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Multiscale modeling of magnetorheological suspensions
Grigor Nika, Bogdan Vernescu

Abstract

We develop a multiscale approach to describe the behavior of a suspension of solid magnetizable particles
in a viscous non-conducting fluid in the presence of an externally applied magnetic field. By upscaling the
quasi-static Maxwell equations coupled with the Stokes’ equations we are able to capture the magnetorhe-
ological effect. The model we obtain generalizes the one introduced by Neuringer & Rosensweig [24], [27]
for quasistatic phenomena. We derive the macroscopic constitutive properties explicitly in terms of the solu-
tions of local problems. The effective coefficients have a nonlinear dependence on the volume fraction when
chain structures are present. The velocity profiles computed for some simple flows, exhibit an apparent yield
stress and the flow profile resembles a Bingham fluid flow.

1 Introduction

Magnetorhelogical fluids are a suspension of non–colloidal, ferromagnetic particles in a non–magnetizable car-
rier fluid. The particles are often of micron size ranging anywhere from 0.05− 10µm with particle volume frac-
tion from 10− 40 %. They were discovered by J. Rabinow in 1948 [26]. Around the same time W. Winslow [34]
discovered electrorheological fluids, a closely related counterpart [3], [12], [25], [33].

Magnetorheological fluids respond to an external magnetic field by a rapid, reversible change in their properties.
They can transform from a liquid to a semi solid state in a matter of milliseconds. Upon the application of a
magnetic field, the dipole interaction of adjacent particles aligns the particles in the direction of the magnetic
field lines. Namely particles attract one another along the magnetic field lines and repel one another in the
direction perpendicular to them. This leads to the formation of aggregate structures or chain structures. Once
these chain structures are formed, the magnetorheological fluid exhibits a higher viscosity and yield stress that
can now be triggered and dynamically controlled by an applied external magnetic field [3], [6], [9], [19].

The presence of these chain structures leads to a non-Newtonian behavior of the fluid. In many works, the
Bingham constitutive law is used as an approximation to model the response of the magnetorheological and
electrorheological fluids, particularly in shear experiments [7], [12], [25], [8]. Although the Bingham model has
proven itself useful in characterizing the behavior of magnetorheological fluids, it is not always sufficient. Recent
experimental data show that true magnetorheological fluids exhibit departures from the Bingham model [12],
[35], [36].

Another member of the magnetic suspensions family are ferrofluids. Ferrofluids are stable colloidal suspensions
of nanoparticles in a non-magnetizable carrier fluid. The initiation into the hydrodynamics of ferrofluids began
with Neuringer and Rosensweig in 1964 [24] and by a series of works by Rosensweig and co-workers sum-
marized in [27]. The model introduced in [24] assumes that the magnetization is collinear with the magnetic
field and has been very useful in describing quasi-stationary phenomena. This work was extended by Shliomis
[31] by avoiding the collinearity assumption of the magnetization and the magnetic field and by considering the
rotation of the nanoparticles with respect to the fluid they are suspended in.

Most of the models characterizing magnetorheological suspensions are derived phenomenologically. The first
attempt to use homogenization mechanics to describe the behavior of magnetorheological / electrorheological
fluids was carried out in [14], [15] and [25]. In the works [14], [15] the influence of the external magnetic field
is introduced as a volumic density force acting on each particle and as a surface density force acting on the
boundary of each particle. The authors in [25] extend the work in [15], for electrorheological fluids, by present-
ing a more complete model that one way couples the conservation of mass and momentum equations with
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Maxwell’s equations through the Maxwell stress tensor. As an application they consider a uniform shearing of
the electrorheological fluid submitted to a uniform electric field boundary conditions in a two dimensional slab
and they recover a stress tensor, at the macroscopic scale, that has exactly the form of the Bingham constitutive
equation.

The authors in [25], [27], [28], [33], [10] use models that decouple the conservation of mass and momentum
equations from the Maxwell equations. Thus, in principle, one can solve the Maxwell equations and use the
resulting magnetic or electric field as a force in the conservation of mass and momentum equations.

The present work focuses on a suspension of rigid magnetizable particles in a Newtonian viscous fluid with an
applied external magnetic field. We assume the fluid to be electrically non-conducting. We use the homogeniza-
tion method to upscale the quasi-static Maxwell equations coupled with the Stokes equations through Ohm’s
law to capture the magnetorheological effect. In doing so we extend the model of [25], [33]. Thus, the Maxwell
equations, and the balance of mass and momentum equations must be simultaneously solved. Additionally, the
model is able to capture the added effect particle chain structures have on the effective coefficients. We demon-
strate this added effect by carrying out explicit computations of the effective coefficients using the finite element
method.

The paper is organized in the following way. In Section 2. we introduce the problem in the periodic homogeniza-
tion framework. The particles are periodically distributed and the size of the period is of the same order as the
characteristic length of the particles. We assume the fluid velocity is continuous across the particle interface and
that the particles are in equilibrium in the presence of the magnetic field.

In Section 3. we use two-scale expansions to obtain a one way coupled set of local problems at order O(ε−1).
One problem characterizes the effective viscosity of the magnetorheological fluid while the other local problem
represents the magnetic field contribution.

Section 4. and Section 5. are devoted to the study of the local problems that arise from the contribution of the
bulk magnetic field as well as the bulk velocity and we provide new constitutive laws for Maxwell’s equations.

In Section 6. we provide the governing effective equations of the magnetorheological fluid which include, in
addition to the viscous stresses, a “Maxwell type” stress of second order in the magnetic field. Furthermore, we
provide formulas for the effective viscosity and three different effective magnetic permeabilities for the “Maxwell
typeßtress that generalize those in [15].

Section 7. is devoted to numerical results for a suspension of circular iron particles of different volume fractions
using the finite element method. Moreover, we explore the effect that chain structures have in the effective
coefficients and compare the results with the absence of chain structures. Moreover, we compute the velocity
profiles for Poiseuille and Couette flows of the magnetorheological fluid and we plot the shear stress versus the
shear rate curve for different values of the applied magnetic field to obtain a yield stress comparable to the one
observed experimentally (e.g. [35]). Finally Section 8. contains conclusions and perspectives on the study.

Notation

Throughout the paper we are going to be using the following notation: I indicates the n × n identity matrix,
bold symbols indicate vectors in two or three dimensions, regular symbols indicate tensors, e(uuu) indicates the

strain rate tensor defined by e(uuu) =
1

2

(
∇uuu+∇uuu>

)
, where often times we will use subscript to indicate the

variable of differentiation. The inner product between matrices is denoted by A:B = tr(A>B) =
∑

ij Aij Bji
and throughout the paper we employ the Einstein summation notation for repeated indices.
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2 Problem statement

For the homogenization setting of the suspension problem we define Ω ⊂ Rn, n = 2, 3, to be a bounded

open set with sufficiently smooth boundary ∂Ω, Y =

(
−1

2
,
1

2

)n
is the unit cube in Rn, and Zn is the set of

all n–dimensional vectors with integer components. For every positive ε, let N ε be the set of all points ` ∈ Zn
such that ε(` + Y ) is strictly included in Ω and denote by |N ε| their total number. Let T be the closure of an
open connected set with sufficiently smooth boundary, compactly included in Y . For every ε > 0 and ` ∈ N ε

we consider the set T ε` ⊂⊂ ε(`+ Y ), where T ε` = ε(`+ T ). The set T ε` represents one of the rigid particles
suspended in the fluid, and Sε` = ∂T ε` denotes its surface (see Figure 1). Based on the above setting we define
the following subsets of Ω:

Ω1ε =
⋃
`∈Nε

T ε` , Ω2ε = Ω\Ω1ε.

In what follows T ε` will represent the magnetizable rigid particles, Ω1ε is the domain occupied by the rigid
particles and Ω2ε the domain occupied by the surrounding fluid. Bynnn we indicate the unit normal on the particle
surface pointing outwards and by J·K we indicate the jump discontinuity between the fluid and the rigid part.

Ω

Ω1ε

Ω2ε x`c

T ε`

Y ε
`

ε

ε

Figure 1: Schematic of the periodic suspension of rigid magnetizable particles in a non-magnetizable fluid.
Ω1ε represents the domain occupied by the rigid particles and Ω2ε represents the domain occupied by the
surrounding fluid. xxx`c represents the center of mass of the particle inside the cell of size ε, Y ε

` .

We consider the Navier-Stokes equations coupled with the quasistastic Maxwell equations,

ρ
∂ vvvε

∂ t
+ ρ (vvvε · ∇)vvvε − div σε = ρfff, where σε = 2 ν e(vvvε)− pεI in Ω2ε, (1a)

div vvvε = 0, divBBBε = 0, curlHHHε = 000 in Ω2ε, (1b)

e(vvvε) = 0, divBBBε = 0, curlHHHε = η vvvε × BBBε in Ω1ε, (1c)

whereBBBε = µεHHHε, with boundary conditions on the surface of each particle T ε` ,

JvvvεK = 000, JBBBε ·nnnK = 0, Jnnn×HHHεK = 000 on Sε` , (2)

and outer boundary conditions
vvvε = 000, HHHε = bbb on ∂Ω, (3)

where ρ is the density of the fluid, ν is the viscosity, vvvε represents the velocity field, pε the pressure, e(vvvε) the
strain rate, fff the body forces, nnn the exterior normal to the particles,HHHε the magnetic field, µε is the magnetic
permeability of the material, µε(xxx) = µ1 if xxx ∈ Ω1ε and µε(xxx) = µ2 if xxx ∈ Ω2ε, η the electric conductivity of
the rigid particles, and bbb is an applied constant magnetic field on the exterior boundary of the domain Ω.
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In order to obtain the balance of forces and torques for the particles, let us observe when the magnetorheological
fluid is submitted to a magnetic field, the rigid particles are subjected to a force that makes them behave like a
dipole aligned in the direction of the magnetic field. This force can be written in the form,

FFF ε = −1

2
|HHHε|2∇µε,

where | · | represents the standard Euclidean norm. The force can be written in terms of the Maxwell stress
τ εij = µεHε

i H
ε
j − 1

2 µ
εHε

kH
ε
k δij as FFF ε = div τ ε + BBBε × curl HHHε. Since the magnetic permeability is

considered constant in each phase, it follows that the force is zero in each phase. Therefore, we deduce that

div τ ε =

{
0 if xxx ∈ Ω2ε

−BBBε × curlHHHε if xxx ∈ Ω1ε.
(4)

Lastly, we remark that unlike the viscous stress σε, the Maxwell stress is present in the entire domain Ω. Hence,
we can write the balance of forces and torques in each particle as,

∫
T ε`

ρ
duuuε

dt
dxxx =

∫
Sε`

(σεnnn+ Jτ εnnnK) ds+

∫
T ε`

BBBε × curlHHHε dxxx+

∫
T ε`

ρfff dxxx,∫
T ε`

ρ(xxx− xxx`c)×
duuuε

dt
dxxx =

∫
Sε`

(σεnnn+ Jτ εnnnK)× (xxx− xxx`c) ds

+

∫
T ε`

(BBBε × curlHHHε)× (xxx− xxx`c) dxxx+

∫
T ε`

ρfff × (xxx− xxx`c) dxxx,

(5)

where xxx`c is the center of mass of the rigid particle T ε` .

Equations (1), (5) together with boundary conditions (2), (3) describe the behavior of the magnetorheological
suspension.

2.1 Dimensional Analysis

Before we proceed further we non-dimensionalize the problem. Denote by t∗ = t/LV , x∗ = x/L, vvv∗ = vvv/V ,

p∗ = p/ν VL , HHH∗ = HHH/H , fff∗ = fff/V
2

L , and µε∗ = µε/µ2. Here L is a characteristic length, V is a
characteristic velocity, p is a characteristic pressure, fff is a characteristic force and H is a characteristic unit of
the magnetic field. Substituting the above expressions into (1) as well as in the balance of forces and torques,
and using the fact that the flow is assumed to be at low Reynolds numbers, we obtain

Re

(
∂ vvvε∗

∂ t
+ (vvvε∗ · ∇)vvvε∗

)
− div ∗σε∗ = Refff∗, where σε∗ = 2 e(vvvε∗)− pε∗I in Ω2ε,

div ∗vvvε∗ = 0, div ∗BBBε∗ = 0, curl ∗HHHε∗ = 000 in Ω2ε,

e∗(vvvε∗) = 0, div ∗BBBε∗ = 0, curlHHHε∗ = Rmvvv
ε∗ × BBBε∗ in Ω1ε,

whereBBBε∗ = µε∗HHHε∗ and with boundary conditions on the surface of each particle T ε` ,

Jvvvε∗K = 000, JBBBε∗ ·nnnK = 0, Jnnn×HHHε∗K = 000 on Sε` ,

vvvε∗ = 000, HHHε∗ = bbb∗ on ∂Ω.

together with the balance of forces and torques,
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Re

∫
T ε`

duuuε∗

dt∗
dxxx∗ =

∫
Sε`

σε∗nnnds∗ + α

∫
Sε`

Jτ ε∗nnnK ds∗ + α

∫
T ε`

BBBε∗ × curlHHHε∗ dxxx∗

+ Re

∫
T ε`

fff∗ dxxx∗,

Re

∫
T ε`

(xxx∗ − xxx`∗c )× duuuε∗

dt∗
dxxx∗ =

∫
Sε`

σε∗nnn× (xxx∗ − xxx`c
∗
)ds∗ + α

∫
Sε`

Jτ ε∗nnnK× (xxx∗ − xxx`c
∗
)ds∗

+ α

∫
T ε`

(BBBε∗ × curlHHHε∗)× (xxx∗ − xxx`c
∗
)dxxx∗ + Re

∫
T ε`

fff∗ × (xxx∗ − xxx`c
∗
)dxxx∗,

where Re =
ρ V L

ν
is the Reynolds number, α =

µ2H
2 L

ν V
is the Alfven number, and Rm = η µ2 LV is the

magnetic Reynolds number.

In what follows we drop the star for simplicity. Moreover, for low Reynolds numbers the preceding equations
become,

−div σε = 000, where σε = 2 e(vvvε)− pεI in Ω2ε, (6a)

div vvvε = 0, divHHHε = 0, curlHHHε = 000 in Ω2ε, (6b)

e(vvvε) = 0, divHHHε = 0, curlHHHε = Rm vvv
ε × BBBε in Ω1ε, (6c)

with boundary conditions

JvvvεK = 000, JBBBε ·nnnK = 0, Jnnn×HHHεK = 000 on Sε` ,

vvvε = 000, HHHε = bbb on ∂Ω,
(7)

together with the balance of forces and torques,

0 =

∫
Sε`

σεnnnds+ α

∫
Sε`

Jτ εnnnK ds+ α

∫
T ε`

BBBε × curlHHHε dxxx,

0 =

∫
Sε`

σεnnn× (xxx− xxx`c) ds+ α

∫
Sε`

Jτ εnnnK× (xxx− xxx`c) ds

+ α

∫
T ε`

(BBBε × curlHHHε)× (xxx− xxx`c) dxxx.

(8)

3 Two scale expansions

We assume the particles are periodically distributed in Ω and thus consider the two scale expansion on vvvε,HHHε

and pε [1], [2], [4], [20], [29], [30],

vvvε(xxx) =
+∞∑
i=0

εi vvvi(xxx,yyy), HHHε(xxx) =
+∞∑
i=0

εiHHH i(xxx,yyy), pε(xxx) =
+∞∑
i=0

εi pi(xxx,yyy) with yyy =
xxx

ε
.

wherexxx ∈ Ω and yyy ∈ Rn. One can show that vvv0 is independent of yyy and can thus obtain the following problem
at order ε−1,

DOI 10.20347/WIAS.PREPRINT.2598 Berlin 2019
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−
∂σ0ij
∂yj

= 0 in Yf , (9a)

σ0ij = −p0 δij + 2 ν (eijx(vvv0) + eijy(vvv
1)) (9b)

∂v0j
∂xj

+
∂v1j
∂yj

= 0 in Yf , (9c)

eijx(vvv0) + eijy(vvv
1) = 0 in T, (9d)

∂B0
j

∂yj
= 0, εijk

∂H0
k

∂yj
= 0 where B0

i = µH0
i in Y, (9e)

with boundary conditions

q
vvv1

y
= 000,

q
BBB0 ·nnn

y
= 0,

q
nnn×HHH0

y
= 000 on S ,

vvv1, HHH0 are Y − periodic.
(10)

Here Yf and T denote the fluid, respectively the particle part of Y ; and S denotes the surface of T . At order of
ε2 and ε3 we obtain from (8) the balance of forces and torques for the particle T respectively,

0 =

∫
S
σ0nnnds+ α

∫
S

q
τ0nnn

y
) ds− α

∫
T
BBB0 × curlyHHH

0 dyyy,

0 =

∫
S
yyy × σ0nnnds+ α

∫
S
yyy ×

q
τ0nnn

y
ds− α

∫
T
yyy ×

(
BBB0 × curly(HHH0)

)
dyyy,

(11)

where τ0ij is the Maxwell stress at order ε0

τ0ij = µH0
i H

0
j −

1

2
µH0

k H
0
k δij , (12)

We remark that since from (9e) curly(HHH0) = 000 in Y , the balance of forces and torques simplify to the following,

0 =

∫
S
σ0nnn+ α

∫
S

q
τ0nnn

y
ds and 0 =

∫
S
yyy × σ0nnnds+ α

∫
S
yyy ×

q
τ0nnn

y
ds. (13)

Remark 1 At first order, the problem (9)-(13) becomes one way coupled, as one could solve the Maxwell equa-
tions (9e) independently. Once a solution is obtained, the Stokes problem (9a)-(9c), can be solved with a known
magnetic force added to the balance of forces and torques (13).

4 Constitutive relations for Maxwell’s equations

4.1 Study of the local problem

Using the results from the two scale expansions, (9e), we can see that curly(HHH0) = 000 in Y and thus there

exists a function ψ = ψ(xxx,yyy) with average ψ̃ = 0 such that

H0
i = −∂ψ(xxx,yyy)

∂yi
+ H̃0

i (xxx), (14)

DOI 10.20347/WIAS.PREPRINT.2598 Berlin 2019
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where ·̃ =
1

|Y |

∫
Y
· dyyy. Using the fact divyBBB

0 = 0 in Y , B0
i = µH0

i and the boundary conditions (7) we

have,

− ∂

∂yi

(
µ

(
− ∂ψ
∂yi

+ H̃0
i

))
= 0 in Y ,

s
µ

(
− ∂ψ
∂yi

+ H̃0
i

)
ni

{
= 0 on S ,

ψ is Y − periodic, ψ̃ = 0.

(15)

Introducing the space of periodic functions, with zero average

W =
{
w ∈ H1

per(Y ) | w̃ = 0
}
,

then the variational formulation of (15) is

Find ψ ∈ W such that∫
Y
µ
∂ψ

∂yi

∂v

∂yi
dyyy = H̃0

i (xxx)

∫
Y
µ
∂v

∂yi
dyyy for any v ∈ W.

(16)

Since we have imposed that ψ has zero average over the unit cell Y , the solution to (16) can be determined
uniquely by a simple application of the Lax-Milgram lemma.

Let φk be the unique solution of

Find φk ∈ W such that∫
Y
µ
∂φk

∂yi

∂v

∂yi
dyyy =

∫
Y
µ
∂v

∂yk
dyyy for any v ∈ W.

(17)

By virtue of linearity of (16) we can write,

ψ(xxx,yyy) = φk(yyy) H̃0
k(xxx) + C(xxx).

In principle, once H̃0
k is known, we can determine ψ up to an additive function of xxx. Hence, combining (14)

and the above relationship between ψ and φk we obtain the following constitutive law between the magnetic
induction and the magnetic field,

B̃0
i = µHik H̃

0
k , where µHik =

∫
Y
µ

(
−∂φ

k

∂yi
+ δik

)
dyyy. (18)

One can show (see [29]) that the homogenized magnetic permeability tensor is symmetric, µHik = µHki. More-

over, if we denote by Ai`(yyy) =
(
−∂φ`(yyy)

∂yi
+ δi`

)
one can see from (14) that H0

i = Ai`H̃
0
` and thus the

Maxwell stress (12) takes the following form,

τ0ij = µAi`Ajm H̃
0
` H̃

0
m −

1

2
µAmk A`k δij H̃

0
m H̃

0
` = µAm`ij H̃0

m H̃
0
` .

HereAm`ij = 1
2 (Ai`Ajm +Aj`Aim −Amk A`k δij) and has the following symmetry,Am`ij = Am`ji = A`mij .

Recall that the div τ ε = 0 in Ω2 ε and div τ ε = −BBBε × curl HHHε in Ω1ε. From the two scale expansion, at
order ε−1 from equation (4) we obtain,

div yτ
0 = 0 in Y. (19)

DOI 10.20347/WIAS.PREPRINT.2598 Berlin 2019
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5 Fluid velocity and pressure

5.1 Study of the local problems

Problem (9)-(10), (13) is an elliptic problem in the variable yyy ∈ Y with forcing terms vvv0(xxx) and H̃HH
0
(xxx) at the

macroscale. We can decouple the contributions of vvv0(xxx) and H̃0(xxx) and split vvv1 and p0 in two parts: a part
that is driven by the bulk velocity, and a part that comes from the bulk magnetic field.

v1k(xxx,yyy) = χm`k (yyy) em`(vvv
0) + ξm`k (yyy) H̃0

m H̃
0
` +Ak(xxx), (20)

p0(xxx,yyy) = pm`(yyy) em`(vvv
0) + πm`(yyy) H̃0

m H̃
0
` + p̄0(xxx), (21)

where

∫
Yf

pm`(yyy) dyyy = 0 and

∫
Yf

πm`(yyy) dyyy = 0.

Here, χχχml satisfies

− ∂

∂yj
εm`ij = 0 in Yf ,

εm`ij = −pm`δij + 2 (Cijm` + eijy(χχχ
m`))

−∂χ
m`
i

∂yi
= 0 in Yf ,

r
χχχm`

z
= 0 on S ,

Cijm` + eijy(χχχ
m`) = 0 in T ,

χχχm` is Y − periodic, χ̃χχm` = 000 in Y,

(22)

together with the balance of forces and torques,∫
S
εm`ij nj ds = 0 and

∫
S
εijk yj ε

m`
kp np ds = 0, (23)

where Cijm` =
1

2
(δimδj` + δi`δjm)− 1

n
δij δm`. Equation (22) is well known having been obtained by many

authors [16, 17, 18] among others.

The variational formulation of (22)-(23) is:

Find χχχm` ∈ U such that∫
Yf

2 eij(χχχ
m`) eij(φφφ−χχχm`) dyyy = 0, for all φφφ ∈ U ,

(24)

where U is the closed, convex, non-empty subset of H1
per(Y )n defined by

U =
{
uuu ∈ H1

per(Y )n | div uuu = 0 in Yf , eij(uuu) = −Cijm` in T, JuuuK = 000 on S,

ũuu = 000 in Y } .

Remark 2 We remark that if we define Bij
k = 1

2(yi δjk + yj δik) − 1
nyk δij , then it immediately follows that

eij(BBB
m`) = Cijm`.

DOI 10.20347/WIAS.PREPRINT.2598 Berlin 2019
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Existence and uniqueness of a solution follows from classical theory of variational inequalities [13]. In similar
fashion we can derive the local problem for ξξξml,

− ∂

∂yj
Σm`
ij = 0 in Yf ,

Σm`
ij = −πm`δij + 2 eijy(ξξξ

m`)

−∂ξ
m`
i

∂yi
= 0 in Yf ,

r
ξξξm`

z
= 0 on S ,

eijy(ξξξ
m`) = 0 in T ,

ξξξm` is Y−periodic, ξ̃ξξ
m`

= 0.

(25)

Using (19) the balance of forces reduces to, ∫
S

Σm`
ij nj ds = 0, (26)

together with the balance of torques∫
S
εijk yj

(
Σm`
kp + α

r
µAm`kp

z)
np ds = 0. (27)

We can formulate (25)–(27) variationally as,

Find ξξξm` ∈ V such that∫
Yf

2 eijy(ξξξ
m`) eijy(φφφ) dyyy +

∫
Y
Am`ij eijy(φφφ) dyyy = 0, for all φφφ ∈ V,

(28)

where

V =
{
vvv ∈ H1

per(Y )n | div vvv = 0 in Yf , ey(uuu) = 0 in T, JvvvK = 000 on S, ṽvv = 000 in Y
}
,

is a closed subspace of H1
per(Y )n. Existence and uniqueness follows from an application of the Lax-Milgram

lemma. These equations indicate the contribution of the magnetic field and the solution ξξξm` depends, through
the balance of forces and torques on the solution of the local problem (17) and the effective magnetic perme-
ability of the composite.

Remark 3 We remark that the only driving force that makes the solution ξξξm` non trivial in (28) is the rotation
induced by the magnetic field through the fourth order tensor Am`ij .

6 Effective balance equations

The two-scale expansion at the ε0 order yields the following problems:

−div xσ
0 − div yσ

1 = 000 in Yf , (29a)

div xvvv
1 + div yvvv

2 = 0 in Yf , (29b)

div xBBB
0 + div yBBB

1 = 0 in Y , (29c)

curl xHHH
0 + curl yHHH

1 = 0 in Yf , (29d)

curl xHHH
0 + curl yHHH

1 = Rm vvv
0 ×BBB0 in T , (29e)
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with boundary conditions

q
vvv2

y
= 000,

q
BBB1 ·nnn

y
= 0

q
nnn×HHH1

y
= 000 on S ,

vvv2, HHH1 are Y − periodic.
(30)

In each period, we consider a Taylor expansion, around the center of mass of the rigid particle, both of the
viscous stress and the Maxwell stress of the form (see [18]),

σε(xxx) = σ0(xxx`c, yyy) +
∂σ0(xxx`c, yyy)

∂xα
(xα − x`c,α) + ε σ1(xxx`c, yyy) + ε

∂σ1(xxx`c, yyy)

∂xα
(xα − x`c,α) + · · ·

τ ε(xxx) = τ0(xxx`c, yyy) +
∂τ0(xxx`c, yyy)

∂xα
(xα − x`c,α) + ε τ1(xxx`c, yyy) + ε

∂τ1(xxx`c, yyy)

∂xα
(xα − x`c,α) + · · ·

where the expansion of the Maxwell stress occurs both inside the rigid particle and the fluid. Using this method
we can expand the balance of forces, (8), and obtain at order ε3,

0 =

∫
S

(
∂σ0ij
∂xk

yk + σ1ij

)
nj ds+ α

∫
S

t(
∂τ0ij
∂xk

yk + τ1ij

)
nj

|

ds

− α
∫
T

(BBB0 × (curl xHHH
0 + curl yHHH

1))i dyyy.

(31)

Integrate (29a) over Yf and add to (31) obtain the following,

0 =

∫
Yf

∂σ0ij
∂xj

dyyy +

∫
S

∂σ0ij
∂xk

yknj ds+ α

∫
S

J(
∂τ0ij
∂xk

yk + τ1ij )njK ds

− α
∫
T

(BBB0 × (curl xHHH
0 + curl yHHH

1))i dyyy.

(32)

At order ε0 we obtain, div xτ
0+div yτ

1 = 0 in Yf and div xτ
0+div yτ

1 = −BBB0×(curl xHHH
0+curl yHHH

1)
in T . Combining the aforementioned results and the divergence theorem we can rewrite (32) the following way,

0 =

∫
Yf

∂σ0ij
∂xj

dyyy +

∫
S

∂σ0ik
∂xj

yjnk ds+ α

∫
S

s
∂τ0ik
∂xj

yj nk

{
ds+ α

∫
Y

∂τ0ij
∂xj

dyyy. (33)

Using the decomposition of vvv1 and p0 in (20) and (21) we can re-write σ0ij and τ0ij ,

σ0ij = −p̄0 δij + εm`ij emlx(vvv0) + Σm`
ij H̃

0
m H̃

0
` , τ0ij = µAm`ij H̃

0
m H̃

0
` .

Moreover, equations (9b), (12), (22) and (25) allow us to retain the only symmetric part of (33). Hence the
homogenized fluid equations (33) become,

0 =
∂

∂xj

(
−p̄0δij +

{∫
Yf

2eijy(BBB
m` +χχχm`)dyyy +

∫
S
εm`pk B

ij
p nkds

}
em`x(vvv0)

+

{∫
Yf

2eijy(ξξξ
m`)dyyy +

∫
S

Σm`
pk B

ij
p nkds

+α

∫
Y
µAm`ij dyyy + α

∫
S

r
µAm`pk

z
Bij
p nk

}
H̃0
mH̃

0
`

)
. (34)
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Furthermore, using (9c)–(9d) and the divergence theorem we can obtain the incompressibility condition, div xvvv
0 =

0.

Denote by

νHijm` =

{∫
Yf

2 eijy(BBB
m` +χχχm`) dyyy +

∫
S
εm`pk B

ij
p nk ds

}
and

βHijm` =

{∫
Yf

2eijy(ξξξ
m`)dyyy +

∫
S

Σm`
pk B

ij
p nkds+ α

∫
Y
µAm`ij dyyy + α

∫
S

r
µAm`pk

z
Bij
p nk

}
then the homogenized equation (34) becomes

0 =
∂

∂xj

(
−p̄0 δij + νijm` em`x(vvv0) + βijm` H̃

0
m H̃

0
`

)
.

Using local problem (22) we can re-write the νijm` the following way,

νHijm` =

∫
Yf

2 e(BBBml +χχχml) : e(BBBij +χχχij) dyyy. (35)

which is a well known formula derived in [16], [17], [29] as well as its generalizations derived in [18], [23]. In a
similar fashion, using local problem (25) and the kinematic condition in (22) we can re-write βHijm` as follows,

βHijm` =

∫
Yf

2e(ξξξml) : e(BBBij +χχχij)dyyy + α

∫
Yf

µAm` : e(BBBij +χχχij)dyyy

+ α

∫
Y
µAm`ij dyyy.

(36)

It is now clear that νHijm` possesses the following symmetry, νHijm` = νHjim` = νHm`ij . While for βHijm`, we have

βHijm` = βHjim` = βHij`m.

To obtain the homogenized Maxwell equations, average (29c), (29d), and (29e) over Y , Yf , and T respectively
and use equation (18) to obtain,

∂ (µHik H̃
0
k)

∂xj
= 0, εijk

∂H̃0
k

∂xj
= Rm εijk v

0
j µ

HS
kp H̃0

p in Ω,

where

µHSik =

∫
T
µ

(
−∂φ

k

∂yi
+ δik

)
dyyy (37)

with boundary conditions,

H̃0
i = bi, v0i = 0 on ∂Ω.

The effective coefficients are computed as the angular averaging of the tensors νHijm` and βHijm`. This is done
by introducing the projection on hydrostatic fields, Pb, and the projection on shear fields Ps (see [20], [21], [22]).
The components of the projections in three dimensional space are given by:

(Pb)ijk` =
1

n
δij δk`, (Ps)ijk` =

1

2
(δik δj` + δi` δjk)−

1

n
δij δk`.
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Let us fix the following notation:

νb = tr(Pb ν
H) =

1

n
νHppqq, νs = tr(Ps ν

H) =

(
νHpqpq −

1

n
νHppqq

)
,

βHb = tr(Pb β
H) =

1

n
βHppqq, βs = tr(Ps β

H) =

(
βHpqpq −

1

n
βHppqq

)
.

we can re-write the homogenized coefficients νHijm` and βHijm` as follows,

νHijm` =
1

n
(νb − νs)δijδm` +

1

2
νs (δikδj` + δi`δjk),

βHijm` =
1

n
(βb − νs)δijδm` +

1

2
βs (δikδj` + δi`δjk).

Gathering all the equations we have that the homogenized equations governing the magnetorheological fluid
form the following coupled system between the Stokes equations and the quasistatic Maxwell equations,

div
(
σH + τH

)
= 000 in Ω,

σH + τH = −p̄0 I + νs e(vvv
0) +

1

n
(βb − βs)

∣∣∣H̃HH0
∣∣∣2 I + βs H̃HH

0
⊗ H̃HH

0
,

div vvv0 = 0 in Ω,

div
(
µH H̃HH

0
)

= 0 in Ω,

curl H̃HH
0

= Rm vvv
0 × µHS H̃HH

0
in Ω,

vvv0 = 000, on ∂Ω,

H̃HH
0

= bbb on ∂Ω.

(38)

Equation (38) generalizes the quasistatic set of equations introduced in [24], [27] in two ways: first by providing
exact formulas for the effective coefficients which consist of the homogenized viscosity, νH , and three homog-
enized magnetic permeabilities, µH , µHS , and βH , which all depend on the geometry of the suspension, the
volume fraction, the magnetic permeability µ, the Alfven number α, and the particles distribution. Second, by
coupling the fluid velocity field with the magnetic field through Ohm’s law.

7 Numerical results for a suspension of iron particles in a viscous noncon-
ducting fluid

The goal of this section is to carry out calculations, using the finite element method, of the effective viscosity νH

and the effective magnetic coefficients βH , µH , and µHS that describe the behavior of a magnetorheological
fluid in (38). To achieve this we need to compute the solutions φk, χm`, and ξm` of the local problems (17),
(22), and (25) respectively.

Unlike regular suspensions for which the effective properties are dependent only on fluid viscosity, particle
geometry, and volume fraction, for magnetorheological fluids of significance is also the particles’ distribution.
The magnetic field polarizes the particles which align in the field direction to form chains and columns and that
contributes significantly to the increase of the yield stress [3], [32], [34].

The choice of the periodic unit cell, as well as the geometry and distribution of particles, can lead to different
chain structures and hence different effective properties. We are considering here a uniform distribution of
particles as well as a chain distribution; to achieve this we change the aspect ratio of the unit cell from a 1× 1
square to a 2× 1/2 rectangle.
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In all computations we have used a regular, symmetric, triangular mesh. For the standard 1×1 periodic unit cell
we used 20 × 20 P1 elements to mesh the square and 100 P1 elements to mesh the circular particle inside
the square, while for the elongated 2 × 1

2 periodic unit cell, we used 100 × 20 P1 elements for the rectangle
and 100 P1 elements for the circular particle. Other geometries where the particle is an ellipse, for instance,
present an interesting case on their own. Ellipses have a priori a preferred direction i.e. they are anisotropic and
as result the effective coefficients will be anisotropic. Hence, when one discusses chain structures of ellipses
angle orientation must be taken into account. We do not explore such cases in the current work and we consider
only the case of circular particles.

We remark that in the two dimensional setting, the tensors entries Cijmm = 0 and BBBmm = 000. As a conse-
quence, of the linearity of the local problem (22), we have χχχmm = 000. Hence, νmmii = 0 which implies that
νb = 0. Using a similar argument, we can similarly show that βmmii = 0 which implies that βb = 0.

The relative magnetic permeability of the iron particle (99.95% pure) was fixed through out to be 2× 105 while
that of the fluid was set to 1 [5]. All the calculations were carried out using the software FreeFem++ [11].

We compute the solutions of the local problems both for a uniform distribution of particles, Figure 7, and for
particles distributed in chains, Figure 7.

χ11 χ12 χ22

ξ11 ξ12 ξ22

Figure 2: Streamlines of the solution of the local problems for circular iron particles of 19% volume fraction and
α = 1 for a uniform distribution of particles. The top row showcases the streamlines for the local solutionχχχm`

in equation (24) while the bottom row showcases the streamlines for the local solution ξξξm` in equation (28).

7.1 Influence of chain structures on the effective coefficients

Here we are interested in exploring the influence chain structures have on the effective coefficients. In Fig-
ure 4 we plot the effective coefficients βs and νs versus different volume fractions for the two types of particle
distributions.
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χ11 ξ11

χ12 ξ12

χ22 ξ22

Figure 3: Streamlines of the solution of the local problems for circular iron particles of 19% volume fraction and
α = 1 for particles distributed in chains. The left row showcases the streamlines for the local solution χχχm` in
(24) while the row on the right showcases the streamlines for the local solution ξξξm` in (28).

(a) (b)

Figure 4: Effective magnetic coefficient βs and effective viscosity νs plotted against volume fractions of 5%,
10%, 15%, and 19% for circular iron particles. On image (a), the red color curve showcases the increase of
the effective magnetic coefficient βs under uniform particle distribution while the blue color curve showcases
the increase of the effective magnetic coefficient βs in the presence of chain structures. Similarly, on image (b)
the red color curve showcases the increase of the effective viscosity νs under uniform particle distribution while
the blue color curve showcases the increase of the effective viscosity νs in the presence of chain structures.

In Figure 4 we see that the presence of chain structures rapidly increase the effective viscosity νs and the
effective magnetic coefficient βs as the volume fraction increases in a non-linear fashion. This is in stark contrast
to the case where no particle chains are present where we notice a linear increase of the effective coefficients.
For a particle of 19% volume fraction the presence of chain structures leads to roughly a 104% increase of the
effective viscosity νs and a 246% increase of the magnetic coefficient βs.

7.1.1 Velocity profiles of Poiseuille and Couette flows

In this section we compute the cross sectional velocity profiles of Poiseuille and Couette flow for circular sus-
pensions of rigid particles. We denote by vvv = (v1, v2) the two dimensional velocity and byHHH = (H1, H2) the
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two dimensional magnetic field. Hence, the two dimensional stress of equation (38) reduces to,

σH + τH = −p̄0 I + νs e(vvv
0)− 1

2
βs

∣∣∣H̃HH0
∣∣∣2 I + βs H̃HH

0
⊗ H̃HH

0

and the two dimensional magnetorheological equations in (38) reduce to the following:

νs
2

(
∂2v1
∂x21

+
∂2v1
∂x22

)
− ∂ π0

∂x1
+
βs
2

∂(H2
1 −H2

2 )

∂x1
+ βs

∂(H1H2)

∂x2
= 0, (39a)

νs
2

(
∂2v2
∂x21

+
∂2v2
∂x22

)
− ∂ π0

∂x2
+ βs

∂(H1H2)

∂x1
+
βs
2

∂(H2
2 −H2

1 )

∂x2
= 0, (39b)

∂

∂x1

(
µH H1

)
+

∂

∂x2

(
µH H2

)
= 0, (39c)

∂H2

∂x1
− ∂H1

∂x2
= Rm (µHS22 v1H2 − µHS11 v2H1), (39d)

∂v1
∂x1

+
∂v2
∂x2

= 0. (39e)

7.1.2 Poiseuille flow

We consider the problem of a steady flow due to a pressure gradient between two infinite, parallel, stationary
plates that are non-conducting and non-magnetizable with one plate aligned along the x1–axis while the second
plate is of distance one unit apart. We apply a stationary magnetic field HHH on the bottom plate. Since we are
dealing with infinite plates, the velocity vvv depends only on x2. Using (39e) we immediately obtain that v2 is
constant and since the plates are stationary v2 = 0. Since the flow is unidirectional, we expect that the the
magnetic field will depend only on the height x2. Hence, using (39c) we obtain H2(x2) = K , while the
component parallel to the flow depends on the fluid velocity. Therefore the equations in (39) reduce to the
following,

νs
2

∂2v1
∂x21

+ βsK
∂H1

∂x2
=
∂ π0

∂x1
, (40a)

−∂ π
0

∂x2
− 1

2
βs
∂H2

1

∂x2
= 0, (40b)

−∂H1

∂x2
= Rm µ

HS
22 K v1. (40c)

Making use of (40b) we obtain that π0(x1, x2) + 1
2 βsH1(x2)

2 is a function of only x1 and therefore by

differentiating the expression with respect to x1 we get that ∂ π
0

∂x1
is a function only x1. Therefore, on (40a) the

left hand side is a function of x2 and the right hand side is a function of x1. Thus, they have to be constant.
Substituting (40c) in (40a) we obtain the following differential equations,

d2 v1
d x22

− λ2 v1 = Cp,
∂ π0

∂x1
= Cp with λ =

√
2Rm µHS22 βs

νs
K (41)

The general solution of (41) is,

v1(x2) = c1 e
λx2 + c2 e

−λx2 +
Cp
νs λ2

.

Given that v1(0) = v1(1) = 0 we have,

v1(x2) =
Cp
νs λ2

(
sinh(λx2)− sinh(λ (x2 − 1))

sinh(λ)
− 1

)
. (42)

DOI 10.20347/WIAS.PREPRINT.2598 Berlin 2019



G. Nika, B. Vernescu 16

Remark 4 As λ tends to zero we have limλ→0 v1(x2) =
Cp
2 νs

x2 (x2 − 1), which is precisely the profile of
Poiseuille flow.

Once the velocity v1(x2) is known, we can use (40c) to computeH1(x2) with boundary conditionH1(0) = K1

and obtain,

H1(x2) = Rm µ
HS
22 K

Cp
νs λ3 sinh(λ)

(− cosh(λx2) + cosh(λ (x2 − 1))− cosh(λ) + 1) +K1.

7.1.3 Couette flow

The setting and calculations for the unidirectional Couette flow are the same as Poiseuille flow. In a similar way,
we can carry out computations for the plane Couette flow. For simplicity we assumed the bottom plate is the x1
axis and the top plate is at x2 = 1 and the pressure gradient is zero. A shear stress γ is applied to the top plate
while the bottom plate remains fixed. Thus, we solve (41) with initial conditions v1(0) = 0 and v′1(1) = γ and
obtain

v1(x2) = −(Cpe
−λ − γνs)eλx2

λ(eλ + e−λ)νs
− (Cpe

λ + γνs)e
−λx2

λ(eλ + e−λ)νs
+

Cp
νsλ2

(43)

Remark 5 We remark that for a zero pressure gradient the limit as λ approaches zero the limit of v1(x2) =
γ x2, the profile of regular Couette flow.

To compute H1 we use (40c) to obtain,

H1(x2)(Rmµ
HS
22 K)−1 =

(Cpe
−λ − γνs)eλx2

λ2(eλ + e−λ)νs
− (Cpe

λ + γνs)e
−λx2

λ2(eλ + e−λ)νs
− Cpx2
νsλ2

− (Cpe
−λ − γνs)

λ2(eλ + e−λ)νs
+

(Cpe
λ + γνs)

λ2(eλ + e−λ)νs
+K1(Rmµ

HS
22 K)−1

(44)

We plot the velocity profiles for Poiseuille and Couette flows, computed in the previous paragraph, for a mag-
netorheological suspension of iron particles for different magnetic field intensities. The volume fraction of the
particles is set to 19%. Carrying out explicit computations of the effective coefficients in (35), (36) and (37) we
obtain,

νs βs µHS22

2× 1/2 unit cell 9.53 9.28 3.71
1× 1 unit cell 4.68 2.66 0.47

Figure 5 showcases the velocity profile of magnetorheological Poiseuille flow for a constant pressure gradient
and for three different values of the magnetic field. We can see that the damping force increases as we increase
the magnetic field; the profile is close to flat in the middle region for high values of the magnetic field, but it
is not parabolic close to the walls as in the case of Bingham flows. Moreover, it seems that the presence of
chain structures (red color) turns the magnetorheological fluid into a stiffer gel-like structure [3] at lower intensity
magnetic fields. This phenomenon results in a Poiseuille flow that is much slower in the presence of chain
structures.
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H2 = 50 H2 = 100 H2 = 200

Figure 5: Velocity profile of Poiseuille flow for a magnetorheological suspension of circular iron particles of 19%
volume fraction in a viscous non-conducting fluid with α = 1 and Rm = 10−2 plotted against different values
of the magnetic field. The blue color curve represents the velocity profile for a uniform particle distribution while
the red color curve represents the velocity profile for a particle distribution in chains

.

H2 = 50 H2 = 100 H2 = 200

Figure 6: Velocity profile of Couette flow for a magnetorheological suspension of iron particles of 19% volume
fraction in a viscous non-conducting fluid with α = 1 and Rm = 10−2 plotted against different values of the
magnetic field. The blue color curve represents the velocity profile for a uniform particle distribution while the
red color curve represents the velocity profile for a particle distribution of chains

.

Figure 6 showcases the velocity profile of magnetorheological Couette flow for zero pressure gradient and three
different values of the magnetic field. We can observe that as the magnetic filed increases the magnetorheologi-
cal fluid becomes harder to shear. Hence, an apparent yield stress is present. The apparent yield stress is larger
in the presence of chain structures (red color) than in the absence of chain structures (blue color). However, the
velocity profile is not linear like in the case of Bingham fluids.

Figure 7 showcases the shear stress τ vs shear rate γ relationship measured at x2 = 1. When K1 = 0 there
is no yield stress present. However, for very small non-zero values of K1 we obtain results similar to [35] for the
linear portion of the shear stress versus shear rate curve. Additionally, we can see that the presence of chain
structures (red color) produce a higher yield stress as well as a steeper slope that gives higher shear stress
values as the shear rate increases.

For shear experiments, the response of magneto-rheological fluids is often modeled using a Bingham constitu-
tive law [3], [7], [9], [25]. Although the Bingham constitutive law measures the response of the magnetorheologi-
cal fluid quite reasonably, actual magnetorheological fluid behavior exhibits departures from the Bingham model
[12], [35]. In Figure 5 and Figure 6 we see that for low intensity magnetic fields the Bingham constitutive law is
not adequate, however, it appears that for higher intensity magnetic fields the flow gets closer to resembling a
Bingham fluid behavior.
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H2 = 50 H2 = 100

H2 = 200 H2 = 500

Figure 7: Shear stress τ versus shear rate γ for a magnetorheological suspension of circular iron particles of
19% volume fraction in a viscous non-conducting fluid with α = 1, Rm = 10−2, and K1 = 10−2. The red
color curve represents particle distribution in chains while the blue color curve represents a uniform particle
distribution. One can observe that the yield stress of the magnetorheological fluid is consistently higher in the
presence of chain structures (red color).

8 Conclusions

We considered a suspension of magnetizable iron particles in a non-magnetizable, non-conducting aqueous
viscous fluid. We obtained the effective equations governing the behavior of the magnetorheological fluid pre-
sented in equation (38). The material parameters can be computed from the local problems (17), (24), (28),
derived from the balance of mass, momentum, and Maxwell equations.

The proposed model generalizes the model put forth in [24], [27] in two ways:

• First by providing exact formulas for the effective coefficients which consist of the homogenized viscosity,
νH , and three homogenized magnetic permeabilities, µH , µHS , and βH , which all depend on the ge-
ometry of the suspension, the volume fraction, the magnetic permeability µ, the Alfven number α, and
the particles distribution.

• Second, by coupling the fluid velocity field with the magnetic field through Ohm’s law.
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Multiscale modeling of MR suspensions 19

Using the finite element method we carried out explicit computations of the effective coefficients for spherical
iron particles of different volume fractions both under uniform particle distribution and particle distribution in
chains and showcased the nonlinear effect particle chain structures have in the effective coefficients as the
volume fraction increases.

In the case of Poiseuille flows we calculated the velocity profile explicitly; for small intensity magnetic fields the
velocity profile is close to parabolic while for large intensity magnetic fields an apparent yield stress is present
and the flow profile approaches a Bingham flow profile. The magnetorheological effect is significantly higher
when chain structures are present. A similar analysis has been done for the Couette flows.
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