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Abstract: We rigorously investigate the size dependence of disordered mean field models with 
finite local spin space in terms of metastates. Thereby we provide an illustration of the framework 
of metastates for systems of randomly competing Gibbs measures. In particular we consider the 
thermodynamic limit of the empirical metastate l/N I::=l 8µn(TJ) where µn(TJ) is the Gibbs 
measure in the finite volume {1, ... , n} and the frozen disorder variable T/ is fixed. We treat 
expliciteG}he Hopfield model with finitely many patterns and the Curie Weiss Random Field 
Ising model. In both examples in the phase transition regime the empirical metastate is dispersed 
for large N. Moreover it does not converge for a.e. TJ but rather in distribution for whose limits 
we give explicit expressions. We also discuss another notion of metastates, due to Aizenman 
and Wehr. 

I. Introduction 

In a recent series of papers [NS1],[NS2],[NS3], the interesting role of the volume dependence 
in disordered systems having more than one infinite volume Gibbs states was stressed. In a 
particularly interesting article [NS3] the notion of metastates, being probability measures on the 
states of the systems, was introduced to describe the volume dependence of system with frozen 
disorder. (See therein and the discussion with [P] for implications on the theory of spinglasses 
and the relation to the phenomena of replica symmetry breaking and non .self averaging.) It 
is the aim of this paper to provide a rigorous step into the investigation of size dependence by 
metastates by our investigation of examples of random mean field systems. 

In the general case .of disordered lattice spin systems in the presence of phase transitions, 
the problem of size dependence is the following. To start with a nontrivial situation, assume that 
the system admits more than one infinite volume Gibbs state. We consider the finite volume 
Gibbs measures µAN (TJ), for fixed realization of the disorder T/, in the finite volume AN. We want 
to study a situation where the boundary conditions for the measures µAN ( T/) are such that they 
do not preselect one of the infinite volume Gibbs measures. (There are many natural situations, 
where it is (practically) impossible (or not of interest) to select Gibbs measures by boundary 
conditions. This is the case in spin glasses, where the Gibbs measures are not explicitely known. 
Note moreover that in mean field systems it is impossible to put boundary conditions at all.) 

To be concrete, we imagine that, for large N, the state of the system wiU be close to a 
mixture of random infinite volume Gibbs measures. That is, a good approximation for the finite 
volume Gibbs measures will often be 

(1.1) 
m 
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where (µ7:,(77))mEM are the (supposedly countably many) extremal Gibbs measures in the infinite 
volume. 

The problem of size dependence is: Characterize the behavior of µAN ('TJ) along the sequence 

AN. This has some analogy with studying the orbit of a dynamical system with 'time' N (see 
[NS3]). Possible 'extremes' that could occur here, are e.g. 1) convergence to one infini volume 
Gibbs measure or 2) an 'erratic' sequence of states, a behavior that was named chaotic size 
dependence in [NS3]. 

A first question one may ask is: What Gibbs measures can be constructed through any 
subsequences ANk at all? More interesting even, lead by the dynamical system analogy, the 
following object was introduced in [NS3] to describe the 'trajectory' N H- µAN ('TJ) in more 
detail:. 

(1.2) 

We will refer to /'i,N('TJ) as the 'empirical metastate' and it will the main object of our study. 
Note that /'i,N is a random measure (through its 77-dependence) on the states of the system. For 
large N it will effectively be centered on the infinite volume Gibbs measures. 

There are various scenarios for the large N-behavior of /'i,N('TJ). If the system admits just 
one infinite volume Gibbs measure µ 00 ('TJ), the situation is easy: /'i,N('TJ) will converge to 8µ=(Tf)· 

But note that also in the presence of phase transitions /'i,N can converge to a 8-measure. (Take 
as an example the ordinary ferromagnetic 2d Ising model without disorder, at low temperatures 
and put periodic boundary conditions. Then µN -1- ~(µt, + µ~) with N too. Consequently 

/'i,N -1- 8~(µ;t+µ~).) 

Nondegeneracy for the metastate can arise for random systems because, for fixed realization 
of the disorder, the finite volume fluctuations of the underlying random quantities could favor 
one of different phases even when they are equivalent in the average. While the structure of 
the phase diagram is nonrandom, the degeneracy between the phases in the finite volume would 
then be lifted in a random fashion. The information about how this is done lies in the P'N ( 77). A 
variety of large-N behavior is then possible: /'i,N can be the dirac measure on a mixture of states, 
it can be a mixture of dirac measures on pure states, it can be a mixture of dirac measures on 
mixtures. 

The second aspect is that /'i,N itself is a random object: In what way will the behavior of /'i,N 
depend on the realization? One could be tempted to expect that, as a generic behavior, /'i,N('T/) 
will converge at (almost) all fixed 77 (see [NS3] for a conjecture in that direction for certain 
systems). This were the case if the random objects µAN (77) lost memory very rapidly along the 
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path N ---7 µN(TJ). In this paper we provide examples where this is not the case. Nevertheless, 
the limiting behavior of the empirical metastate can be described in our examples in two ways: 
First, it is possible to give pathwise approximation results, that hold for all typical realizations. 
Second, we suggest to study the behavior of the empirical metastate in law. This idea extends 

[APZ] wheconvergence of the Gibbs measures themselves was considered in law. We will see 
that, in our examples, infinite volume limits exist in law and give interesting information about 
the asymptotical behavior of the system along the path. 

In order to make sense out of this, one has to speak about notions of convergence of KN with 
N too. As it is common practice, we will choose the weak topologies that are inherited on the 

space of states and on the space of metastates when we choose as a starting point the product 
topology on the spin space (see Chapter 2). It makes the two spaces polish. The physical content 

of this notion of convergence is that convergence is checked locally on all levels. 

In the first part of this paper we will outline the general treatment of random mean field 
models with quadratic interaction and finite state space. Then we will consider two representa-

tives of this class in detail. The advantage our mean field models is that they allow for explicite 

expressions for the weights p!J ( TJ) and good enough approximations ( 1). Our two examples are: 

(i) The Curie Weiss Random Field Ising Model (CWRFIM): 

Denote n := {1, -l}w the space oflsing spin configurations a= (ai)iEJN· We will denote 

the set of states (which is the set of probability measures on n) by P(n). Let T/ =: (TJi)ieJN, 
denote a sequence of i.i.d. Bernoulli variables taking the values E, -€ with probability ~. · For 
the inverse temperature /3 define the Gibbs measures 

µN(TJ)[(ai)i=l, ... ,N] := N 
1 

exp (f:v. I:; <r;<r; + f3 I:; 7/i<Ti) 
orm. 1<i "<N 1<i<N - ,J_ - -

(1.3) 

in the finite volume1 {1, ... , N}. The phase diagram of the system is well known (see [SW],[APZ]). 
At low temperatures and small € the model is ferromagnetic, i.e. there exist two 'pure' phases, 
a· ferromagnetic + phase µ"to ( T/) and a - phase µ~ ( T/). We restrict our interest to this region of 

the phase diagram. 

(ii) The Hopfield model with finite number of patterns: 

Let n be the space of Ising spins as above. Let e = (ef)iElN,µ=1, ... ,M denote i.i.d. Bernoulli 
variables taking the values 1, -1 with probability ~· eµ = (ef)iEJN are the patterns the model 

1 As usual they can also be viewed as measures on n by tensoring with arbitrary product 

measures for the spins at sites i > N. 
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is supposed to learn ([Ho]). For {3 > 0 define the finite volume Gibbs measures 

(1.4) 

Due to our restriction on the number of patterns to remain fixed when N t oo, we are deep 
inside the 'region of perfect memory' if {3 > 1. This means that, for large N, the system is 
approximately in a mixture of the M 'Mattis states' µ':x, ( e). The latter is a state, associated 

the v-th pattern, s.t. the overlap vector ( i 2:~1 ef O"i) p=l, ... ,M is centered around ±m* ({3)av, 
where av is the v-th unity vector in m,M. (m*({3) is the solution of the ordinary Curie Weiss 
Mean Field equation.) For precise statements, see e.g. [BGP], [BG 1]. For the state of the 
art in the Hopfield model with limNtoo M.~·r) = a small and positive we refer to [BG2] where 
a beautiful proof of the validity of the replica symmetric solution is given. One reason for 
treating the Hopfield model here is of course, that it can be viewed as an interpolation between 
a ferromagnet and a spinglass. 

For the limiting distribution of the empirical metastates in these two models we will prove 
the following theorems. (For the pathwise approximation results and related information, see 
Theorems 1' and 2'). These show that even in these simple models there is some richness in the 
empirical metastate. 

Theorem 1: For all bounded continuous functions F: P(n) i-+ IR we have the limit in law 

1 N 
lim NL F(µn(TJ)) =law n 00 F (µ~(71)). + (1 - noo)F (µ~(71)) Ntoo 

n=l 

where n 00 is a random variable, independent of 71 on the r.h.s, distributed according to 

IP [n00 < x] = ~ arcsin v'x 
7r 

(1.5) 

(1.6) 

Thus, the empirical metastate is centered on the two 'extremal' Gibbs measures with random 
weights. The occurence of the arcsin-law will be explained by the fact that in this simple model 
the weights Pk(rJ),p"N(rJ) are in fact functions of the random walk N t-+ 2:~1 T/i· 

An analogous, but more involved, result holds for the Hopfield model: 

Theorem 2: For all bounded continuous functions F: P(n) i-+ m we have the limit in law 

(1.7) 
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where (Wt)o99 is a M(M - 1)/2-dimensional Brownian motion starting at the origin, inde-
pendent of e on the r.h.s. For the definition of the function pv ( 7f), see (5. 5) and thereafter. 

Here, the empirical metastate is richer, in that it is in fact a random mixture with support 
on mixtures of Gibbs measures. The occurence of the Brownian motion in Theorem 2 will be 
explained by an invariance principle for the underlying disorder variables; the time t is nothing 
but the rescaled system size. 

Remark: We see explicitely that, in both cases, the empirical metastate /'i,N(TJ) does not 

converge (see Theorems 1',2') for fixed realization. Thus, having a limit for /'i,N(TJ) is only possible 
when it is viewed as a random variable. This is expressed by the fact that the n 00 respectively 
pv (A) are random variables with nondegenerate distributions. 

We would like to mention that, apart from the empirical metastate, there is a second notion 
of metastates, whose construction is due to [AW]. We will discuss its relation to the .former; as 
we will see, it contains less information. It will be obtained by the r.h.s. of (1.5) (respectively 
(1.6)) by integration over n00 (resp. Wt)· 

Its precise definition will be given in Chapter 2, where we also state some straightforward 
approximation properties that are valid ~or lattice systems as well as for mean field systems. We 
describe the role of sets of regular realizations of the disorder at a general level here, since dealing 
with such sets is typical for disordered systems. In Chapter 3 we introduce disordered mean field 
models with quadratic interaction. We give approximation criteria and describe general features 
of the behavior expected in these models. We also discuss the relation between the conditioned 
and the empirical metastate. In Chapter 4 we consider specifically the CWRFIM and prove 
Theorems 1 and 1'. In Chapter 5 we consider the Hopfield model and prove Theorem 2 and 2'. 

2. Notations and Generalities about metastates 

The following considerations are true for general random spin systems with finite local spin 
space S. We assume the state space is a countable product of S over the lattice points, in 
practice n = szd or n = 5IN. Spin variables will be denoted by u, their projections on finite 
volumes A by <JAi when necessary to dintinguish between spin variables and their values, we 
denote the latter by w. 

Some topological remarks are in order (see also [AW] appendix,[NS3],[N],[Se]). n is equipped 
with the product topology. We denote the space of probability measures on n (the set of states) 
by P(O). It is equipped with the weak topology which coincides with the local topology in our 
case; that is, convergence of measures is checked on functions that depend only on finitely many 
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spins. It is metrizable and to be explicit we choose the metric 

00 

d(µ, µ')=I: 2-k I: lµ[aAk = WAk] - µ'[aAk = WAk]I (2.1) 
k=l w11.k E011.k 

where Ak is an enumeration of all finite subsets of lattice points (See [Geo], p.60). Giv-
en two sequences µN and µ'tv, limNtoo d(µN, µN) = 0 is thus equivalent with the condition 
limNtoo lµN[O"A =WA] - µ'tv[aA = WA]I = 0 for all finite subsets of sites A, for all WA E nA. 

We denote the set of probability measures on P(O) (the set of metastates) by P(P(O)). In 
the same spirit, it will be equipped with its weak topology, inherited from the topology on P(O) 
(as in [AW]). Thus convergence is checked on bounded continuous functions on the states, which 
means more concretely that convergence needs to be checked on functions of the type 

F(µ) = F (µ(!1), ... , µ(fz)) (2.2) 

where F : m,l --+ m is a polynomial, l = 1, 2, ... and Ji, ... ' fz are local functions on n. The 
topology can be metrized with the aid of such functions. In ~he Ising case one may restrict to 
functions fj of the form I1iEI ai with a finite set of lattice points I. Both spaces P(O), P(P(O)) 
are then compact polish (i.e. complete, ·separable, metric) spaces. All spaces we consider carry 
automatically the associated Borel a-algebras generated by the open sets. 

Note that, for fixed 1}, the empirical metastate "'N(rJ), as defined in (1.2) will always possess 
limit points, due to the compactness of P(P(O)). We remark that the definition of the empirical 
metastate in (1.2) depends a priori (and in reality!) on the sequence of volumes An one is 
interested in. In mean field models there is the natural choice of volumes An = {1, ... , n} that 
we will stick to. In generalization of the definition (1.2) one could even want to study the objects 
J PN(dA)8µ11. with some sequence of measures PN on the set of finite subsets of the lattice, s.t. 
PN( {A}) --+ 0 for all finite A with N too. We don't treat this general case here. 

We will generically denote the probability space of the random variables 7J describing the 
quenched disorder by (1-l, :F, IP), and expectation w.r.t IP will be denoted by IE. We assume 
that 1l is a product of a polish space over the lattice points. 1-l, too, is equipped with the 
product topology. We can now consider the skew space 1l x n (see [Se]), equipped with the 
product topology. 

There is another notion of metastate, introduced by [AW), that we will refer to as the 
conditioned metastate. For its introduction it will be necessary to consider, one level higher, the 
space 1l x P(O), equipped with the product topology. Assume that we are given a measurable 
sequence of random states µN(rJ). We will focus on the random elements 8µN(7J) in P(P(O)) and 
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view these as kernels from 1-l to P(n). Then we consider the associated probability measures on 
the space 1-l x P(n), given by JE[G(µN('TJ), TJ)], for a bounded continuous function G on H x P(n). 

Assume now, that the sequence µN('TJ) is such that, for any bounded continuous G, the 
limits 

lim 1E [G(µN('TJ), TJ)] =.: J K(dµ, dTJ)G(µ, TJ) Ntoo . (2.3) 

exist and define a probability measure K E P(P(n) x H). Then, the conditioned metastate 

K,(TJ)(dµ) will be the regular conditional probability of K given 'T/· It is thus the measurable map 
Fi, : H -+ P(P(n)) s.t. J K(dµ, dTJ)G(µ, TJ) = IE[K,(TJ)(dµ)G(µ, TJ)]. Note that the conditional 
probability is well defined since H is Polish. 

When dealing with random systems one usually has to exclude exceptional sets of the 
disorder from the analysis. These exceptional sets, which may depend on the systems size, 
should be small enough to be ignored for most purposes. As we will see in our concrete examples 
this question has to be handled with care; therefore we would like to state an approximation 
lemma, which shows how exceptional sets of realizations affect the above definitions. 

Let us assume that we are given two random sequences µN('TJ), µ'N(TJ) of states that become 
'close' for most 'T/· We will consider sequences of 'good' sets of realizations 1-l(N)cH; an impor-
tant role will then be played by the approximation for all 'T/ in the set H := liminfNtoo H(N) = 

{'TJ E 1-l, 3N0 : 'T/ E 1-l(N) VN ~No}. This will serve as a relaxation in place of just saying that 
convergence takes place for 'T/ in a full measure set. Then we have 

Lemma 1: Assume that there exist subsets HNC1-l s.t., for all realizations 'TJ E liminfNtoo H(N) 
we have limNtoo d(µN('TJ), µ'N(TJ)) = 0. Then 

{i) For 'T/ E lim infNtoo 1-l(N) the set of weak cluster points coincide 

CP(µN('TJ), n = 1, 2, ... ) = CP(µ'N(TJ), n = 1, 2, ... ) (2.4) 

{ii} For all 'TJ E 1-l' := { 'TJ, limNtoo £r i::=l 177 e1-l(n)c = 0} we have 

(2.5) 

for all bounded continuous F on P(n). 

(iii} Assume that limNtoo 1P[1-l(N)] = 1. Then, for any bounded continuous function G: P(n) x 
Hr-+IR 

lim (JE [G(µN('TJ), TJ)] - lE [G(µ'N(TJ), TJ)]) = 0 Ntoo (2.6) 
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Proof: (i) is obvious. To prove (ii), define 

(2.7) 

For any bounded continuous function µ t-t F (µ) we have 

1 
N L (F(µn(TJ)) - F(µ~(TJ))) 

1$n$N 

= ~ L (F(µn(TJ)) - F(µ~(TJ))) l71E1-l(n) +RN 
1$n$N 

(2.8) 

According to its definition we have on 1-l' that IRNI :::; llFllooBN ---+ 0. Since the first term is a 
Cesaro sum it sufficies to show that 

(F(µn(TJ)) - F(µ~(TJ))) l71E1-l(n) ---+ 0 (2.9) 

with n too. But notice that a continuous Fis in fact already uniformly continous, due to the 
compactness of P(n). Therefore (10) follows directly from the assumption, for both cases that 
TJ is an element of lim infNtoo 1-l(N) or that it is not. 

To prove (iii), we split off the exceptional set 1-lc(N) to write the l.h.s. of (2.6) as 

1E [G(µN(TJ), TJ)] - 1E [G(µ~(TJ), TJ)] = 1E [(G(µN(TJ), TJ) - G(µ~(TJ), TJ)) l 11e1i(N)] +RN (2.10) 

where IRNI :::; 2llGlloo1P1-l2(N) ---+ 0. Now, for fixed TJ, µ t-t G(µ, TJ) is a uniformly continuous . 
function in µ (due to compactness). Therefor the convergence for fixed TJ of the expression under 
the expectation follows directly from the assumption. Using dominated convergence this proves 
the claim. O 

Remark: The set 1-l' is potentially (and sometimes in reality) a bit bigger than the set 
liminfNtoo 1-l(N). Our discussion of the CWRFIM will provide an example where, for a natural 
choice of sets 1-l ( N), the first is a full measure set but not the second. Of course, if 1-l ( N) can be 
taken as a full measure set which is independent of N, we have 1-l(N) = 1-l' and the convergence 
in (ii) takes place a.s. 

3. Mean Field models with quadratic interaction 

In this chapter we discuss the models of the above class. We fix approximation criteria 
(see propositions 1,2) that allow for the computation of the metastates in terms of the relative 
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weights the 'Hubbard-Stratonovich' measure puts on small balls around its concentration set. 
The models we will consider are of the following type. (See also [BG2], Chapter 2). 

The spins a = (ai)i=l,2, ... E n = SIN have an a priori distribution according to a product 
measure 

N 

µ0 (17)[a = w] =IT µ?(17i)[ai = wi] (3.1) 
i=l 

Here we allow the measures µ? ( 77i) to depend on a random variable 77i, i E IN; this enables us to 
include random field type models. These 'random fields' 77i shall be sitewise i.i.d. Assume that 
we are given a bounded continuous map 

(3.2) 

taking values in m_M. Then the order parameter mN is defined by the empirical average 

1 N 
mN(a, 77) := NL m(ai, 77i) 

i=l 
(3.3) 

We consider the Curie Weiss Hamiltonian given by the square of the 2-Norm of the order 
parameter 

The associated finite volume Gibbs measures are then 

We write 

µ N ( 77) [a = w] : = exp ( -{3 EN ( w, 77)) µ 0 ( 77 )[a = w] 
Norm. 

for the associated image measures on the order parameter. Examples for these models are 

(a) The ordinary Curie Weiss Ising ferromagnet: O'i E {-1, 1}, m(a1, 7]1) = a1, 

(3.4) 

(3.5) 

(3.6) 

µi(17i)[ai = ±1] = . ~ for all i. The choice of random a priori measures according to 
µi ( 'TJi )[ O'i = ±1] = 2 c~::(;11d gives our first example from the introduction, the CWRFIM. 

(b) The Curie Weiss q-state Potts model: O'i E {1, ... , q}, (mP(a1, 771))p=l, ... ,q = (lcri=P)p=l, ... ,q 

( c) The Hopfield model: O'i E { -1, 1} with symmetric Bernoulli a priori measures. For tradi-

tional reasons we call the random variables in this case e instead of 77· (ef)i=l,2, ... ;µ=l, ... ,M :::: 
(ei)i=l,2, ... are i.i.d. (for different i, µ) with .lP[ef = ±1] = ~- The order parameter is de-
fined by m(a1, 6) = a16 E {1, -l}M. The empirical mean mN(a, e) is then called the 
overlap vector. 
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Our restriction to quadratic Hamiltonians is convenient because it makes it possible to 
use the well known trick of the Hubbard-Stratonovich transformation. Let us recall it here 
for convenience of the reader and to fix notations: One introduces an auxiliary M-dimensional 
Gaussian integral to write for fixed w = (w1, ... WN) E n{l, ... ,N} 

f m,M dmexp (-,B~rn
2 + j3Nm · mN(w, 'TJ)) µRr(TJ)[CT = w] 

µN(TJ)[a = w] = N orm.' 

= N o~m.' JJRM dmexp {-,BN [ ~
2 

- ,B~ log(! µ0(11)(dcr') exp (,BNm · mN(cr', 77)))]} (3.7) 

exp (/3Nm · mN(w, TJ)) 0 
x J µo(TJ)(da') exp (/3Nm · ihN(a', TJ)) µN('TJ)[a = w] 

Now, for fixed m, the second line of the r.h.s. constitutes a probability measure for the variable 
a. The variable m is integrated according to the measure that can be read off from the first line 
of the r.h.s. 

Thus one has the following 'factorization formula' that will be the starting point for our 
analysis 

µN(TJ)[a = w] = { P,N('TJ)(dm)µRr(m, TJ)[ct = w] 
}m,M 

(3.8) 

Here µRr(t, 'T])[a = w] is a product measure over independent spins obtained by 'tilting with the 
external field' t; that is 

N 

µRr(t, 'T])[a = w] = IJ µ~(t, 'T/i)[CTi = wi] (3.9) 
i=l 

where 
0 exp (/3t · m(wi, 'T/i)) 0 µi (t, 'T/i)[ai = wi] = exp (/3L(t, 'T/i)) µi (TJi)[ai = wi] (3.10) 

with the associated logarithmic moment generating function 

L(t, 77;) = ~log j µ~(71;)(dcr;) exp (,Bt · m(cr;, 77;)) (3.11) 

We will write µ°oa(t, 'TJ) for the infinite product measure. The 'Hubbard-Stratonovich measures' 
P,N('TJ) are given by 

_ ( )(d ) exp(-/3Nif!N(m,TJ))dm µN 'T/ m := f m dm' exp (-/3Nif!N(m', TJ)) 
(3.12) 

with the function 

(3.13) 

(dm means of course integration w.r.t. Lebesgue measure.) Note that µN('TJ) is nothing but the 
convolution of P.N('TJ) with a M-dimensional Gaussian Normal variable with covariance matrix 
a 2 1 = ,a1N 1. 
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It is essential about mean field models that the measures jj,N(TJ) (and related P.N(TJ)) have 
exponential concentration properties when N too. The following results, reducing the question 
of the structure of. the phase diagram to averaged quantities, are known applications of large 
deviation techniques ([DS],[DZ],[El]). Define 

L*(m) := inf (t · m - IEL(t, ry1)) 
t (3.14) 

and 

m2 (m'2 ) I(m) := 2 + L*(m) - ~f -
2
- + L*(m') (3.15) 

Then there exists a full measure set of ry's s.t. a) the measures P.N(TJ) obey a large deviation 
principle with the deterministic rate function I(m). b) Any weak limit point of µN(TJ) is of the 
form L p(dm)µ~ (m, 71) (3.16) 

where 
M := {m, I(m) = O} = {m, IE[~N(m, TJ)] = minIE[~N(m', ry)]} 

m' . (3.17) 

is the concentration set of the measure P.N(TJ). For a proof see Theorem 5 in [Co] (for the case of 
nonrandom a priori measures). (3.16) shows that the role of pure infinite volume stat.es is played 
by the product measures µ°oo(m, TJ) form in the cluster set M. 1 Now, for our study, we have to 
describe in more precision the finite volume version of (3.16) in which the random competition 
among the elements in the cluster set M manifests itself. For that purpose we need the relative 
weights that are put by the measure fLN close to the elements of the cluster set m EM. Thus 
we have to go beyond the large deviations on the volume order; we have to look at a scale where 
the random fluctuations become important. 

Let us assume that McJRM is a finite set. In fact, we want to replace (3.16) by 

µN(TJ) ~ L P1N(ry)µ°oo(m, TJ) (3.18) 
mEM 

In view of the factorization formula (3.8) we look at the probability vector PN(TJ) := (p1N(TJ))mEM 
as an approximation of the Hubbard-Stratonovich measure jj,N(TJ). Since this approximation shall 
be sufficient for the metastates, we are looking for natural conditions that imply the assumption 
of Lemma 1. Denote by Bp(m) the Euclidian ball centered at m with radius p. Let us thus 
make the following 

1 Typically, by adding 'magnetic field terms' to the Hamiltonian, one can select one of these to 
survive as limit point of the modified µN(TJ). 
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Definition 1: Assume that we are given subsets 1l(N)c1l. We use the abbreviation 1l := 

liminfNtoo 1-l(N). We say that fiN(TJ) becomes close to the probability vector (p'N(TJ))rnEM along 
the regular sets 1l(N) (in short: they have the property CR(pN)) if, for all TJ E 1-l, for all m E M, 

(3.19) 

for a decreasing sequence of radii PN 4- 0. If (3.19) is true for all sufficiently small p (independent 
of N), we say that they have the property CR(p). 

The reason for this definition as that we have 

Lemma 2: Assume property CR(pN) and define µN(TJ) := ~rnEMP'N(TJ)µ~(m,TJ). Then, for 
all TJ E 1l we have limNtood(µN(TJ),µN(TJ)) = 0. 

Remark: From the fact that (p'N(TJ))rnEM is a probability vector follows in particular that, 
for all TJ E 1-l, 

(3.20) 

which is just the usual definition of M being the cluster set of fiN(TJ) (see [LPS]). 

Remark: Note that CR(pN) for some unspecified PN is implied by CR(p). (Put aNK := 

fiN(TJ) [BPK (m)] - P'N(TJ), for some decreasing sequence PK 4- 0, and use the elementary fact: 
For each double sequence aNK s.t. limNtoo aNK = 0 for fixed K one may find a subsequence 

KN too s.t. limNtoo aNKN = 0.) 

R~mark: The property CR(p) is equivalent with the property CR(p), by which we under-
stand, that in the above definition the measures fiN(TJ) are replaced with the measures on the 
order parameter, P,N(TJ). To see this, note that from their relation as convolutions follows that, 
form EM, 

(3.21) 

with a standard normal variable G. From that we have, for TJ E 1-l, 

(3.22) 

Similarly we can obtain the lower bound 

(3.23) 

which proves the claim. O 

We come to the 
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Proof of Lemma 2: Take 77 E 1-l. We only have to check convergence on a local event of 
the form A:= {o-A =WA} with fixed WA· Then, using the factorization formula (3.8), we have 

µN(7J)[A] - L P!J(17)µ°oo(m, 17)[A] ~ ltN(17) [(UmeMBPN (m)t] 
mEM 

+ L r ltN(7J)(dm)µ°oo(m, 17)[A] - p!J(17)µ°oo(m, 17)[A] 
mEM JBPN(m) 

(3.24) 

where the first term on the r.h.s. vanishes under the. N-limit (see first remark). We pick one m 
in the sum and write 

{ ltN(7J)(dm)µ°oo(m, 17)[A] - p!J(17)µ°oo(m, 17)[A] 
JBPN(m) 

~ f µN(7J)(dm) lµ°oo(m,17)[A] - µ°oo(m,77)[AJI 
JBPN(m) 

(3.25) 

+ liLN(7J) [BPN(m)] -p!J(17)j µ°oo(m,17)[A] 

The first term goes to zero with PN .J_ 0, due to the continuity of the function 

m f-+ µ°oo(m, 17)[A] (3.26) 

(In fact, it is C00 everywhere; all derivatives exist for all m E m,M, due to the assumed bounded-
ness of the ord~r parameter.) The second term goes to zero according to the assumption (3.19). 

0 

Putting the pieces from the Lemmata 1 and 2 together, we immediately obtain the· following 
approximation result that we fix as 

Proposition 1: Suppose that we are given a quadratic random mean field model of the above 
type whose Hubbard-Stratonovich measures iLN(1J) obey the approximation property CR(pN) with 
probability vector (piV(17))mEM" Then 

(i) For all 77 E 1-l we have for the set of weak cluster points in P(O) 

CP (µN(1J) , N = 1, 2, ... ) = CP ( L p!J(17)µ°oo(m, 77) , N = 1, 2, .. ·) (3.27) 
mEM 

(ii) Define the metastate 

(3.28) 

Then, for all 7] E 1-l' = { 77, limNtoo '£r 'L:~=1 1 77 E1-l(n)c = 0} we have 

»~ (J t<N(TJ)(dµ)F(µ) - J i<N(TJ)(dµ)F(µ)) = 0 (3.29) 
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for all bounded continuous F on P(n). 

(iii) Assume that limNtoo 1P[1-l(N)] = 1. Then, for any bounded continuous function G : P(n) x 
1-l r-+ m 

(3.30) 

Remark: Again a word of care about the difference of 1-l and 1-l': The CWRFIM will give 
an example where, due to this difference, the set of cluster points becomes a.s. larger than the 
set of measures the metastate will be asympotically supported in (See Chapter 4, Theorem 1'). 

Let us exploit another piece of information that we expect to hold in these models. Due 
to the permutation symmetry in mean field models the weights should behave asymptotically 
in the same way if the random variables in a finite volume are changed. This will be easy to 
verify in our examples, but we refrain from a general investigation here. So, we take this as an 
assumption and look for the consequence on the distribution of r;,N(TJ). Due to the fact that 
we check convergence of r;,N(TJ)(F) with local F' s, the weights will then become asymptotically 

independent from the random variables the function F feels. Let us use the notation llP - p'll 
for two weights p,p', viewed as elements in m,M, for any norm on mM.1 

The precise consequence of this phenomenon for the distribution of the empirical and for 
the conditioned metastate is 

Proposition 2: Suppose, in addition to the assumption of proposition 1, that for all TJ E 1-l, 
for all finite V CIN, 

(3.31) 

where ilv is a local perturbation in the finite volume V s. t. T/V + ilv lies in the support of the 
distribution lP. Let TJ' denote a copy of disorder variables, independent of TJ. 

(i) If 1P[1-l'] = 1, we have for the empirical metastate 

lim j r;,N(TJ)(dµ)F(µ) =law lim Nl f, F ( " p!J(TJ')µ~(m, TJ)) Ntoo Ntoo L-t 
n=l mEM 

(3.32) 

for all bounded continuous F on P(n), whenever the limit on the r.h.s. exists. 

{ii) If limNtoo 1P[1-l(N)] = 1, we have for the con.ditioned metastate 

j i<(71)(dµ)F(µ) = }jf:c, j IP(d711)F ( L p!J(TJ')µ~ (m, TJ)) 
mEM 

(3.33) 

1 Due to the finiteness of M, the choice of the norm doesn't matter; if we allowed M to increase 
with N, this would become an important point. 
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for all bounded continuous F on P(D), whenever the limit on the r.h.s. exists. 

Proof: We may restrict to local functions F of the form (2.2). To prove (i) it suffices to show 
that, given F, there exist versions 'T/1, 'T/2, of disorder variables, mutually independent, s.t. for all 
TJ E 1-l we have the pointwise limit 

(3.34) 

But note that such a function can be written in the form 

Due to the µ~ ( m, TJ) being product measures with local dependence on the randomness, the 
ry-dependence of F other than through Pn ( TJ) itself remains local; the finite support J of T/J 

depends of course on the special choice of the functions fj. 

Now, define the variable ry1 to coincide with TJ on Jc and to coincide with an independent 
copy on J. Define ry2 to coincide with TJ on J and to coincide· with an independent copy on Jc. 
Since F is a uniformly continuous function on the compact space of probability vectors (3.34) 
follows from the assumption (3.31). 

The same type of argument proves (ii). O 

Let us comment on the relations between the various objects we have obtained and the 
picture that arises from the above propositions, assuming the approximation properties (3.19) 
and (3.31). The full information on the level of metastates is contained in the object K.N(TJ) 
(3.28). It is centered on the infinite volume Gibbs states and contains the asymptotic form of 
the weights in the extremal decomposition. The weights will depend on the overall information 
of the random variables; therefore they will be asymptotically independent from the variables 
in a fixed finite volume. But, a local observable feels the underlying randomness only locally. 
Thus, for the limit of the distribution of the empirical metastate, the weights can be replaced 
with an independent copy, giving rise to an 'additional randomness'. The limiting distribution 
of K.N(TJ) contains information about the asymptotic behavior along a path N i-t µN(TJ). On the 
other hand, the conditioned metastate contains no path properties at all: The weights, replaced 
with independent copies with the same distribution are integrated out. In that case, the whole 
size dependence is averaged 'over infinity'. Its interpretation, suggested by the asymptotic 
independence, is then: Having no particular knowledge of the given realization of the disorder 
globally, the conditioned metastate gives the weights with one expects to find a specific mixture 
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of states. This same metastate could be constructed by 'thinning out' the sequence of volumes 
which occur in the empirical metastate in a nonrandom way, as has been shown for lattice 
systems in [N]. 

4. The Curie Weiss Random Field Ising Model in the 2 phase region 

In this chapter we prove Theorem 1 for our first example, the CWRFIM, and the fixed 
realization results of Theorem 1'. By this we provide an easy example of the mean field picture 
of the last chapter. We will also see in this example that the set of fixed realization cluster can 
be strictly larger, almost surely, than the support of all the metastates. 

In the CWRFIM the logarithmic moment generating function of the order parameter (3.11) 
becomes 

1 
L(t,TJi) = :Slogcosh(,B(t+TJi)) ( 4.1) 

Due to our assumption that 'T/i = ±c takes only two values it can be written in the form 

L(t, 'T/i) = L+(t) + L_(t) 'TJi. 
€ 

(4.2) 

where 
1 L+(t) := 

2
,8 (logcosh(,B(t + E)) + logcosh(,B(t - E))) 

1 L_(t) := 2,8 (logcosh(,B(t + E)) - logcosh(,B(t - E))) 
(4.3) 

Thus the function <I> N ( m, rJ) becomes 

(4.4) 

where the dependence on the randomness on only through the random walk 

(4.5) 

This will make the analysis particularly easy, in that it reduces questions on the metastates to 
questions about the walk W N. 

As said before in Chapter 3, the structure of the phase diagram is determined by the 
averaged function <I>~(m) = ~

2 

- L+(m) which has been analysed in detail (see [SW],[APZ]): 
For 'large magnetic fields' E > ~' it has only one global quadratic minimum at m = 0. For 
0::; E::; ~ there exists a critical inverse temperature ,Bc(E) s.t. for ,8 > ,Bc(E) the system has two 
symmetric global quadratic minima at positions ±m* = ±m*(,B, E); for ,8 < ,Bc(E) the system 
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has one global quadratic minimum at m = 0. We assume for the rest of this chapter that we are 
in this two phase region. 1 

The results about the metastate are now easy to understand heuristically: Define µ~ ( 'T/) := 

µ~(±m*, 'TJ). Let us just replace the integral over m in the definition of µN('T/) by two delta 
functions at ±m* with weights determined by the values of~ N(±m*, 'TJ). Let us thus introduce 
the weights 

ec(,B)WN 

PN(W N) := ec(,B)WN + e-c(,B)WN 

with c(/3) = /3 L _ ( m *). Heuristically we have then 

(4.6) 

(4.7) 

Now, the argument in the exponent of p(W N ), W N rv Nt, moves on a scale increasing with N. 

Thus, for t.he empirical metastate, we might even use the approximation p(W N) ~ 1 w N >O. Let 
us thus define 

1 
nN('T/) := N#{l ::; n::; NIWn > O} (4.8) 

Then, for a continuous function F on P ( n) we would have 
1 
N :E F (µn('TJ)) ~ nN('TJ)F(µ°ta('TJ)) + (1 - nN('TJ))F(µ~('TJ)) 

1:::;n:::;N 
(4.9) 

which explains the results for the empirical metatate. Denote, following the notation of the last 
chapter, 

Then the precise results are given by Theorem 1 and 

Theorem 1': 

{i) For all 'T/ in a full measure set, the set of weak cluster points equals 

CP{µN('TJ), N = 1, 2, ... } 

= { qµ+(11) + (1 - q)µ+(17), ~ = 1 + exp(-2c(.B)z), z E .tZ U { +oo} U {-oo}} 

(4.10) 

(4.11) 

{ii) For all 'T/ in a full measure set, for any continuous function F : P(n) t-+ JR, the empirical 
metastate is approximated by 

»foe (J 1<N(1/)(dµ)F(µ) - J K.N(1/)(dµ)F(µ)) = 0 (4.12) 

1 At the phase transition line itself there exist two regions: For small E there is a unique global 
quartic minimum at m = 0, as for the usual CW ferromagnet; for large E there are three global 
quadratic minima. These two line segments are seperated by a tricritical point, where there is one 
global sixth order minimum. 
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{iii} For all 'T/ in a full measure set the conditioned metastate exists and equals 

(4.13) 

Remark: Note explicitely, that the conditioned metastate contains only the equal weight 
distribution on {-~, ~ }, which is obtained by averaging over the variable n 00 of Theorem 1. 

The information it contains at all, it thus that, for large N, the system will be in one of the 
pure phases. 

The set of cluster points has also been observed by [APZ]. We would like to point our here 
that, a.s., it is strictly bigger than the support of the metastates. The special structure is of 
course due to the discrete nature of the distribution of the random fields; if their distribution 
were continuous, we would expect to get in fact all mixtures. 

The proof is of course an application of the general propositions 1 and 2 plus the model 
dependent estimates of the laplace asymptotics for the measure fLN ( 'TJ). To this end we will now 
introduce two sorts of 'regular sets' of realizations of.the disorder. One is 

( 4.14) 

with some 0 < 5 < ~. We consider balls around the minima ±m* with radii 

(4.15) 

Then an estimation of the occuring integrals gives 

Proposition 3: There exists a nonrandom N0 = No(/3, E) s.t. for all N ;::: No for all 'TJ E 

1-l1 (N) 
(4.16) 

and 

(4.17) 

Remark: The proposition shows that outside exceptional sets one has a fairly explicite 
control about the cluster properties of µN('TJ), including the relative weights. We only remark 
that it is easy to see same bounds hold for the measure P.N (with a possible degradation of 
canst ((3, E) and N 0 ). 

We will postpone the proof to the end of this chapter. 
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Let us also introduce the smaller regular sets 1-l2(N) by imposing as a second condition 
that the I W N ( 'TJ) I be not too small: 

(4.18) 

for 0 < J < ~. Denote, following our usual notation, 

1-l~,2 := {»f;!, ~ £ l~E7i 1 ,,(n) 0 =a} 
n=l (4.19) 

1-£1 2 := liminf1-l1 2(N) 
- ' Ntoo ' 

Then we have 

Lemma 3: 

(ii) 1P[1-l~] = 1P[1-l1] = 1 

Proof: To prove the first claim in (i) we must show that 

( 4.20) 

a.s. where En = x E IR: lxl 2:: N-2-{ 
1+& 

or lxl :::; N 6}. SN is nothing but the mean time of 
the walk spent in the 'bad regions' En. 

Note that Sn :::; 2S2k+i for 2k :::; n :::; 2k+i. Therefor it suffices to show that S2 k --+ 0 a.s. 
with k too. By Borel-Cantelli it suffices to show that, for any (rational),€, 

00 

LIP[S2k > €] < 00 ( 4.21) 
k=l 

But this follows simply from the Chebycheff inequality since 

( 4.22) 

where we have used that, by standard estimates, lP [Wn E En]:::; Const N-2+& + e-constN ( 
1 - 0) 

The second claim in (i) follows from the recurrence of the random walk. (ii) follows from 
the law of iterated logarithm. O 

(i) shows that we really need to distinguish between the sets 1-l~ and 1-£2 . With these 
preparations we come to the 
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Proof of Theorem 1 and 1 ': It is easy to check that from the estimates in proposition 
3 follows property CR(PN) along the sets 1-l1 (N) with the weights defined by ( 4.6). To show 
Theorem l'(i), we note that it follows from proposition 1 (ii) that the cluster points are described 
in terms of the cluster points of the weights ( 4.6), for all 'T/ in the full measure set 1-l1. But, due 
to the recurrence of the walk, these are of the form as in written in ( 4.11), a.s. 

To prove the rest of the statements, we use the different, 'trivial' weights 

p}/ ('TJ) = lwN>O 

P""ir" (TJ) = lwN~o 
( 4.23) 

For Theorem l'(ii), note that from proposition 3 also follows property CR(pN) along the smaller 
sets 1-l2 (N) for the weights (4.23). This is a simple consequence of the imposed minimum size 
of IWNI· Thus, Theorem l'(ii) follows from proposition l(ii) with the full measure set 1-l~. 

To prove Theorem l'(iii) and Theorem 1 note that we have for 'T/ E 1-l2 , because of the 
minimum size of I W NI, 

lim sup(l"'N - l"'N "' - ) = 0 (4 24) Ntoo i;v L....i=l rJi>O L....i=l 77i+ L....ieV 11i)>O · 

Note further, that limNtoo 1P[1-l2 (N)] = 1 (as has been seen in the ·proof of Lemma 3). Thus, 
Theorem 1' (iii) follows from proposition 2 (ii). 

To obtain Theorem 1, remark that, according to proposition 2 (i), the distributional limit 
is given by the expression 

N 

lim Nl I: F(µn('TJ)) =law lim (nNF (µ~('TJ)) + (1 - nN )F (µ~('TJ))) 
Ntoo n=l · Ntoo 

(4.25) 

where now nN are random variables with distribution as in (4.8), but independent of 'T/· Now, it 
is a well known result from elementary fluctuation theory (see e.g. [Fe]) that the nN converge 
in distribution to a variable n 00 which is distributed according to the arcsin-law (1.6). (And not 
to the equidistribution on { ~' -~ }!) This concludes the proof.O 

Let us finally give the proof of proposition (3). The type of estimates used here are standard; 
we apply parts of what was used in [BGl] in a far more complicated situation. However, we 
include· these computations here since they are prototypical for random mean field models. 

Thus, let m* > 0 is the largest solution of the mean field equation m = L~(m). We define 
Rp := (Bp(m*) U Bp(-m*)t. We will have to estimate the corresponding integrals 

1;- := J, dmexp (-f3N (q>N(m)- q> 0 (m*))) 
Bp(±m*) 

J p : = J, dm exp ( -{3 N ( q> N ( m) - q> 0 ( m *))) 
Rp 

( 4.26) 
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where we have dropped the 'TJ in our notation. To prove the proposition we show that there exist 
No= No(/3,E) and const(/3,E) > 0 s.t. for all N 2:: N0 and for all rJ E 1-l1 (N) 

( 4.27) 

and 

( 4.28) 

Before we start, we remark for later use that the higher derivatives of L± vanish at infinity: 

lim (a~) k L+(m) =0 ,k2::2 
lmltoo 

(a~r L_(m) 

( 4.29) 
lim =0 ,k2::1 

lmltoo 

and are therefore uniformly bounded. We write m = ±m * + v and treat the two cases ± at the 
same time. Then we have for lvl :::; p, using the symmetry properties of the functions and of 

their derivatives, 

PN(±m* + v) - P0(m*) ± ~ L(m*) 

0
11 

( ) w L
11 

(± * e' ) - q, m* + Bv v2 - WN L' (m*)v - _!!_ - m + v v2 
2 N - N 2 

(4.30) 

with some 0:::; e, B':::; 1. Thus, on lvl :::; p, 

(4.31) 

with 
(4.32) 

and 
11 lwNI I " I b+ := b+(P) := sup q,0 (m* + v) + N sup L_(m* + v) 

v,lvl$P v,lvl$p 
( 4.33) 

Similarly we have 
(4.34) 

with 
11 lwNI I " I b_ := b_(p) := inf q,o (m* + v) - -N sup L_(m* + v) 

v,lvl$p v,lvl$P 
(4.35) 

Lemma 4: Denote P(x) = .IP[G 2:: x] for a standard Normal G. If a E [-1,1], I> 0 

e--T+ax __ = eT (P(1- a)+ P(-1- a)):::; e- 2 +a-r + e- 2 -a-y 1 2 dx a2 :C. :C. 

l:z:l~'Y y'27r 
(4.36) 
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Proof: From the well known estimate P(x) ~ exp(-x2 /2).() 

With 
{ -!3N("i v2 -zv) d = J 2n ( z

2 
{3N) J JR e v {3Nb+ exp 2b+ ( 4.38) 

we obtain from this 

± * ~( (z 2
(3N) ( {3Nb+p

2
)) IP ?:. exp (±(3L_(m )WN) y {3iib;. exp 2b+ - 2exp - 4 

( 4.39) 

For the upper bound we simply write 

( 4.40) 

Next we estimate the integral over the outer region. We use the following rough estimate. 

Lemma 5: For each E, {3 in the two phase region there exists a constant c({3, E) s.t. for all 

v?:. -m* 
<J? 0 (m* + v) - <J?0 (m*) ?:_ c({3, E)v2 

sup IL-(m)I =: c2(f3, E) < oo 
mEIR 

( 4.41) 

Proof: The first claim states that <I? 0 is bounded below by a parabol on IR'?.. It can be chosen 
to coincide with <I? at the points m = 0 and m* (where the absolute minimum is attained.) The 
proof is elementary. To prove the second claim it suffices to verify that limm-t±oo IL-( m) I < oo 
which is again elementary. () 

From this we have 

Jp := 1 dmexp (-/3N (il?N(m) - i!?0 (m*))) 
Rp 

~ 2 exp (c2({3, E)IWNI) r dv exp (-f3Nc({3, E)v2). 
ljvj'?_p 

(4.42) 

~ 2exp (c2({3,E)IWNI -{3Nc({3,E)p2 ) 

Thus, on 1-l1 (N), 

JP ~ Const exp Const ({3, E)N-2 - canst ({3, E)N2+ ( 
i+.s l 8) ( 4.43) 
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The choice of p N was made to make the last. estimate hold. 

Since ~o has bounded third derivatives we have further 

II II 

I sup ~o (±m* + v) - ~o (m*)I :s; Const (/3, E)p 
v,lvl:'.SP 

Thus, on 1l1(N), 

We have from these estimates 

J ( 1+0 1 ) ~N :::; Const' exp Canst'(/3, E)N_2_ - canst (/3, E)N2+& 
IPN 

and 

2:: 1 - canst (/3, E)PN = 1 - canst (/3, E)N-~+f 

from which the claim follows for large enough N.() 

5. The Hopfield model below the critical temperature 

The logarithmic moment generating function of the order parameter is 

1 
L(t, ei) = ~ logcosh(/3t · ei)) 

( 4.44) 

( 4.45) 

( 4.46) 

( 4.47) 

(5.1) 

The structure of the phase diagram is determined. by the averaged function ~~(m) = ~2 

-

IEL(m, 6). For f3 > 1 there exist precisely 2M global minima at positions sm*av, s = ±1, av 

being the vth unity vector of JRM. These are solutions of the averaged mean field equation 

IE [6 tanh(m · 6)] = m (5.2) 

m * is the largest solution of the ordinary Curie Weiss equation m = tanh f3m. The M symmetric 
mixtures of the above product measures 

(5.3) 

are called 'Mattis states'. They always come in pairs due to the± symmetry of the model. For 
more precise information on the Hopfield model, also in the case where the number of patterns 
is allowed to go to infinity, see [BGP],[BG1],[BG2]. 
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An important role will be played now by the M x M matrix b N ( e)' defined by 

N 

b'f: (e) :=I> er er - 5µv) (5.4) 
i=l 

b N is symmetric and has vanishing diagonal; note that different elements are uncorrelated (unless 
prescribed by symmetry) but not independent. b N will describe the random symmetry breaking 
between the Mattis states in finite volume. Thus, the role that has been played by the random 
walk N r-+ W N in the CWRFIM will now be played by the multidimensional random walk 

N--+ bN. 

The asymptotic form of the weights in the extremal decomposition is then given as fol-
lows. Let us denote by A the M(~ -l) dimensional vector space of M x M symmetric matrices 
with vanishing diagonal. Let us denote by S = {(pµ)µ=l, ... ,M} the simplex of M-dimensional 
probability vectors. 

Let us now define the map p: A-+ S given by 

v(V) ·- _pv(V) where _pv(v)· :=exp (c(/3)(V2 tv) 
p .- ~M -µ(V) 

Llµ=lp 
(5.5) 

with 
/3m* 

c(/3) = 2 (1 - /3(1 - m*) 2 ) 
(5.6) 

To obtain the weights in Theorem 2(1.7) from (5.5) take M(M-1)/2 independent onedimension-
al Brownian motions Wfv for µ < v; we set W(µ := Wfv and Wfµ := 0 to obtain a Brownian 

motion Wt = (Wfv)i$µ,v$M with values in A. 

With this definition we have the approximate formula 

µN(e) ~ L Pv(N-tbN(e))µ~(e) (5.7) 
1$v$M 

Note that (not only M = 1 but also) M = 2 is a trivial case: For M = 2 we have p(l) (V) = 
p(2) (V) = !, for all V E A. Nontrivial size dependence in the Hopfield model occurs only if 
M 2:: 3. 

We remark that the occurence of the matrix N-hN(e) in the weights can be easily un-
derstood: In fact, its diagonal elements describe the energy difference between the M pairs of 
groundstates (]" = ±eµ, since EN((]"= eµ,e) = 2iv (b~(e))µµ + ~· For finite temperature the 
formula (5. 7) can then be understood if one performs a perturbational calculation for the depth 
of the minima of the random function m r-t <P N ( m, e), thereby considering the deviation from its 
mean value as a perturbation. Precise estimates (analogues of proposition 3 for the CWRFIM) 
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that allow for the application of proposition 1and2 have in fact been done in a different context, 
so that we need not repeat their proofs here; they can be readily read off from [Gen], where 
central limit behavior for the measures flN around the randomly shifted minima of the function 
q> N(m, e) was proved. 

It is important to note that, while in the CWRFIM the arguments in the exponents of the 
weights were moving on a scale '""' Nt, now the normalization of the central limit theorem is 
taken. This was the reason for favoring the external states in the first case. In the Hopfield 
model, the weights will remain spread over all mixtures when N too. 

To state the results precisely we introduce the following objects. Following old notations 
we set 

(5.8) 

It is possible to get an even nicer form: We find it instructive to introduce also a metastate that 
differs from the above by strong approximation of bN(e) by a Gaussian process of particularly 
simple form. To do so, we apply the powerful strong invariance principle for partial sum processes 
for _mk-valued independend random variables, whose proof can be found in a general context in 
[Rio]. It states that a sequence of Gaussian random variables can be constructed on a common 
probability space having the same k x k covariance matrix that approximates the partial sum 
process for a.e. realization. 

In our case, from [Rio], page 1712, Cor. 4 follows that there exist onedimensional random 
variables ')',!:v = ')'~µ for v =I-µ, ')';:µ = 0, on a common probability space with e s.t.: 

(i) ')' = ('Y,!:v) 1 ~µ::f:v~M;n=l,2 , ... are i.i.d. Normal Gaussians (for different {µ, v} and n) 

(ii) 
sup lib'; - g'J; II = V(log N) 

N=l,2, ... (5.9) 

a.s., where 
N 

g'J: = L ')'~v (5.10) 
n=l 

Then we put 

(5.11) 

Remark: Note that the matrix elements of 9N have the advantage not only of being Gaussian 
but also independent (unless prescribed by the symmetry of the matrix) which was not true 
for the matrices bN. Thus, they form a M(M - 1)/2 dimensional random walk with Standard 
Gaussian increments. 
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With these definitions, the analogue of Theorems 1,1' are Theorem 2 and 

Theorem 2': 

(i) For all e in a full measure set, the set of weak cluster points equals 

where S' = {(~,~)}for M = 2 and S' = S for M ~ 3. 

(ii) For all e in a full measure set, for any continuous function F : P(O) r-+ IR the empirical 
metastate is approximated by 

(5.13) 

(iii) A.s., for any continuous function F : P(O) r-+ IR the empirical metastate is approximated 

by 

(5.14) 

(iv) For all e in a full measure set the c~nditioned metastate exists and equals 

(5.15) 

where g is a Normal Gaussian in A. 

In the course of the proof we will have to compare the map p(V) at different arguments in 
the noncompact space A. To be able to do so, we need some information about the continuity 
of V r-+ p(V). We have 

Lemma 6: Define the norm 
llVll;s := sup L (Vvµ) 2 

µ v 
(5.16) 

Then 

llp(V) - p(V')ll1 ~ 4cCB) (l!Vllss + llV - V'llss) llV - V'llss (5.17) 

Proof: Writing Vaf3 = Vf3a we view p(V) as a function of the M(M - 1)/2 variables va.B f9r 
a< (3. Then the Taylor formula gives 

pv(V') - pv(V) = L 8~:{3 (V)(V' - v)af3 
a<f3 

(5.18) 
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where V = V + O(V' - V). It is easy to compute that 

8pv = v(l- v)8logpv _ ( v)2 _!._ """"" -p8logpP 
ava/3 p . p ava/3 p pV L.J p ava/3 

p,p=f.v 
(5.19) 

Now 
8logpP _ af3 
8Va/3 - 2cV (<5ap + <513p) (5.20) 

where we write c = c(f3). Therefore 

L a;~:~p (V)(V' - V)"P = 2c ( V(v - V') r 
a</3 

(5.21) 

Then 

IP"(V') - p"(V)I = 2c p"(l - p") (V(V - V') r -(p") 2 :v L pP (V(V - V') r 
p,p=f.v 

::; 2c (pv(l - pv) + (pv)2 !v L pP) s~p I (V(V - V')tl 
p p,p=f.v 

(5.22) 

= 4cp"(l - p") s~p I ( V(V - V')) >.>.I 

where all p,p's are taken at the argument V. 

Note that 

s~p [ ( V(V - V') t [ ~ liVllss llV - V'llss ~ (llVllss + llV - V'll.,) llV - V'llss (5.23) 

Summing over v gives the lemma. 0 

Finally we come to the 

Proof of Theorem 2 and 2': From [Gen], proposition 1.3. immediately follows that for 

any 0 < <5 < ~, p < ~ * , s = ±1, 

(5.24) 

O(N-8 ) is here nonuniform in e.1 

1 It means precisely that for a.e. e there exist No(e) and Const (e), s.t. for all N 2: No(e) the 
term is bounded by Const (e)N- 0 . 
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We have to use information on the minimum and maximum size of b1J/t). In fact, from 
the Law of Iterated Logarithm for partial sums of .lRk-valued random variables (see for this 
statement, which is true more generally in Banach spaces, e.g. [LT], Theorem 8.2) we have 

llb~ II::; ConstVlnlnN (5.25) 

a.s. for N 2: No(e) sufficiently large (with some arbitrary matrix norm.) This gives 

(5.26) 

with some constants K = K({3), for N sufficiently large. 

It is easy to see with this information that from (5.24) follows that 

(5.27) 

This, in the language of Chapter 3, is property CR(p) along a sequence of N-independent 
exceptional sets 1-l(N) = 1-l' for the fixed full measure set 1-l' where the assumptions necessary 
for the above estimates hold. Now we apply our general reasoning. From the third remark after 
Lemma 2 in Chapter 3 follows that this implies CR(p) for feN. (In fact, technically, it is typically 
proven before!) Due to the second remark after Lemma 2 we have then CR(pN) which suffices 
for all our needs. Note further, that because of the N-independence of 1-l(N) = 1-l' we don't 
have to worry about exceptional sets any more when applying any of the propositions 1 or 2. 

Thus, Theorem 2'(ii) follows from proposition l(ii). 

Theorem 2'(iii) follows from proposition l(ii) and the following fact: Property CR(p) with 
the probability vector p ( ~)) implies the property CR(p) with the probability vector p( !jN). 
·To show the latter it suffices to show that, a.s. 

(5.28) 

But Lemma 6 implies 

(5.29) 

Using now the law of iterated logarithm (5.25) and the strong approximation property (5.9) for 
llbN - 9Nllss the desired estimate (5.28) follows. 
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To prove Theorem 2'(iv) and Theorem 2, let us first note the finite volume perturbation 

property, necessary for proposition 2: It is clear that, for fixed finite volume V, supev llbN(e) -
bN(e + ev )II ::::; Const (V). Then, we have from Lemma 6 

(5.30) 

Using (5.25) the r.h.s. goes to zero for almost all 'T/· 

Let us now denote by e' an independent copy of e. Note that we have the two approxi-
mation properties given by proposition 2(i) and (ii). Then we construct, as above, a strongly 

approximating process g'' but this time for e' such that it is independent of e. It follows that 

(5.31) 

a.s., for bounded continuous F, with N too. Putting this together with proposition 2(ii), we 
obtain directly Theorem 2'(iv). For Theorem 2 we get from proposion 2(i) 

(5.32) 

Since we are only interested in distributions, we replace ~ by ~ with tn = ~ where Wt is a 
Brownian motion. But then (5.32) is nothing but a Riemann sum for the continuous function 

t H- F (Pv ( ~) µ~ ( e)) . Thus it converges for almost all realizations of Wt to the corresponding 
integral with N too. But, from this follows that the distribution of (5.32) is the same as that 

of (1. 7) which proves Theorem 2. 

To prove the result about the cluster points, Theorem l'(i), it suffices to consider the cluster 
points of the weights p (JN), N = 1, 2, .... Now we use the following 

Lemma 7: Let Xi, i = 1, 2, ... be a sequence of i.i.d. k-dimensional Normal Gaussians. Then, 

a.s., the set of the cluster points of the sequence JN 2:~1 Xi, N = 1, 2, ... equals all of m,k. 

The proof is not difficult: Given a neighborhood of a rational point in m,k it is easy to 

construct a sparse subsequence that hits it infinitely often with probability one. We don't give 

the details here. 

But from that we have in particular CP ( ~' N = 1, 2, ... ) =A, a.s. This implies Theorem 
l'(i) by continuity of p and 

Lemma 8: p(A) equals all of S for M ~ 3. 
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Proof: It suffices to show that, given any vector l = (lµ)µ=l, ... ,M E mM, there exist a real 
number b and a matrix V E A, s. t. 

(5.33) 

The difficulty about this linear system of equations for the M(M - 1)/2 quantities (Vµv) 2 is 
that it fails to give nonnegative solutions for arbitrary choices of l and b. Thus the freedom in 
the choice of b is really necessary. As an ansatz we consider a matrix of the type 

v12 = v21 = fi, via = va1 = fi, v23 = va2 = fi, 
vµ-l,µ = vµ,µ-1 = ;>:;., µ = 4, ... , M, 

V µv = vv µ = 0 otherwise 

(5.34) 

with Aµ ;::: 0, where the condition in the second line is empty for M = 3. It turns out then that 
the solution of (5.33) with b = 0 has the general form 

A.1 = li + l2 - l3 + (l4 - ls+ l6 - l1 ± ... + (-l)MlM) 

A2 = li - l2 + l3 (l4 - ls+ l5 - l7 ± ... + (-l)MlM) (5.35) 

A3=-li+l2+l3 - (l4-ls+l5-l7±.· .. +(-l)MlM) 

and 
A4 = l4 - ls + l5 - l1 ± ... + ( -1) Ml M 

A.s =ls -l5 + l1 ± ... + (-l)M+ilM 

A.6 = l5 - h +ls± ... + (-l)MlM (5.36) 

AM=lM 

It suffices to prove the statement for l's in the special form l3 ;::: li ;::: l2 and (l2 ;:::) l4 ;::: ls ;::: 
... ;::: lM ;::: 0. But, using this order relation, it follows for the solution of (5.33) with b = 0 that 
Aµ ;::: 0 for all 2 ~ µ ~ M, whereas A.1 can be possibly negative. But note that for the solution 
of (5.33) with Aµ = 0 and b > 0, we have A.1 = b > 0 for M odd (resp. A.1 = 2b > 0 for M 
even), Aµ ;::: 0 for 2 ~ µ ~ M. Thus, by adding a sufficiently large b > 0 to the fixed lµ's one 
can always force the corresponding A.1 to become positive without destroying the positivity of 
the other Aµ 's. This proves the claim.<) 
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