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The link between coherence echoes and mode locking
Sebastian Eydam, Matthias Wolfrum

Abstract

We investigate the appearance of sharp pulses in the mean field of Kuramoto-type globally-
coupled phase oscillator systems. In systems with exactly equidistant natural frequencies self-
organized periodic pulsations of the mean field, called mode locking, have been described re-
cently as a new collective dynamics below the synchronization threshold. We show here that
mode locking can appear also for frequency combs with modes of finite width, where the natu-
ral frequencies are randomly chosen from equidistant frequency intervals. In contrast to that, so
called coherence echoes, which manifest themselves also as pulses in the mean field, have been
found in systems with completely disordered natural frequencies as the result of two consecutive
stimulations applied to the system. We show that such echo pulses can be explained by a stimula-
tion induced mode locking of a subpopulation representing a frequency comb. Moreover, we find
that the presence of a second harmonic in the interaction function, which can lead to the global
stability of the mode-locking regime for equidistant natural frequencies, can enhance the echo
phenomenon significantly. The non-monotonous behavior of echo amplitudes can be explained
as a result of the linear dispersion within the self-organized mode-locked frequency comb. Fi-
nally we investigate the effect of small periodic stimulations on oscillator systems with disordered
natural frequencies and show how the global coupling can support the stimulated pulsation by
increasing the width of locking plateaus.

Since the pioneering work of Kuramoto, systems of globally coupled phase oscillators
are a topic of extensive studies. They are able to describe synchronization processes
that have applications in many fields, including e.g. neuronal systems, coupled Joseph-
son junctions, or systems biology. Beyond the transition from incoherent to synchronized
behavior such systems can display a variety of interesting dynamical regimes. In this pa-
per, we study the emergence of sharp pulses in the mean field, which can be found as a
collective dynamics already below the threshold for the onset of synchrony. Such pulses
have been described to arise in a self-organized way if the natural frequencies are exactly
equidistant. At the other hand, similar pulsations can be found as a transient dynamics
in systems with completely random frequencies as the result of two consecutive stimula-
tions applied to the system. These so called coherence echoes arise after a time distance
equal to the distance between the two stimuli and show similarities to plasma echoes. We
show here that these two phenomena have a common origin in a collective order of the
phases of unsynchronized oscillators with exactly or nearly equidistant natural frequen-
cies. A similar process in the nonlinear phase dynamics of optical systems is called mode
locking. We describe the role of the underlying frequency combs and show how certain
features of the nonlinear coupling of the phases can have an essential influence on the
pulsation behavior.
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1 Introduction

In the field of coupled oscillator systems, Kuramoto[1] made an important contribution to the under-
standing of collective phenomena, when he derived a model of globally-coupled phase oscillators with
heterogeneous natural frequencies that exhibits a transition from incoherence to a state of partial
collective synchrony above a critical coupling strength. Since then, the theory of synchronization of
coupled oscillators has been an active area of research.[2] Before the onset of collective synchro-
nization the typical dynamical behavior of globally-coupled phase oscillators is phase turbulence.[3]
However, it could be shown that with equidistant natural frequencies another collective type of phe-
nomenon exists called mode locking.[4, 5] Mode locking is a phenomenon which is particularly well
known in the field of optics. Important recent developments include phase models that can be derived
from the Lugiato-Lefever model.[6, 7]

Another interesting and seemingly unrelated phenomenon can be found by subjecting a system of
phase oscillators with random natural frequencies in the incoherent regime to two external stimuli sep-
arated in time by an interval of length τ . It is then observed that echo-type responses in the mean
field follow at integer multiples of τ .[8] Similar echo-type phenomena have been known in the field of
plasma physics,[9, 10, 11] and as spin echoes in systems with nuclear magnetic dipoles in inhomo-
geneous external magnetic fields.[12, 13] Recent realizations of echo-type phenomena in oscillator
systems were obtained for systems of stimulated chemical oscillators,[14] and for kicked rotators,[15].

The present work is organized as follows. After introducing in Sec. 2 the phase oscillator model,
its mean field formulation, and the instantaneous stimuli, we show that self-organized mode locking
can appear also for frequency combs with modes of finite width, where the natural frequencies are
randomly chosen from equidistant frequency intervals. In Sec. 3 we elaborate on the relation between
mode locking and coherence echoes. We show that the echo response is due a temporarily induced
mode locking of a subpopulation of the oscillators with natural frequencies from a corresponding comb
structure. This comb is selected by the stimulation and a specific initial state is induced, which is similar
to the self-organized mode locking in systems with equidistant natural frequencies. We find that the
second harmonic in the nonlinear global coupling of Kuramoto-Daido type, which has been shown
to be the key ingredient for self-organized mode locking in [4], also has substantial influence on the
amplitude of the stimulated pulses and explain the origin of non-monotonous echo amplitudes. Finally,
in Sec. 4 we investigate the case of a periodic stimulation of phase oscillator systems with random
frequencies. In this case there emerges already for small stimulations a state with pulsating mean
field. We use the relationship to ensembles of circle maps in the coupling free limit to explain the basic
structure of the average frequencies for this regime of stimulated mode locking. We summarize and
discuss our findings in Sec. 5.

2 The Kuramoto-Daido Model below the Threshold of Synchro-
nization

Our basic system of globally-coupled phase oscillators describing the dynamics of the phase variables
θk ∈ S1 = R/2πZ, has the form

θ̇k = ωk +
K

N

N∑
j=1

f(θj − θk), (1)
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The link between coherence echoes and mode locking 3

Figure 1: Comb-like frequency distribution g(ω), where ωk are chosen with uniform probability from
equidistant intervals Mm = [m ∆ω − δ,m ∆ω + δ] with width 2δ = 0.03 and spacing ∆ω = 1/7.

where k ∈ {1, . . . , N} is the oscillator index, N is the total number of oscillators, ωk are the natural
frequencies, andK is the coupling strength. The interaction function f(·) for the global coupling in (1)
is taken in the form

f(θj − θk) = γ sin(θj − θk) + (1− γ) sin(2(θj − θk)), (2)

where γ ∈ [0, 1] is used to balance the two Fourier modes in f(·) while keeping the total amount
of coupling fixed. The global coupling can be expressed in terms of the corresponding two complex
Kuramoto-Daido order parameters[16], given for q ∈ {1, 2} as

ηq(t) = Rq(t)e
iΨq(t) :=

1

N

N∑
j=1

eiqθj(t) ∈ C. (3)

They can be used to rewrite (1) as

θ̇k = ωk −K [R1γ sin(θk −Ψ1) +R2(1− γ) sin(2θk −Ψ2)] (4)

such that the interaction is transformed into a coupling of every oscillator with only the two global order
parameters (3). The presence of higher Fourier harmonics in the interaction function has been found in
the phase response of e.g. weakly-coupled Hodgkin-Huxley neurons[17] and their impact on the phase
dynamics has been studied extensively [16, 18, 19]. For non-identical natural frequencies ωk, e.g. from
a uniform or Gaussian distribution there is a thresholdKC for the onset of synchronization. A compre-
hensive theory based on a center manifold reduction for the onset of collective synchronization in the
continuum limit (N →∞) of this particular system has been recently presented by Chiba [20]. The
typical behavior of the system (1) in the regime K < KC is phase turbulence. However, for equidis-
tant natural frequencies ωk+1 − ωk = ∆ω a new collective dynamical regime, called mode locking,
has been reported [4], which exists below the synchronization threshold KC and is characterized by
sharp periodic pulses in the mean field R1(t). Another interesting behavior of system (1) below the
synchronization threshold and for random natural frequencies are so called coherence echoes, which
were studied in [8]. These echoes manifest themselves also as sharp peaks in the mean field, in this
case induced by a stimulation applied to the system. The specific feature of the coherence echoes is
that the peaks appear not only directly induced by a stimulus, but after the application of two stimuli
there may appear further “echo” pulses at a time distance of the original two stimuli. Below, we will
describe these two phenomena in more detail and discuss their connection.

Mode Locking

While the mechanism of mode locking is a well established technique to achieve short pulses in optical
systems, a similar mechanism in globally coupled phase oscillators has been described only recently
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Figure 2: (Color online) Self-organized mode-locked state in system (4) with (K, γ) = (1.2, 0.7).
Natural frequencies from distribution in Fig. 1 with NM = 103 oscillators in each subinterval (5).
Panel (a)–(c): time traces R1(t), R2(t) and R1,m(t) for m ∈ {−7,−5,−3,−1, 0} (d): comb of
effective Ωk(ωk) Panel (e): a snapshot of the phases at t = 1000 with the same coloring for the
different modes as in (c).

[4]. It was found that although stable mode-locking can be obtained for specific initial conditions al-
ready for the classical case of Kuramoto coupling γ = 1, the presence of a second harmonic in the
interaction function (2) can transform it into a self-organized globally stable dynamical regime. While
the results in [4] were restricted to the case of exactly equidistant natural frequencies, we will show
here that stable mode-locked solutions can also appear in large populations of phase oscillators, with
natural frequencies chosen randomly from a comb like distribution (cf Fig. 1). To this end, we define a
set of equidistant disjoint frequency intervals

Mm = [m ∆ω − δ,m ∆ω + δ], (5)

where m ∈ {−n, . . . , n} is called the mode index, 2n+ 1 is the number of intervals, ∆ω ∈ R+ =
1/n is the equidistant spacing between centers of the intervals, and 2δ is the width of each interval
with 2δ < ∆ω. The natural frequencies are then drawn with uniform probability from the union of the
intervals M = ∪mMm. An example of such a distribution of natural frequencies for 2n+ 1 = 15 and
2δ = 0.03 is depicted in Fig. 1.

For δ > 0 the mode locking becomes a two-stage process, where at first the oscillators within the
frequency interval Mm become synchronized. The entrainment among the oscillators with ωj ∈ Mm

can be seen by employing so-called modal order parameters given by

R1,m(t)eiΨ1,m(t) :=
1

Nm

∑
j if ωj∈Mm

eiθj(t), (6)
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where Nm is the number of oscillators with ωj ∈Mm. The mutual entrainment among the oscillators
belonging to an interval Mm means that their effective frequencies

Ωk := lim
t→∞

1

t

∫ t

0

θ̇k(τ)dτ = lim
t→∞

θ̃k(t)− θ̃k(0)

t
, (7)

where θ̃k refers to the phase lifted to R, become identical.

These collective effective frequencies Ωm resulting from the locking within each interval Mm are
equidistant and allow now for the mode locking of the collective modes formed by each frequency
interval as described in [4]. The resulting periodic pulses in the mean field are a consequence of
nearly identical phases of the collective modes, reappearing after a different number of round trips for
each mode performed during the time T = 2π/∆Ω, given by the spacing of the effective frequencies.

An explicit example of such a mode locking is shown in Fig. 2, where we took Nm = 103 oscillators
with independent random uniform natural frequencies within each Mm from the frequency distribution
g(ω) depicted in Fig. 1. Choosing the parameters (K, γ) = (1.2, 0.7), which according to [4] are
favorable for globally stable mode locking, we obtain a trajectory with typical sharp pulses in R1(t),
R2(t), see Fig. 2 (a)–(b). The effective frequencies in panel (d) show a complete locking within each
mode, while the time traces R1,m(t) in Fig. 2 (c) exhibit a periodic breathing behavior. This results
from a different spreading of the phases within each mode shown by different colors in panel (e). Note
that for stable self-organized mode locking the spacing of the effective frequencies

∆Ω = Ωm+1 − Ωm

is always slightly bigger than the spacing ∆ω in the comb of the natural frequencies. The mode
locking for such a distribution of natural frequencies will be used later to explain the repetitive pulses in
a system with natural frequencies uniformly distributed within a single interval, where a self-organized
subpopulation of oscillators with frequencies within a comb structure (5) can be responsible for the
pulsating mean field.

3 Coherence Echoes and their relation to mode locking

The echo phenomenon in globally coupled oscillator systems that was found in[8] is now studied
for systems of the form (1) with completely random natural frequencies, chosen uniformly distributed
within an interval. Applying two consecutive stimuli with a time distance τ , the system can respond
with one or several echo pulses, separated again by the time distance τ .

Following[8, 14] one uses instantaneous stimuli to transform the system state at a time moment tp
according to the rule

θk(t
+
p ) = θk(t

−
p )− h(θk(t

−
p )), k ∈ {1, . . . , N}, (8)

where t−p and t+p denote the times directly before and directly after the stimulus, and h(·) is the
stimulus action function.

We consider two different types of stimuli in this paper, the first one h1(·) is continuous and similar to
the one used by Ott et al. [8]

h1(θ) = ε(α sin(θ) + (1− α) sin(2θ)), (9)
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where ε is the stimulus strength and α ∈ [0, 1] is a parameter balancing between the two harmonics.
A stimulus using (9) is referred to as an impact stimulus.

The second type h2(·) to be considered, is a phase resetting stimulus that resets all phases within a
small interval of length 2ρ identically to zero

h2(θ) =

{
θ, |θ| ≤ ρ,

0, |θ| > ρ.
(10)

A similar type of stimulus has been argued to be valid in the context of chemical oscillators.[14] The
action function (10) is discontinuous with an action of “all-or-nothing” type. It is called a reset stimulus.
I turns out that the two different stimulus action functions (9) and (10), are both able to induce an
echo-type response.

We consider the coherence echo phenomenon for a large population of phase oscillators ofN = 106,
whose natural frequencies are independent randomly distributed according to a uniform density within
the interval [−1, 1]. Stimuli are applied at the times t1 = 30 and t2 = 60, resulting in an interstim-
ulus interval of τ = t2 − t1 = 30. To give an example, we take the stimulus of impact type (9) with
(ε, α) = (1/2, 1/2) and fix the parameters of the oscillator system to (K, γ) = (1.2, 0.7), which
are the same parameters that were previously found to support stable mode locking. The time trace
R1(t) presented in Fig. 3 (a) shows an echo response appears at time t3 = t2 + τ . In Fig. 3 (b)–
(d) we present snapshots of (θk, ωk) at the times t+1 , t+2 , and t3. For a better understanding of the
echo mechanism, we arrange the oscillators into four groups, depending on how they are affected by
each stimulus. Let θmax ∈ (0, π] be the angle at which (9) takes its maximum. The oscillators with
|θk(t−)| ≤ θmax at the time t− immediately before a stimulus will be most strongly affected by the
stimulus. Accordingly, for the snapshot at t+1 the strongly affected oscillators with

∣∣θk(t−1 )
∣∣ ≤ θmax are

colored in red and the rest in gray. After the second stimulus, oscillators strongly affected also by the
second pulse are changed to black, while those affected only by the second stimulus are now purple.
A density plot taken over the population of black oscillators at time t = t2+ highlights the increased
density of oscillators on a frequency comb, see Fig. 3 (e).

The frequencies of the black subpopulation, selected by the two stimuli of time distance τ , belong
to a sequence of equidistant intervals in ω as given in (5), Comparing panels (b) and (c), one can
observe that the number of round trips performed by oscillators from neighboring subintervals differs
by approximately one. Hence, the spacing of the subintervals is related to the time difference of the
stimuli τ in the same way as the mode spacing to the pulse period T = 2π/∆Ω in the mode locking
discussed before. The width 2δ of the subintervals is given by our choice |θk(t−)| ≤ θmax for the
different coloring of the oscillators. Note that the black oscillators at t = t+2 after the second stimulus
have nearly identical phases. The final snapshot at the time of the echo t = t3 shows that the black
population reappears aligned in phase again but less focused, resulting in a slightly smaller echo
response. Hence, the subpopulation of black oscillators shows a mode-locked behavior. However, due
to the presence of the other oscillators, which behave incoherently and do not contribute to the mean
field pulses, the nonlinear coupling is not strong enough to sustain the mode locking and the pulses
decay. A detailed analytical investigation in form of an amplitude expansion of the order parameter has
been carried out by Ott et al. [8] where the time of the echo is predicted and the influence of higher
harmonics in the stimulus function is also discussed.

A second example, employing the reset stimulus (10) with ρ = π/2 is presented in Fig. 4. Here, the
time traces R1(t), R2(t) in response to the stimuli, result in a sequence of multiple echoes of varying
magnitudes, cf. Fig. 4 (a). In particular, one observes that the third echo is smaller than the fourth, i.e. a
nonmonotonic behavior of the echoes. Besides the indicated echoes in R1(t), intermediate pulses of

DOI 10.20347/WIAS.PREPRINT.2596 Berlin 2019
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Figure 3: (Color online) Coherence echoes in system (4) with (K, γ) = (1.2, 0.7) stimulated by im-
pact stimuli (9) with (ε, α) = (1/2, 1/2) at t1 = 30 and t2 = 60, for N = 106 oscillators initialized
at random. Panel (a): time traces R1(t), R2(t); (b)–(d): snapshots of distribution of phases θk versus
natural frequencies ωk at times t+1 , t+2 , and t3 = t2 + τ . The explanation of the coloring in (b)–(d) is
given in the text. (e): histogram of natural frequencies of the black subpopulation.

R2(t), for instance, at t = t2 + τ/2 are present. This is a feature that is also typically found in mode-
locked solutions, cf. Fig. 2 (b). The coloring of the snapshots in Fig. 4 (b)–(d) at the times t+1 , t+2 ,
and t3 = t2 + τ follows the same scheme as before using now the reset threshold

∣∣θk(t−1,2)
∣∣ ≤ ρ.

Oscillators being reset by the first stimulus are red, those reset by the second stimulus are purple,
and those reset by both stimuli are black. With the reset stimuli, completely empty regions appear
after stimulation and in the stimulated comb (black) all the phases are exactly identical at t+2 . Here, the
width 2δ of the subintervals for the mode-locked subpopulation results directly from the reset threshold
ρ. To illustrate the comb structure that is generated by the second stimulus at t = t+2 , we additionally
supply a histogram plot over all θk(t

+
2 ) ≈ 0, see Fig. 4 (e).

We will study now several properties of the coherence echoes in more detail. Note that the coherence
echoes appear already on the linear level, i.e. by stimulating a population of uncoupled oscillators.
However, as we will show, the effect is strongly enhanced by the nonlinear coupling. At the other hand,
the effect of nonmonotonic behavior of the echoes can be explained already on the linear level. To
this end, we will also introduce synthetic mode-locked initial conditions, which mimic the result of the
stimulation and generate the coherence echoes directly.

3.1 Impact of the nonlinear coupling

To investigate the impact of the second harmonic coupling, we perform the simulations of the echoes
for the same stimuli that were used in Fig. 3 and Fig. 4 for varying γ. Instead of comparing the maxima
of the first echoes E1 directly, we present the relative echo strength scaled to the maximum in S1 that

DOI 10.20347/WIAS.PREPRINT.2596 Berlin 2019
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Figure 4: (Color online) Coherence echoes in system (4) with (K, γ) = (1.2, 0.7) stimulated by reset
stimuli (10) with ρ = π/2 at t1 = 30 and t2 = 60, forN = 106 oscillators initialized at random. Panel
(a): time traces R1(t), R2(t); (b)–(d): snapshots of distribution of phases θk versus natural frequen-
cies ωk at times t+1 , t+2 , and t3 = t2 + τ . The explanation of the coloring in (b)–(d) is given in the text.
(e): histogram of natural frequencies of the black subpopulation.

occurs shortly after the first stimulus, which is important because changing γ affects the S1. The two
values S1 and E1 are indicated in the time trace R1(t), see Fig. 4 (a). The simulations are performed
for different random initial conditions, system sizesN = 106, 107, and the results are shown in Fig. 5.
Independent of the stimulus type, we find an increase of the echo magnitude for γ < 1, cf. (a)–(b)
Fig. 5. Especially, one sees a wide range of parameter values for the stimulus h2 with ρ = π/2, where
E1 becomes even larger than S1, see Fig. 5 (b). We conclude from the simulations that the properly
chosen second harmonic coupling enhances the echo effect significantly.

3.2 Synthetic Mode-Locked Initial Condition

Instead of generating echoes by two subsequent stimuli as in [8], we define now what we call a mode-
locked initial condition

Definition 1. For a set of 2n+ 1 equidistant frequency intervals Mk with spacing ∆ω and widths 2δ
given by (5) a corresponding mode-locked initial condition is given by

θk(0) =

{
0, for ωk ∈M := ∪nm=−nMm

θk ∈ [−π, π], uniform,
(11)

where k ∈ {1, . . . , N} is the oscillator index.

Note that for such initial conditions, see Fig. 6, the modal order parameters (6) for the subintervals
R1,m(0) = 1 for all m = −n, . . . , n, which is different to the situations after two stimuli where there

DOI 10.20347/WIAS.PREPRINT.2596 Berlin 2019
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Figure 5: (Color online) Relative amplitudes E1/S1 of the first coherence echo for varying second
harmonic coupling γ in system (4) with K = 1.2. (a): impact stimuli (9) with (ε, α) = (1/2, 1/2); (b):
reset stimuli (10) with ρ = π/2. Dashed line: relative amplitudes E1/S1 without coupling (K = 0).

Figure 6: (Color online) Mode-locked initial condition (11) on equidistant frequency intervals (5) with
∆ω = 0.1 and δ = 0.02.

are still incoherent oscillators with frequencies ωk ∈ M that have not been affected by the stimuli
such that the corresponding modal order parameters are smaller than one.

3.3 The nonmonotonicity of the echo magnitudes

We will show now that the nonmonotonous behavior of the magnitudes of the echoes, demonstrated
in Fig. 4 (a), can be explained already in the uncoupled system K = 0 using the synthetic mode-
locked initial conditions (11). To this end we calculate for K = 0 the mean field R1(t) explicitly in the
continuum limit N →∞. Without coupling, one can compute separately the evolution of the modal
order parameters for each of the intervals Mm as

R1,m(t)eiΨ1,m(t) =

∫ ∞
−∞

dω

∫ 2π

0

eiθFm(θ, ω, t)dθ, (12)

where Fm(θ, ω, t) is the distribution function for the oscillators belonging to themth frequency interval
Mm. Integrating over θ we obtain the time independent uniform frequency distribution∫ 2π

0

Fm(θ, ω, t)dθ = gm(ω), (13)
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which in normalized form is given as

gm(ω) =

{
1
2δ
, for ω ∈Mm,

0, else,
(14)

where 2δ is the width of the intervalMm. In the continuum limit the mode-locked initial data θk(0) = 0
for all oscillators with ωk ∈ Mm is represented as a delta distribution and one can immediately write
down its time evolution on the universal cover θ̃ ∈ R as

F̃m(θ̃, ω, t) =

{
gm(ω)

2δt
, for θ̃ ∈ I(t)

0, else,
(15)

with the time dependent interval

I(t) = [(m ∆ω − δ)t, (m ∆ω + δ)t].

Now one can perform the integration in (12), which leads to the following expression for mth complex
modal order parameter

R1,m(t)eiΨ1,m(t) =

∫ ∞
−∞

dω

∫
θ̃∈I(t)

eiθ̃ gm(ω)

2δt
dθ̃ =

1

2δt

1

i

[
ei(m ∆ω+δ)t − ei(m ∆ω−δ)t] . (16)

To obtain R1(t) for the continuum limit of the mode-locked initial condition, one can now combine the
expressions (16) for all different m ∈ {−n, . . . , n} leading to

R1(t)eiΨ1(t) =
R1(0)

2n+ 1

sin(δt)

δt

n∑
m=−n

eim∆ωt, (17)

where R1(0) denotes the value of the mean field amplitude of the initial condition. While the summa-
tion in the last term provides the mode locking pulses at p = 2πp/∆ω for all p ∈ N, we obtain also
a periodically modulated envelope from the term sin(δt) and a decay of the order 1/t. Each time the
modulation term changes its sign, the phase of the pulses switches between 0 and π and at reso-
nances between the switching and the pulsation frequency, the pulses will be completely suppressed.

In Fig. 7 we show the time traces of the global order parameters R1(t), R2(t) and a few selected
modal order parameters, starting from a mode-locked initial condition with (∆ω, δ) = (0.1, 0.02),
where the distribution of the natural frequencies is taken to be uniform, covering the interval [−1.02, 1.02].
In this case, we see the fourth echo pulse with an increased amplitude and the fifth echo pulse com-
pletely suppressed. This mechanism can lead to non-monotone echo amplitudes also in the nonlin-
ear case. Fig. 8 shows the time evolution starting from the same mode-locked initial condition (11)
with (∆ω, δ) = (0.1, 0.02) now using the coupling parameters (K, γ) = (0.95, 0.7), which support
mode locking for equidistant natural frequencies and strongly enhance the echo amplitudes. Again,
the amplitude of the echo pulses is modulated by the dispersion induced slow oscillations of the modal
order parameters. In contrast to the linear scenario in Fig. 7 we observe a sudden increase of all the
modal order parameters at the first and second echo. The effects of nonlinear dispersion are especially
pronounced for modes with high index m = −10 and result in different decay behavior of the modal
order parameters. Moreover, we see an almost complete suppression of the third echo even though
the modal order parameters still show considerable magnitudes. This can be explained by the effect
of the first and second echo on the incoherent oscillators, which are not mode-locked in the initial con-
dition. Note that the complement M̂ of M consists of frequency intervals with the same spacing ∆ω
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Figure 7: (Color online) Non-monotonous echo amplitudes in system (4) withK = 0 and mode-locked
initial condition (11) with (∆ω, δ) = (0.1, 0.02) and N = 106. (a)–time traces of the order parame-
ters R1, R2, (b)–time traces of the modal order parameters and R1,m for selected mode numbers
m ∈ {−10,−8,−6,−4,−2, 0} together with corresponding time traces from the continuum limit
(17) and (16).

and widths 2δ̂ = ∆ω−2δ. The echo pulses in the mean field induce a mode-locked pulsation also for
this subpopulation of oscillators. These pulses have alternating phases, such that they alternatingly
interfere constructively and destructively with the pulses from the initially mode-locked population. In
the given example, this leads to a cancellation at the third echo. In Fig. 8(c) we show the time traces
order parameters of the corresponding subpopulations

RM(t) =
1

NM

∣∣∣∣∣ ∑
ωk∈M

eiθk

∣∣∣∣∣ and RM̂(t) =
1

NM̂

∣∣∣∣∣∣
∑
ωk∈M̂

eiθk

∣∣∣∣∣∣ , (18)

here NM and NM̂ are the sizes of the two subpopulations.

4 Stimulated Mode Locking

The present section is concerend with the effects of periodic stimulation to a population of oscillators
with random frequencies. The stimulated pulsed solution that arises will be referred to as a stimulated
mode-locked state. The periodic stimulation is implemented in form of a stimulus train by applying
the mapping of the phases (8) with impact or reset stimuli periodically at the times t = pτ = tp with
p ∈ N.

We find that with the periodic stimulation a mode-locked frequency comb emerges. The locking is a
gradual process which is especially pronounced for the reset stimulus type. The gradual increase of
the stimulated pulses for reset stimuli of a particularly small reset range ρ = π/8, is presented in
Fig. 9. The time trace R1(t) are plotted and the stimulus times tp are indicated by dotted vertical
lines, cf. Fig. 9 (a). One observes that the initial stimuli only have a small effect on R1(t+p ), however,
after multiple stimuli the response starts to increase until the mode-locking of the frequency comb is
complete. The snapshots of the system at the times t = t+5 , t

+
30 given in (b)–(c) Fig. 9, show that the
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Figure 8: (Color online) Non-monotonous echo amplitudes in system (4) with
(K, γ,N) = (0.95, 0.7, 106) mode-locked initial condition (11) with (∆ω, δ) = (0.1, 0.02).
(a)–time traces of the order parameters R1, R2, (b)–time traces of the modal order parameters and
R1,m for selected mode numbers m ∈ {−10,−8,−6,−4,−2, 0}, (c)–order parameters (18) for the
comb M of the mode-locked initial condition and its complement M̂ .

increase of the stimulated pulsation is accompanied by the formation of desolated horizontal regions
which correspond to a mode-locked frequency comb. In particular, for the reset stimulus this frequency
comb is similar to the comb introduced in the mode-locked initial conditions Def. 1.

The impact stimuli, on the other hand, reach the final magnitude of the pulsation after fewer stimuli. An
examples is given, where impact stimuli h1 with (ε, α) = (0.25, 1) are applied, cf. Fig. 10. Similarly,
for the impact stimuli, horizontal desolated regions appear gradually, see Fig. 10 (b)–(c).

4.1 Periodic stimulation of uncoupled oscillators

For the decoupled oscillators withK = 0, one can reduce (1) with periodic stimulation to an ensemble
of circle maps that give the phases θk(t+p ) at the times immediately after the stimuli t = (pτ)+ = t+p

θk(t
+
p+1) = θk(t

+
p ) + ωkτ − h(θk(t

+
p ) + ωkτ) mod 2π. (19)

Since K = 0 one can drop the oscillator index k an study the a single map of the type (19).

In the context of circle maps, the so-called rotation numberW (ω), which gives the average number of
rotations per iteration, is related to the effective frequency (7) in the time-continuous dynamics. If the
following limit exists, the rotation number is given by

W
(
ω, θ̃(t+0 )

)
:= lim

p→∞

θ̃(t+p )− θ̃(t+0 )

2πp
= Ω

(
ω, θ̃(t+0 )

) 2π

τ
, (20)

where θ̃ ∈ R denotes the phase variable lifted to the universal cover of S1.
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Figure 9: (Color online) Periodical stimulation of system (4) with (K, γ,N) = (0.95, 2/3, 5 · 104),
random initial conditions, and reset stimuli h2 with ρ = π/8 every τ = 30 time units. (a)–time trace
R1(t) together with vertical dotted lines indicating the stimulation times. (b), (c)–snapshots of the
distributions at t = t+5 , t

+
30 immediately after the stimuli.

Figure 10: (Color online) Periodical stimulation of system (4) with (K, γ,N) = (0.95, 2/3, 5 · 104),
random initial conditions, and impact stimuli h1 with (ε, α) = (0.25, 1) every τ = 30 time units. (a)–
time trace R1(t) together with vertical dotted lines indicating the stimulus times. (b), (c)–snapshots of
the distributions at t = t+1 , t

+
30 immediately after the stimuli.
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Choosing α = 1 for the impact stimuli (9), one obtains so-called Arnold circle maps. In this case, the
rotation numbers (20) are independent of θ̃(t+0 ), strictly monotonously increasing with ω, and allow
also for subharmonic locking to the forcing frequency for ω within the respective Arnold tongues.[21,
22] The range of the harmonic locking cones with integer rotation numbers giving Ω(ω) = 2πz/τ, z ∈ Z
is known to be bounded by ω = 2πz/τ ± |ε| /τ .[23]

In contrast to that, when using the reset stimuli (10), one obtains a discontinuous map. For some
general results on the existence of the rotation number in circle maps with discontinuities the interested
reader may be referred to Brette. [24] We find the ranges of the harmonic locking plateaus to be
bounded by ω = 2πz/τ ± |ρ| /τ . Furthermore, in the case of the reset stimulus (10), we find that the
rotation numbers are strictly rational multiples of the forcing frequency, which means that for any ω the
orbit is periodic.

Theorem 4.1. The circle map (19) with the stimulus action function (10) has a rational rotation number
(20) for all ω ∈ R.

Proof. For all ω 6= q 2π/τ with q ∈ Q there is an iterate p ∈ N such that θ
(
t+(p+1)

)
= 0 indepen-

dent of the initial condition θ(t+0 ). This follows from the fact that a rigid rotation with an irrational rotation
numbers covers S1 uniformly. By the same argument, there will be another iterate at which the phase
is once more mapped to zero. All other ω were already rational multiple of 2π/τ by construction.

We compute the effective frequencies for the system (19) consisting ofN = 5 · 105 oscillators subject
to periodic stimulation with inter-stimulus intervals of length τ = 30. Both, the impact stimuli h1 with
(ε, α) = (0.5, 1) and the reset stimuli h2 with ρ = π/8 are used, and the corresponding Ω(ω) are
presented in Fig. 11 (a)–(b). The presented structure continues periodically in both directions within
the range of the frequency distribution. Note that, oscillators that are locked to Ω = 2π(z + 1/2)/τ
with z ∈ Z, appear every second stimulus in phase with the stimulus, i.e. constructively contributing
to the stimulated pulse. Accordingly, these oscillators introduce a period doubling.

4.2 Impact of the global interaction on the stimulated mode-locked states

By including the global interaction K > 0, the width of the locking plateaus corresponding to the
locked frequency combs can be increased. This has the effect of increasing the average pulse ampli-
tudes

〈
R1(t+p )

〉
. We also find a strong impact of the balancing factor γ on

〈
R1(t+p )

〉
, as it is known

for the self-organized mode locking.[4]

We perform a numerical simulation, starting from a random uniform initial condition, we stimulate
a system with a period τ = 30. The system consists of N = 5 · 105 oscillators with a fixed random
realization of the natural frequencies. After discarding an initial transient of length 25 · 103, we average
over R1(t+p ), R2(t+p ) for an interval of length 150 · 103, and compute the average phase velocities
Ωk. The procedure is repeated for increasing coupling strengthK and several values of the balancing
parameter γ. For the impact stimulus (9) with (ε, α) = (1.0, 1.0) the results of the simulation are
presented in Fig. 12. In Fig. 12 (a)–(c), one finds Ωk(ωk) for γ = 1.0, 0.7, 0.5, respectively. In the
absence of the second harmonic coupling (γ = 1), the subharmonic plateaus slightly decrease with
K , cf. inset in Fig. 12 (a), which, however, does not result in a decrease of

〈
R2(t+p )

〉
, see Fig. 12 (e).

The largest plateaus shown are harmonic plateaus with Ω = 0,∆Ω that are widening with increasing
K . Accordingly in Fig. 12 (d), one finds a growth of the average pulsation strength

〈
R1(t+p )

〉
with K ,

which also explains the growth of the
〈
R2(t+p )

〉
at the stimulus times.
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Figure 11: (Color online) Effective frequencies of (19) with N = 5 · 105, τ = 30, and both the impact
stimuli h1 with (ε, α) = (0.5, 1) and the reset stimuli h2 with ρ = π/8 in (a)–(b), respectively. In (a),
the effective frequencies Ω(ω) form a Devil’s staircase. In (b), the effective frequencies Ω(ω) form a
discontinuous staircase.

Figure 12: (Color online) Locking plateaus in the average frequencies for varying coupling param-
eters in system (4) with N = 5 · 105 oscillators under periodical impact stimulation by (9) with
(ε, α) = (1.0, 1.0) at intervals τ = 30. The resulting averaged pulse amplitudes

〈
R1(t+p )

〉
, and〈

R2(t+p )
〉

are shown in (d) and (e).
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Figure 13: (Color online) Locking plateaus in the average frequencies for varying coupling parameters
in system (4) with N = 5 · 105 oscillators under periodical reset stimulation by (10) with ρ = π/8 at
intervals τ = 30. The resulting averaged pulse amplitudes

〈
R1(t+p )

〉
, and

〈
R2(t+p )

〉
are shown in (d)

and (e).

For the reset stimulus (10) with ρ = π/8, the same procedure is followed and the results are presented
in Fig. 13. While the average frequencies Ωk(ωk) are discontinuous without coupling, one obtians
smooth interfaces as soon as the coupling is turned on, cf. Fig. 13 (a)–(c). In absence of the second
harmonic coupling (γ = 1), the subharmonic plateaus decrease with K , see inset in Fig. 13 (a),
which is much less pronounced for γ = 0.5, 0.7. The largest plateaus shown, are harmonic plateaus
with Ω = 0,∆Ω that are shrinking with K in Fig. 13 (a), while the inset in Fig. 13 (c) reveals a small
growth, in particular, for K = 0.3. This is reflected by the initial increase of

〈
R1(t+p )

〉
with K , cf.

Fig. 13 (d), whereas for γ = 1, one finds an almost immediate degredation of the pulsation strength
through the global coupling.

5 Conclusion

The coherence echoes and mode-locked solutions that initially appear as two distinct phenomena are
found to be related. In particular, the appearance of the echoes is the result of a mode-locked state
induced by the stimulation on a subpopulation of oscillators with natural frequencies on a related comb
structure. While the emergence of self-organized mode locking depends on a fixed comb structure of
the natural frequencies, the stimulation by two subsequent stimuli acts selectively on an oscillator
population with uniform frequency distribution, creating a mode-locked state in a subpopulation with
structured natural frequencies. The presence of higher harmonics in the interaction function, which
has been shown in [4] to be essential for self-organized mode locking, also has a strong impact on the
amplitude of the stimulation induced echoes echoes. For carefully chosen coupling parameters, one
can even observe coherence echoes which exceed in amplitude the immediate response to the stimuli.
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Another important observation is that the magnitudes of the echoes can occur in a non-monotonous
fashion. For the linear model at K = 0, the explanation of the nonmonotonic behavior is found in a
mutual resonance between the linear (innermodal) dispersion and the reappearance times between
echoes which could also be calculated in the continuum limit for the mode-locked initial condition
given in Def. 1. By including the global interaction K > 0, it is observed that, in particular the first
echo increases in magnitude. It turns out that the echo phenomenon is strongly enhanced by the
presence of the second harmonic in the coupling function. By considering the order parameters of the
oscillators in the mode-locked frequency comb and of the initially unlocked population, we found that
the mode-locked population exerts a significant influence on the initially unlocked population where
the echoes of the mode-locked initial condition introduce a mode locking on the unlocked population.

For systems with random natural frequencies and periodic stimulation the mode-locked frequency
combs are found to successively build up, until a harmonic comb becomes completely locked with
the stimulation. In the decoupled case, a reduction to ensembles of circle maps can be made from
which the effective frequencies in terms of the rotation numbers of the underlying circle maps can
be obtained. In this setting, the presence of subharmonically locked combs can induce a modulation
of the stimulated pulsation. As for the self-organized mode locking and the coherence echoes, the
global nonlinear interaction with second harmonic coupling γ < 1 is found to support the stimulated
mode-locked states, leading to enhanced average pulse amplitudes.
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