = / V¢ - BEV'Eydt
0o Jof

—//50 y21) =&l 20)) dt = /Reff

Finally, we show the liminf estimate for the dual part of the De Giorgi functionals. Due to the bounded-
ness of the dissipation, we can find subsequences and a limit p, such that for p. = [€2;]/(em.)u. we
have V'pc| (o 1)x0r = V'pol(or)xoz In L2((0,T) x Qf) and 0.p. — 0.po in L2((0,T) x Qy),
where 0.po = 0in (0,T) x Q. Moreover, the limit py satisfies po(, ¥, z) = ui (,y) for aimost all
(t,y,2) € (0,T) x QFf. By weak lower semicontinuity and Jensen’s inequality we arrive at

1 /7
liminf/ Ri(—DE.(u.))dt > 2/ V'po B*V'py dt
0

e—0
Y / / po
QO

Using Jensen'’s inequality once again with respect to z € (—1/2,1/2) in the last term gives and
concludes the proof. O

Since solutions u. to the gradient-flow equation associated with £, and R. are precompact with
respect to the topologies used in the proof of Theorem we can pass to the limit in the EDB and
obtain

Eo(uo(T)) + Degr(uo; [0, T]) < Eo(uo(0)) (58)

for well prepared initial conditions and €. (u-(0)) — &(u(0)). Moreover, with the chain rule we
conclude equality in and that

D (u;[0,T]) = Der(uo; [0,T]) and  E-(u-(t)) = Eo(uo(t)) forallt € [0, T].

In particular, u is a solution to the flow induced by (H'(X; R?)*, &, R ). This associated effective
PDE system reads as

dut = div(BTV'u) — a’(ut —u7),
Ou~ = diV(B’V’u*) +a’(ut —u),

with homogeneous Neumann boundary conditions. Hence, the effective PDE is the same as in (54).

5.4 A quadratic gradient structure for the limit equation

The crucial feature of the effective limit system (X, &, Rey) is the non-quadratic dependence of the
dissipation potential R on the thermodynamic driving force . However, it was shown in [Mie11] that
for reaction-diffusion systems with reactions following the mass-action law and fulfilling the detailed-
balance condition gradient systems with quadratic dissipation potential exist. In particular, with the
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same driving functional £, defined in we introduce for u = (u™,u”") and £ = (£7,&7)

Riwo1:6) = 5 [

)3

{vg* - BYVETUT £ VE - BTVE U
utouTN L
HAM(Gr )€ P
where A(a,b) = (a — b)/log(a/b) for a # b and A(a,a) = 0 denotes the logarithmic mean of
a > 0and b > 0. Indeed, with A(a,b)log(a/b) = (a — b) we easily check that the equation
U = 0cRE g (u; — log(u/wy)) is (formally) equivalent to (54).

quad

5.5 Connection to large deviation principles

The large deviation principles for stochastic processes offer a method to generate gradient structures
(see [MPR14]). In particular, the dissipation potential R memp in describing the jump across the
vanishing middle layer is directly linked to a large deviation principle for a Markovian jump process
on a finite state space. Here we briefly recall the results of [MPR14], Section 4.1] (see also [LMPR17,
Section 2.4.2)).

We introduce the state space S = {z,, z_} and, with K, from and reference states w™, w™,
we define the rates )y~ = K, /w" and Q_, = K, /w™ for a jump from z, to z_ and vice versa.

Let X (1), Xa(t), ..., X,(t) € S be independent realizations of the underlying Markov process, and
define the associated empirical measure via

1 n
u™ (1) = - Zl dx,(1) € P(S).
J:

Under suitable assumptions it can be shown, that the empirical process 1™ satisfies the large devia-
tion principle

Prob(u(")(-) ~u(r) ~ e W with  I(u) = /OTX(u(t),u(t)) dt,

n—oo

where for £ = u*/y/utu~Q;_Q_ we have

Ll i) = LK\ [2 (% (k) + 6 (— [log(w/w)])).

D) wtw—

Hence, the tilted EDP-limit derived in Section {4 is consistent with the gradient structure arising from
the large deviation principle.

Finally, let us emphasize that the form of the dissipation potential is related to the so-called Marcelin-
de Donder kinetics in chemistry, see [Fei72, Def. 3.3], [GKZDO00, Eqgn. (11)], and [Grm10, Eqgn. (69)].
The latter states that chemical reaction rates are given via exponentials of the thermodynamic driving
forces &. This further highlights that the gradient structure derived in this work has a more physical
relevance than the quadratic one described in Subsection [5.4
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