
Institut fiir Angewandte Analysis 
und Stochastik 
im Forschungsverbund Berlin e.V. 

Holder continuity of the holonomy maps for hyperbolic basic 
sets II 

J. Schmeling 

submitted: 1st December 1992 

Institut fiir Angewandte Analysis 
und Stochastik 
Hausvogteiplatz 5-7 
D - 0 1086 Berlin 
Germany 

Preprint No. 26 
Berlin 1992 



Herausgegeben vom 
Institut fiir Angewandte Analysis und Stochastik 
Hausvogteiplatz 5-7 
D - 0 1086 Berlin 

Fax: + 49 30 2004975 
e-Mail (X.400): c=de;a=dbp;p=iaas-berlin;s=preprint 
e-Mail (Internet): preprint@iaas-berlin.dbp.de 



HOLDER CONTINUITY OF THE HOLONOMY MAPS FOR 
HYPERBOLIC BASIC SETS II 

J. SCHMELING 

INSTITUT FUR ANGEWANDTE ANALYSIS UND STOCHASTIK 

MOHRENSTRASSE 39 

BERLIN 

GERMANY 

1. INTRODUCTION 

In this paper we want to show that the Holder exponent K-o defined in [1] is generically the 

best one in an essential set of diffeomorphisms. Namely, we construct an (according to 

the C 1-topology) open subset V of C 1-diffeomorphisms of the three-dimensional sphere 

S3 in which each diffeomorphism J has a one-dimensional hyperbolic attractor A 1 (a 

solenoid). Moreover, for K- > K-o there exists a residual subset g in V with the property: 

For g E 9 we can find two local stable manifolds W1~c(P) and W1~c(q) of A9 such that the 

holonomy mapping between W1~c(P) n A and W1~c(q) n A is not Holder continuous with 

the exponent K-. 

In particular, this shows that we can't get better estimates of the variation of the local 

transverse Hausdorff dimension using only the Holder continuity of the holonomy map-

ping, even if we exclude exceptions (i.e. diffeomorphisms in the complement of a residual 

subset). 

For definitions and additional literature see [1]. 

2. THE SET B 

Let v = 8 1 x ll)2 be the solid torus. Points p in v have the coordinates (t, Z1, z2) 
(t E S1,(zi,z2 ) E ll)2). 

In V we use the usual Riemannian metric. 

Let Jo : S3 -t S3 be a C 1-diffeomorphism of the three-dimensional sphere S3 having a 

C 1-coordinate system such that for some solid torus V the restriction of Jo to V maps 

V into itself and has the form 

(1) 

1 
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where the mappings 0 : S1 -t S1, 'I/Ji : S1 x JI -t JI ( i = 1, 2) (JI is the interval [-1, 1]) fulfil 

the inequalities: 

(2) 

(3) 

(4) 

0 < µ- < ji(t,z2) <µ+<A-< ~(t,z2) < ).+ < ).+77+ < 1 

1 < 77- < ij( t) < 77+ < 00 

ji(t,z2) 

X(t~z1) 

ij( t) 

1 and ).+ < 2 

a ax 1/J2( t, x) l:i:=z~ 
a ax 'I/Ji ( t, x) l:i:=z1 
d 
dt f/J( S) la=t · 

Remark 2.1. The stable foliation W! is always C 1 for one-dimensional hyperbolic at-

tractors and depends continuously on f. From now on we consider the restriction of 

diffeomorphisms of S 3 to v. 
Using the techniques from stable manifold theory ([2], [3]) we can see that in a small C1-

neighborhood V of fo we have a strong stable foliation W" of class C1 and a weak stable 

foliation ww• of class C0 both with C1-leaves (the second one is not unique!) and these 

foliations depend continuously of f in the C1- and C0-topology, respectively. For this 

we consider the map 1-1 : £ -t £ of the complete metric space of all one-dimensional 

C1-subfoliations U" of w,~c (U(x) c W1~c) with angles to the Z2-axis in the interval 

[- ~, ~] and with a metric generating the C1-topology, the map 1-1 being defined by 

(5) 

where ei1cv>(U .. ) denotes the restriction of U .. to f(V). By simple calculations we get 

that this map is a contraction with a factor less than f-77+ < 1. So we get by the 

Banach fixed point theorem a C1-foliation W". The leaves of W .. can be characterized 

as follows 

W .. (p) { W • ( )lw w· ( ) li d(f"p, f"q) } 
q E loc P vr E loc P : /c-+1! d(f "p, J"'r) < 00 

(6) { 
• -1 ll(dpf" IE·t111-l } 

q E W1oc(P)i3c1 > 0: C1 < d(jkp, J"q) < C1 

In order to construct ww• we choose a C 1-foliation F of Cl(V\f(V)) with the properties: 

(1) The tanged spaces Ew• of F have an angle to the zi-axis in the interval [-~, ~]. 
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(2) For p from the boundary 8V of V holds df(E';•) = Ej;. (E~· denote the tangent 

space to the leaf ww•(q) through q at the point q) 
(3) This foliation on Cl(V \ f(V)) varies continuously in the C 1-topology with f. 

Now we apply f to the foliation :F and get a foliation f(:F) on Cl(f(V) \ f 2 (V)). By re-

peating this process we get the desired weak stable foliation ww•. From the construction 

we can derive that for p EV, q E ww•(p) a positive constant c2 exists such that 

k=l,2, ... and 

(7) k = 1,2, .... 

We can choose V to be an arcwise connected neighborhood off in Emb1(V, V) such that 

for g EV holds: 

(1) g has an extension to S3 

(2) g(V) c V 

(3) nnEN gn(v) =Ag is a hyperbolic attractor 

( 4) there exist the strong stable and weak stable foliations w;· and w;· as described 

above. 

Moreover, for g E V we can choose a C 1-cordinate system x9 : S 1 x JI x JI --t V - depending 

continuously on g - such that 

with C 1-mappings 0<9 l : S 1 --t S1, 'ifi~9 l : S 1 x JI --t JI, '!fa~9 l : S 1 x JI x JI --t JI. 

Remark 2.2. The intrinsic distances d'", dw•, d .. of W~c' ww•, W .. , respectively, are 

equivalent to the Riemannian. Furthermore, if two points p, q from the same local stable · 

manifold have non-empty intersection ww•(p) n W .. (q) = r then their Riemannian 

distance is equaivalent to the distance max{dw•(p,r),d .. (r,q)}. 

Now we define for f E V and p EV 

(8) 

µ(p) 

A(p) 

"l(P) 

µ, (p) = lldpf IE;• II 
AJ(P) = lldpf JE;· 11 

'T/J(P) = lldpf JE;ll · 
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These functions are continuous and depend continuously on f. With the help of these 

notations and the mean value theorem we can rewrite (6) and (7): 

ll(dpr IE; t 1 11- 1 

0 < Ca 1 < < C3 IIf,:-a1 µ(Jip) 
(9) 

(10) 
_ 1 lldpr IE; 11 

0 < C4 < IIf,:-01 >.(Jip) < C4 • 

After these considerations the exponent "'o can be defined as (for the original definition 

see [1]): 

(11) _ (f) - li . f. f L~0[ln >.(Jip) - Zn 17(f'p)] "'o - "'o - min in ~n l (f' ) . 
n-+oo pEA L..ti=O n µ 'p 

In the following we need the projection P along the leaves of W .. to the strip z2 = 0. 

This projection may not be well-defined on the whole torus V but if we consider a small 

compact neighborhood 0 of A in V and a diffeomorphism g sufficiently near to fo the 

leaves w;•(p) (p E 0) of the strong stable foliation w;• corresponding tog are almost 

horicontal and therefore intersect the strip z2 = 0 in-a unique point. That enables us to 

define the projection 

P : O c V ---+ S 1 x ][ . From now on let V be small enough to define the projection 

P. Additionally we use the notations: 
Q : V---+ 5 1 is the projection along the leaves of w• to the circle Z1 = Z2 = 0 

0 = Q o f o Q- 1 : 5 1 ---+ s1 

t E S1,p E Q- 1(t) . 

Remark 2.3. If for two points q,p from the same local stable manifold the distance in 

the strip Z2 = 0 is not to large then the intersection ww•(p) n w••(q) is non-empty. 

For points r, s from the same local unstable manifold the distance IQ( r) - Q( s )I in 5 1 is 

equivalent to the distance du( r, s) and hence to their Riemannian distance. 

The holonomy mapping 

(t,t' E S 1,it-t'i < ~) 

is defined by 

Note that there is a unique point in the intersection on the right-hand side. 

Now we can state the theorem: 
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Theorem 2.1. There exists a residual subset 9 in V with the property: For f E 9 and 

r;, > r;,0 points t and t' exist in S 1 , It- t'I < ~ such that the holonomy mapping 7r;, is not 

Holder continious with the exponent r;,. 

3. SYMBOLIC DYNAMICS FOR 8 1 

Because 0 : S 1 ---+ S 1 is expanding we can construct a Markov partition consisting of 

closed arcs with m X m - matrix A = Ai = ( a,i) and the corresponding subshift of finite 

type: 

Then there exists a continuous finite-to-one surjection p = Pi : ~A ---+ S1 making the 

diagram 

a 

A A 

commutative (a is the shift operator on ~A)· 

Here we want to remark that the Markow partition can be chosen in the way that Ai is 

locally constant as a function off and the mapping Pi depends continuously on f. 

On ~A we define the following conitinuous functions: 

(12) 

a(~) 

{3(~) 

( !) _ l min{A(p)IP E Q- 1 (p~)} 
ax, - n I ( )} - max{17(p) p E Q- 1 p~ 

{3(~, !) = ln min{µ(p)IP E Q- 1 (p~)} 

and the partial orbit means: 

(13) 
n ( i ) S ( ) S ( f) L:i=O a a ~ 

n ~ = n ~' = "': ~( i ) 
Ln=O fJ a~ 

Remark 3.1. The functions a and {3 depend continuously on f. 

We shall show that two points whose orbits stay for a much longer time close to each 

other than they stay far away have the same asymptotic behavior of their partial orbit 

means. 
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Definition 3.1. Given two sequences of natural numbers {ak}f=1 , {b.l:}f=1 and a sequence 

of points {~(k)}k=l from :EA we say a point '}!._ from :EA is {a.I:}, {bk} - close to {~(k)} if 

for all k E N+ the coordinates x~!:) and y . (i = 1, 2, ... , b1:) coincide. -a.1o+• 

Remark 3.2. This definition implies that paa."+'('JL) and pa\~P>) are in the same elements 

of the Markov partition for i = 1, ... , b1:; k = 1, 2, .... 

We denote the set of all to {~(!:)} {a.I:}, {b1:} - close points by E( { a1:}, {b1:}, {~(!:)} ). 

·Our aim is to show next lemma: 

Lemma 3.1. Let { ak} and { b1:} be two sequences of natural numbers fulfilling 

(14) li a1: 
msup b; = 0 

Then for all sequences {~(k)} from :EA the limit 

(15) 

exists and is equal to zero provided E( { a1:}, {b1:}, {~(!:)}) is not empty. 

Proof. First of all we fix {~(!:}} and two sequences {ak} and {b1:} with non-empty 

E( {a1:}, {b1:}, {~(!:)} ). The continuity of a and /3 forces for all positive reals I the existence 

of a natural number K such that for all ~ E :EA the inequalities 

(16) 

(1 - 1)0:(~) > 

(1- 1)/3(~) > 

inf o:(w)> sup o:(w)>(l+1)0:(~) 
.!!!.EEK(.!!) .!£EEK(.!!) 

inf f3(w) > sup f3(w) > (1+1)/3(~) 
1!!,EEK(!!) .!£EEK(!!) 

hold, where EK(~)= {w E :EAlw1 = u w2 •• • WK= uK} is the cylinder set of length K 

of~ (Note: The set of all cylinder sets forms a basis of the topology of :EA.)· 

Now we can conclude: 
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with a- =min a(g;_), (3+ =max (3(g;_). 

(Note that (12) implies lim,1:_ 00 b,1: = +oo.) The lemma follows now from the arbitrary 

choice of / · D 

4. A RESIDUAL SUBSET G IN :EA 

In this section we fix K > Ko. 

Noting that for g;_ E :EA 

. 1 k k-1 >.(Jip) 
lim sup -k a(g;_, t ) - .L: zn u· ) = o 

k-+oo pEQ-l(PE.) j=O 'f'/ Jp 

and 

(17) 
1 k-1 . 

lim sup -k (3(g;_, fk) - L Zn µ(f3p) = 0 
k-+oo pEQ-l(P"') ._ - J-0 

hold we get by the definition of Ko the existence of a natural number L, a sequence 

of points {g;_(k}} in :EA and an increasing sequence of natural numbers {n.1:} fitting the 

inequality 

(18) lim S (a:(k} jL) = K1 < K . 
k ni. - ' -+00 

Let in the following f be replaced by jL (This won't change A). Without loss of generality 

we can assume that [Zn n.1:] > T, where Tis the number T = min{t E N+IAt > O} and 

[a] denotes the greatest integer part of a real number a. 

Fork EN+ and 

(19) 

we define 

(20) 

M = M = n µ.- + 1 [ l ).+ l 
1 ln T/-

- (k) 
Y[tn ni.J+i - xi 

1, ... , [ln n,1:] + n,1: j = 1, ... , n,1:} . 

Thus the set G.1: consists of all points of :EA whose first [Zn n.1:] + n,1: coordinates recur 

M-times and whose coordinates from [ln n.1:] + 1 to n,1: +[Zn n.1:] coincide with the first 

n,1:-ones of g;_(k}. Hence the set G,1: is open and meet.s all non-empty cylinder sets of length 

[Zn n.1:] - T. This implies the density of the open sets 
00 

(21) 
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in L:A. 

Remark 4.1. If the diffeomorphism g is close enough to f we can achieve an analoguous 

inequality to (16) for g using the same sequences {n.1:} and fa_{")}. Also M 9 = M1 

holds. Therefore, we can use the set Gi for all diffeomorphisms in a sufficiently small 

neighborhood of f. 

Now the set 
00 

(22) 

is residual in L:A. From the properties of p we can deduce that the set p( G) is residual 

in S 1 (Cylinder sets are mapped onto closed arcs.). 

Analyzing the construction of G we see that all points in G are {[ln l1:]}, {l.1:}-close 

to {]l(")} for some subsequences {l.1:} of {n;,} and {]l(")} of fa_{")} where 1l(k) = !f(j) for 

ni = l;,. By the use of the lemma we then get for y E G: 

(23) 

(remark: limk-+oo 81,. (]l(k)) = K.1 !). 
To 1l E G and k E N+ we define Y:.(k) = Y:.(k)(]l) as the only pre-image of 1l under O"[ln i,,]+I,. 

that lies in the cylinder set E[ln 1,.]+1,.(y). So it is the point 

(24) Y[1n 1,.]+1,. 

Yi j=l,2, ... }. 

We set 

(25) 

5. TRANSVERSAL OVERCROSSINGS OVER G 

Definition 5.1. We say A has a transversal overcrossing over the points (p, q) (q,p EA) 

iff: 

(1) P(p) = P(q) 
(2) P(W1~c(P)) is transversal to P(W1~c(q)) 

Sometimes we will say that A has a transversal overcrossing overt= Q(p) = Q(q). 
Let us now assume that A has a transversal overcrossing over some t from p( G). 
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Because of the transversality there exists e1 > 0, c5 > 0 and c6 > 0 such that for 

t1 EUe 1 (t)cS 1 

(26) C5jt' - ti :S d(P(W~c(P) n Dt1 ,P(W1~c(q) n Dt•)) :S C5jt - t'I . 

Moreover, the dista;nce 

(27) 

is greater than some positive constant c1 . Let us assume that e1 is chosen so small that for 

all t' E Us 1 (t) the intersection ofW""(W1~c(p)nDt') and W"(W1~c(q)nDt') is non-empty. 

We fix now some t' in Ue 1 (t) and denote the distance jt'-tl by 8. Define t1:. = p(~(k)(p- 1 (t))) 

(k E N+). Although p-1(t) may consist of more than one point the definition oft,. is 

correct. Then 

(28) 

and by (17) 

(29) 

Let t~ denote the only pre-image of t' under 0m,. such that 

is a diffeomorphism. 

We consider the following sequences of points 

(30) 

:p,. = w;: (p) n Dt,. 

~ = w;: (p) n Dt~ 
r1c = ww•(p1c) n W .. (q1c) 

Jm"(P1c) 

Jm"(~) 

ww•(p,.) n W .. (q1:.) 

jm"(r1c) 

Then we deduce from 

(31) the relation 

t,.(-) _, 
7l't' P1c = P1c ,. 

r~ = ww•(p~) n W .. (q~) 

= fm"(r~). 

and 
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Using the properties of the above construction and the mean value theorem we have for 

some positive constants and 

Vp EV, Vq E W"(p) 

m(c:) =min { k E N+IVt E S1, Vp, q E Dt 

Vp EV, Vq E W"(p) 

n(c:) =min { k E N+IVt E S1, Vp,q E Dt 

Vp EV, Vq E W"(p) 

d(p~, q~) 2: c8 d(p~, r~) 2: 

(
,\_)A:(e) 

> cg d(ilA:,r~) ,\+ Il~"o-1.\(fiilA:)(l + c:t1 2: 

> <10 { c: f '\r;'.'.;',-'A(ff.)(l+ •t'} eslt~ - ti ~ 

> <10 { c:) •«l rr:":',-'A(ff.)(1 + < )-'} es{lt,. - t,1 - It - t,1} ~ 

{(
,\_)A:(e) } > Cto ,\+ . Il~"o-1,\(fip~)(l + c:tl X 

X { cn 6 ( ~: r(<) IT?;;,-'~(f'f.t'( l+ < J-1 -Cs( ~-i-Mm,} ~ 

> C12 ( ~=) 2A:(e) ( ~=) 2m(e) Il~"o- 1 A(f.P.1:) [r,(f.P.1:t 1] (1 + C: )-4 2: 

(32) > C1(c:)Il~"o- 1 .\(f.P.1:) (77(f.P.1:t1] (1 + c:)-4 
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d(p,,,,qk) ~ c13max{d(rk,Pk),d(rk,qk)} ~ 

< c13max{(>.+)1""d(rk,Pk),d(rk,qk)} ~ 

< C13max{cs(>.+)1""(17-tMm,,,d(rk,qk)} ~ 

< C13 max { cs(µ-yni., d( rk, qk)} ~ 

< c13max{ cs(µ-)1"",c14 (::) n(e) [II~"o- 1 µ(f'qk)(l + e)] d(rk,qk) ~ 

< C15 (::) 2n(e) II~"o- 1µ(fiqk)(l + e)2 

(33) < C2(e)II~"0- 1µ(f'qk)(l + e) 2 • 

Now we choose e so small that 

~ :E7=0 [ln >.(!•pk) - ln 77(!'.Pk)] - 4 ln (l + e) 
~ :E7=o ln µ(!'pk)+ 2 ln (l + e) <"' · 

This is possible because of (21), (22). Therefore we conclude 

(34) li d(p~,qD > li C1(e)II~"o- 1 >.(f'.Pk)[11(J•pk)- 1 ] 
m m = oo 

k--+oo d(pk, qk )/(, - k--+oo C2 ( e )II~"0- 1 µ(!'Pk)/(, 

i.e. 7r;, is not Holder continuous with exponent "'· 

11 

So it remains to show that we can arrange a transversal overcrossing over p( G) generically. 

Thus we have to show that the set 

(35) 9{! E VIA1 has a transversal overcrossing over P1(G)} 

is residual in V. 

First of all we want to fix some overcrossing and supervise it under small pertubations 

of the diff eomorphism f E V. 
From [2] we know that the local unstable manifolds vary continuously in the C 1-topology 

under perturbations of the diffeomorphism f. Moreover, the strong stable foliation also 

varies continuously in the C 1-topology. Hence, the sets 

(36) 

Va,(p,q)(f) = { g E Vl3 a continuous family of diffeomorphisms 

f, : V---+ V ('TE [O, l]), Jo= f, f 1 = g and two curves Pn 

q7 in V s.t. Po= q, q0 = q, P-r E Air' q7 E Air and 

A,T = n f::(v) has the transversal overcrossing 

(Pn q7 ) with angle grater than a.} 
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are open for all f E V, a> 0, p, q E A1. 
For every natural number k we define 

(37) v:,(p,q)(J) = {g E Va,(p,q)(J) j The overcrossing (p1 , q1) lies over pg(G.1:)} . 

The openess of V!,(p,q)(J) is proved by remarking the continuous dependence off of the 

mapping Pi and the continuous dependence in the C 1-topology of the local stable and the 

local unstable manifolds ([2]). Moreover, the fixed overcrossing for g E n~=l V!,(p,q)(f) 
lies in pg(G.1:) for all natural k and therefore in pg(G). 
Let us write f according to the foliations W" and ww• as 

with C 1-mappings 0 : 8 1 --> 8 1 , 7/J1 : 8 1xli --> IT and 7/J2 : 8 1 :z:IT:z:IT --> IT. Our next step 

is to consider, for e > 0, special perturbations of the mapping f, where the perturbed 

mappings lie in the set 

The advantage of these perturbations is that they preserve the foliations W" and ww• 
and the mapping 0 and, therefore, they don't change the projections P and Q. So we 

can define for g E Ze(f) a conjugating homeomorphism h9 : A1 --> A9 via the formula 

(This is the homeomorphism used in the 0-stability theorem ([2]).). It has the following 

useful property: 

(39) Q 0 hg = Q. 

In what follows we need the notations: 

If p and q lie in the set Dt (t E 8 1) we write 

(40) 

(41) 

t~ • 
(' • 

Q(J-i(p)) = Q(g-i(pg)) 

Q(J-i(q)) = Q(g-i(qg)) i = 1, 2, .... 

For the next step let us assume that f has a (not nessecarily transverse) overcrossing 

(p, q) over the points p and q in different components of the set Dt n f(V). 

We claim: 

Lemma 5.1. Fore> 0 there exists a neighborhood U oft in 8 1 such that for every s EU 

there is a mapping in Z,,(J) which has an overcrossing overs. 
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Proof. Let c > 0 be fixed. Because p and q lie in different components of Dt n f (V) the 

points t~ and t1 are different. Therefore we can choose a neighborhood U oft such that 

for all r from Uthe points r~ = r~(p(r)) and r~ = ·r~(q(r)) have a distance at least Jt;~t~I, 

where p(r) = W1~c(P) n Dr and q(r) = W1~c(q) n Dr. Moreover, we can choose U so small 

that the points P(p(r)) and P(q(r)) are closer than 11~2; • .\+ ~ /t~ - t1/. 

Now we take some s from U. If P(p(•)) = P(qC•l) then A1 has already the desired 

overcrossing over s. So let us assume than P(p(•)) lies above P( q(r)) (i.e. P(p(•)) = 
P(pC•>)). The way we have chosen U ensures the existence of a mapping 81 E C1 (S1, IT) 

with the properties: 

(1) 81(s~) = -!/t~ - t~/, 81(sD = !/t~ - t~/ 

(2) /8(t)/ ~ !It~ - t~/ t E s1 

(3) g = (0, 7/J1+bi,7/;2) E Z.(f) . 

Calculating the difference of the z1-coordinates z1 (p1•l) and z1 (q~•l) we get 

z1(P1•l) - z1(q~•>) = 
= lim [7/;1( s~, 7/;1( s~, . .. 7/;1( s~, 0) + 81( s~) .. . ) + 81( s~)) + 81( s~) -

n-+oo 

-7/J1(s~, 7/J1(s~, ... 7/J1(s~, 0) + 82(s~) .. . ) + 81(s~)) + 81(snJ < 
< lim [ 7/J1 ( s~, 7/J1 ( s~, ... 7/;1 ( s~, 0) ... ) ) - 7/;2 ( s~, 7/;1 ( s~, ... 7/;1 ( s~, 0) ... ) ... ) ) ] -

n-+oo 

c ).+ c 
--/t' - t"/ + /t' - t"/ = 2 1 1 1 - ).+ 2 1 1 

1 - 2).+ c = z (p(•)) - z (q<•>) - /t' - t"/ < 0 1 g 1 1 - ).+ 2 1 1 (42) 

and see that after this perturbation P(p1•)) lies below P(q~•l). The continuous dependence 

of p1•) and q~•) on the perturbation 81 implies that in the family 9-r = (0, 7/;1 + r81, 7/;2) E 

Ze(f) (r E [O, 1]) there exists a diffeomorphism which has an overcrossing overs. 0 

. Because a transversal overcrossing is still transversal after small perturbations we get 

the 

Corollary 5.1. V!,(p,q)(f) is dense in Va,(p,q)(f) and consequently, 9nVa,(p,q)(f) is residual 

in Va,(p,q)(f). 

The next lemma deals with special (not nessecarily transverse) overcrossings. 

Lemma 5.2. In every neighborhood off there is a diffeomorphism g E V with the proper-

ties: 
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There are two different points Pg and qg in Ag with P(pg) = P(qg), Q(pg) = Q(pg) = s 
and a neighborhood U of s~ in S 1 such that 

(1) 

(2) 
i = 2,3, .. . 

i = 1,2, .. . 

and 

Proof. No matter how f(V) is embedded into V, P(f(V)) must have an overcrossing as 

in the figure. 

This means we have two disjoint arcs T1 and T2 in S 1 with endpoints e1 , e~ and e2 , e~, 

respectively such that 

(1) 0(T1) = 0(T2) 
(2) 0( ei) = 0( e2), 0( e~) = 0( e~) 
(3) P(f(D. 1 )) lies below P(f(D.~)) and P(f(D.J) lies below P(f(D.~)) . 

Now we fix two periodic points p1 and q'. The density of their unstable manifolds in A 

yields existence of an arc in wu(p') passing through f(D.,) and an arc in wu(q') passing 

through f(D.,). Hence, we can find two points p E wu(p') and q E wu(q') in different 

components of Dt n f(V) such that P(p) = P(q), Q(p) = Q(p) = s. 

Using the fact there are only countably many periodic or pre-periodic points and lemma 

2 we can find a diffeomorphism g arbitraily close to f such that there two periodic points 

p~ and q~ and two points Pg E Wu(p~) and qg E Wu(q~) in different components of 

D. n f(V) with P(pg) = P(qg), Q(pg) = Q(pg) = s ands is neither periodic nor pre-

periodic. 

Our construction implies that s~ i= s~ (The component of f(V) n D. containing p. id 

disjoint to the component containing q9 .). Moreover, s~ and s~' converge to the orbits 

{Q(f-n(p~))} and {Q(f-n(q~))}, respectively and all the points s~, sj are different (i,j = 

1, 2, ... ). Since the orbits of Q(f(p~)) and Q(f(p~)) have a positive distance from s, this 
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ensures the existence of the desired neighborhood U of s~. 

This lemma shows that the set of diffeomorphism in V which have an overcrossing (pg, qg) 
with the properties mentioned in lemma 3 is dense in V. Consequently, if we can make 

these overcrossings transversal by arbitrarily small perturbations we get a dense set of 

diffeomorphisms in V each of which has a transversal overcrossing. 

So let us assume that 

(43) 

and consider a mapping 82 E C1 (S1, IT) with the properties 

(1) lfto2(t)I ~ 1 t E S1 

(2) 82(t) = 0 t </. U( s~) 
(3) 02(sD = o 
(4) fto2(t)lt=·~ = 1 

where U(s~) is the neighborhood given by lemma 3. 

Lemma 3 implies: 

(44) 

Let e > 0 be sufficiently small. · 

Then the perturbations we use have the form 

1, 2,... and 

2,3, .... 

We claim that after these perturbations the overcrossing is transversal. First we calculate 

the difference of the z1 -coordinates of p. and q.: 

(45) 

(46) 

( 47) 

(48) 

z1(Pe) - z1(q.) = 
= lim [;/;1 (s~, ;/;1 (s~, ... ;/;1 (s~, 0) + e82 (s~) ... ) + e82s')) + e82(s~) -

n-+oo 

--¢1( s~' -¢1( s~' ... ;/;1( s~, 0) + e82( s~) ... ) + e82( s~)) + e28( sn] = 
= z1(Pg) - z1(qg) = 0 . 

This means that we have indeed an overcrossing overs after these perturbations. The cal-

culation of the difference of the slopes of the projected local unstable manifolds W1~c(p.) 
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and W1~A qe) at s shows that this overcrossing is transversal: 

(49) 

(50) 

(51) 

(52) 

dp.P(Tp. Wu(Pe)) - dq.P(Tq. wu(qe)) = 

= lim aa [;p1( s1, ;p1( s~, ... ;p1( s~' 0) + e82( s~) ... ) + e82s~)) + e82( s~) -
n-oo t · 

-;pi( s~, ;p1(s~, ... ;p1(s~, O) + e82(s~) ... ) + eo2(s~)) + e28(sn) = 
= dp 9 P(Tp 9 Wu(p9 )) - dq 9 P(Tq9 Wu(q9 )) + e > 0 . 

Therefore, this overcrossing can be made transversal under arbitrary small perturbations. 

This proves that 

LJ Va,(p,q)(f) 
/EV,~>O 

(p,q)EA/ XA/ 

is dense in 9. Hence, 9 is residual in V. 

This was all we had to prove. D 
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