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A mathematical model for Alzheimer’s disease: An approach via

stochastic homogenization of the Smoluchowski equation

Bruno Franchi, Martin Heida, Silvia Lorenzani

Abstract

In this note, we apply the theory of stochastic homogenization to find the asymptotic
behavior of the solution of a set of Smoluchowski’s coagulation-diffusion equations with
non-homogeneous Neumann boundary conditions. This system is meant to model the
aggregation and diffusion of β-amyloid peptide (Aβ) in the cerebral tissue, a process
associated with the development of Alzheimer’s disease. In contrast to the approach
used in our previous works, in the present paper we account for the non-periodicity
of the cellular structure of the brain by assuming a stochastic model for the spatial
distribution of neurons. Further, we consider non-periodic random diffusion coefficients
for the amyloid aggregates and a random production of Aβ in the monomeric form at
the level of neuronal membranes.

1 Introduction

The primary feature of several neurological diseases, such as Prion diseases, Alzheimer’s
disease, Parkinson’s disease, Creutzfeldt-Jacob disease is the pathological presence of mis-
folded protein aggregates (that is, proteins that fail to configure properly, becoming struc-
turally abnormal) [7], [21]. In this paper, we focus our interest in Alzheimer’s disease (AD).
Indeed, AD has a huge social and economic impact. Until 2040 its worldwide global preva-
lence (estimated as high as 44 millions in 2015) is expected to double every 20 years. In
particular, existing clinical data support the idea that amyloid-β peptide (Aβ) has a critical
role as initiator of a complex network of pathologic changes in the brain, ultimately leading
to Alzheimer’s disease (’amyloid hypothesis’, see e.g. [12], [19], [23]). Although there is no
doubt that the presence of fibrillar Aβ deposition (senile plaques) is the hallmark of the
clinical syndrome of AD, the bulk of human biomarker data reveals the existence of a dis-
crepancy between the appearance of amyloid deposits and clinical dementia, with Aβ plaques
anatomically disconnected from areas of severe neuronal loss. One of the most reliable expla-
nations, which also supports the amyloid hypothesis, is that, in addition to fibrillar plaques,
oligomeric forms of Aβ can play a dominant role in triggering a wide variety of pathogenic
effects. Mice which accumulate Aβ oligomers, but not fibrillar plaques, develop synaptic
damage, inflammation and cognitive impairment [29], [31]. Despite the biological relevance
of the negative effects produced, the exact mechanisms of misfolded protein aggregation and
propagation, as well as their toxicity, are still not well understood. Furthermore, the com-
plexity of the underlying processes makes it difficult to extrapolate the effects of protein
misfolding from the microscopic (e.g. molecular) to the macroscopic (e.g. organs) scale,
preventing the development of effective therapeutic interventions. In order to complement

DOI 10.20347/WIAS.PREPRINT.2595 Berlin 2018



B. Franchi, M. Heida, S. Lorenzani 2

the medical and biological research, the last few decades have seen the emergence of several
mathematical models that can help to provide a better insight into the laws governing the
processes of protein aggregation and the effects of toxicity spreading. The mathematical
approaches considered so far can be predominantly divided into two different classes: on the
one hand, there are the models designed to describe processes at the molecular (microscopic)
scale (aggregation kinetics, short-range spatial spreading, etc...) [7], [1], [9], [16] while, on the
other side, there are models that account for large-scale events characterizing the progression
of neurodegenerative misfolded protein-related diseases [7], [3], [4], [5].

1.1 A mathematical model for the aggregation of β-amyloid based
on Smoluchowski’s equations.

In 2013, Achdou et al. proposed in [1] a mathematical model for the aggregation and
diffusion of β-amyloid peptide (Aβ) in the brain affected by Alzheimer’s disease (AD) at
a microscopic scale (the size of a single neuron). In particular, these authors considered a
portion of cerebral tissue, represented by a bounded smooth region Q ⊂ R3, and described
the neurons as a family of regular regions Gj such that:

(i) Gj ⊂ Q if j = 1, 2, . . .M ;
(ii) Gi ∩Gj = ∅ if i 6= j.
Then, the following system of Smoluchowski equations has been introduced:





∂u1
∂t

(t, x)− d14xu1(t, x) + u1(t, x)
∑M

j=1 a1,juj(t, x) = 0

∂u1
∂ν
≡ ∇xu1 · n = 0 on ∂Q

∂u1
∂ν
≡ ∇xu1 · n = ηj on Γj, j = 1, . . . ,M

u1(0, x) = U1 ≥ 0

(1)

if 1 < m < M





∂um
∂t

(t, x)− dm4xum(t, x) + um(t, x)
∑M

j=1 am,juj(t, x) =
1
2
∑m−1

j=1 aj,m−jujum−j

∂um
∂ν
≡ ∇xum · n = 0 on ∂Q

∂um
∂ν
≡ ∇xum · n = 0 on Γj, j = 1, . . . ,M

um(0, x) = 0

(2)

and
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



∂uM
∂t

(t, x)− dM 4xuM(t, x) = 1
2
∑

j+k≥M
k<M(if j=M)
j<M(if k=M)

aj,k uj uk

∂uM
∂ν
≡ ∇xuM · n = 0 on ∂Q

∂uM
∂ν
≡ ∇xuM · n = 0 on Γj, j = 1, . . . ,M

uM(0, x) = 0

(3)

where uj(t, x) (1 ≤ j < M − 1) is the molar concentration at the point x and at the time t
of an Aβ assembly of j monomers, while uM takes into account aggregations of more than
M−1 monomers. The production of Aβ in monomeric form from the neuron membranes has
been modeled by coupling the evolution equation for u1 with a non-homogeneous Neumann
condition on the boundaries of the sets Gj, indicated by Γj. In particular, 0 ≤ ηj ≤ 1 is
a smooth function for j = 1, . . . ,M . These monomers, by binary coalescence, give rise to
larger assemblies, which can diffuse in the cerebral tissue with a diffusion coefficient dj that
depends on their size. Let us remark that, Achdou’s model has been formulated to be valid
on small spatial domains, therefore isotropic diffusion has been assumed. The coagulation
rates ai,j are symmetric ai,j = aj,i > 0, i, j = 1, . . . ,M , but aMM = 0, since it is assumed
that long fibrils, characterized by a very slow diffusion, do not coagulate with each other.

1.2 Stochastic homogenization.

Since the development of modern imaging techniques (useful to evaluate the progression
of Alzheimer’s disease) requires the need to test the predictions of mathematical modeling
at the macroscale, in the present paper, we have applied the homogenization method to the
model presented by Achdou et al. [1], in order to describe the effects of the production and
agglomeration of the Aβ at the macroscopic level. The homogenization theory, introduced by
the mathematicians in the seventies to perform a sort of averaging procedure on the solutions
of partial differential equations with rapidly varying coefficients or describing media with
microstructures, has been already successfully applied in [9], [10] to derive a limiting model
from that proposed by Achdou et al. [1], in the context of a periodically perforated domain.
In particular, in [9], [10] we have constructed our set Qε, starting from a fixed bounded
domain Q (which represents a portion of cerebral tissue) and removing from it many small
holes of characteristic size ε (the neurons) distributed periodically. Then, we have rewritten
the model problem (1)-(3) as a family of equations in Qε and we have performed the limit
ε→ 0 in the framework of the two-scale convergence, first introduced by Nguetseng [24] and
Allaire [2]. The peculiarity of the two-scale convergence method, used in [9], [10] to study
the limiting behavior of the Smoluchowski-type equations, is that in a single process, one can
find the homogenized equations and prove the convergence of a sequence of solutions to the
problem at hand. Since the picture presented in our previous works [9], [10] is a too crude
oversimplification of the biomedical reality, in the present paper we have chosen to resort to
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a stochastic parametrization of the model equations: that is, we account for the non-periodic
cellular structure of the brain. In particular, the distribution of neurons is modeled in the
following way: it exists a family of predominantly genetic causes, not wholly deterministic,
which influences the position of neurons and the microscopic structure of the parenchyma in
a portion of the brain tissue Q. Also, we consider non-periodic random diffusion coefficients
and a random production of Aβ in the monomeric form at the level of neuronal membranes.
This together defines a probability space (Ω,F ,P).

Denoting by ω ∈ Ω the random variable in our model, the set of random holes in Rm

(representing the neurons) is labeled by G(ω). The production of β-amyloid at the boundary
Γ(ω) of G(ω) is described by a random scalar function η(x, ω) and the diffusivity, in the brain
parenchyma, of clusters of different sizes s is modeled by random matrices Ds(x, ω) on Ω. For
technical reasons, we assume that the randomness of the medium is stationary, that is, the
probability distribution of the random variables observed in a set A ⊂ Rm is shift invariant (
all variables share the same distribution in A and A+x, x ∈ Rm). As shown by Papanicolaou
and Varadhan [26] (who introduced this concept), the assumption of stationarity provides a
family of mappings (τx)x∈Rm : Ω → Ω such that η(x, ω) = η(τxω) and Ds(x, ω) = Ds(τxω).
The periodic homogenization can be recovered in this frame considering Ω = [0, 1)m with
τxω = x+ ω mod [0, 1)m, where one canonically chooses ω = 0 (see also [13]).

The above mentioned findings can be interpreted in the sense that the stationarity of the
coefficients and the resulting dynamical system τx transfer some structural properties from
Rm to Ω such that we could formally identify Ω ≈ Rm. Accordingly, a stationary random
set in Rm corresponds to a subset of Ω and a random Hausdorff measure on Rm corresponds
to a measure on Ω. In order to prevent confusion, let us note that, all the similarities we
mention here are of algebraic and measure-theoretic nature and not in the sense of a vector
space isomorphism. With the above short overview, we just want to point out that many
useful tools in periodic homogenization find their counterpart in the stochastic setting. The
stochastic homogenization theorems can be formulated in a very similar way to their periodic
version, if we rely on the above connections and similarities, though the mathematics behind
differs sometimes significantly. In this framework, we have studied the limiting behavior of
the system of nonlinear Smoluchowski-type equations describing our model by using a sort
of stochastic version of the two-scale convergence method.

The rest of the paper is organized as follows. In Section 2, we give a brief survey of the
probabilistic background behind the theory of stochastic homogenization and in Section 3 we
present all the main definitions and theorems related to the stochastic two-scale convergence
method. In Section 4 we give a detailed description of our model and derive all the a priori
estimates needed to apply the two-scale homogenization technique. Then, Section 5 is devoted
to the presentation and the proof of our main results on the stochastic homogenization of the
nonlinear Smoluchowski coagulation-diffusion equations in a randomly perforated domain.
Finally, Appendix A is introduced to summarize some basic concepts on the realization of
random sets.
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2 Random media

The method of stochastic two-scale convergence introduced by Zhikov and Piatnitsky [32]
is based on a setting that was originally introduced by Papanicolaou and Varadhan [26].
The connection between the abstract setting on random singular measures in [32] and the
theory of random sets was worked out in [13]. Hence we will first introduce the setting of
[26] and explain the ideas pointed out in [13] before we move on to the definition of two-scale
convergence.

2.1 Stationary ergodic dynamical systems.

This section has the intention to provide a probabilistic background for the theory of
stochastic homogenization, and more particularly for stochastic two-scale convergence. We
follow the formulation given by Papanicolaou and Varadhan [26], enriched by the ideas pre-
sented in [18], [32] and [13, 14].

The whole theory is based on the concept of dynamical systems.

Definition 2.1 (Dynamical system). Let (Ω,F ,P) be a probability space. An m-dimensional
dynamical system is defined as a family of measurable bijective mappings τx : Ω→ Ω, x ∈ Rm,
satisfying the following conditions:

(i) the group property: τ0 = 1 (1 is the identity mapping), τx+y = τx ◦ τy ∀x, y ∈ Rm;
(ii) the mappings τx : Ω → Ω preserve the measure P on Ω, i.e., for every x ∈ Rm, and

every P-measurable set F ∈ F , we have P(τxF ) = P(F );
(iii) the map T : Ω × Rm → Ω: (ω, x) 7→ τxω is measurable (for the standard σ-algebra

on the product space, where on Rm we take the Borel σ-algebra).

Note that (i) and (iii) imply that, for every x ∈ Rm and measurable F ⊂ Ω, the set τxF is
measurable: since τ−x (τxF ) = F we find that τxF is the projection of T −1(F ) ∩ {−x} × Ω
onto Ω. We define the notion of ergodicity for the dynamical system.

Definition 2.2 (Ergodicity). A dynamical system is called ergodic if one of the following
equivalent conditions is fulfilled

(i) given a measurable and invariant function f in Ω, that is

∀x ∈ Rm f(ω) = f(τxω)

almost everywhere in Ω, then

f(ω) = const. for P− a.e. ω ∈ Ω;

(ii) if F ∈ F is such that τxF = F ∀x ∈ Rm, then P(F ) = 0 or P(F ) = 1.

Definition 2.3 (Stationarity). Given a probability space (Ω,F ,P), a real valued process is
a measurable function f : Rm ×Ω→ R. We will say f is stationary if the distribution of the
random variable f(y, ·) : Ω → R is independent of y, i.e., for all a ∈ R, P({ω : f(y, ω) > a})
is independent of y. This is qualified by assuming the existence of a dynamical system
τy : Ω→ Ω (y ∈ Rm) and saying that f : Rm × Ω→ R is stationary if

f(y + y′, ω) = f(y, τy′ω) for all y, y′ ∈ Rm and ω ∈ Ω.
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Finally, we say that a random variable f : Rm × Ω → R is stationary ergodic if it is
stationary and the underlying dynamical system is ergodic. Naturally, if f is taking values
in a finite dimensional space, we will say it is stationary if all of its components in a given
basis are stationary with respect to the same dynamical system. This property is also called
jointly stationary.

Remark 2.4. [26] A function f is stationary ergodic if and only if there is some measurable
function f̃ : Ω→ R such that

f(x, ω) = f̃(τxω).

For a fixed ω ∈ Ω the function x 7→ f̃(τxω) of argument x ∈ Rm is said to be a realization of
function f̃ .

Let Lp(Ω) (1 ≤ p <∞) denote the space formed by (the equivalence classes of) measurable
functions that are P-integrable with exponent p and L∞(Ω) be the space of measurable
essentially bounded functions. If f ∈ Lp(Ω), then P-almost all realizations f(τxω) belong to
Lploc(R

m) [18].
We define the following m-parameter group of operators in the space L2(Ω):

U(x) : L2(Ω)→ L2(Ω) , f 7→ [U(x)f ] (ω) := f(τxω) .

It is known [18] that the operator U(x) is unitary for each x ∈ Rm and the group U(x) is
strongly continuous , i.e.

∀f ∈ L2(Ω) : lim
x→0
‖U(x)f − f‖L2(Ω) = 0 .

For x = {0, 0, . . . , xi, 0, . . . , 0} we obtain a one-parameter group whose infinitesimal generator
will be denoted by Di with domain Di(Ω). The unitarity of the group U(x) implies that the
operators Di are skew-symmetric:

∀f, g ∈ Di(Ω) :

ˆ

Ω

(Dif) g dP = −
ˆ

Ω

f (Dig) dP , (4)

and by definition of the generators we have

Dif = lim
xi 6=0, xi→0

f(τxiω)− f(ω)

xi
(5)

in the sense of convergence in L2(Ω). As Papanicolaou and Varadhan [26] have shown, almost
every realization possesses a weak derivative and it holds

∂

∂xi
f(τxω) = (Dif)(τxω) ∈ L2

loc(R
m) .

Also we have that (iD1, . . . , iDm) are commuting, self-adjoint, closed, and densely defined
linear operators on L2(Ω) [17], and we may define

Dωf := (D1f, . . . ,Dmf)> .
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We introduce the space W 1,2(Ω) with norm ‖ · ‖1,2 through

W 1,2(Ω) := D1(Ω)
⋂

. . .
⋂
Dm(Ω)

‖f‖1,2 := ‖f‖L2(Ω) +
m∑

i=1

‖Dif‖L2(Ω) .

Further let L2
loc(R

m; Rm) be the set of measurable functions f : Rm → Rm such that f |U ∈
L2(U; Rm) for every bounded domain U and we define

L2
pot,loc(R

m) :=
{
f ∈ L2

loc(R
m; Rm) | ∀U bounded domain, ∃ϕ ∈ H1(U) : f = ∇ϕ

}
,

L2
sol,loc(R

m) :=

{
f ∈ L2

loc(R
m; Rm) |

ˆ

Rm
f · ∇ϕ = 0 ∀ϕ ∈ C1

c (Rm)

}
.

Recalling the notion of a realization fω(x) := f(τxω) for f ∈ L2(Ω), we can then define
corresponding spaces on Ω through

L2
pot(Ω) :=

{
f ∈ L2(Ω; Rm) : fω ∈ L2

pot,loc(R
m) for P− a.e. ω ∈ Ω

}
,

L2
sol(Ω) :=

{
f ∈ L2(Ω; Rm) : fω ∈ L2

sol,loc(R
m) for P− a.e. ω ∈ Ω

}
, (6)

V2
pot(Ω) :=

{
f ∈ L2

pot(Ω) :

ˆ

Ω

f dP = 0

}
.

It has been shown in Chapter 7 of [18] that all of these spaces are closed and that L2(Ω; Rm) =
L2

sol(Ω)⊕ V2
pot(Ω). This has been proved using the continuous smoothing operator

Iδ : L2(Ω)→ W 1,2(Ω) , Iδf(ω) :=

ˆ

Rm
ηδ(x)f (τxω) dx , (7)

where ηδ is a Dirac-sequence of smooth functions. It can be shown that, for every f ∈ L2(Ω),
it holds Iδf → f as δ → 0 and the continuity of Iδ implies DiIδf = IδDif for all
f ∈ W 1,2(Ω). Thus, if we consider

Ṽ := closureL2(Ω)

{
Dωf : f ∈ W 1,2(Ω)

}

we first obtain Ṽ ⊆ V2
pot(Ω) and for g ∈ Ṽ⊥, we have for every δ > 0

∀f ∈ W 1,2(Ω) : 0 = 〈g,DωIδf〉 = 〈Iδg,Dωf〉 = −
∑

i

〈DiIδg, f〉 ,

and hence
∑

i DiIδg = 0. In particular, Iδg ∈ L2
sol(Ω) and since L2

sol(Ω) is closed we find
Ṽ⊥ ⊆ L2

sol(Ω). This implies Ṽ ⊇ V2
pot(Ω) and hence

Ṽ = closureL2(Ω)

{
Dωf : f ∈ W 1,2(Ω)

}
= V2

pot(Ω) . (8)

In what follows, we will often impose the following assumption:

Assumption 2.5. Assume that Ω is a separable metric space and (Ω,F ,P) is a probability
space with countably generated σ-algebra and let τx, x ∈ Rm, be a dynamical system in the
sense of Definition 2.1 that is ergodic in the sense of Definition 2.2.
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It was discussed in [13] that the latter assumption is not a restriction to our choice of
parameters.

ByM(Rm) we denote the space of finitely bounded Borel measures on Rm equipped with
the Vague topology, which makes M(Rm) a separable metric space [8]. The σ-field defined
by this topology is denoted by B(M) since it is a Borel σ-field onM. A random measure is
a measurable mapping

µ• : Ω→M(Rm) , ω 7→ µω

which is equivalent to the measurability of all mappings ω 7→ µω(A), where A ⊂ Rm are
arbitrary bounded Borel sets. A random measure is stationary if the distribution of µω(A)
is invariant under translations of A. In particular, random measures satisfy µτxω(A) =
µω(A+ x). For stationary random measures we find the following important property.

Theorem 2.6 ([8] Existence of Palm measure and Campbell’s Formula). Let L be the
Lebesgue-measure on Rm with dx := dL(x) and (Ω,F ,P) and τ as in Assumption 2.5. Then
there exists a unique measure µP on Ω such that

ˆ

Ω

ˆ

Rm
f(x, τxω) dµω(x)dP(ω) =

ˆ

Rm

ˆ

Ω

f(x, ω) dµP(ω)dx

for all B(Rm)×B(Ω)-measurable non negative functions and all µP×L- integrable functions.
Furthermore

µP(A) =

ˆ

Ω

ˆ

Rm
g(s)χA(τsω)dµω(s)dP(ω) , (9)

ˆ

Ω

f(ω)dµP =

ˆ

Ω

ˆ

Rm
g(s)f(τsω)dµω(s)dP(ω) (10)

for an arbitrary g ∈ L1(Rm,L) with
´

Rm g(x)dx = 1 and µP is σ-finite.

The measure µP from Theorem 2.6 is called Palm measure. By (9) µP can be interpreted
as the push-forward measure of g(x)dµω(x)dP(ω) under (x, ω) 7→ τxω. Stationarity implies
that this push-forward is independent of the choice of g. We say that the random measure
µω has finite intensity if

+∞ >

ˆ

Ω

ˆ

Rm
χΩ×[0,1]m(τxω, x)dµω(x) dP(ω) = µP(Ω) . (11)

Definition 2.7. Given a stationary random measure µω, we introduce the scaled measure
µεω through

µεω(A) := εm µω(ε−1A). (12)

One important property of random measures is the following generalization of the Birkhoff
ergodic theorem.

Lemma 2.8. ([14], Lemma 2.14) Let Assumption 2.5 hold for (Ω,F ,P, τ). Let Q ⊂ Rm be
a bounded domain, φ ∈ C(Q) and f ∈ L1(Ω;µP). Then, for almost every ω ∈ Ω

lim
ε→0

ˆ

Q

φ(x) f(τx
ε
ω)dµεω(x) =

ˆ

Q

ˆ

Ω

φ(x)f(ω̃)dµP(ω̃) dx . (13)
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Stochastic homogenization of the Smoluchowski equation 9

A further useful result towards this direction is the following.

Lemma 2.9. ([14], Lemma 2.15) Let Assumption 2.5 hold for (Ω,F ,P, τ). Let Q ⊂ Rm be
a bounded domain and let f ∈ L∞(Q × Ω;L ⊗ µP). Then, f has a B(Q) ⊗ F-measurable
representative which is an ergodic function in the sense that for almost every ω ∈ Ω

lim
ε→0

ˆ

Q

f(x, τx
ε
ω) dµεω(x) =

ˆ

Q

ˆ

Ω

f(x, ω̃) dµP(ω̃) dx ,

lim
ε→0

ˆ

Q

∣∣f(x, τx
ε
ω)
∣∣p dµεω(x) =

ˆ

Q

ˆ

Ω

|f(x, ω̃)|p dµP(ω̃) dx

(14)

for every 1 ≤ p <∞.

Based on the previous lemma, we can get the following result:

Lemma 2.10. Let Assumption 2.5 hold for (Ω,F ,P, τ). Let Q ⊂ Rm be a bounded domain
and let f ∈ L∞(Q× Ω;L ⊗ µP). Then, f has a B(Q)⊗ F-measurable representative which
is an ergodic function in the sense that for almost every ω ∈ Ω and for all ϕ ∈ C(Q) it holds

lim
ε→0

ˆ

Q

f(x, τx
ε
ω)ϕ(x) dµεω(x) =

ˆ

Q

ˆ

Ω

f(x, ω̃)ϕ(x) dµP(ω̃) dx ,

lim
ε→0

ˆ

Q

∣∣f(x, τx
ε
ω)
∣∣p ϕ(x) dµεω(x) =

ˆ

Q

ˆ

Ω

|f(x, ω̃)|p ϕ(x) dµP(ω̃) dx

(15)

for every 1 ≤ p <∞.

Proof. This follows from the fact that C(Q) is separable and Lemma 2.9 yields (15) for a
countable subset of C(Q) and a set of full measure Ω̃ ⊂ Ω. By an approximation ‖ϕ− ϕδ‖∞ <
δ and Lemma 2.9 we obtain the claim.

2.2 Random measures and random sets.

In this paper, we consider random sets of the following form. For every ω ∈ Ω the set G(ω)
is an open subset of Rm. The boundary Γ(ω) = ∂G(ω) is a (m − 1)-dimensional piece-wise
Lipschitz manifold. Furthermore, we assume that the measures

µω(A) :=

ˆ

A∩G{(ω)

dx , µΓ(ω)(A) := Hm−1(A ∩ Γ(ω))

are stationary. Hence, by Theorem 2.6 there exist corresponding Palm measures µP for
µω and µΓ,P for µΓ(ω) and by Lemma 2.14 of [13] there exists a measurable set Γ ⊂ Ω
with χΓ(ω)(x) = χΓ(τxω) for L + µΓ(ω)-almost every x for P-almost every ω and P(Γ) = 0,
µΓ,P(Ω\Γ) = 0. Also it was observed there that, if for every ω we have µω = L, then
also µP = P. From the corresponding proofs in [13], as well as the fact that µω has a
Radon-Nikodym derivative with respect to L, we find G ⊂ Ω such that µP(A) = P(A ∩G{),
χG{(ω)(x) = χG{(τxω) and

χG{dµP = dµP = χG{dP . (16)
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Remark 2.11. If A is a bounded Borel set, then

µεΓ(ω)(A) := εm µΓ(ω)(ε
−1A) = εHm−1(A ∩ Γε(ω)). (17)

It was shown in [13] that for random measures such as µω or µΓ(ω) the underlying prob-
ability space can be assumed to be separable and metric, since the boundedly finite Borel
measures equipped with the Vague topology form a separable metric space [8]. It was also
pointed out in [13] that τ : (x, ω) 7→ τxω is continuous.

Remark 2.12. If Ω is separable and metric, this implies that L2(Ω; P) and L2(Ω, µΓ,P)
are separable and that the bounded continuous functions Cb(Ω) are dense in both spaces.
Therefore, there exists a countable set Ψ := (ψi)i∈N such that ψi ∈ Cb(Ω) for every i and such
that Ψ lies dense in L2(Ω; P) and L2(Ω, µΓ,P). Furthermore, recalling (7) and approximating
ψi with the sequence I 1

n
ψ, n ∈ N, we can assume that ψi ∈ W 1,2(Ω) ∩ Cb(Ω). The space

V2
pot(Ω) is a subspace of a separable space and hence has to be separable, too. In particular
∇ψi can be assumed to be dense in V2

pot(Ω). We then define

Ψ = (ψi)i∈N

m⋃

j=1

(Djψi)i∈N .

Since Ω is assumed to be separable metric, we can also make the following definition.

Definition 2.13. The space of bounded continuously differentiable functions on Ω is

C1
b (Ω) := {f ∈ Cb(Ω) : Df ∈ Cb(Ω)}

‖f‖C1
b (Ω) := ‖f‖∞ + ‖Df‖∞ .

Let us remark that, since (x, ω) 7→ τxω is continuous, f ∈ C1
b (Ω) implies f(τxω) ∈

C1
b (Rm) ∀ω ∈ Ω. Concerning the random geometries considered in this work, we make the

assumptions listed below.

Definition 2.14 (See [11]). An open set G ⊂ Rm is said to be minimally smooth with
constants (δ,N,M) if we may cover Γ = ∂G by a countable sequence of open sets (Ui)i∈N

such that

1) Each x ∈ Rm is contained in at most N of the open sets Ui.

2) For any x ∈ Γ, the ball Bδ(x) is contained in at least one Ui.

3) For any i, the portion of the boundary Γ inside Ui agrees (in some Cartesian system
of coordinates) with the graph of a Lipschitz function whose Lipschitz semi-norm is at
most M .

In particular a set G ⊂ Rm is minimally smooth if and only if Rm\G is minimally smooth.
Let Q be a bounded domain in Rm. For given constants (δ,N,M), we consider G(ω)

a random open set which is a.s. minimally smooth with constants (δ,N,M) (uniformly
minimally smooth). We furthermore assume that G(ω) :=

⋃
i∈N Gi(ω) is a countable union

of disjoint open balls Gi(ω) with a maximal diameter d0.
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We then consider Gε(ω) := εG(ω) and

Qε(ω) := Q\


 ⋃

i∈Iε(ω)

εGi(ω)


 , ΓεQ(ω) :=

⋃

i∈Iε(ω)

∂(εGi(ω)) , (18)

where

Iε(ω) := {i : εGi(ω) ⊂ Q and εd0 < min {d(x, y) : x ∈ ∂(εGi(ω)), y ∈ ∂Q}} .

Remark 2.15. Note that we constructed the micro structures Q\Qε(ω) such that they do not
intersect with the boundary of Q and such that every hole in Qε(ω) has a minimal distance
εd0 to ∂Q. This is because we require in our proofs that ε−1Qε(ω) is a (δ,N,M)- minimal set
(or Qε(ω) is a (δε,N, ε−1M) minimal set, respectively). In particular, without the minimal
distance between two disjoint parts of the boundary, the resulting set Qε(ω) would violate
condition 3) from Definition 2.14, i.e. ∂Qε(ω) would not be a ε−1M-Lipschitz graph inside
balls of diameter ε

2
d0.

Assumption 2.16. There are constants d0, δ, N,M (independent of ω) such that P-a.s. the
set G(ω) consists of a countable union of bounded sets Gk(ω) (k ∈ N) such that the sets
Rm \Gk(ω) are all connected, while

d(Gk(ω), Gj(ω)) ≥ d0 whenever k 6= j,

and each set Gk(ω) is minimally smooth with constants (δ,N,M) and has a diameter smaller
than d0. The Lipschitz constant is uniformly over all Gk.

Remark 2.17. In particular, this guarantees that Rm\G(ω) is connected and has a Lipschitz
boundary ∂G, which represents the union of the boundaries of the holes. Furthermore, the
distance condition ensures that the boundary of G(ω) is locally representable as a graph.

Lemma 2.18. Suppose that Assumption 2.16 is satisfied. Then, there exists a family of
linear continuous extension operators

Eε : W 1,p(Qε)→ W 1,p(Q)

and a constant C > 0 independent of ε such that

Eεφ = φ in Qε(ω)

and

ˆ

Q

|Eεφ|p dx ≤ C

ˆ

Qε

|φ|p dx, (19)

ˆ

Q

|∇(Eεφ)|p dx ≤ C

ˆ

Qε

|∇φ|p dx, (20)

P-a.s. for any φ ∈ W 1,p(Qε) and for any p ∈ (1,+∞).
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Proof. Following the line of the proof reported in [11] (Proposition 3.3, p. 230), for any
k ∈ N, ω ∈ Ω, we denote by Ĝk(ω) a d0/4-neighborhood of Gk(ω) (the sets Gk(ω) are defined
in Assumption 2.16). Since, under our assumptions, the set Ĝk(ω)\Gk(ω) has Lipschitz
boundary, then, according to Theorem 5, p. 181 in [28], there exists an extension operator
Ek

Ek : W 1,p(Ĝk(ω)\Gk(ω))→ W 1,p(Ĝk(ω)) (21)

such that: Ekφ = φ a.e. in Ĝk(ω)\Gk(ω) and, for some constant C independent of k, we
have

‖Ekφ‖Lp(Ĝk(ω)) ≤ C ‖φ‖Lp(Ĝk(ω)\Gk(ω)) (22)

‖Ekφ‖W 1,p(Ĝk(ω)) ≤ C ‖φ‖W 1,p(Ĝk(ω)\Gk(ω)). (23)

Let us define new extensions

Êk : W 1,p(Ĝk(ω)\Gk(ω))→ W 1,p(Gk(ω)) (24)

by

Êkφ := Ek(φ− (φ)k) + (φ)k (25)

where

(φ)k :=

ˆ

Ĝk(ω)\Gk(ω)

φ dy (26)

Putting them all together, we define an extension

E : W 1,p(G{(ω))→ W 1,p(Q) (27)

given by

Eφ(y) :=

{
φ(y) whenever y ∈ G{(ω)

Êkφ(y) whenever y ∈ Ĝk(ω).
(28)

Now, in Ĝk(ω)\Gk(ω) we have

Êkφ = (φ− (φ)k) + (φ)k = φ. (29)

Moreover, by (22) and Hölder’s inequality, we have
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ˆ

Gk(ω)

|Êkφ|p dy =

ˆ

Gk(ω)

|Ek(φ− (φ)k) + (φ)k|p dy

≤ C

ˆ

Gk(ω)

|Ek(φ− (φ)k)|p dy + C

ˆ

Gk(ω)

|(φ)k|p dy

≤ C

ˆ

Ĝk(ω)\Gk(ω)

|φ− (φ)k|p dy + C

ˆ

Gk(ω)

|(φ)k|p dy

≤ C

ˆ

Ĝk(ω)\Gk(ω)

|φ|p dy + C ′
ˆ

Gk(ω)

|(φ)k|p dy

≤ C

ˆ

Ĝk(ω)\Gk(ω)

|φ|p dy

(30)

where, for simplicity, the letter C denotes a positive constant (independent of k) that can
change from line to line. Due to Assumption 2.16, the following Poincaré inequality holds:

ˆ

Ĝk(ω)\Gk(ω)

|φ− (φ)k|p dy ≤ C

ˆ

Ĝk(ω)\Gk(ω)

|∇φ|p dy (31)

Therefore, by using (23), (25) and (31), we get

ˆ

Gk(ω)

|∇(Êkφ)|p dy =

ˆ

Gk(ω)

|∇(Ek(φ− (φ)k))|p dy

≤ C

ˆ

Ĝk(ω)\Gk(ω)

|(φ− (φ)k)|p dy + C

ˆ

Ĝk(ω)\Gk(ω)

|∇φ|p dy

≤ C

ˆ

Ĝk(ω)\Gk(ω)

|∇φ|p dy

(32)

Since this holds for every k with the same C we have proved that

ˆ

∪kĜk(ω)

|Eφ|p dy ≤ C

ˆ

∪kĜk(ω)\Gk(ω)

|φ|p dy (33)

ˆ

∪kĜk(ω)

|∇(Eφ)|p dy ≤ C

ˆ

∪kĜk(ω)\Gk(ω)

|∇φ|p dy (34)

that is,

ˆ

Q

|Eφ|p dy ≤ C

ˆ

G{(ω)

|φ|p dy (35)

ˆ

Q

|∇(Eφ)|p dy ≤ C

ˆ

G{(ω)

|∇φ|p dy. (36)

By performing the change of variable y = x/ε, with x ∈ Qε(ω), it is easy to obtain the
corresponding re-scaled estimates (19) and (20), where Eε is the re-scaled extension operator.
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As a matter of fact, we can describe a portion of the cerebral cortex as a bounded open
set Q ⊂ R3, whereas the neurons are represented by a family of holes distributed randomly
in Q and having a characteristic size ε. A detailed construction of random domains that
satisfy the assumptions listed in this section is reported in Appendix A.

3 Two-scale convergence

We will use a slightly modified version of stochastic two-scale convergence compared to
the one presented in [14]. Let Ψ := (ψi)i∈N be the countable dense family of Cb(Ω)-functions
according to Remark 2.12.

Lemma 3.1. Let (fi)i∈N be a countable family in L∞(Q×Ω;L×P) and (gi)i∈N be a countable
family in L∞(Q×Γ;L×µΓ,P). Then there exists a set of full measure ΩΨ ⊂ Ω such that for
almost every ω ∈ ΩΨ, every i ∈ N, every ψ ∈ Ψ and every ϕ ∈ Cb(Q) the following holds:

lim
ε→0

ˆ

Q

ϕ2(x)ψ2(τx
ε
ω)f 2

i (x, τx
ε
ω)dx =

ˆ

Q

ˆ

Ω

ϕ2(x)ψ2(ω̃)f 2
i (x, ω̃) dP(ω̃) dx , (37)

lim
ε→0

ˆ

Q

gi
(
x, τx

ε
ω
)
ϕ(x)ψ(τx

ε
ω)dµεΓ(ω)(x) =

ˆ

Q

ˆ

Ω

gi(x, ω̃)ϕ(x)ψ(ω̃) dµΓ,P(ω̃) dx . (38)

Remark 3.2. The first equality (37) is needed for the proof of existence of the two-scale
limits. Therefore we put the square here. The second limit (38) is needed directly in the proof
of the main homogenization theorem. Therefore we study the convergence of gi tested with
ϕψ.

Proof. (Proof of Lemma 3.1) For fixed i the limits (37) and (38) hold for a.e. ω ∈ Ω due
to Lemma 2.10. Since the family (fi)i∈N is countable, we conclude.

Definition 3.3. Let Ψ be the set of Remark 2.12 and let ω ∈ ΩΨ. Let uε ∈ L2(Q) for
all ε > 0. We say that (uε) converges (weakly) in two scales to u ∈ L2(Q;L2(Ω)) and

write uε
2s
⇀ u if supε>0 ‖uε‖L2(Q) < ∞ and if for every ψ ∈ Ψ, ϕ ∈ C(Q) there holds with

φω,ε(x) := ϕ(x)ψ(τx
ε
ω) that

lim
ε→0

ˆ

Q

uε(x)φω,ε(x)dx =

ˆ

Q

ˆ

Ω

u(x, ω̃)ϕ(x)ψ(ω̃) dP(ω̃) dx .

Furthermore, we say that uε converges strongly in two scales to u, written uε
2s→ u, if

for every weakly two-scale converging sequence vε ∈ L2(Q) with vε
2s
⇀ v ∈ L2(Q;L2(Ω)) as

ε→ 0 there holds

lim
ε→0

ˆ

Q

uεvε dx =

ˆ

Q

ˆ

Ω

u v dP(ω̃) dx . (39)

Remark 3.4. Let us remark that the notion of two-scale convergence strongly depends on

the choice of ω. Also, let us note that φω,ε
2s→ ϕψ strongly in two scales by definition.
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Lemma 3.5. ([14], Lemma 4.4-1.) Let uε ∈ L2(Q) be a sequence of functions such that
‖uε‖L2(Q) ≤ C for some C > 0 independent of ε. Then there exists a subsequence (uε

′
)ε′→0

and u ∈ L2(Q;L2(Ω)) such that uε
′ 2s
⇀ u and

‖u‖L2(Q;L2(Ω)) ≤ lim inf
ε′→0

∥∥∥uε′
∥∥∥
L2(Q)

. (40)

Furthermore, let (fi)i∈N be a family of functions such as in Lemma 3.1. Then for every i ∈ N,

ϕ ∈ C(Ω) and ψ ∈ Ψ it holds

lim
ε→0

ˆ

Q

uε(x)φω,ε(x)fi(x, τx
ε
ω)dx =

ˆ

Q

ˆ

Ω

u(x, ω̃)ϕ(x)ψ(ω̃)fi(x, ω̃) dP(ω̃) dx . (41)

Proof. Let (ϕj)j∈N be a countable dense subset of C(Q) and write Ψ = (ψk)k∈N. Then the

span of ϕjψkfi is dense in L2(Q×Ω) (assuming w.l.o.g. that 1 ∈ (fi)i∈N). Thus (41) follows
from [14], Lemma 4.4-1, using (37), for all ϕjψkfi. The statement follows eventually from a
density argument to conclude for general ϕ ∈ C(Q).

Remark 3.6. As already observed in [14], Lemma 3.5 implies that for every f ∈ L∞(Ω),
the class of test-functions Ψ can be enriched by a countable subset fΨ ⊂ L2(Ω) changing ΩΨ

only by a set of measure 0.

We note that the definition of two-scale convergence in [14] is formulated in a different
way. However, due to Lemma 4.6 of [14], we can recover our Definition 3.3. In particular,
the original version of Lemma 3.5 yields two-scale convergence in the sense of [14] [Definition
4.2], and by Lemma 4.6 of [14] one infers Lemma 3.5. Finally, if Ω is compact, we recover
the statements of [32] by separability of Cb(Ω) = C(Ω).

Lemma 3.7. There exists Ω̃ ⊂ ΩΨ of full measure such that for all ω ∈ Ω̃ the following
holds: If uε ∈ H1(Q; Rm) for all ε, with ‖∇uε‖L2(Q) < C for C independent from ε > 0, then
there exists a subsequence denoted by uε, functions u ∈ H1(Q; Rm) and v ∈ L2(Q;L2

pot(Ω))
such that uε ⇀ u weakly in H1(Q) and

∇uε 2s
⇀ ∇u+ v as ε→ 0 .

The original version of the above Lemma in [14] was formulated in H1
0 (Q). However, the

proof applies for all sequences in H1(Q).
We are also interested in the convergence behavior of functions uε : [0, T ] → L2(Q). In

particular, we provide the following definition:

Definition 3.8. Let Ψ be the set of Remark 2.12, Λ = (ϕi)i∈N be a countable dense subset
of C(Q), ω ∈ ΩΨ and uε ∈ L2(0, T ;L2(Q)) for all ε > 0. We say that (uε) converges (weakly)

in two scales to u ∈ L2(0, T ;L2(Q;L2(Ω,P))), and write uε
2s
⇀ u, if for all continuous and

piece-wise affine functions φ : [0, T ]→ spanΨ×Λ there holds, with φω,ε(t, x) := φ(t, x, τx
ε
ω),

lim
ε→0

ˆ T

0

ˆ

Q

uεφω,εdx dt =

ˆ T

0

ˆ

Q

ˆ

Ω

u(t, x, ω̃)φ(t, x, ω̃) dP(ω̃) dx dt .
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Note that the test functions now have values in the vector space spanΨ since they are
affine. Similar to the stationary case, we obtain the following lemma.

Lemma 3.9. ([14], Lemma 4.16) Let T > 0. Then, every sequence (uε)ε>0 with uε ∈
L2(0, T ;L2(Q)) satisfying ‖uε‖L2(0,T ;L2(Q)) ≤ C for some C > 0 independent from ε has

a weakly two-scale convergent subsequence with limit function u ∈ L2(0, T ;L2(Q;L2(Ω,P))).

Furthermore, if ‖∂tuε‖L2(0,T ;L2(Q)) ≤ C uniformly for 1 < p ≤ ∞, then also ∂tu
ε 2s
⇀ ∂tu in

the sense of Definition 3.8 and ∂tu ∈ L2(0, T ;L2(Q;L2(Ω,P))) as well as uε(t)
2s
⇀ u(t) for

all t ∈ [0, T ].

As a special case of the last result, we have

Lemma 3.10. ([14], Lemma 4.17) Let Ψ and ΩΨ be given by Remark 2.12 and ω ∈ ΩΨ. Let
uε ∈ CLip(0, T ;L2(Q)) for all ε > 0 such that ‖uε‖CLip(0,T ;L2(Q)) ≤ C for some C independent

from ε > 0. Then, there exists u ∈ CLip(0, T ;L2(Q;L2(Ω,P))) and a subsequence uε
′

of uε

such that uε
′
(t)

2s
⇀ u(t) for all t ∈ [0, T ].

3.1 Domains with holes.

Since G(ω) is a random set, there exists, by the considerations in Section 2.2, a set G ⊂ Ω
such that χG(ω)(x) = χG(τxω). Based on G, respectively its complement G{, we obtain the
following generalized concept of two-scale convergence.

Lemma 3.11. Let uε ∈ L2(Q) be a sequence of functions such that supε>0 ‖uε‖L2(Q) <∞. If

(uε
′
)ε′→0 is a subsequence such that uε

′ 2s
⇀ u for some u ∈ L2(Q;L2(Ω)), then uε χQε

2s
⇀ uχG{.

Proof. Let (uε
′
)ε′→0 be a subsequence such that uε

′ 2s
⇀ u. Then the definition of two-scale

convergence in L2(Q) together with Remark 3.6 implies that, for every ϕ ∈ C(Q) and ψ ∈ Ψ,
it holds

lim
ε→0

ˆ

Q

uε(x)χG{(τx
ε
ω)ϕ(x)ψ(τx

ε
ω)dx =

ˆ

Q

ˆ

Ω

u(x, ω̃)χG{(ω̃)ϕ(x)ψ(ω̃)dP(ω̃)dx .

Furthermore, for δ > 0, let us consider the ball Bδ(x) of radius δ and center x. For ε > 0
small enough and with φω,ε(x) := ϕ(x)ψ(τx

ε
ω) it holds that

∣∣∣∣
ˆ

Q

uε(x)
(
χG{(τx

ε
ω)− χQε(x)

)
φω,ε(x)dx

∣∣∣∣

≤
(
ˆ

Bδ(∂Q)

|uε|2 dx
)(
ˆ

Bδ(∂Q)

ϕ2(x)ψ2(τx
ε
ω)dx

)

≤
(
ˆ

Bδ(∂Q)

ϕ2(x)ψ2(τx
ε
ω)dx

)
sup
ε>0
‖uε‖L2(Q)

→
(
ˆ

Bδ(∂Q)

ˆ

Ω

ϕ2(x)ψ2(ω)dP(ω)dx

)
sup
ε>0
‖uε‖L2(Q) .

Since δ > 0 is arbitrary, the statement follows.
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Lemma 3.12. Let uε ∈ H1(Qε(ω)) be a sequence of functions such that supε>0 ‖uε‖H1(Qε(ω)) <

∞. Then there exist u ∈ H1(Q) and v ∈ L2(Q;L2
pot(Ω)) such that Eεuε ⇀ u weakly in H1(Q)

as well as uε
2s
⇀ χG{ u and ∇uε 2s

⇀ χG{∇u+ χG{ v.

Proof. Lemma 2.18 implies that supε>0 ‖Eεuε‖H1(Q) < ∞. Hence, due to Lemma 3.7 there

exists u ∈ H1(Q) and v ∈ L2(Q;L2
pot(Ω)) such that Eεuε ⇀ u weakly in H1(Q) and

∇(Eεuε) 2s
⇀ ∇u+ v. Lemma 3.11 now implies uε

2s
⇀ χG{ u and ∇uε 2s

⇀ χG{∇u+ χG{ v.

Lemma 3.13. Let uε ∈ L2(0, T ;H1(Qε(ω))) be a sequence of functions such that

sup
ε>0
‖uε‖L2(0,T ;H1(Qε(ω))) + ‖∂tuε‖L2(0,T ;L2(Qε(ω))) <∞ .

Then there exist u ∈ L2(0, T ;H1(Q)), v ∈ L2(0, T ;L2(Q;L2
pot(Ω)))with ∂tu ∈ L2(0, T ;L2(Q))

such that Eεuε ⇀ u weakly in L2(0, T ;H1(Q)) and Eεuε → u strongly in L2(0, T ;L2(Q)) as
well as

uε
2s
⇀ χG{ u , ∂tu

ε 2s
⇀ χG{ ∂tu , and ∇uε 2s

⇀ χG{∇u+ χG{ v .

Proof. We only have to prove Eεuε → u strongly in L2(0, T ;L2(Q)) since the remaining part
of the statement has either been demonstrated above or can be obtained by generalizing
previous considerations.

We first observe that, for every times t1, t2 ∈ [0, T ], it holds by Lemma 2.18 that

∥∥∥∥
ˆ t2

t1

Eεuε(t)dt
∥∥∥∥
H1(Q)

≤
∥∥∥∥Eε
ˆ t2

t1

uε(t)dt

∥∥∥∥
H1(Q)

≤ C

∥∥∥∥
ˆ t2

t1

uε(t)dt

∥∥∥∥
H1(Qε)

≤ CT
1
2 ‖uε‖L2(0,T ;H1(Qε))

and hence
{
´ t2
t1
Eεuε(t)dt

}
ε>0

is precompact in L2(Q). Next, one can write by using again

Lemma 2.18:

ˆ T−h

0

‖Eε(uε(t)− uε(t+ h))‖2
L2(Q) dt ≤ C

ˆ T−h

0

‖uε(t)− uε(t+ h)‖2
L2(Qε) dt

≤ C

ˆ T−h

0

∥∥∥∥
ˆ t+h

t

∂tu
ε(s)ds

∥∥∥∥
2

L2(Qε)

dt

≤ C

ˆ T−h

0

h ‖∂tuε‖2
L2(t,t+h;L2(Qε)) dt

≤ Ch ‖∂tuε‖2
L2(0,T ;L2(Qε))

where the constant C changes in the last step. Since it holds Eεuε ⇀ u in L2(0, T ;L2(Q)),
we conclude from Simon’s compactness theorem (see Theorem 1 of [27]).
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4 Setting of the problem and estimates

Throughout this paper, ε will denote the general term of a sequence of positive reals which
converges to zero. We consider in the following a system of anisotropic diffusion-coagulation
Smoluchowski-type equations which describes the dynamics of cluster growth. In particular,
we introduce the vector-valued random function uε : [0, T ] ×Qε → RM , uε = (uε1, . . . , u

ε
M)

(with M ∈ N being fixed) where the variable uεs ≥ 0 (1 ≤ s < M) represents the concentration
of s-clusters, that is, clusters consisting of s identical elementary particles (monomers), while
uεM ≥ 0 takes into account aggregations of more than M − 1 monomers. We assume that
the only reaction allowing clusters to coalesce to form larger clusters is a binary coagulation
mechanism, while the movement of clusters results only from a diffusion process described
by a stationary ergodic random matrix

(
dsi,j(t, x, τxεω)

)
i,j=1,...,m

=: Ds(t, x, τx
ε
ω) 1 ≤ s ≤M,

where (t, x) ∈ [0, T ]×Q. Here Ds(t, x, τx
ε
ω) is the realization (see Remark 2.4) of a random

matrix. Indeed, aging (as well as the AD itself) yields atrophy of the cerebral parenchyma,
inducing changes in the diffusion rate of the amyloid agglomerates. In addition, this rate
may vary for different regions of the brain. Finally, we have to take into account that Aβ
aggregates do not diffuse freely in an uniform fluid: the cerebral tissue consists of large non-
neuronal support cells (the macroglia) and the Aβ polymers move within the cerebrospinal
fluid along the interstices between these cells that, in turn, are stochastically distributed.

With these notations, our system reads:





∂uε1
∂t
− div(D1(t, x, τx

ε
ω)∇xu

ε
1) + uε1

∑M
j=1 a1,ju

ε
j = 0 in [0, T ]×Qε

[D1(t, x, τx
ε
ω)∇xu

ε
1] · n = 0 on [0, T ]× ∂Q

[D1(t, x, τx
ε
ω)∇xu

ε
1] · νΓεQ

= ε η(t, x, τx
ε
ω) on [0, T ]× ΓεQ

uε1(0, x) = U1 in Qε

(42)

if 1 < s < M





∂uεs
∂t
− div(Ds(t, x, τx

ε
ω)∇xu

ε
s) + uεs

∑M
j=1 as,ju

ε
j = f ε in [0, T ]×Qε

[Ds(t, x, τx
ε
ω)∇xu

ε
s] · n = 0 on [0, T ]× ∂Q

[Ds(t, x, τx
ε
ω)∇xu

ε
s] · νΓεQ

= 0 on [0, T ]× ΓεQ

uεs(0, x) = 0 in Qε

(43)
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and eventually





∂uεM
∂t
− div(DM(t, x, τx

ε
ω)∇xu

ε
M) = gε in [0, T ]×Qε

[DM(t, x, τx
ε
ω)∇xu

ε
M ] · n = 0 on [0, T ]× ∂Q

[DM(t, x, τx
ε
ω)∇xu

ε
M ] · νΓεQ

= 0 on [0, T ]× ΓεQ

uεM(0, x) = 0 in Qε

(44)

where the gain terms f ε and gε in (43) and (44) are given by

f ε =
1

2

s−1∑

j=1

aj,s−j u
ε
j u

ε
s−j (45)

gε =
1

2

∑

j+k≥M
k<M(if j=M)
j<M(if k=M)

aj,k u
ε
j u

ε
k. (46)

The kinetic coefficients ai,j represent a reaction in which an (i+ j)-cluster is formed from an
i-cluster and a j-cluster. Therefore, they can be interpreted as ”coagulation rates” and are
symmetric ai,j = aj,i > 0 (i, j = 1, . . . ,M), but aM,M = 0. Let us remark that the meaning of
uεM differs from that of uεs (s < M), since it describes the sum of the densities of all the ’large’
assemblies. It is assumed that large assemblies exhibit all the same coagulation properties
and do not coagulate with each other.

The production of β-amyloid peptide by the malfunctioning neurons is described imposing
a non-homogeneous Neumann condition on the boundary of the holes, randomly selected
within our domain. To this end, we consider on ΓεQ in Eq. (42) a stationary ergodic random
function η = η(t, x, τx

ε
ω). Here η(t, x, τx

ε
ω) is the realization (see Remark 2.4) of a random

function:

η : [0, T ]×Q× Ω→ [0, 1] (47)

where the value ’0’ is assigned to ’healthy’ neurons while all the other values in ]0, 1] indicate
different degrees of malfunctioning. Moreover, we assume that η is an increasing function
of time, since once the neuron has become ’ill’, it can no longer regain its original state of
health.

Further hypotheses are listed below:
(H.1) the diffusion coefficients satisfy dsi,j ∈ C1 ([0, T ]×Q;C1

b (Ω)) for i, j = 1, . . . ,m, s =
1, . . . ,M . We put

Λ? := sup
i,j,s
‖dsi,j‖C1([0,T ]×Q;C1

b (Ω)).

In particular, the map (t, x, ω)→ Ds(t, x, τx
ε
ω) is continuously differentiable;
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(H.2) dsi,j = dsj,i, for i, j = 1, . . . ,m, s = 1, . . . ,M ;
(H.3) there exists 0 < λ ≤ Λ such that

λ|ξ|2 ≤
m∑

i,j=1

dsi,j(t, x, τxεω)ξiξj ≤ Λ|ξ|2

for all s = 1, . . . ,M , ξ ∈ Rm, (t, x) ∈ [0, T ]×Q and for P-a.e. ω ∈ Ω.

Moreover, the function η, appearing in (42), is a given bounded function satisfying the
following conditions:
(H.4) η ∈ C1 ([0, T ]×Q;C1

b (Ω));
(H.5) η(0, ·, ·) = 0 and U1 is a positive constant such that

U1 ≤ ‖η‖L∞([0,T ]×Q×Ω). (48)

We can repeat now almost verbatim the arguments of [10], Theorems 2.1, 2.2, 2.3 and 2.4 to
obtain the following “deterministic” (i.e. for fixed ω ∈ Ω) existence and regularity result.

Theorem 4.1. Suppose Assumption 2.16 (where additionally G(ω) has a smooth boundary)
and (H.1) - (H.5) hold. Then for P-a.e. ω ∈ Ω and for any ε > 0 the system (42) - (44)
admits a unique maximal classical solution

uεω = (uεω,1, . . . , u
ε
ω,M)

such that

(i) there exists α ∈ (0, 1), α depending only on N, λ,Λ?, ε and ω, such that for P-a.e.
ω ∈ Ω it holds uε ∈ C1+α/2,2+α([0, T ]×Qε,RM) and

‖uεω‖C1+α/2,2+α([0,T ]×Qε,RM ) ≤ C0 = C0(U1, ‖η‖L∞([0,T ]×Q×Ω), K, ε, ω, α); (49)

(ii) uεω,j(t, x) > 0 for (t, x) ∈ [0, T ]×Qε, P-a.e. ω ∈ Ω and j = 1, . . . ,M .

In the sequel we shall rely on the fact that statements that hold P-a.e. can be seen
as deterministic assertions, since they hold whenever Qε is a set enjoying the regularity
properties described in Remark 2.15, Assumption 2.16 and Remark 2.17.

Arguing as in [10], the first and crucial step will consist of proving that the uεω,j are
equibounded in L∞([0, T ]×Qε) for P-a.e. ω ∈ Ω and j = 1, . . . ,M .

In particular, an uniform bound for uεω in L∞([0, T ] ×Qε) is provided by the following
statement:

Theorem 4.2. Let uεω = (uεω,1, . . . , u
ε
ω,M) be as in Theorem 4.1. Then

‖uεω,1‖L∞([0,T ]×Qε) ≤ |U1|+ c ‖η‖L∞([0,T ]×Q×Ω), (50)

for P-a.e. ω ∈ Ω, where c is independent of ε > 0.
In addition, there exists K > 0 such that

‖uεω,j‖L∞([0,T ]×Qε) ≤ K (51)

for P-a.e. ω ∈ Ω, uniformly with respect to ε > 0.
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Proof. Thanks to extension Lemma 2.18, the function uεω can be continued on all [0, T ]×Q.
Therefore we can repeat step by step the arguments of [10], Theorems 2.2 and 2.3, that in
turn rely on [20] (see also [25] and [30]).

Therefore

Theorem 4.3 ([10], Theorems 3.1. and 3.2). The sequence (∇xu
ε
ω,j)ε>0 (1 ≤ j ≤ M) is

bounded in L2([0, T ]×Qε) for P-a.e. ω ∈ Ω, uniformly in ε.
In addition, the sequence (∂tu

ε
ω,j)ε>0 (1 ≤ j ≤M) is bounded in L2([0, T ]×Qε) for P-a.e.

ω ∈ Ω, uniformly in ε.

5 Homogenization

Our main statement shows that it is possible to homogenize the set of Eqs. (42)-(44) as
ε→ 0.

Theorem 5.1. Let uεs(t, x) (1 ≤ s ≤ M) be a family of nonnegative classical solutions to
the system (42)-(44). Denote by a tilde the extension by zero outside Qε(ω) and let χG{

represent the characteristic function of the random set G{(ω). Then, the sequences (ũεs)ε>0,

(∇̃xuεs)ε>0 and (∂̃tuεs)ε>0 (1 ≤ s ≤ M) stochastically two-scale converge to: [χG{ us(t, x)],
[χG{(∇xus(t, x) + vs(t, x, ω))], [χG{ ∂t us(t, x)] (1 ≤ s ≤ M), respectively. The limiting func-
tions [(t, x) 7→ us(t, x), (t, x, ω) 7→ vs(t, x, ω)] (1 ≤ s ≤ M) are the unique solutions lying in
L2(0, T ;H1(Q))× L2([0, T ]×Q;L2

pot(Ω)) of the following two-scale homogenized systems:
If s = 1:





θ ∂u1
∂t

(t, x)− divx
[
D?

1(t, x)∇xu1(t, x)

]

+θ u1(t, x)
∑M

j=1 a1,j uj(t, x) =

ˆ

Ω

χΓ
G{ η(t, x, ω) dµΓ,P(ω) in [0, T ]×Q

[D?
1(t, x)∇xu1(t, x)] · n = 0 on [0, T ]× ∂Q

u1(0, x) = U1 in Q

(52)

If 1 < s < M :





θ ∂us
∂t

(t, x)− divx
[
D?
s(t, x)∇xus(t, x)

]

+θ us(t, x)
∑M

j=1 as,j uj(t, x)

= θ
2
∑s−1

j=1 aj,s−j uj(t, x)us−j(t, x) in [0, T ]×Q

[D?
s(t, x)∇xus(t, x)] · n = 0 on [0, T ]× ∂Q

us(0, x) = 0 in Q

(53)

If s = M :
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



θ ∂uM
∂t

(t, x)− divx
[
D?
M(t, x)∇xuM(t, x)

]

= θ
2
∑

j+k≥M
k<M(if j=M)
j<M(if k=M)

aj,k uj(t, x)uk(t, x) in [0, T ]×Q

[D?
M(t, x)∇xuM(t, x)] · n = 0 on [0, T ]× ∂Q

uM(0, x) = 0 in Q

(54)

where

θ =

ˆ

Ω

χG{ dµP(ω) = P(G{)

represents the fraction of volume occupied by G{ and, for every 1 ≤ s ≤ M , D?
s(t, x) is a

deterministic matrix, called ”effective diffusivity”, defined by

(D?
s)ij(t, x) =

ˆ

Ω

χG{ Ds(t, x, ω)(wi(t, x, ω) + êi) · (wj(t, x, ω) + êj) dP(ω)

with êi being the i-th canonical unit vector in Rm, and (wi)1≤i≤m ∈ L2([0, T ] ×Q;L2
pot(G

{))
the family of solutions of the following microscopic problem

{
−divω[Ds(t, x, ω)(wi(t, x, ω) + êi)] = 0 in G{

Ds(t, x, ω)[wi(t, x, ω) + êi] · νΓ
G{ = 0 on ΓG{ .

(55)

Finally,

vs(t, x, ω) =
m∑

i=1

wi(t, x, ω)
∂us
∂xi

(t, x) (1 ≤ s ≤M).

Proof. In view of Theorems 4.2 and 4.3, the sequences (̃uεs)ε>0, (̃∇xuεs)ε>0 and

(̃
∂uεs
∂t

)

ε>0

(1 ≤ s ≤M) are bounded in L2([0, T ]×Q). Using Lemma 3.13, they two-scale converge, up
to a subsequence, respectively, to: [χG{ us(t, x)], [χG{(∇xus(t, x)+vs(t, x, ω))], [χG{∂tus(t, x)],
where us ∈ L2(0, T ;H1(Q)) and vs ∈ L2([0, T ]×Q;L2

pot(Ω)). As test functions for homoge-
nization, let us take

φε(t, x, ω) := φ0(t, x) + ε φ(t, x)ψ(τx
ε
ω) (56)

where φ0, φ ∈ C1([0, T ]×Q) and ψ ∈ Ψ, with Ψ being the set of Remark 2.12.
In the case when s = 1, let us multiply the first equation of (42) by the test function φε.

Integrating, the divergence theorem yields
ˆ T

0

ˆ

Qε(ω)

∂uε1
∂t

φε(t, x, ω) dx dt+

ˆ T

0

ˆ

Qε(ω)

〈
D1(t, x, τx

ε
ω)∇xu

ε
1,∇φε

〉
dx dt

+

ˆ T

0

ˆ

Qε(ω)

uε1

M∑

j=1

a1,j u
ε
j φ

ε(t, x, ω) dx dt = ε

ˆ T

0

ˆ

ΓεQ(ω)

η(t, x, τx
ε
ω)φε(t, x, ω) dHm−1 dt.

(57)
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Passing to the two-scale limit, as ε→ 0, we get, taking into account (17):
ˆ T

0

ˆ

Q

ˆ

Ω

χG{
∂u1

∂t
(t, x)φ0(t, x) dP(ω) dx dt

+

ˆ T

0

ˆ

Q

ˆ

Ω

χG{D1(t, x, ω)[∇xu1(t, x) + v1(t, x, ω)]

·[∇xφ0(t, x) + φ(t, x)∇ωψ(ω)] dP(ω) dx dt

+

ˆ T

0

ˆ

Q

ˆ

Ω

χG{u1(t, x)
M∑

j=1

a1,j uj(t, x)φ0(t, x) dP(ω) dx dt

=

ˆ T

0

ˆ

Q

ˆ

Ω

χΓ
G{ η(t, x, ω)φ0(t, x) dµΓ,P(ω) dx dt. (58)

The term on the right-hand side follows from Eq. (38). The last term on the left-hand
side of (58) has been obtained by observing that Eεuεj → uj strongly in L2(0, T ;L2(Q)) (see

Lemma 3.13) and that the two-scale convergence of uε1
2s
⇀ χG{u1 implies weak convergence of

uε1φ
ε(·, ·, ω) ⇀ u1φ0

´

Ω
χG{dP(ω) in L2(0, T ;L2(Q)).

An integration by parts shows that (58) can be put in the strong form associated with
the following homogenized system:

−divω[D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))] = 0 in [0, T ]×Q×G{ (59)

[D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))] · νΓ
G{ = 0 on [0, T ]×Q× ΓG{ (60)

θ
∂u1

∂t
(t, x)− divx

[
ˆ

Ω

χG{ D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω))dP(ω)

]

+ θ u1(t, x)
M∑

j=1

a1,j uj(t, x)−
ˆ

Ω

χΓ
G{ η(t, x, ω) dµΓ,P(ω) = 0 in [0, T ]×Q

(61)

[
ˆ

Ω

χG{ D1(t, x, ω)(∇xu1(t, x) + v1(t, x, ω)) dP(ω)

]
· n = 0 on [0, T ]× ∂Q (62)

where

θ =

ˆ

Ω

χG{ dP(ω) = P(G{) (63)

represents the fraction of volume occupied by G{. To conclude, by continuity, we have that

u1(0, x) = U1 in Q.

The function v1(t, x, ω), satisfying (59) and (60), can be expressed as follows

v1(t, x, ω) :=
m∑

i=1

wi(t, x, ω)
∂u1

∂xi
(t, x) (64)
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where (wi)1≤i≤m ∈ L2([0, T ] × Q;L2
pot(G

{)) is the family of solutions of the microscopic
problem

{
−divω[D1(t, x, ω)(wi(t, x, ω) + êi)] = 0 in G{

D1(t, x, ω)[wi(t, x, ω) + êi] · νΓ
G{ = 0 on ΓG{

(65)

and êi is the i-th unit vector of the canonical basis of Rm. The system (65) represents the
stochastic version of the ”cell problem” defined in periodic homogenization. By using the
relation (64) in Eqs.(61) and (62), we get

θ
∂u1

∂t
(t, x)− divx

[
D?

1(t, x)∇xu1(t, x)

]
+ θ u1(t, x)

M∑

j=1

a1,j uj(t, x)

−
ˆ

Ω

χΓ
G{ η(t, x, ω) dµΓ,P(ω) = 0 in [0, T ]×Q

(66)

[D?
1∇xu1(t, x)] · n = 0 on [0, T ]× ∂Q (67)

where the entries of the matrix D?
1 (called ”effective diffusivity”) are given by

(D?
1)ij(t, x) =

ˆ

Ω

χG{ D1(t, x, ω)[wi(t, x, ω) + êi] · [wj(t, x, ω) + êj] dP(ω). (68)

The proof for the case 1 < s ≤M is achieved by applying exactly the same arguments.

A Appendix A

We review some basic results on the realization of random domains based on continuum
percolation theory [22].

A.1 Stationary ergodic point processes.

Since in percolation theory, random modeling is based on the occurrences of stationary
point processes, in this section, we state their definition and some basic properties [8].

Definition A.1. Denote the σ-algebra of Borel sets in Rm by Bm.
(i) A Borel measure µ on Rm is boundedly finite if µ(A) < ∞ for every bounded Borel

set A.
(ii) Let N be the space of all boundedly finite integer-valued measures on Bm, called

counting measures for short.

Proposition A.2. A boundedly finite measure X on Bm is a counting measure (i.e., X ∈ N)
if and only if

X =
∑

i

ki δxi , (69)
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where ki are positive integers and {xi} is a countable set with at most finitely many xi in any
bounded Borel set. In Eq. (69) we use Dirac measures defined for every xi ∈ Rm by

δxi(A) =

{
1 if xi ∈ A,
0 otherwise.

(70)

We equip N with the σ-algebra N generated by sets of the form

{X ∈ N : X(A) = k}

where A ∈ Bm and k is an integer. We finally introduce N∗ the set of all counting measures
such that for all i ∈ N it holds ki = 1 in (69).

Definition A.3. A point process X on state space Rm is a measurable mapping from a
probability space (Ω,F ,P) into (N,N ). It is called simple if X(ω) ∈ N∗ a.s.. The distribution
of X is the measure µ on N induced by X, i.e.

µ(G) = P(X−1(G)), for all G ∈ N . (71)

The notation of Definition A.3 is intended to imply that with every sample point ω ∈ Ω,
we associate a particular realization that is a boundedly finite integer-valued Borel measure
on Rm. We denote it by X(·, ω) or just X(·) (when we have no need to draw attention to the
underlying spaces). A realization of a point process X has the value X(A, ω) (or just X(A))
on the Borel set A ∈ Bm. For each fixed A, XA ≡ X(A, ·) is a function mapping Ω into R+,
and thus it is a candidate for a nonnegative random variable, as it is shown in the following
proposition.

Proposition A.4. Let X be a mapping from a probability space into N and A a semiring of
bounded Borel sets generating Bm. Then X is a point process if and only if XA is a random
variable for each A ∈ A.

Taking for A the semiring of all bounded sets in Bm we obtain the following corollary.

Corollary A.5. X : Ω 7→ N is a point process if and only if X(A) is a random variable for
each bounded A ∈ Bm.

We now consider invariance properties with respect to translations (or shifts). Let Tt be
the translation in Rm over the vector t: Tt(s) = t + s, for all s ∈ Rm. Then Tt induces a
transformation

St : N → N

through the relation
(Stn)(A) = n(T−1

t (A))

for all A ∈ Bm. It is easy to verify that (St)t∈Rm form a group.

Definition A.6. The point process X is said to be stationary if

∀G ∈ N µ
(
S−1
t (G)

)
= µ(G) . (72)
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In other words, a process is stationary if for every A ⊂ Rm, the distribution of n(A) is
invariant under shifts t+A. This can be interpreted that n ∈ N has the same probability as
all its shifts Stn.

Since P induces a probability measure µ on (N,N ) via (71), it is convenient to replace
the space (Ω,F ,P) by (N,N , µ) and to relabel formally (Ω,F ,P) := (N,N , µ) so that any
element ω ∈ Ω represents a counting measure in Rm. Identifying τx := Sx, by (72) we now
have a measure-preserving (m. p.) dynamical system (Ω,F , µ, τx).

Definition A.7. A stationary point process µ is said to be ergodic if {τx : x ∈ Rm} acts
ergodically on (Ω,F , µ) in the sense of Definition 2.2.

A.2 Percolation theory and random modeling.

The continuum percolation theory provides a general setting for the realization of random
domains. In this framework, two common models are the Boolean model and the random-
connection model.

A.2.1 The Boolean model.

The Boolean model is driven by some stationary point process X. Each point of X is
the centre of a closed ball (in the usual Euclidean metric) with a random radius in such a
way that radii corresponding to different points are independent of each other and identically
distributed. The radii are also independent of X. Additionally, we want the resulting random
model to be stationary. In order to assign independent random values to the radii, we
partition Rm into binary cubes

K(n, z) :=
m∏

i=1

[zi 2
−n, (zi + 1) 2−n]

for all n ∈ N and z ∈ Zm. We call this a binary cube of order n. Each point x ∈ X is
contained in a unique binary cube of order n, K(n, z(n, x)) and for each point x ∈ X there
is a unique smallest number n0 = n0(x) such that K(n0, z(n0, x)) contains no other points of
X (recall that X is locally finite). We assign to each point xi ∈ X a random value in [0,∞)
in the following way: For a probability measure P0 on [0,∞) we define

Ω2 :=
∏

n∈N

∏

z∈Zm

[0,∞)

with the corresponding product σ-algebra and product measure P2 := PN×Zm
0 . Denoting by

ω2 ∈ Ω2 the elements of Ω2 we assign to each cube K(n, z) the value ω2(n, z) and to every
x ∈ X the radius r = ω2(n0, z(n0, x)).

We now set Ω = Ω1 × Ω2 and equip Ω with product measure P = P1 × P2 and the usual
product σ-algebra. A Boolean model is a measurable mapping from Ω into N × Ω2.

The product structure of Ω implies that the radii are independent of the point process,
and the product structure of Ω2 implies that different points have balls with independent,
identically distributed radii.
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Let the unit vectors in Rm be denoted by e1, . . . , em. The translation Tei : Rm → Rm

defined by: x→ x+ ei induces a transformation Uei on Ω2 through the equation

(Ueiω2)(n, z) = ω2(n, z − 2nei). (73)

As before, Sei is defined on Ω1 via the equation

(Seiω1)(A) = ω1(T−1
ei
A). (74)

Hence, Tei induces a transformation T̃ei on Ω = Ω1 × Ω2 defined by

T̃ei(ω) = (Seiω1, Ueiω2). (75)

The transformation T̃ei corresponds to a translation by the vector ei of a configuration of
balls in space. The Boolean model is now stationary in the sense that P is shift invariant

w.r.t.
(
T̃x

)
x∈Zm

. If we replace Ω2 by Ω2 × [0, 1)m as in Sections 2.6 and 3.2 of [14] we can

construct a family of mappings (τx)x∈Rm on Ω such that we have stationarity of P w.r.t. τx.

A.2.2 The random-connection model.

As in Boolean models, a stationary point process X is the first characteristic of the
random-connection model (RCM) and it assigns randomly points in the space. The second
characteristic of the model is a so-called connection function, which is a non-increasing func-
tion from the positive reals into [0, 1]. Given a connection function g, the rule is as follows:
for any two points x1 and x2 of the point process X, we insert an edge between x1 and x2

with probability g(|x1−x2|), independently of all other pairs of points of X, where |·| denotes
the usual Euclidean distance. The formal mathematical construction of a random-connection
model is quite similar to the one of a Boolean model. First we assume that the point process
X is defined on a probability space (Ω1,F1,P1). Next we consider a second probability space
Ω2 defined as

Ω2 =
∏

{K(n,z),K(m,z′)}
[0, 1]

where the product is over all unordered pairs of binary cubes. An element ω2 ∈ Ω2 is
written as ω2({(n, z), (m, z′)}). We equip Ω2 with product measure P2. As before, we set
Ω = Ω1 × Ω2 and we equip Ω with product measure P = P1 × P2. A random-connection
model is a measurable mapping from Ω into N × Ω2 defined by

(ω1, ω2)→ (X(ω1), ω2).

The realisation corresponding to (ω1, ω2) is obtained as follows: for any two points x and
y of X(ω1), consider the binary cubes K(n0(x), z(n0(x), x)) and K(n0(y), z(n0(y), y)). We
connect x and y if and only if

ω2({(n0(x), z(n0(x), x)), (n0(y), z(n0(y), y))}) < g(|x− y|).
The dynamical system can be constructed similar to the Boolean model.
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A.2.3 The Poisson process.

Usually, both the Boolean and the random-connection models are based on occurrences
of the Poisson point process.

Definition A.8. The point process X is said to be a Poisson process with density λ > 0 if
(i) and (ii) below are satisfied:

(i) For mutually disjoint Borel sets A1, . . . , Ak, the random variables X(A1), . . . , X(Ak)
are mutually independent.

(ii) For any bounded Borel set A ∈ Bm we have for every k ≥ 0

P(X(A) = k) = e−λL(A) λk L(A)k

k!
(76)

where L(·) denotes Lebesgue measure in Rm.

Eq. (76) represents the probability that the number of points inside a bounded Borel set
A equals k. Condition (ii) guarantees that a Poisson process is stationary. Furthermore, one
can prove [22]:

Proposition A.9. A Poisson point process is ergodic.

The following result shows that ergodicity of a point process carries over to a Boolean
model or to a random-connection model driven by that process [22].

Proposition A.10. Suppose X is ergodic. Then, any Boolean model or random-connection
model driven by X is also ergodic.

A.3 Realization of random perforated structures.

In Section 2.2, we have stated the main assumptions that our perforated domain should
satisfy. We have also stressed how a random spherical structure can provide a rather realistic
description of neurons in the cerebral tissue. Unfortunately, a Boolean model driven by the
Poisson point process allows, in general, the perforations (i.e. the balls) to be generated
arbitrarily close to each other so as to form large connected clusters and small angles. In this
case Assumption 2.16 no longer holds and our method fails.

One way to construct domains in which the balls are non-intersecting and have a minimal
positive distance between them is to combine the Boolean and the random-connection model
as follows. This procedure is known as Matern process (see [8], Example 10.4(d)). Let us
consider a random-connection model driven by a Poisson process and applied on a bounded
region of Rm. Two points are connected with probability 1 if they have distance less than
some constant d0. All connected points are then deleted from the process. In case of the
Poisson process this means that a point is deleted with probability 1− exp(−λd0), where λ
is the intensity of the point process. Every remaining point will be assigned as the center
of a ball of random radius ρ(ω) < d0

2
. For simplicity, in our analysis we will consider balls

with the same constant radius r0 <
d0
2

. According to this construction, we obtain a domain
randomly perforated with balls of the same radius and with minimal distance between them,
which satisfies all the assumptions stated in Section 2.2. In particular, let G(ω) be the union
of such random spheres, then our randomly perforated domain can be defined as
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Q(ω) = Rm \G(ω). (77)
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