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On a thermodynamic framework for developing boundary
conditions for Korteweg fluids

Ondřej Souček, Martin Heida, Josef Málek

Abstract

We provide a derivation of several classes of boundary conditions for fluids of Korteweg-type
using a simple and transparent thermodynamic approach that automatically guarentees that the
derived boundary conditions are compatible with the second law of thermodynamics. The start-
ing assumption of our approach is to describe the boundary of the domain as the membrane
separating two different continua, one inside the domain, and the other outside the domain. With
this viewpoint one may employ the framework of continuum thermodynamics involving singular
surfaces. This approach allows us to identify, for various classes of surface Helmholtz free ener-
gies, the corresponding surface entropy production mechanisms. By establishing the constitutive
relations that guarantee that the surface entropy production is non-negative, we identify a new
class of boundary conditions, which on one hand generalizes in a nontrivial manner the Navier’s
slip boundary conditions, and on the other hand describes dynamic and static contact angle con-
ditions. We explore the general model in detail for a particular case of Korteweg fluid where the
Helmholtz free energy in the bulk is that of a van der Waals fluid. We perform a series of numerical
experiments to document the basic qualitative features of the novel boundary conditions and their
practical applicability to model phenomena such as the contact angle hysteresis.

1 Introduction

The seminal papers by Dutch scientists Johannes Diederik van der Waals and Diederik Johannes
Korteweg at the turn of the 19th century (van der Waals, 1893; Korteweg, 1901) provided the first
thermodynamic insight into the physics of capilarity. In their theory, interaction phenomena at the
interfaces between liquid and vapor phases of one substance are described in terms of properties
of an interfacial zone of finite thickness where density changes continuously albeit with a very steep
gradient. A cornerstone of their theory can be formulated as the assumption that the Helmholtz free
energy of such a two-phase system is composed of two contributions - a (local) double well part with
two minima related to the two coexisting phases and a gradient term penalizing the volume of the
interfacial regions, the latter term being related to the notion of surface energy and surface tension.
A considerable effort has been spent in an attempt to incorporate these ideas consistently into the
framework of continuum mechanics and thermodynamics and to couple these models of capillarity
with equations of flow (e.g. Dunn and Serrin, 1986; Anderson et al., 1998; Heida and Málek, 2010).

Korteweg-type models have gained great popularity in the modeling of granular materials and also in
the modeling of two-phase flows; see survey papers Hutter and Rajagopal (1994); Rohde (2018). A
key feature of Korteweg-type models is their ability to naturally deal with complex changes of domain
topology in contrast with the sharp interface counterparts of these models. On the other hand, their
apparent disadvantage is due to the presence of Korteweg stress in the balance of linear momentum
that calls for additional boundary conditions which are very difficult to specify in an ad-hoc manner.
This issue is clearly not just a mathematical subtlety. In the discussed class of models the boundary
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O. Souček, M. Heida, J. Málek 2

conditions describe real physical phenomena such as the motion of the contact line, i.e., dynamics
of advancement or retreat of the vapor-fluid interface attached to the solid surface, see for instance
Heida (2013) and references therein, in particular Bonn et al. (2009). Another observable real-world
phenomenon most likely related to boundary conditions is the so-called contact angle hysteresis, that
is, the difference in the measured contact angles of sliding droplets on the advancing and receding
parts of the contact line (see e.g. Bormashenko, 2013). Furthermore, one expects that a formulation of
the boundary conditions based on solid physical grounds would result in formulations of the problems
that might be robust from the point of view of computer simulations and amenable from the point of
view of mathematical analysis.

The general aim of this paper is to address the question of the identification of appropriate boundary
conditions for problems in continuum thermodynamics. Towards this goal, we use a transparent ther-
modynamic approach that has been successful in identification of the constitutive equations in the bulk
for various complex materials and that stems from specification of the energy storage and dissipation
mechanisms. Here, we follow a similar methodology, but we extend it also to surface phenomena. A
crucial viewpoint adopted here is that the outer boundary of a liquid-vapor body may be viewed as
an interface between this body and its exterior. This viewpoint provides a framework for considering
a rather general class of boundary processes and admits a natural coupling between the processes
on the surface and in the bulk. This in turn leads to a relatively straightforward procedure for deriving
the constitutive relations on the surface delimiting the boundary, i.e., the boundary conditions. This
approach is illustrated on the derivation of boundary conditions for a Korteweg-type fluid, for which we
can explicitly characterize both the bulk and the surface Helmholtz free energies - in the bulk using
the standard thermodynamic relations for van der Waals fluid and at the surface by exploiting the idea
of wall-interaction energy for diffuse-interface models (Jacqmin, 2000). Let us, however, note that the
methodology developed in this paper can be extended in a relatively straightforward manner to other
diffuse interface (or order parameter) models, such as Cahn-Hilliard or Allen-Cahn models; see the
concluding remarks in the final section.

The structure of the paper is as follows. In Section 2, we first formulate a general integral form of
the balance equation for a quantity comprising bulk and interfacial contributions and provide a corre-
sponding local form of the balances in the bulk and at the interfaces. We explicitly list the local forms
of balance equations for mass, linear momenta, energy and entropy for a single-component body. In
Section 3, we recapitulate the thermodynamic derivation of a constitutive model for Korteweg-type
fluid in the bulk following and slightly modifying the approach of Heida and Málek (2010). In Section
4, we extend this approach to surface phenomena, and by mutual coupling between the bulk and the
interface processes, we identify the surface entropy production and the surface entropy flux. The sur-
face entropy production is then rearranged into the form of a sum of the products of mutually related
quantities (sometimes called thermodynamic fluxes and thermodynamic affinities) where the individual
terms represent different physical mechanisms. Requiring that these mutually related quantities are
linearly related1 (with positive coefficient of proportionality), we not only specify the convex quadratic
form for the entropy production, but we also obtain linear constitutive relations on the boundary that
automatically comply with the second law of thermodynamics. These constitutive relations (i.e., the
boundary conditions) involve a novel type of static and dynamic contact angle boundary conditions
as well as a non trivial generalization of the Navier slip boundary condition for the Korteweg model.
In Section 5, we discuss a particular variant of the model obtained by considering the bulk Helmholtz
free-energy of a van der Waals fluid under isothermal conditions. In Section 6, we present several
numerical experiments which demonstrate in a simplified two-dimensional setting the effects of the

1To our understanding, it means that we have employed the framework of linear irreversible thermodynamics (de Groot
and Mazur, 1984).
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Boundary conditions for Korteweg fluids 3

obtained contact angle and generalized Navier slip boundary conditions for the Korteweg - van der
Waals model and show its potential to model dynamic contact angle phenomena and in particular the
contact angle hysteresis.

2 General local form of the balance equations in a body with sin-
gular surface

Let us consider a material body B in the current configuration which contains a singular surface Γ. The
singular surface is understood as a mathematical model for a thin wall or membrane which separates
one part of the body from another. On the surface Γ, counterparts of bulk properties and processes
may take place. Let us consider arbitrary control volume V and let Ψ(V ) denote a generic additive
quantity (such as mass, momentum, energy, etc.) contained in V . Let us consider an integral form of
a general balance equation for such a quantity, evaluating the rate of change of Ψ(V ), as a result
of three independent processes: (i) a flux FΨ of the quantity Ψ through the boundaries ∂V of the
control volume V , (ii) an internal production PΨ of the quantity Ψ within the control volume V and (iii)
an outer supply SΨ of the quantity Ψ to the control volume V . The general balance equation is thus
postulated in the form

d

dt
Ψ(V ) = −FΨ(V ) + PΨ(V ) + SΨ(V ) .

Although this general description is rather formal, we feel it is useful to see all the balance equations
of continuum thermodynamics under a unifying frame. The quantity Ψ is assumed to be composed of
a bulk contribution and a surface contribution localized at a singular surface Γ (see Fig. 1) and both
the bulk and the surface contributions are assumed to be representable by corresponding densities
ΨV and ΨΓ, respectively. Here, we implicitly follow the standard notion of Gibbs’ surface excess when
discussing the surface quantities (Gibbs, 1928).

Figure 1: A body B separated by a singular surface into two subregions B+ and B− and associated
control volume V . The quantity Ψ(V ) is assumed to be composed of a bulk part with volumetric
density ΨV defined in V + ∪ V − and an interfacial contribution with surface density ΨΓ defined at Γ.

Considering a control volume V as in Fig. 1, we thereby assume the following representation:

� Quantity Ψ:

Ψ(V ) =

∫
V +∪V −

ΨV dx+

∫
Γ

ΨΓ dS ,
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O. Souček, M. Heida, J. Málek 4

� Flux FΨ:

FΨ(V ) =

∫
S+∪S−

ΦΨ

V · n dS +

∫
∂Γ

ΦΨ

Γ · ν dl ,

where n is the outer unit normal to the boundary ∂V and ν is the outer unit normal to the line ∂Γ

(lying in Γ), and S+, S− are the “outer” parts of ∂V +, ∂V − in the sense that S+def
=∂V +∩∂V

and S−
def
=∂V −∩∂V .

� Production PΨ:

PΨ(V ) =

∫
V +∪V −

ΠΨ

V dx+

∫
Γ

ΠΨ

Γ dS ,

� Supply SΨ:

SΨ(V ) =

∫
V +∪V −

ΣΨ

V dx+

∫
Γ

ΣΨ

Γ dS .

We will distinguish between the volume (bulk) contribution ΨV and its surface counterpart ΨΓ, in
the sense that in general2 ΨV |Γ 6= ΨΓ, that is, the restriction of the bulk quantity to the surface
need not coincide with the corresponding surface quantity. This assumption corresponds to the fact
that interfaces are in general zones where material properties may undergo abrupt changes and the
transition layers are typically very thin. It is reasonable to treat them as n−1 dimensional manifolds,
n being the dimension of the “bulk” space, and the corresponding averaged (over the thickness of the
layer) bulk quantities are then taken as the independent surface counterparts.

By taking arbitrary control volume V , using the generalized Reynolds’ transport theorem, Gauss’ the-
orem, and tools of the differential geometry, under an additional assumption of sufficient smoothness
of all the involved quantities we can derive the following local form of the integral balance equations
(Slattery, 1990, section 1.3.2):

� In the bulk B+∪B−:

∂ΨV

∂t
+ div (ΦΨ

V + ΨV v)− ΠΨ

V − ΣΨ

V = 0 , (1a)

where v is the material velocity.

� At the interface Γ:

DΓΨΓ

Dt
+ΨΓ (divΓvΓ,τ − 2KMvΓ,n)+ divΓΦΨ

Γ−ΠΨ

Γ−ΣΨ

Γ = −JΦΨ

V +ΨV (v−vΓ)K ·nΓ ,

(1b)

where
DΓ
Dt

denotes the surface material time derivative defined as

DΓA

Dt
def
=

∂A

∂t

∣∣∣∣
XΓ

, (2)

2The symbol A|S stands for the restriction of the quantity A to a set S.
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Boundary conditions for Korteweg fluids 5

where XΓ denotes the surface material point, (see Slattery, 1990, section 1.2.5). Next, vΓ is the
surface velocity and vΓ,τ is its projection to the surface Γ and vΓ,n is the normal component:

vΓ,τ
def
= (I−nΓ⊗nΓ)vΓ , vΓ,n

def
= vΓ·nΓ , (3)

where I is the identity tensor, KM is the mean curvature of the surface, and JzK denotes the jump
of the bulk quantity z across the surface Γ defined by JzK := z+ − z− where z+ and z− are the
restrictions of z|B+ and z|B− , respectively, to Γ, see Fig. 1. Note that in (1b), we keep the surface
velocity vΓ inside the “jump” brackets JK. This is standard notation in the literature understood in the
sense that all surface quantities are tacitly taken as continuous, i.e. v+

Γ = v−Γ and thus the term on
the right hand side in (1b) is interpreted as JΨV (v−vΓ)K ·nΓ = JΨV vK ·nΓ− JΨV KvΓ ·nΓ. Finally,
divΓ denotes the surface divergence operator. For the definition of kinematic quantities and operators
on the surfaces, see Slattery (1990)(Appendix A) or the coordinate-free exposition by Buscaglia and
Ausas (2011).

2.1 Local forms of the balance equations in the bulk

The local forms of the balance equations in the bulk B+ ∪B− (i.e. outside the iterface Γ) for a single-
component non-polar material read as follows (we omit the subscript V for bulk quantities for brevity):

� Balance of mass:

∂ρ

∂t
+ div(ρv) = 0 , (4a)

where ρ is the density and v is the material velocity.

� Balance of linear momentum:

∂(ρv)

∂t
+ div(ρv⊗v) = divT + ρb , (4b)

where T is the Cauchy stress tensor and b is the specific body force. Here and in what follows
the dyadic product a⊗d of two vectors a and d is the second order tensor with the components
(a⊗ d)ij = aidj .

� Balance of angular momentum is reduced to the statement that the Cauchy stress tensor T is
symmetric, i.e.,

T = TT , (4c)

where T denotes the transposition of a tensor.

� Balance of energy:

∂
(
ρ(e+ 1

2
|v|2)

)
∂t

+ div

(
ρ(e+

1

2
|v|2)v

)
= −divq + div (Tv) + ρr , (4d)

where e is the specific internal energy, q denotes the energy flux, and r is the specific energy
supply. Employing the mass and momentum balances, we obtain the balance equation for the
energy in the form:

ρ
De

Dt
= −divq + T : D + ρr , (4e)

where D = 1
2
(∇v+(∇v)T) is the symmetric part of the velocity gradient and D

Dt
= ∂

∂t
+v ·∇

denotes the material time derivative.

DOI 10.20347/WIAS.PREPRINT.2599 Berlin 2019
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� The formulation of the second law of thermodynamics:

∂(ρη)

∂t
+ div (ρηv + Φη)− Ση = Πη with Πη ≥ 0 , (4f)

where η is the specific entropy, Φη is the bulk entropy flux, Ση is the entropy supply and Πη is
the entropy production, which must be non-negative according to the second law of thermody-
namics.

2.2 Local form of the balance quations at the interface

The local forms of the balance equations at the interface Γ for a single-component non-polar material
read as follows:

� Balance of mass:

DΓρΓ

Dt
+ ρΓ(divΓvΓ,τ − 2KMvΓ,n) = −Jρ(v − vΓ)K · nΓ , (5a)

where ρΓ is the surface mass density.

� Balance of linear momentum:

DΓ(ρΓvΓ)

Dt
+ρΓvΓ(divΓvΓ,τ−2KMvΓ,n)− divΓTΓ−ρΓbΓ = −Jρv⊗(v−vΓ)−TK ·nΓ ,

(5b)
where TΓ denotes the surface Cauchy stress tensor and bΓ is the specific surface force.

� Balance of angular momentum (for a non-polar material):

TΓ = TT
Γ , (5c)

i.e., symmetry of the surface Cauchy stress tensor.

� Balance of energy:

DΓ

(
ρΓ(eΓ + 1

2 |vΓ|2)
)

Dt
+ ρΓ(eΓ +

1

2
|vΓ|2)(divΓvΓ,τ − 2KMvΓ,n) = −divΓqΓ + divΓ (TΓvΓ)

+ ρΓrΓ + ρΓbΓ · vΓ +

s
−ρ
(
e+

1

2
|v|2

)
(v−vΓ) + Tv − q

{
· nΓ , (5d)

where eΓ denotes the specific surface internal energy and qΓ is the surface energy flux. Multi-
plying the surface momentum balance (5b) by vΓ, one can obtain the surface balance equation
for kinetic energy. This can be subtracted from (5d), which yields the balance of surface energy
in the reduced form

DΓ(ρΓeΓ)

Dt
+ ρΓeΓ(divΓvΓ,τ − 2KMvΓ,n) = −divΓqΓ + TΓ:∇ΓvΓ + ρΓrΓ

+

s
−ρ
(
e+

1

2
|vΓ − v|2

)
(v−vΓ) + T(v−vΓ)− q

{
· nΓ ,

(5e)

where TΓ:∇ΓvΓ
def
= tr (TΓ ∇ΓvΓ).
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� The formulation of the second law of thermodynamics:

DΓ(ρΓηΓ)

Dt
+ ρΓηΓ (divΓvΓ,τ−2KMvΓ,n) + divΓΦη

Γ + JΦη+ρη(v−vΓ)K ·nΓ−Ση

Γ = Πη

Γ ,

(5f)
with

Πη

Γ ≥ 0 . (5g)

Here ηΓ denotes the surface specific entropy, Φη

Γ is the surface entropy flux, Ση

Γ is the surface
entropy supply and Πη

Γ is the surface entropy production, which must be non-negative in order
to comply with the second law of thermodynamics.

3 Derivation of constitutive equations for Korteweg-type fluids
in the bulk

In this section, we recall and slightly modify the derivation of a constitutive model for a Korteweg-
type fluid developed in Heida and Málek (2010). The derivation is based on imposing the following
constitutive ansatz for the (specific) internal energy in the bulk:

e = ê(η, ρ,∇ρ) . (6)

Assuming that ê is differentiable, the thermodynamic temperature ϑ is introduced through

ϑ
def
=

∂ê

∂η
. (7)

The corresponding Helmholtz free energy ψ is then obtained via the Legendre transform giving

ψ = e− ϑη , ψ̂(ϑ, ρ,∇ρ)
def
= inf

η
(ê(η, ρ,∇ρ)− ϑη) = (ê(η, ρ,∇ρ)− ϑη)|η=η̂(ϑ,ρ,∇ρ) ,

(8)

where, in the last equality, we assume the invertibility of (7) with respect to η. As a consequence of
(8), we obtain the standard thermodynamic relation

η = −∂ψ̂
∂ϑ

. (9)

Taking the material time derivative of (8), we obtain, after using (9), that

∂ψ̂

∂ρ

Dρ

Dt
+

∂ψ̂

∂∇ρ
· D∇ρ
Dt

=
De

Dt
− ϑDη

Dt
. (10)

Multiplying (10) by ρ and applying the energy balance (4e) we obtain

ρ

(
ϑ
Dη

Dt
+

p

ρ2

Dρ

Dt
+

∂ψ̂

∂∇ρ
· D∇ρ
Dt

)
= −divq + T : D + ρr , (11)

where p denotes the thermodynamic pressure defined through

p
def
= ρ2∂ψ̂

∂ρ
. (12)
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Taking the gradient of (4a) we obtain

D∇ρ
Dt

+ (∇v)T (∇ρ) +∇(ρdivv) = 0 . (13)

Using (4a) and (13) in (11), we arrive at

ρϑ
Dη

Dt
= (m+p)divv+Td : Dd−divq+ρ

(
∂ψ̂

∂∇ρ
⊗∇ρ

)
: (∇v)T +ρ

∂ψ̂

∂∇ρ
·∇(ρdivv)+ρr ,

(14)

wherem denotes the mean normal stressm
def
= 1

3
tr(T) and ()d

def
= ()− 1

3
tr()I denotes the deviatoric

part of a tensor. By the principle of material frame indifference (see, e.g., Truesdell and Noll, 1965),
the internal energy ê can only depend on the magnitude of ∇ρ which immediately implies symmetry

of the tensor ρ ∂ψ̂
∂∇ρ ⊗ ∇ρ. Consequently, we may replace ∇v by its symmetric part D in the fourth

term in the right-hand side of (14). Using the identity

ρ
∂ψ̂

∂∇ρ
· ∇(ρdivv) = div

(
ρ2 ∂ψ̂

∂∇ρ
divv

)
− ρdivv div

(
ρ
∂ψ̂

∂∇ρ

)
, (15)

dividing (14) by ϑ we obtain, after suitable rearrangements, the following local form of the balance
equation for the bulk entropy:

ρ
Dη

Dt
= −div

q− ρ2 ∂ψ̂
∂∇ρ divv

ϑ

+

(
q− ρ2 ∂ψ̂

∂∇ρ
divv

)
· ∇
(

1

ϑ

)
+
ρr

ϑ

+
1

ϑ


(
m+ p+

1

3
ρ
∂ψ̂

∂∇ρ
· ∇ρ− ρdiv

(
ρ
∂ψ̂

∂∇ρ

))
divv +

(
T + ρ

∂ψ̂

∂∇ρ
⊗∇ρ

)d

: Dd

 .

(16)

Recalling (4f) and assuming that the entropy supply is given only by the corresponding energy supply
term, that is, postulating that3

Ση =
ρr

ϑ
, (17)

we can identify the entropy flux in (16) as

Φη =
q− ρ2 ∂ψ̂

∂∇ρ divv

ϑ
. (18)

The second and last terms in the right-hand side of (16) represent the entropy production. In ac-
cordance with the usual approach in the constitutive theory within linear irreversible thermodynamics
(de Groot and Mazur, 1984), we want to express this term as a sum of binary products between the
thermodynamic “affinities” (forces) and the corresponding thermodynamic “fluxes”. Even if we pick as
the set of affinities (divv,Dd,∇( 1

ϑ
)), the splitting into two groups is still not unique. Note, in par-

ticular, that the term ρ2 ∂ψ̂
∂∇ρ · ∇

(
1
ϑ

)
divv can contribute to both products with affinities ∇( 1

ϑ
) and

divv. Without knowing a-priori which choice is preferable, we split this term via a convex combination

3It is also possible to split ρr=ρrA+ρrB and postulate Ση=ρrA
ϑ , and incorporate ρrB

ϑ among the entropy producing
mechanisms. For simplicity, we do not consider this possibility here.
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Boundary conditions for Korteweg fluids 9

governed by a free parameter α ∈ 〈0, 1〉 between both these terms. With such a choice, we finally
arrive at the formula for the rate of entropy production,

Πη =
1

ϑ

{
(m+ p̃α) divv + (T + Tρ)d : Dd

}
+ q̃α · ∇

(
1

ϑ

)
, (19)

where we set

q̃α
def
= q− αρ2 ∂ψ̂

∂∇ρ
divv , (20a)

p̃α
def
= p+

1

3
ρ
∂ψ̂

∂∇ρ
· ∇ρ− ρdiv

(
ρ
∂ψ̂

∂∇ρ

)
− (1− α)ϑρ2 ∂ψ̂

∂∇ρ
· ∇
(

1

ϑ

)
, (20b)

Tρ
def
= ρ

∂ψ̂

∂∇ρ
⊗∇ρ . (20c)

We recognize the right-hand side of (19) as three entropy-producing mechanisms, each in the form of
a product of two terms (sometimes called thermodynamic “flux” and thermodynamic “affinity”), each
couple describing a different physical process. Restricting ourselves here to linear relationships among
the two types of terms, we arrive at the constitutive equations

(T + Tρ)d = 2µDd , µ > 0 , (21a)

m+ p̃α =
2µ+ 3λ

3
divv , 2µ+ 3λ > 0 , (21b)

q̃α = κ∇
(

1

ϑ

)
, κ > 0 . (21c)

If these relationships are inserted back into (19), we obtain the rate of entropy production expressed
as a piece-wise quadratic function in terms of the “affinities”,

Πη =
1

ϑ

{
2µ+ 3λ

3
(divv)2 + 2µ|Dd|2

}
+ κ

∣∣∣∣∇(1

ϑ

)∣∣∣∣2 , (22)

(here and in what follows |A| def
=
√

AijAij), or equivalently, in terms of “fluxes” as follows

Πη =
1

ϑ

{
3

2µ+ 3λ
(m̃+ p̃α)2 +

1

2µ
|(T + Tρ)d|2

}
+

1

κ
|q̃α|2. (23)

In both cases we see that the positivity of the coefficients together with the piece-wise quadratic form
of (22) and (23) ensure that the second law of thermodynamics, i.e., the non-negativity of the rate
of entropy production, is guaranteed. Inserting the formulas (20) into (21), we obtain the following
expressions for the Cauchy stress T, energy flux q, and entropy flux Φη in the bulk:

T =−

(
ρ2∂ψ̂

∂ρ
− ρdiv

(
ρ
∂ψ̂

∂∇ρ

)
− (1− α)ϑρ2 ∂ψ̂

∂∇ρ
· ∇
(

1

ϑ

))
I

+ λdivvI + 2µD− ρ

(
∂ψ̂

∂∇ρ
⊗∇ρ

)
, (24a)

q =κ∇
(

1

ϑ

)
+ αρ2 ∂ψ̂

∂∇ρ
divv , (24b)

Φη =
1

ϑ

(
κ∇
(

1

ϑ

)
− (1− α)ρ2 ∂ψ̂

∂∇ρ
divv

)
, (24c)

where α ∈ 〈0, 1〉, 2µ+ 3λ > 0, µ > 0, κ > 0.
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4 Derivation of boundary conditions for Korteweg-type fluids

In this section, we extend the constitutive theory for Korteweg-type fluids presented in the previous
section to dissipative processes at the boundary which will allow us to formulate thermodynamically
based constitutive relations (compatible with the (local form) of the second law of thermodynamics)
in the form of boundary conditions. Let us now consider a domain Ω which contains Korteweg (two-
phase) fluid and let us denote its boundary ∂Ω. We will look at the boundary ∂Ω as an interface
between the domain Ω and its exterior; see Fig. 2. Adopting this viewpoint, we can employ the frame-
work of continuum mechanics with singular surfaces introduced in Section 2.

Figure 2: Visualization of the concept of application of the framework of continuum theory with singular
surfaces on external boundaries. We adopt the viewpoint that the outer boundary of Ω, i.e., the surface
∂Ω, is an interface between Ω and its exterior.

For Korteweg-type fluids we assume, in accordance with the physical theories of capillarity (e.g. Rowl-
inson and Widom, 1989), that the outer boundary is in fact a boundary layer with certain specific
properties. This layer will be treated as infinitely thin and all the corresponding bulk quantities in this
layer will be described by their surface (boundary) counterparts, obtained by space averaging over the
thickness of the boundary layer. Unlike Navier-Stokes fluids, Korteweg fluids naturally incorporate the
notion of surface tension as the interfacial energy in transition regions separating the phases. With the
goal of formulating boundary conditions for Korteweg-type fluids and describing phenomena such as
wetting (i.e., contact angles), it appears reasonable to extend the notion of interfacial interaction and
to include also interaction of the fluid with the boundary walls. To this end, we postulate the existence
of boundary surface energy eΓ, and boundary surface entropy ηΓ expressing this fluid-boundary inter-
action. By postulating the different constitutive equations for eΓ, we will obtain a hierarchy of models
of various complexity, which will result in a corresponding hierarchy of classes of boundary conditions.

For simplicity, we will investigate a model in which we ignore convective mechanisms on the boundary
and we shall thus consider the boundary ∂Ω to be static by postulating zero surface velocity, i.e.,

vΓ = 0 . (25a)

This condition should not be confused with the no-slip boundary condition in which v− vanishes on
the boundary ∂Ω, which is not required here.

Next, we will also need to specify conditions on the exterior side of the boundary (denoted by a + sign
with the convention of exterior unit normal pointing from − to +). We will assume that the material
outside Ω is at rest, i.e.,

v+ = 0 , (25b)
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implying that any mass exchange between the exterior and interior is excluded. Concerning momen-
tum exchange, the exterior may exert force on the interior domain, but due to (25b), this force does
not produce any mechanical power and as such does not contribute to the energy balance. We will,
however, assume that the exterior may facilitate (non-convective) energy and entropy transfer and we
relate them through the standard relation of thermodynamics (Coleman and Noll, 1963):

Φη+ =
q+

ϑ+
. (25c)

Furthermore, we assume that from the “inside” the boundary is impermeable, i.e.,

v− · nΓ = 0 , (25d)

allowing for slip of the Korteweg fluid along the boundary but no penetration.

In the following, it will be convenient to not explicitly invoke the concept of surface mass density, as we
will only require the notions of surface energy and surface entropy. Thus instead of using the specific
(i.e. related to unit of mass) surface energy and surface entropy, we formulate the equations directly
for the products ρΓeΓ and ρΓηΓ, using the following notation:

ẽΓ
def
= ρΓeΓ , η̃Γ

def
= ρΓηΓ , (26a)

representing the surface energy and surface entropy (per unit surface), respectively. Similarly for the
energy and momentum surface supply terms, we set

r̃Γ
def
= ρΓrΓ , b̃Γ

def
= ρΓbΓ . (26b)

Similarly as in the bulk, the key constitutive relation representing the assumption of a local thermody-
namic equlibrium takes the form

ẽΓ = êΓ(η̃Γ, . . . ) , (27)

where the dots stand for other state variables. We then define the surface thermodynamic temperature
ϑΓ through

ϑΓ
def
=
∂êΓ

∂η̃Γ

. (28)

We also introduce the corresponding surface Helmholtz free energy ψ̃Γ via the Legendre transform
obtaining

ψ̃Γ = ẽΓ − ϑΓη̃Γ , ψ̂Γ(ϑΓ, . . . )
def
= inf

η̃Γ
(êΓ(η̃Γ, . . . )− ϑΓη̃Γ) = (êΓ(η̃Γ, . . . )− ϑΓη̃Γ)|η̃Γ=η̂Γ(ϑΓ,... )

,

(29)

where in the last equality we assume invertibility of (28) with respect to η̃Γ. It then follows from (29)
that

η̃Γ = −∂ψ̂Γ

∂ϑΓ

. (30)

Concerning the structure of the constitutive equation for the surface Helmholtz free energy, we will
consider the following three situations:
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� Model A:
Motivated by statistical physics description of the surface free energy (see Rowlinson and
Widom (1989)(eq. 4.114)) we assume that

ψ̃Γ = ψ̂Γ(ϑΓ, ρ
−) , (31a)

i.e., the surface Helmholtz free energy depends not only on the surface temperature, but also
on the density of the neighboring bulk. Here only dependence on the interior density ρ− is
considered.

� Model B:

ψ̃Γ = ψ̂Γ(ϑΓ) , (31b)

i.e., dependence of the surface Helmholtz free energy only on surface temperature.

� Model C:

ψ̃Γ ≡ 0 , (31c)

i.e., the “trivial” model without any surface Helmholtz free energy, which however still provides
non-trivial boundary conditions for the bulk terms.

We will now inspect these three cases in detail.

4.1 Model A

Applying the surface material time derivative to (29) with ψ̃Γ given by (31a), using (30), and employing
the surface energy balance in the form (5e), we obtain the identity

ϑΓ
DΓη̃Γ

Dt
= −ẽΓ (divΓvΓ,τ − 2KMvΓ,n)− divΓqΓ + TΓ : ∇ΓvΓ + r̃Γ −

∂ψ̂Γ

∂ρ

DΓρ
−

Dt

+

s
−ρ
(
e+

1

2
|vΓ − v|2

)
(v−vΓ) + T(v−vΓ)− q

{
· nΓ . (32)

The surface being static (see the assumption (25a), all terms containing vΓ vanish and the surface
material time derivative in (32) becomes just the partial time derivative, i.e.

DΓ
Dt

= ∂
∂t

. We then use
(4a) and (25d) and obtain

ϑΓ
∂η̃Γ

∂t
= −divΓqΓ + r̃Γ +

(
ρ
∂ψ̂Γ

∂ρ
divv +

∂ψ̂Γ

∂ρ
v · ∇ρ

)−
+ JTvK · nΓ − JqK · nΓ .(33)

With the assumptions (25a–25d) and neglecting for simplicity the surface “body” forces, i.e.,

b̃Γ = 0 , (34)

the balance of linear momentum on the surface (5b) reads

−divΓTΓ = JTK nΓ . (35)
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We shall consider a membrane model4, where only the surface tension σ (which is assumed to be
constant here for simplicity) constitutes the surface stress tensor, i.e., we consider

TΓ = σIΓ , where IΓ
def
= I− nΓ ⊗ nΓ. (36)

Then it holds (Slattery, 1990, Appendix A) that

divΓTΓ = 2KMσnΓ , (37)

where KM is the mean curvature of the surface, and thus by (35), we get

JTK nΓ = −2KMσnΓ leading to (JTK nΓ)τ = 0 , (38)

where ()τ denotes the projection of a vector to the tangent plane. Hence

(TnΓ)+
τ = (T+nΓ)τ = (T−nΓ)τ = (TnΓ)−τ . (39)

Due to (25b) and (25d) and by virtue of continuity of tangent traction (39) and the symmetry of T, it
holds that

JTvK · nΓ = JvτK · (TnΓ)τ = −v−τ · (TnΓ)±τ . (40)

Assuming Korteweg fluid inside Ω, we have, by (20a) and (21c), the following expression for the energy
flux

q− =

(
κ∇
(

1

ϑ

)
+ αρ2 ∂ψ̂

∂∇ρ
divv

)−
. (41)

Inserting (40) and (41) into (33), we finally obtain

ϑΓ
∂η̃Γ

∂t
= −divΓqΓ + r̃Γ − tρ · v−τ + (sρ + αs∇ρ) divv− − q+ · nΓ + κ−

∂

∂nΓ

(
1

ϑ−

)
,(42)

where we set

tρ
def
=

(
(TnΓ)τ −

∂ψ̂Γ

∂ρ
∇Γρ

)−
, (43a)

sρ
def
=

(
ρ
∂ψ̂Γ

∂ρ

)−
, (43b)

s∇ρ
def
=

(
ρ2 ∂ψ̂

∂∇ρ
· nΓ

)−
, (43c)

∂

∂nΓ

(
1

ϑ−

)
def
= ∇

(
1

ϑ−

)
· nΓ . (43d)

In (43a), we used the fact that∇ρ− · v− = ∇Γρ
− · v−τ , due to (25d).

4A generalization that would involve more complex structure of the surface stress tensor or non-constant surface tension
is possible, but not straightforward. We will therefore not pursue this possiblity here; see also a comment in the conclusion.
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The next step consists of transforming (42) into the form (5f) where we must also incorporate all the
simplifying assumptions used above, such as (25a)-(25d). Then (5f) takes the form

∂η̃Γ

∂t
= −divΓΦη

Γ − JΦηK · nΓ + Ση

Γ + Πη

Γ with Πη

Γ ≥ 0 , (44)

which, upon inserting (24c) and (25c), leads to

∂η̃Γ

∂t
= −divΓΦη

Γ −
q+

ϑ+
· nΓ +

κ−

ϑ−
∂

∂nΓ

(
1

ϑ−

)
− (1− α)

s∇ρ
ϑ−

divv− + Ση

Γ + Πη

Γ . (45)

We proceed in two different ways. These ways differ in the manner in which the term divv− in (42) and
(45) is treated. In the first procedure, called Model A1, divv− is kept unaltered, while in the second
procedure, called Model A2, we will split divv− into the surface divergence and the normal derivative.

4.1.1 Model A1

We first observe that the equation (42) can be rewritten in the following form of entropy balance:

∂η̃Γ

∂t
= −divΓ

(
qΓ

ϑΓ

)
+ qΓ · ∇Γ

(
1

ϑΓ

)
+

1

ϑΓ

{
−tρ · v−τ + (sρ + αs∇ρ) divv− + r̃Γ − q+ · nΓ + κ−

∂

∂nΓ

(
1

ϑ−

)}
. (46)

Subtracting (46) from (45) yields

0 = −divΓ

(
Φη

Γ −
qΓ

ϑΓ

)
− qΓ · ∇Γ

(
1

ϑΓ

)
+

tρ · v−τ
ϑΓ

− divv−
(

(1− α)
s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
+

(
Ση

Γ −
r̃Γ

ϑΓ

)
− q+ · nΓ

(
1

ϑ+
− 1

ϑΓ

)
+ κ−

∂

∂nΓ

(
1

ϑ−

)(
1

ϑ−
− 1

ϑΓ

)
+ Πη

Γ . (47)

Since r̃Γ is the surface energy supply, it is reasonable to postulate the surface entropy supply to be

Ση

Γ =
r̃Γ

ϑΓ

. (48)

Since qΓ is the surface energy flux, classical thermodynamics together with (47) suggest setting

Φη

Γ =
qΓ

ϑΓ

. (49)

Consequently, (47) reduces to the equation

Πη

Γ = qΓ · ∇Γ

(
1

ϑΓ

)
− tρ · v−τ

ϑΓ

+ divv−
(

(1− α)
s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
+ q+ · nΓ

(
1

ϑ+
− 1

ϑΓ

)
− κ− ∂

∂nΓ

(
1

ϑ−

)(
1

ϑ−
− 1

ϑΓ

)
, (50)

which identifies the entropy-producing mechanisms and which has the usual structure of a scalar
product

ηΠΓ = J ·A , (51)
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where we choose

J =

(
qΓ, tρ, divv−,q+ · nΓ,−κ−

∂

∂nΓ

(
1

ϑ−

))
, (52a)

A =

(
∇Γ

(
1

ϑΓ

)
,−v−τ

ϑΓ

, (1− α)
s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

,
1

ϑ+
− 1

ϑΓ

,
1

ϑ−
− 1

ϑΓ

)
. (52b)

We propose linear constitutive relations between the “fluxes” J and “affinities” A, following thus the
framework of linear irreversible thermodynamics (de Groot and Mazur, 1984). We shall also consider
possible cross-coupling among the vectorial quantities. The constitutive relations in such case take
the form

qΓ = L11∇Γ

(
1

ϑΓ

)
+ L12

(
−v−τ
ϑΓ

)
, (53a)

tρ = L21∇Γ

(
1

ϑΓ

)
+ L22

(
−v−τ
ϑΓ

)
, (53b)

divv− = L33

(
(1− α)

s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
, (53c)

q+ · nΓ = L44

(
1

ϑ+
− 1

ϑΓ

)
, (53d)

−κ− ∂

∂nΓ

(
1

ϑ−

)
= L55

(
1

ϑ−
− 1

ϑΓ

)
. (53e)

Since the two affinities −v−τ
ϑΓ

, and ∇Γ

(
1
ϑΓ

)
, for which cross-effect is assumed, have opposite be-

havior with respect to time reversal (the first one changes the sign, the other does not), the Onsager-
Casimir relations (see, e.g., (de Groot and Mazur, 1984)) imply anti-symmetry of the cross-coupling
coefficient, i.e., L12 = −L21. The coefficients must fulfill Lii ≥ 0, for all i=1, . . ., 5 and L11L22 +
(L12)2 ≥ 0, in order to ensure non-negativity of the rate of entropy production. We shall impose
the stronger yet natural assumption that Lii>0 for all i=1, . . ., 5 in order to avoid degeneracy of the
system.

Let us interpret the derived constitutive relations (53). The first relation (53a) represents the in-surface
heat conduction (Fourier law). The last two relations (53d) and (53e) represent heat transfer across the
interface, the so-called Kapitza resistance (Kapitza, 1941). Condition (53b) represents a generalized
Navier-slip condition. Inspecting (43a), we can see that it is a relation among the surface traction
(TnΓ)−, a cross-coupling term involving the surface gradient of temperature, a term proportional to
slip velocity vτ , i.e., traditional Navier-slip term, and finally, a term involving the surface Helmholtz free
energy and tangent derivative of density. Perhaps the most interesting is the relation (53c), which we
will later interpret as the static and dynamic contact angle condition - a condition characterizing the
angle between the liquid-vapor interface and the boundary. This interpretation will be made explicit in
Sections 5 and 6, where we will consider a particular type of bulk and surface Helmholtz free energy
functions and support our arguments with numerical experiments. This condition in that case will relate
the normal derivative of the density ∂ρ−

∂nΓ
with two effects - one due to surface tension and the other

due to motion of the fluid in the vicinity of the interface. Since the latter effect vanishes when the
body is in equilibrium, we will interpret that part as the dynamic contact angle condition, while the first
effect persists in equilibrium and will be called the static contact angle condition. Let us note here,
that in most of the literature related to Korteweg-type models, the dynamic contact angle condition is
completely ignored, and the static one is simplified dramatically to ∂ρ−

∂nΓ
=0, which corresponds to the

contact angle π
2

.
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4.1.2 Model A2

The second approach is based on the decomposition of the term divv− appearing in (42) and (45)
by means of the following identity from differential geometry (Slattery, 1990, Appendix A):

divv− =
∂v−n
∂nΓ

+ 2KMv− · nΓ + divΓv−τ =
∂v−n
∂nΓ

+ divΓv−τ , (54)

where

v−τ
def
= (I−nΓ⊗nΓ)v− , v−n

def
= v−·nΓ , (55)

where we used (25d) in the last equality in (54). We will also employ the identity

(sρ + αs∇ρ)divΓv−τ = divΓ((sρ + αs∇ρ)v
−
τ )− v−τ · ∇Γ(sρ + αs∇ρ) . (56)

Incorporating (54) and (56) into (42), we obtain

ϑΓ
∂η̃Γ

∂t
= −divΓ

(
qΓ − (sρ + αs∇ρ)v

−
τ

)
+ r̃Γ − (tρ +∇Γ(sρ + αs∇ρ)) · v−τ + (sρ + αs∇ρ)

∂v−n
∂nΓ

− q+ · nΓ + κ−
∂

∂nΓ

(
1

ϑ−

)
, (57)

which leads to the following balance equation for the entropy:

∂η̃Γ

∂t
= −divΓ

(
qΓ − (sρ + αs∇ρ)v

−
τ

ϑΓ

)
+
r̃Γ

ϑΓ

+ (qΓ − (sρ + αs∇ρ)v
−
τ ) · ∇Γ

(
1

ϑΓ

)
+

1

ϑΓ

{
−(tρ +∇Γ(sρ + αs∇ρ)) · v−τ + (sρ + αs∇ρ)

∂v−n
∂nΓ

− q+ · nΓ + κ−
∂

∂nΓ

(
1

ϑ−

)}
.

(58)

Similarly, applying (54) together with the identity

s∇ρ
ϑ−

divΓv−τ = divΓ

(s∇ρ
ϑ−

v−τ

)
− v−τ · ∇Γ

(s∇ρ
ϑ−

)
(59)

to (45), we arrive, after rearranging the terms, at the following form of the entropy balance:

∂η̃Γ

∂t
= −divΓ

(
Φη

Γ + (1− α)
s∇ρ
ϑ−

v−τ

)
− (1− α)

s∇ρ
ϑ−

∂v−n
∂nΓ

− q+

ϑ+
· nΓ +

κ−

ϑ−
∂

∂nΓ

(
1

ϑ−

)
+ (1− α)v−τ · ∇Γ

(s∇ρ
ϑ−

)
+ Ση

Γ + Πη

Γ . (60)

Subtracting (58) from (60), we obtain

0 = −divΓ

(
Φη

Γ + (1− α)
s∇ρ
ϑ−

v−τ −
qΓ − (sρ + αs∇ρ)v

−
τ

ϑΓ

)
+

(
Ση

Γ −
r̃Γ
ϑΓ

)
− q+ · nΓ

(
1

ϑ+
− 1

ϑΓ

)
+ κ−

∂

∂nΓ

(
1

ϑ−

)(
1

ϑ−
− 1

ϑΓ

)
− (qΓ − (sρ + αs∇ρ)v

−
τ ) · ∇Γ

(
1

ϑΓ

)
− ∂v−n
∂nΓ

(
(1− α)

s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
+ v−τ ·

(
(1− α)∇Γ

(s∇ρ
ϑ

)
+

tρ +∇Γ(sρ + αs∇ρ)

ϑΓ

)
+ Πη

Γ . (61)

As in Model A1 we postulate the surface entropy supply to be

Ση

Γ =
r̃Γ

ϑΓ

, (62)
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and (61) suggests setting

Φη

Γ =
qΓ − (sρ + αs∇ρ)v

−
τ

ϑΓ

− (1− α)
(s∇ρ
ϑ−

)
v−τ . (63)

Consequently, (61) gives

Πη

Γ = (qΓ − (sρ + αs∇ρ)v
−
τ ) · ∇Γ

(
1

ϑΓ

)
−
(
tρ +∇Γ(sρ + αs∇ρ) + (1− α)ϑΓ∇Γ

(s∇ρ
ϑ−

))
· v
−
τ

ϑΓ

+
∂v−n
∂nΓ

(
(1− α)

s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
+ q+ · nΓ

(
1

ϑ+
− 1

ϑΓ

)
− κ− ∂

∂nΓ

(
1

ϑ−

)(
1

ϑ−
− 1

ϑΓ

)
, (64)

or, written again as a scalar product of two vectors,

Πη

Γ = J ·A , (65)

where

J =

(
qΓ−(sρ+αs∇ρ)v

−
τ , tρ+∇Γ(sρ+αs∇ρ)+(1−α)ϑΓ∇Γ

(s∇ρ
ϑ−

)
,
∂v−n
∂nΓ

,q+ · nΓ,−κ−
∂

∂nΓ

(
1

ϑ

)−)
,

(66a)

A =

(
∇Γ

(
1

ϑΓ

)
,−v−τ

ϑΓ
, (1− α)

s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ
,

1

ϑ+
− 1

ϑΓ
,

1

ϑ−
− 1

ϑΓ

)
. (66b)

As in Subsection 4.1.1, restricting ourselves to the linear constitutive relations between the “fluxes”
J and “affinities” A (with cross-coupling only among the vectorial quantities), we end up with the
following set of constitutive relations

qΓ − (sρ + αs∇ρ)v
−
τ = L11∇Γ

(
1

ϑΓ

)
+ L12

(
−v−τ
ϑΓ

)
, (67a)

tρ +∇Γ(sρ + αs∇ρ) + (1− α)ϑΓ∇Γ

(s∇ρ
ϑ−

)
= L21∇Γ

(
1

ϑΓ

)
+ L22

(
−v−τ
ϑΓ

)
, (67b)

∂v−n
∂nΓ

= L33

(
(1− α)

s∇ρ
ϑ−

+
sρ + αs∇ρ

ϑΓ

)
, (67c)

q+ · nΓ = L44

(
1

ϑ+
− 1

ϑΓ

)
, (67d)

−κ− ∂

∂nΓ

(
1

ϑ

)−
= L55

(
1

ϑ−
− 1

ϑΓ

)
. (67e)

Since the two “affinities” −v−τ
ϑΓ

, and ∇Γ

(
1
ϑΓ

)
, for which cross-effect is assumed, have opposite be-

havior with respect to time reversal, the Onsager-Casimir relations suggest the requirement that the
cross-coupling coefficients are anti-symmetric, i.e., L12=−L21. The coefficients are assumed to sat-
isfy Lii>0, i=1, . . ., 5, and L11L22 + (L12)2 ≥ 0, in order to ensure both non-negativity of the rate
of entropy production and non-degeneracy of the system.

The interpretation of the constitutive relations for Model A2 is analogous to Model A1, namely the
first two relations (67a) and (67b) represent the (generalized) in-surface heat conduction (Fourier law)
and generalized Navier-slip condition, respectively, together with a possible cross-coupling of the two
mechanisms. Relations (67d) and (67e) represent heat transfer across the interface (the so-called
Kapitza resistance) and relation (67c) is again the static and dynamic contact angle condition, as will
become apparent in Sections 5 and 6.
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4.2 Model B

The derivation of boundary conditions for Model B proceeds in an analogous way as for Model A.
The only difference between these models is the absence of the term sρ, which is now identically
zero. Consequently, we obtain the following two sets of boundary conditions, which again differ in the
manner how the terms involving divv− are treated.

4.2.1 Model B1

qΓ = L11∇Γ

(
1

ϑΓ

)
+ L12

(
−v−τ
ϑΓ

)
, (68a)

(TnΓ)−τ = L21∇Γ

(
1

ϑΓ

)
+ L22

(
−v−τ
ϑΓ

)
, (68b)

divv− = L33

(
(1− α)

s∇ρ
ϑ−

+
αs∇ρ
ϑΓ

)
, (68c)

q+ · nΓ = L44

(
1

ϑ+
− 1

ϑΓ

)
, (68d)

−κ− ∂

∂nΓ

(
1

ϑ

)−
= L55

(
1

ϑ−
− 1

ϑΓ

)
, (68e)

where L12=− L21 and where Lii>0, i=1, . . ., 5 and L11L22+(L12)2 ≥ 0, in order to ensure both
non-negativity of the rate of entropy production and non-degeneracy of the system.

4.2.2 Model B2

qΓ − αs∇ρv−τ = L11∇Γ

(
1

ϑΓ

)
+ L12

(
−v−τ
ϑΓ

)
, (69a)

(TnΓ)−τ + α∇Γs∇ρ + (1− α)ϑΓ∇Γ

(s∇ρ
ϑ−

)
= L21∇Γ

(
1

ϑΓ

)
+ L22

(
−v−τ
ϑΓ

)
, (69b)

∂v−n
∂nΓ

= L33

(
(1− α)

s∇ρ
ϑ−

+
αs∇ρ
ϑΓ

)
, (69c)

q+ · nΓ = L44

(
1

ϑ+
− 1

ϑΓ

)
, (69d)

−κ− ∂

∂nΓ

(
1

ϑ

)−
= L55

(
1

ϑ−
− 1

ϑΓ

)
, (69e)

where L12=− L21 and where Lii>0, i=1, . . ., 5 and L11L22+(L12)2 ≥ 0, in order to ensure both
non-negativity of the rate of entropy production and non-degeneracy of the system.

The only difference between Models A and B is due to the absence of terms sρ, its main implication be-
ing that conditions (68c) and (69c) represent solely dynamic angle conditions, with static (equilibrium)
contact angle (equal to π

2
for the Korteweg - van der Waals fluid studied in Section 5).
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4.3 Model C

Assuming that the surface Helmholtz free energy, and consequently also both the surface internal
energy and surface entropy are identically equal to zero, it also makes sense to assume the same for
the corresponding energy and entropy surface fluxes. Therefore we set

ψ̃Γ ≡ 0 , ẽΓ ≡ 0, η̃Γ ≡ 0 ,qΓ ≡ 0, Φη

Γ ≡ 0 . (70a)

Furthermore, we assume that neither surface energy supply nor entropy supply are present, i.e.,

r̃Γ ≡ 0, Ση

Γ ≡ 0 . (70b)

Employing also the assumptions on the velocity field (25a)–(25d), the absence of the surface body
forces (34), and the character of the surface stress tensor (36), the surface energy balance (5e) re-
duces to the following form of a jump condition:

0 = (TnΓ)−τ · v−τ + JqK · nΓ . (71)

Following the same arguments, the surface entropy balance (5f) reduces, with the use of (24b), (24c),
(70), and (25a)–(25d), to

Πη

Γ =
rq

ϑ

z
· nΓ +

s∇ρ
ϑ−

divv− . (72)

Employing the identity for the jump of a product of two fields a, b

JabK = JaK〈b〉+ 〈a〉JbK , (73)

where 〈a〉 denotes the average of a+ and a−, i.e., 〈a〉 = 1
2

(a+ + a−), applying this identity to
q
q
ϑ

y

in (72), and inserting its result into (71) instead of JqK, we obtain the equation for the rate of surface
entropy production

Πη

Γ = −
〈

1

ϑ

〉
(TnΓ)−τ · v−τ +

s∇ρ
ϑ−

divv− +

s
1

ϑ

{
〈q〉 · nΓ . (74)

This expression again takes the form of a scalar product

ηΠΓ = J ·A , (75)

where we choose

J =
(
(TnΓ)−τ , divv−, 〈q〉 · nΓ

)
, (76a)

A =

(
−
〈

1

ϑ

〉
v−τ ,

s∇ρ
ϑ−

,

s
1

ϑ

{)
. (76b)

The linear relations between the “fluxes” J and “affinities” A yield the following relations:

(TnΓ)−τ = −L11

〈
1

ϑ

〉
v−τ , (77a)

divv− = L22
s∇ρ
ϑ−

, (77b)

〈q〉 · nΓ = L33

s
1

ϑ

{
. (77c)
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Assuming that L11>0, L22>0, L33>0, the rate of entropy production is non-negative. The boundary
condition (77a) represents the Navier-slip, (77b) describes the dynamic contact angle condition, and
(77c) stands for the heat transfer across the interface (Kapitza resistance), respectively, see Sections
5 and 6 for further details.

Isothermal process

In the following, we will study a variant of the above models in which the temperature is continu-
ous across the interface. This can in particular be achieved if we consider an isothermal process and
assume that

ϑ+=ϑ−=ϑΓ=const. (78)

If we also ignore the cross-coupling effects for simplicity and absorb the (constant) temperature into
the coefficients, we obtain the following sets of reduced boundary conditions (recall that tρ, sρ and
s∇ρ are defined in (43)):

� Model A1:

tρ = −L22v
−
τ , (79a)

divv− = L33 (s∇ρ + sρ) ; (79b)

� Model A2:

tρ +∇Γ (sρ + s∇ρ) = −L22v
−
τ , (80a)

∂v−n
∂nΓ

= L33 (s∇ρ + sρ) ; (80b)

� Model B1 & Model C:

(TnΓ)−τ = −L22v
−
τ , (81a)

divv− = L33s∇ρ . (81b)

� Model B2

(TnΓ)−τ +∇Γs∇ρ = −L22v
−
τ , (82a)

∂v−n
∂nΓ

= L33s∇ρ , (82b)

where L22>0 L33>0 for all sets. Each set consists of a (generalized) Navier-slip condition and
a contact angle condition, which is either solely dynamic or combines static and dynamic terms,
as clarified in the following sections.

5 Particular example of Korteweg fluid model and boundary con-
ditions

Let us now consider a particular Helmholtz free energy ψ̂ of the form

ψ̂(ϑ, ρ,∇ρ) = ψ̂vdW (ϑ, ρ) +
σ

2ρ
|∇ρ|2 , (83)
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where the term ψ̂vdW corresponds to van der Waals fluid (van der Waals, 1893; Landau and Lifshitz,
1980; Diehl, 2007) and takes the following form:

ψ̂vdW (ϑ, ρ) = −a′ρ+ `ϑ ln

(
ρ

b′ − ρ

)
− cϑ ln

(
ϑ

ϑ0

)
− dϑ+ e′ , (84)

where a′, b′, c, d, e, ` and σ are constant parameters and ϑ0 is some reference temperature. The
correspondence of (84) to the van der Waals model is revealed by identifying the equation of state for

thermodynamic pressure associated with ψ̂vdW , which we show next.

Using the standard thermodynamic definition of the thermodynamic pressure (12), we obtain the ex-
pression

pvdW = p̂vdW (ϑ, ρ)
def
= ρ2∂ψ̂vdW

∂ρ
= −a′ρ2 + `b′ϑ

ρ

b′ − ρ
. (85)

Defining a
def
= a′M2

m, b
def
= Mm

b′
and R

def
= `Mm, where Mm is the molar mass of the molecules of

the considered gas-liquid system, and considering a homogeneous system with nmoles in volume V ,
which means ρ = nMm

V
, we can recast (85) into the standard form(

pvdW +
n2a

V 2

)
(V − nb) = nRϑ , (86)

which is the traditional van der Waals equation of state (e.g. Callen, 1985), provided we suitably
interpret the parameters a, b, and R.

The chemical potential for a single-component fluid is simply the Gibbs free energy g as follows from
the Euler relation (e.g. Callen, 1985). We thus obtain

µvdW = gvdW
def
= ψvdW −

pvdW
ρ

=
∂(ρψ̂vdW )

∂ρ
. (87)

Figure 3: A sketch of thermodynamic pressure and chemical potential for a dimensionless van der
Waals fluid with the corresponding Maxwell states ρMv and ρMl for a subcritical temperature ϑ =
0.85ϑc.

The pressure pvdW and the chemical potential µvdW are sketched in Fig. 3. For temperatures above a
critical temperature ϑc, both pvdW and µvdW are increasing functions of density, but for a temperature
below the critical temperature ϑc, both functions have two increasing branches separated by a region
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where these functions are decreasing. The critical temperature as well as the critical pressure are
found by identifying the inflection point of the p̂vdW equation of state, i.e., by finding (ϑc, ρc) such that

∂p̂vdW
∂ρ

(ϑc, ρc) = 0,
∂2p̂vdW
∂ρ2

(ϑc, ρc) = 0 , (88)

which for (84) yields

ϑc =
8a′b′

27`
, ρc =

b′

3
, pc

def
= pvdW (ϑc, ρc) =

a′b′2

27
. (89)

In the subcritical region, i.e., for each ϑ<ϑc, there are two states (called Maxwell states) ρMv (vapor)
and ρMl (liquid) defined by two phase-coexistence equilibrium relations expressing the equality of
pressures and chemical potentials (see Fig. 3),

p̂vdW (ρMv (ϑ), ϑ) = p̂vdW (ρMl (ϑ), ϑ) , (90a)

µ̂vdW (ρMv (ϑ), ϑ) = µ̂vdW (ρMl (ϑ), ϑ) . (90b)

Let us now consider an isothermal setting below the critical temperature (meaning the temperature ϑ
is uniform and equals the constant ϑ0, satisfying ϑ0<ϑc) and let us set up the system of governing
equations and boundary conditions for such a Korteweg - van der Waals fluid in the bulk. Using the
definition of the Helmholtz free energy (83), the Cauchy stress T reads according to (24a) as

T = −pvdW I + σ

(
ρ∆ρ+

1

2
|∇ρ|2

)
I− σ∇ρ⊗∇ρ+ λdivvI + 2µD . (91)

Using the identity

div

((
ρ∆ρ+

1

2
|∇ρ|2

)
I−∇ρ⊗∇ρ

)
= ρ∇∆ρ , (92)

the governing equations (balances of mass and momentum) in the bulk for the Korteweg - van der
Waals fluids read

∂ρ

∂t
+ div(ρv) = 0 , (93a)

∂(ρv)

∂t
+ div(ρv ⊗ v) = ∇ (−pvdW + λdivv) + div (2µD) + σρ∇∆ρ+ ρb . (93b)

Boundary conditions corresponding to Models A, B, and C, (see (79)–(82)) can now be expressed in
more explicit forms since for the Korteweg - van der Waals model we can explicitly evaluate the term

s∇ρ =

(
ρ2 ∂ψ̂

∂∇ρ

)−
· nΓ = σρ−∇ρ− · nΓ = σρ−

∂ρ−

∂nΓ

. (94)

Employing the definition of tρ (43a), we obtain the following set of boundary conditions (depending on

the form ψ̂Γ and the way how divv− is treated on Γ):

� Model A1:

(TnΓ)−τ =

(
∂ψ̂Γ

∂ρ−

)
∇Γρ

− − αv−τ , (95a)

βdivv− =

(
∂ψ̂Γ

∂ρ−
+ σ

∂ρ−

∂nΓ

)
; (95b)
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� Model A2:

(TnΓ)−τ =

(
∂ψ̂Γ

∂ρ−

)
∇Γρ

− −∇Γ

(
ρ−
∂ψ̂Γ

∂ρ−
+ σρ−

∂ρ−

∂nΓ

)
− αv−τ , (96a)

β
∂v−n
∂nΓ

=

(
∂ψ̂Γ

∂ρ−
+ σ

∂ρ−

∂nΓ

)
; (96b)

� Model B1 & Model C:

(TnΓ)−τ = −αv−τ , (97a)

βdivv− = σ
∂ρ−

∂nΓ

; (97b)

� Model B2:

(TnΓ)−τ = −∇Γ

(
σρ−

∂ρ−

∂nΓ

)
− αv−τ , (98a)

β
∂v−n
∂nΓ

= σ
∂ρ−

∂nΓ

, (98b)

where α, β are some non-negative parameters (α=L22, β=L33

ρ−
), possibly depending on ϑ−,

ϑΓ, ρ−.

It will be convenient to incorporate the constitutive relation for the Cauchy stress (91) in the above
conditions. Since, by (91),

(TnΓ)−τ = −σ∇Γρ
−∂ρ

−

∂nΓ

+ (2µDnΓ)−τ , (99)

we obtain by simple manipulation (in particular substituting from the second equation into the first) the
following conditions:

� Model A1:

(2µDnΓ)−τ = βdivv−∇Γρ
− − αv−τ , (100a)

βdivv− =

(
∂ψ̂Γ

∂ρ−
+ σ

∂ρ−

∂nΓ

)
; (100b)

� Model A2:

(2µDnΓ)−τ = −ρ−∇Γ

(
β
∂v−n
∂nΓ

)
− αv−τ , (101a)

β
∂v−n
∂nΓ

=

(
∂ψ̂Γ

∂ρ−
+ σ

∂ρ−

∂nΓ

)
; (101b)

� Model B1 & Model C:

(2µDnΓ)−τ = βdivv−∇Γρ
− − αv−τ , (102a)

βdivv− = σ
∂ρ−

∂nΓ

; (102b)

DOI 10.20347/WIAS.PREPRINT.2599 Berlin 2019
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� Model B2:

(2µDnΓ)−τ = −ρ−∇Γ

(
β
∂v−n
∂nΓ

)
− αv−τ , (103a)

β
∂v−n
∂nΓ

= σ
∂ρ−

∂nΓ

, (103b)

where α, β are non-negative parameters, possibly depending on ϑ−, ϑΓ, ρ−.

In the above sets of boundary conditions, the right-hand side of the second equation represents the
static contact angle condition (static in the sense that it does not depend explicitly on v). Let us note
that in the class of diffuse interface methods, to which the Korteweg model presented here belongs
(as well as other models including Cahn-Hilliard and Allen-Cahn models or numerous variants of the
level set method), a standard way to impose a given static contact angle ϕ is expressed through the
formula (imposed on the boundary)

∇ρ−

|∇ρ−|
· nΓ = cosϕ i.e.,

∂ρ−

∂nΓ

= |∇ρ−| cosϕ , (104)

see, e.g., Brackbill et al. (1992). Such a formula, despite its apparent simplicity, is problematic from
several points of view. First, it cannot be incorporated into the framework developed above as this
would require that the surface Helmholtz free energy ψ̂Γ depends also on |∇ρ−| instead of just ρ−

(and temperature). Second, the term ∂ρ−

∂nΓ
appears naturally in the weak formulation of associated

initial boundary value problems (see Section 6.2, eq. (117c)) and from (104)2, we can see that it is a
non-linear function of the density gradient. This, however, represents quite a severe constraint on the
regularity of the density field in terms of mathematical well-posedness. Last, but not least, in order to
apply the formula (104) in numerical calculations, a sufficiently accurate numerical approximation of
the term |∇ρ−| on the boundary is required. Interestingly, all these problems can be circumvented in
the framework developed here. In particular, it is possible to replace (104) by a relation (not involving
∇ρ at all) of the form

∂ρ−

∂nΓ

= γ(ϕ)P (ρ−) , (105)

where P (ρ−) is a low-order polynomial and γ(ϕ) is a function depending only on the imposed contact
angleϕ. Towards this goal, let us follow the so-called energy-based approach (see e.g. Jacqmin, 2000)
and postulate the surface Helmholtz free energy as follows:

ψ̂Γ(ρ−) = ψ0
Γ + (σlw − σvw)

∫ ρ−
ρMv

(x− ρMv )(ρMl − x) dx∫ ρMl
ρMv

(x− ρMv )(ρMl − x) dx
, (106)

where σvw and σlw are the vapor-wall and liquid-wall surface tensions, respectively, and ψ0
Γ is a

constant. In this form, the surface Helmholtz free energy ψ̂Γ is constant in the boundary regions that
are in contact with the pure bulk phases characterized by the Maxwell states ρMv or ρMl . The value of
the constant differs for the two cases by (σlw−σvw), and this jump takes place across the boundary
“contact line”, i.e., across the region on the boundary where the phases change from one to another.
Let us substitute into (106) the standard contact-angle formula (Young equation)

σlv cosϕ = σvw − σlw , (107)

relating the liquid-vapor surface tension σlv with σlw and σvw through the cosine of the wetting angleϕ.
Here the wetting angle ϕ denotes the contact angle of the liquid-vapor interface with respect to the wall
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measured inside the liquid domain. Employing the ansatz for the surface Helmholtz free energy (106),
the static part (i.e., corresponding to v=0) of the boundary conditions (100b) and (101b) becomes

∂ρ−

∂nΓ
= γ0 cosϕ (ρ−−ρMv )(ρMl −ρ−) , where γ0 =

σlv
σ

(∫ ρMl

ρMv

(x− ρMv )(ρMl − x) dx

)−1

, (108)

which is of the desired form (105). We will test this formula in the numerical simulations in Section
6, where we also provide the specific value for the parameter γ0. Let us only note here that due to
the temperature dependence of the Maxwell states (see (90)), γ0 depends on temperature even in the
current setting with constant surface tensions.

Let us summarize the conditions (100) – (103) corresponding to the ansatz for the surface Helmholtz
free energy ψ̂Γ of the form (106):

� Model A1:

(2µDnΓ)−τ = βdivv−∇Γρ
− − αv−τ , (109a)

∂ρ−

∂nΓ

= γ0 cosϕ (ρ−−ρMv )(ρMl −ρ−) +
β

σ
divv− ; (109b)

� Model A2:

(2µDnΓ)−τ = −ρ−∇Γ

(
β
∂v−n
∂nΓ

)
− αv−τ , (110a)

∂ρ−

∂nΓ

= γ0 cosϕ (ρ−−ρMv )(ρMl −ρ−) +
β

σ

∂v−n
∂nΓ

; (110b)

� Models B1 and C:

(2µDnΓ)−τ = βdivv−∇Γρ
− − αv−τ , (111a)

∂ρ−

∂nΓ

=
β

σ
divv− ; (111b)

� Model B2:

(2µDnΓ)−τ = −ρ−∇Γ

(
β
∂v−n
∂nΓ

)
− αv−τ , (112a)

∂ρ−

∂nΓ

=
β

σ

∂v−n
∂nΓ

. (112b)

As will be documented in the following numerical simulations, by explicitly evaluating the parameter
γ0 from (108) in Models A1 and A2, the value ϕ equals the equilibrium (static) contact angle for
the Korteweg - van der Waals fluid while the (positive) value of parameter β governs the dynamic
relaxation to this equilibrium. Clearly, Models B and C admit only homogeneous Neumann boundary
conditions in equilibrium ∂ρ−

∂nΓ
=0, i.e., the static contact angle is π

2
.

6 Numerical experiments focused on contact angle phenomena

Numerical experiments presented below are focused on the qualitative understanding of phenomena
connected with the novel boundary conditions (109). We validate our interpretation of the static and
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dynamic parts of the contact-angle conditions by demonstrating that the first term on the right-hand
side of (109b) and (110b) determines the equilibrium contact angle, while the remaining terms on the
right-hand side cause a dynamic delay in the attainment of this equilibrium contact angle value, see
Experiments 1 and 2 below. Finally, we show that the dynamic terms have the potential to describe
the phenomenon called dynamic contact angle hysteresis, see Experiment 3 below.

This section is structured in the following way. We first provide a dimensionless form of the governing
equations. Then we proceed with identifying the corresponding continuous weak form and its discrete
counterpart based on the Galerkin discretization. Finally, we briefly describe the numerical method
and show the results of the three numerical experiments.

6.1 Dimensionless formulation

We introduce the same scaling as in Gomez et al. (2010). Each field quantity is expressed as ϕ=[ϕ]ϕ̃,
where [ϕ] denotes the scale of the quantity and ϕ̃ denotes the dimensionless counterpart. We intro-
duce a spatial scale [x]=L0, and consider the scaling of spatial differential operators5 [∇]=L−1

0 and
[div]=L−1

0 . We scale the density by [ρ]=b′, where b′ occurs as a parameter in the van der Waals
model (89). The temperature is scaled by the critical temperature, i.e., [ϑ]=ϑc (see (84)) and the pres-
sure pvdW is scaled by [pvdW ]=a′(b′)2. For time, we pick the scale [t]=L0/

√
a′b′ and the velocity is

thus scaled by [v]=[x]/[t] =
√
a′b′. We introduce the dimensionless numbers

Reλ
def
= L0

√
a′b′b′

[λ]
Reynolds number 1 Ca

def
= 1

L0

√
σ
a′

capillary number

Reµ
def
= L0

√
a′b′b′

[µ]
Reynolds number 2 G

def
= [b]L0

a′b′

and consequently, we can rewrite the system of balance equations (93) as

∂ρ̃

∂t̃
+ d̃iv(ρ̃ṽ) = 0 , (113a)

∂(ρ̃ṽ)

∂t̃
+ d̃iv(ρ̃ṽ ⊗ ṽ) = −∇̃p̃vdW +

1

Reλ
∇̃(λ̃d̃ivṽ) +

1

Reµ
d̃iv
(

2µ̃D̃
)

+ (Ca)2ρ̃∇̃∆̃ρ̃+Gρ̃b̃ , (113b)

where

p̃vdW =
8

27

ϑ̃ρ̃

1− ρ̃
− ρ̃2 . (113c)

Next, we introduce the dimensionless numbers

A = [α]L0

[µ]
, B = b′[β]

L0[µ]
, D = [β]

σ

√
a′

b′
,

and a dimensionless function C(ϑ̃) defined in (127) in the Appendix. Then the boundary conditions
(109) read as follows:

� Model A1:

(2µ̃D̃ñΓ)−τ = −Aα̃ṽ−τ + Bβ̃d̃ivṽ−∇̃Γρ̃
− , (114a)

∂ρ̃−

∂ñΓ

= C(ϑ̃) cosϕ (ρ̃−−ρ̃Mv )(ρ̃Ml −ρ̃−) +Dβ̃d̃ivṽ− ; (114b)

5This spatial scaling is clearly not optimal in the interfacial regions where another length scale corresponding to the
thickness of the interfacial zone should probably be introduced. However, since we do not perform any scaling-based
simplifications and the scaling only serves to provide dimensionless formulation, this issue can be ignored.
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� Model A2:

(2µ̃D̃ñΓ)−τ = −Aα̃ṽ−τ − Bρ̃−∇̃Γ

(
β̃
∂ṽ−n
∂ñΓ

)
, (114c)

∂ρ̃−

∂ñΓ

= C(ϑ̃) cosϕ (ρ̃−−ρ̃Mv )(ρ̃Ml −ρ̃−) +Dβ̃ ∂ṽ−n
∂ñΓ

; (114d)

� Model B1 and C:

(2µ̃D̃ñΓ)−τ = −Aα̃ṽ−τ + Bβ̃d̃ivṽ∇̃Γρ̃
− , (114e)

∂ρ̃−

∂ñΓ

= Dβ̃d̃ivṽ− ; (114f)

� Model B2:

(2µ̃D̃ñΓ)−τ = −Aα̃ṽ−τ − Bρ̃−∇̃Γ

(
β̃
∂ṽ−n
∂ñΓ

)
, (114g)

∂ρ̃−

∂ñΓ

= Dβ̃ ∂ṽ−n
∂ñΓ

. (114h)

6.2 Weak formulations of the initial and boundary value problems and their
numerical discretization

In this subsection, we first introduce the weak formulations to the system of governing equations (113)–
(114) and then we present its discretization. For simplicity, we avoid using tildes in the dimensionless
formulations (113) and (114). Since with respect to density, the strong form of the momentum balance
(113b) involves the third derivative, we employ a mixed formulation by introducing

z
def
= ∆ρ (115)

as a new variable. We also assume that both the bulk and the shear viscosities are constant, meaning
that µ=[µ], λ=[λ] (implying that µ̃=λ̃=1).

In order to specify a weak solution to (113)–(115), we first introduce several standard function spaces:
the Lebesgue space (L2(Ω), (·, ·)Ω), the Sobolev space W 1,2(Ω), and its dual (W 1,2(Ω))

∗
with the

corresponding duality pairing 〈·, ·〉Ω. We also set the space

W 1,2
n (Ω)

def
=
{
w = (w1, w2, w3) ∈ W 1,2(Ω)×W 1,2(Ω)×W 1,2(Ω); w · nΓ=0 at ∂Ω

}
and introduce the spaces

X
def
= W 1,2(Ω)×W 1,2

n (Ω)×
(
W 1,2(Ω)

)∗
, Y

def
= W 1,2(Ω)×W 1,2

n (Ω)×W 1,2(Ω) .
(116)

We say that u
def
= (ρ,v, z) ∈ X is a weak solution to (113)–(115) if(

∂ρ

∂t
, ϕρ

)
Ω

+

(
∂(ρv)

∂t
, ϕv

)
Ω

+ 〈z, ϕz〉Ω +BΩ(u, ϕu) +B∂Ω(u−, ϕu) = 0 for all ϕu = (ϕρ, ϕv, ϕz) ∈ Y ,

(117a)
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holds, where the bulk and boundary forms BΩ and B∂Ω are defined as

BΩ(u, ϕu)
def
= (div(ρv), ϕρ)Ω − (ρv ⊗ v,∇ϕv)Ω − (pvdW , divϕv)Ω +

1

Reλ
(divv, divϕv)Ω

+
2

Reµ
(D,∇ϕv)Ω + (Ca)2(z, div(ρϕv))Ω −G(ρb, ϕv)Ω + (∇ρ,∇ϕz)Ω ,

(117b)

B∂Ω(u−, ϕu)
def
= − 2

Reµ

∫
∂Ω

(DnΓ)−τ · ϕvτdS −
∫
∂Ω

∂ρ−

∂nΓ

ϕzdS . (117c)

Next, we replace the integrands (2DnΓ)−τ and ∂ρ−

∂nΓ
in B∂Ω by means of (114) and employ the identity

B
Reµ

=D(Ca)2. This will generate four different forms:

B
(A1)
∂Ω (u−, ϕu) =

A
Reµ

∫
∂Ω

αv−τ · (ϕv)τ dS −D(Ca)2

∫
∂Ω

βdivv−∇Γρ
− · (ϕv)τ dS

−
∫
∂Ω

{
C cosϕ (ρ−−ρMv )(ρMl −ρ−)+Dβdivv−

}
ϕz dS , (118a)

B
(A2)
∂Ω (u−, ϕu) =

A
Reµ

∫
∂Ω

αv−τ · (ϕv)τ dS −D(Ca)2

∫
∂Ω

β

(
∂v−n
∂nΓ

)
divΓ(ρ−(ϕv)τ ) dS

−
∫
∂Ω

{
C cosϕ (ρ−−ρMv )(ρMl −ρ−) +Dβ∂v−n

∂nΓ

}
ϕz dS , (118b)

B
(B1&C)
∂Ω (u−, ϕu) =

A
Reµ

∫
∂Ω

αv−τ · (ϕv)τ dS −D(Ca)2

∫
∂Ω

βdivv−∇Γρ
− · (ϕv)τ dS

−
∫
∂Ω

Dβdivv−ϕz dS , (118c)

B
(B2)
∂Ω (u−, ϕu) =

A
Reµ

∫
∂Ω

αv−τ · (ϕv)τ dS −D(Ca)2

∫
∂Ω

β

(
∂v−n
∂nΓ

)
divΓ(ρ(ϕv)τ ) dS

−
∫
∂Ω

Dβ∂v−n
∂nΓ

ϕz dS . (118d)

Let us note that in (118b) and (118d), we applied the integration by parts in the second terms on the
right-hand sides. The system is supplemented with initial conditions for the density and the velocity:

ρ(t,x)|t=0 = ρ0(x) , v(t,x)|t=0 = v0(x) , x ∈ Ω .

The weak formulation (117) and (118) is discretized in time by a simple Θ-scheme and in space
by the Galerkin method. Denoting (finite-element) discrete subspaces of X and Y by Xh and Yh,

respectively, we define the discrete solution at the n-th time level as unh
def
= (ρnh,v

n
h, z

n
h) ∈ Xh

satisfying(
ρn+1
h −ρnh
δt

, ϕhρ

)
Ωh

+

(
ρn+1
h vn+1

h −ρnhvnh
δt

, ϕhv

)
Ωh

+ (zn+1
h , ϕhz )Ωh

+ ΘBΩh
(un+1
h , ϕhu) + (1−Θ)BΩh

(unh, ϕ
h
u)

+ ΘB∂Ωh
(un+1
h , ϕu) + (1−Θ)B∂Ωh

(unh, ϕu) = 0, for all ϕhu ∈ Yh , (119a)

where BΩh and B∂Ωh differ from BΩ and B∂Ω only by the integration domains - here Ωh and ∂Ωh

denote the (finite element) approximations of Ω and ∂Ω, respectively. The initial values are taken as
ρ0
h = (ρ0)h and v0

h = (v0)h. Finally, Θ∈〈0, 1〉, where the value Θ=1 yields a fully implicit time
discretization and Θ=0.5 corresponds to the Crank-Nicolson scheme.
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6.3 Numerical solution

The discrete system (119) is implemented by a finite-element method in the software package FEniCS
(Alnaes et al., 2015) and for the discrete spaces, we choose continuous piece-wise polynomial approx-
imations Xh = P3×(P2)3×P3, where PN denotes polynomials of order N . We apply a structured
mesh to a two-dimensional domain Ω with the aspect height-to-length ratio 1:3. The mesh consists
of N1×N2 squares, each divided into 4 regular triangles. We apply a scaling of the capillary number
Ca based on the refinement methodology proposed by Gomez et al. (2010). Gomez et al. (2010)
argue that since the realistic resolution of the diffuse interface zone in the Korteweg models is out of
the scope of macroscopic models, it is reasonable to treat the capillary number in such cases as a
regularizing parameter; it’s adjustment is based on the given spatial resolution of the model in such
a way that the diffuse interface remains reasonably resolved. Based on this idea Gomez et al. (2010)
introduce the parameterization Ca= h

L0
, where h is the characteristic length scale of the spatial mesh,

here defined as h= L0

2
√
N1N2

, with the length scale L0=1 and N1=90, N2=30. Moreover, we also

adopt the scaling of the Reynolds numbers from Gomez et al. (2010), setting Reµ=Reλ=2Ca−1.
Being interested only in qualitative properties of the model, we set all but one of the remaining di-
mensionless numbers equal to one, i.e., we assign A=B=D=1. The exception is the parameter C
(depending on temperature), which governs the equilibrium contact angle, which we want to control
quantitatively. For temperature ϑ=0.85ϑc, we get C(0.85)

.
= 25.5

9
√

3Ca
, see (128) in the Appendix.

Since the boundary conditions corresponding to Models B1, B2, and C represent a subclass of the
boundary conditions for Models A1 and A2, we only consider the latter two models. The dimensionless
boundary conditions in the considered setting simplify to (we omit tilde symbols for brevity):

� Model A1:

(2µDnΓ)−τ = −αv−τ + βdivv−∇Γρ
− , (120a)

∂ρ−

∂nΓ

= C cosϕ (ρ−−ρMv )(ρMl −ρ−) + βdivv− ; (120b)

� Model A2:

(2µDnΓ)−τ = −αv−τ − ρ−∇Γ

(
β
∂v−n
∂nΓ

)
, (120c)

∂ρ−

∂nΓ

= C cosϕ (ρ−−ρMv )(ρMl −ρ−) + β
∂v−n
∂nΓ

. (120d)

Experiment 1
In this numerical experiment, we study the evolution of the Korteweg - van der Waals fluid in a two-
dimensional container Ω in the absence of body forces, meaning that b=0 in (117). The system is
initially at rest (v0=0). Consequently, the only driving mechanisms for its evolution are the boundary
conditions (120) provided that ϕ6=π

2
on the upper or lower part of the boundary. In order to isolate the

effect of the novel contact angle condition and the generalized Navier slip condition from the traditional
Navier slip boundary condition, we set α=0.

In Fig. 4, we depict the evolution of the density distribution from the initial condition (top left). The
system consists of a vapour in the Maxwell state ρMv in the right part of the domain (white) and
liquid in the Maxwell state with density ρMl in the left part of the panel (grey) separated by a flat
interface perpendicular to the boundary. In order to demonstrate that with the value of C as in (128),
the parameter ϕ controls (and equals) the equilibrium value of the contact angle of the fluid-vapor
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O. Souček, M. Heida, J. Málek 30

interface, we prescribe in all simulations in Experiment 1 the value of the static contact angle ϕ on
the top boundary and π−ϕ on the bottom boundary. The reason is that in this case the equilibrium
interfaces are particularly simple, being linear. In the snaphots of the simulation shown in Fig. 4, we
employ only the equilibrium (static) part of the contact angle-condition, which means we consider
β=0. The red contour denotes the interface between the liquid and water phases defined here by the

density value
ρMv +ρMl

2
. The arrows depict the velocity field. All quantities are dimensionless and since

(with the exception of the equilibrium contact angle) we are interested only in qualitative behavior of
the model, we do not show any scales. In Fig. 5 we show the final states of three simulations, which
differ only in the value of ϕ, considering ϕ=π

3
, π

4
, and π

6
. For comparison, we plot also black dashed

lines with the slope corresponding to the prescribed ϕ and we observe very good agreement.

In order to study the effect of the dynamic part of the contact angle condition, in Fig. 6, we depict the
time evolution of the interface based on the value of the parameter β for Models A1 (top row) and
A2 (bottom row) for a given static contact angle ϕ=π

3
. Note that the parameter β appears both in the

contact angle condition and in the generalized Navier slip condition; see eq. (120). The case β=0
corresponds to the solely static contact angle condition while for β>0 additional dissipative surface
mechanism is present. In the second case, the evolution of the interface and motion of the contact
points lags behind the case with the static contact angle and this dynamic effect is stronger for Model
A2 than for Model A1 and depends in both cases on the values of β. While for Model A1 there appears
to be a saturation of the dynamic effect with respect to increasing values of β, for Model A2 the bigger
the value of β, the stronger the dynamic effect. It is important to note that for all non-zero values of β,
the final equilibrium configuration matches the case with β=0 as expected since the additional terms
are of non-equilibrium nature and must vanish in the final equilibrium state.

Figure 4: Evolution of the density distribution in a Korteweg - van der Waals model from the initial
condition (top left) given by vapour in the Maxwell state ρMv in the right part of the domain (white) and
liquid in the Maxwell state with density ρMl in the left part of the panel (grey) to the equilibrium given by
a static contact angle π

3
(bottom right). The solid red contour denotes the interface between the liquid

and water phases defined here by the density value
ρMv +ρMl

2
. The arrows represent the velocity field.

Experiment 2
In the second numerical experiment, we study the spreading of a droplet of a Korteweg - van der
Waals liquid (83) in contact with a wall under the action of gravity (i.e. for b= − gez; g being the
gravity acceleration and ez the unit vector in the vertical direction). We again set α=0. We consider
the same set of dynamic and static boundary conditions as is the first experiment and we plot the same
quantities. In particular, in Fig. 7, we show the time evolution in the case of a solely static contact angle
and in Fig. 8, we depict the zoomed-in evolution of the interface between the liquid and vapor phases
for different values of β for Models A1 (top row) and A2 (bottom row), respectively. As in Experiment
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Figure 5: Equilibrium states of simulations as in Fig. 4, which differ by the values of the equilibrium
contact angle ϕ=π

3
,(left) π

4
(middle) and π

6
(right). The solid red contour denotes the interface between

the liquid and water phases defined here by the density value
ρMv +ρMl

2
and the dashed black line is a

linear function with the slope given by ϕ passing through the center of the domain.

Figure 6: Zoomed-in evolution of the interface between the two Maxwell states for different values of
β parameter for Model A1 (top row) and for Model A2 (bottom row).

1, we see that the introduction of the dynamic contact angle condition and associated surface traction
term in the momentum balance leads to a delay in the evolution of the interface and the contact point
when compared with solely static contact angle conditions. The equilibria are again the same for all
models. Again, the dynamic effect is weaker for Model A1 compared to Model A2, and the dependence
on the value of β is the same as in Experiment 1 - we observe a saturation of the dynamic effect for
higher values of β for Model A1, while the effect appears to monotonously increase with the increasing
value of β for Model A2.

Experiment 3
In the last numerical experiment, we study the combined effect of the dynamic contact angle condition
and generalized Navier-slip at the boundary. We consider the same geometry as in Experiment 2, only
the initial condition is such that the droplet is positioned more to the left. The body force is prescribed
as

b = (g sin Φ,−g cos Φ) , (121)

i.e., we consider a droplet sliding down an inclined slope (with an inclination Φ=π
6

), viewed from a
coordinate system rotated such that its horizontal axis is aligned with the slope. The (dimensionless)
friction parameter is set to α=50 in all experiments. In Fig. 9, we plot several time snapshots of the
evolution (for Model A2 and β=100). Interestingly, we observe a difference between the values of the
contact angles between the advancing side (right) and the receding side (left) of the droplet.
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Figure 7: Evolution of a semicircular droplet of a Korteweg - van der Waals liquid with density ρMl
surrounded by vapour with density ρMv from the initial condition (top left) to an equilibrium given by
static contact angle π

3
(bottom right). The red contour denotes the interface between the liquid and

vapour phases defined here by the density value
ρMv +ρMl

2
. The arrows denote the velocity field.

Figure 8: Zoomed-in evolution of the interface between the two Maxwell states in the vicinity of the
contact point with the wall for different values of β for Model A1 (top row) and for Model A2 (bottom
row).

In Fig. 10 we show how this effect depends on the values of the dynamic coefficient β for the two
Models A1 and A2. We can see that the observed phenomenon is clearly governed by the β parame-
ter and is rather insensitive to the type of the Model (A1 vs. A2). The bigger the value of β, the more
pronounced the effect. These results are satisfactory in the sense that they provide a possible ex-
planation of the dynamic contact angle hysteresis observed in nature (see e.g. Bormashenko, 2013),
often attributed to pinning of the contact line. Here it results from dissipative processes within the in-
terfacial zone between the phases; such an explanation corresponds to the ideas suggested recently
in Makkonen (2017).

7 Conclusions

In this paper we have developed a thermodynamical framework to identify the boundary conditions
for a class of Korteweg-type fluids. We exploited the tools of continuum thermodynamics stemming
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Figure 9: Sliding of an originally semicircular droplet of a Korteweg - van der Waals liquid with density
ρMl surrounded by vapour with density ρMv from the initial condition (top left) over an inclined slope
(inclination 30◦) under the action of gravity. The equilibrium static contact angle is π

2
. The slope is

rotated such that the horizontal axis is aligned with the slope. The red contour denotes the interface

between the liquid and vapour phases defined here by the density value
ρMv +ρMl

2
. The arrows represent

the velocity field.

Figure 10: Evolution of the interface between the two Maxwell states for different values of β for Model
A1 (top row) and for Model A2 (bottom row).

from the balance equations both in the bulk and at the boundary of the domain, which was treated
as an interface between the body and its surroundings. Assuming the constitutive equations for the
Helmholtz free energy in the bulk and at the boundary, we identified the surface and bulk entropy
production mechanisms giving us a starting point for the formulation of the constitutive equations in
the bulk and at the boundary.

For three types of surface Helmholtz free energy of various complexity, we derived a hierarchy of
corresponding constitutive equations at the boundary. While some of the constitutive relations on the
boundary took standard forms, in particular the in-surface Fourier heat flux, and the heat transmission
conditions across the surface (Kapitza conditions), we obtained also two novel boundary conditions
mutually coupled by a common parameter. The first one represents a nontrivial generalization of the
Navier slip condition, relating the traction force at the boundary with the slip velocity and a novel
dynamic term - either the trace of the divergence of the bulk velocity field, or the normal derivative of
the normal velocity component. The second novel boundary condition was interpreted as a contact
angle boundary condition for the Korteweg fluid model and it relates the normal derivative of density
with two types of terms. The static terms arise from the surface Helmhotz free energy and characterize
the value of the equilibrium contact angle attained after cessation of all motion in the fluid. The other
terms are dynamic and dissipative in nature and involve either the trace of the divergence of the bulk
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velocity or the normal derivative of its normal component. These terms do not affect the equilibrium
value of the contact angle and are only active in the dynamic situation when the fluid is flowing. It
should be noted that in the literature it is possible to find alternative dynamic contact angle conditions
involving the term ∂ρ−

∂t
; see Jacqmin (2000). From the perpective of the derivation presented here,

such boundary conditions would be recovered provided that we do not replace the term
DΓρ

−

Dt
in

(32) using the mass balance in the bulk. The approach presented here thus represents a possible
generalization of such models.

Considering isothermal processes at a subcritical temperature admitting coexistence of liquid and
gaseous phases, we then made the model explicit. We assumed that the Helmholtz free energy in the
bulk corresponds to the Korteweg - van der Waals fluid, and the surface Helmholtz free energy reflects
a simple characterization of the static contact angle. For this model, we derived explicit formulae for the
contact angle condition and for the generalized Navier slip. The resulting model was implemented in
the finite-element software package FEniCS. We studied the qualitative behavior of the Korteweg fluid
model with the derived boundary conditions in three numerical experiments. The first two experiments
confirmed the interpretation of the novel boundary conditions, namely we observed a time lag in the
attainment of the static (equilibrium) value of the contact angle and also a lag in the motion of the
contact line with an increasing amplitude of the novel dynamic terms. In the third experiment, we
studied the sliding of a liquid droplet over an inclined plane, and we observed the so-called contact
angle hysteresis, that is, a difference of the contact angle between the advancing and the receding
side of the droplet. This phenomenon is often attributed to pinning of the contact line to irregularities
on the surface; in our model it results from a dissipative process localized in the contact zone.

It should be noted that when constructing the constitutive relations, we constrained ourselves to linear
relations for simplicity. A nonlinear generalization of our approach is possible. Here one could follow
various thermodynamic approaches, such as the construction based on the maximization of the rate
of entropy production (Rajagopal and Srinivasa, 2004) or by defining a suitable convex dissipation
potential and deriving the constitutive response accordingly in the context of the so-called general-
ized standard materials (e.g. Halphen and Son Nguyen, 1975). It is also worth noting that while we
considered just one particular member of the rich family of the so-called diffuse interface models - a
Korteweg fluid - we are positive that the developed methodology could also be applied to other mem-
bers of this class. The concept of a diffuse interface between two distinct subregions has been used
since its origin at the turn of the 19th century for instance in the context of multicomponent materials
(Cahn and Hilliard, 1958, 1959), in the classical theory of superconductivity (Landau and Ginzburg,
1965), and, more recently in the modeling of various natural phenomena such as foams (Fonseca
et al., 2007), solidification (Kobayashi, 1994), phase transitions in solids (Fried and Gurtin, 1994), and
glass formation (Řehoř et al., 2017), to name just a few of the plethora of applications. In all of these
applications, generalizations of the boundary conditions and in particular, the dynamic contact angle
conditions expressed as conditions for the normal derivative of the particular order parameter, should
be possible following the methodology developed in this manuscript. In particular, this approach might
play a key role in identification of suitable boundary conditions for viscoelastic rate type models with
stress diffusion (Málek et al., 2018). Yet another generalization of our models could be obtained by
relaxing the assumptions made on the structure of the surface Cauchy stress tensor; here we as-
sumed that it is spherical (membrane model) and that the surface tension is constant. We conjecture
that relaxing these assumptions would lead to the appearance of additional dynamic terms and ad-
mitting surface tension gradient would allow one to capture phenomena such as the Marangoni effect
(Marangoni, 1871).
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A Evaluation of the static angle function γ0(ϑ)

We provide an explicit evaluation of the parameter γ0, which governs the static (equilibrium) part of
the contact angle condition for Models A1 and A2, see (108). Let us recall the definition of γ0:

γ0 =
σlv
σ

(∫ ρMl

ρMv

(x− ρMv )(ρMl − x) dx

)−1

. (122)

The crucial step is to evaluate the fraction σlv
σ

, i.e. to find the relation between the surface tension of
the liquid-vapor interface and the parameter σ appearing at the gradient term in the bulk Helmholtz
free energy of the Korteweg fluid (see (83)). Based on Diehl (2007) and Dreyer and Kraus (2010), for
the model described by the Helmholtz free energy (83) and (84), it holds

σlv =
√
σc0 , where c0(ϑ)

def
=
√

2

∫ ρMl (ϑ)

ρMv (ϑ)

√
ρψvdW (ϑ, ρ)− ρµvdW (ϑ, ρMv ) + pvdW (ϑ, ρMv ) dρ ,

(123)

with the thermodynamic pressure pvdW and the chemical potential µvdW given by (86) and (87),
respectively. We introduce dimensionless function c̃0(ϑ̃) as in Diehl (2007) through

c0(ϑ) = ρc
√
pc c̃0(ϑ̃) =

√
a′(b′)2

9
√

3
c̃0(ϑ̃) , (124)

where ρc, pc and ϑc are the critical density, pressure and temperature, respectively, given by (89), and
ϑ̃= ϑ

ϑc
is the dimensionless temperature. The function c̃0(ϑ̃) can be approximated by the following

expression (Diehl, 2007, p.37):

c̃0(ϑ̃)
.
=
√

2
√

1− ϑ̃
(

6.4(1− ϑ̃)− 0.7(1− ϑ̃)2
)
, (125)

which provides a good fit for ϑ̃∈〈0.6, 1〉. Applying the scaling and the definition of the capilary number
from Section 6.1, we rewrite finally (108)1 as follows

∂ρ̃

∂nΓ

= C(ϑ̃) cosϕ (ρ̃− − ρ̃Mv )(ρ̃Ml − ρ̃−) , (126)

where we introduced the dimensionless function C(ϑ̃) as follows

C(ϑ̃)
def
=

1

9
√

3Ca

c̃0(ϑ̃)

r̃(ϑ̃)
with r̃(ϑ̃)

def
=

∫ ρ̃Mv

ρ̃Mv

(x− ρ̃Mv )(ρ̃Ml − x) dx , (127)

Finally, for the value ϑ̃=0.85, considered in our numerical simulations, we evaluate the Maxwell states
numerically by solving (90): ρMl =0.6024, ρMv

.
=0.1066, and, consequently, from (125) and (126), we

obtain r̃(0.85)
.
=0.0203, c̃0(0.85)

.
=0.5172. This yields the value of C used in the numerical simula-

tions in Section 6:

C(0.85)
.
=

25.5

9
√

3Ca
. (128)
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