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An existence result for a class of electrothermal drift-diffusion models with
Gauss–Fermi statistics for organic semiconductors

Annegret Glitzky, Matthias Liero, Grigor Nika

Abstract

This work is concerned with the analysis of a drift-diffusion model for the electrothermal behavior of organic
semiconductor devices. A “generalized Van Roosbroeck” system coupled to the heat equation is employed,
where the former consists of continuity equations for electrons and holes and a Poisson equation for the
electrostatic potential, and the latter features source terms containing Joule heat contributions and recombi-
nation heat. Special features of organic semiconductors like Gauss–Fermi statistics and mobilities functions
depending on the electric field strength are taken into account. We prove the existence of solutions for the
stationary problem by an iteration scheme and Schauder’s fixed point theorem. The underlying solution con-
cept is related to weak solutions of the Van Roosbroeck system and entropy solutions of the heat equation.
Additionally, for data compatible with thermodynamic equilibrium, the uniqueness of the solution is verified.
It was recently shown that self-heating significantly influences the electronic properties of organic semicon-
ductor devices. Therefore, modeling the coupled electric and thermal responses of organic semiconductors
is essential for predicting the effects of temperature on the overall behavior of the device. This work puts the
electrothermal drift-diffusion model for organic semiconductors on a sound analytical basis.

1 Introduction

One of the most significant and technological breakthroughs of the second half of the twentieth century is the
discovery of semiconductors. Nowadays semiconductors are found virtually in every electronic device imagin-
able and their continuous development over the years has led to a new class of materials, commonly known as
organic semiconductors.

The first model describing drift, diffusion, and reaction processes in semiconductor devices was derived by Van
Roosbroeck (1950) from physical laws. In many modern electronic devices that employ organic semiconductors,
such as organic solar cells, organic transistors, etc. the charge transport properties are significantly influenced
by the device’s temperature [11]. Since in organic semiconductor materials the conductivity increases with tem-
perature, self-heating effects caused by the high electric fields and strong recombination have a potent impact
on the device’s performance and must be included in mathematical models [34], [21].

Self-heating effects were shown to lead to interesting nonlinear phenomena, like the S-shaped relation between
current and voltage resulting in regions where a decrease in voltage across the device resulted in an increase
in current through it, commonly denoted as regions of negative differential resistance [10], [9]. Moreover, the
synergy of self-heating and temperature activated hopping transport in combination with the heat balance re-
sults in spatially inhomogeneous current flow and temperature distribution which cause, for instance, spatially
inhomogeneous luminance in large-area organic light-emitting diodes (OLEDs) [9], [12].

In [25], a stationary thermistor model based on the heat equation for the temperature coupled to a p(x)-Laplace
type equation for the electric potential with mixed type boundary conditions has been used to model the elec-
trothermal effects in organic semiconductors, where the p-Laplacian described the non-Ohmic electrical behav-
ior of the organic material. In the analysis of the aformentioned thermistor model [16], [4], the electric current
and heat flow with a resulting source term from Joule heat that depended on the total current, were balanced.
Additionally, an Arrhenius-like temperature dependence was taken into account. Numerically the authors of [20]
showed that the model is able to capture the spatial inhomogeneities that appear in large area OLEDs.
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A. Glitzky, M. Liero, G. Nika 2

Since the establishment of the drift-diffusion model by Van Roosbroeck the statistical relation between carrier
densities and chemical potentials in semiconductors has been of fundamental importance to the mathematical
treatment of the model. For classical semiconductors equations, the existence (and under certain assumptions
uniqueness) of solutions was established provided the behavior of the semiconductor device can be described
by either the Boltzmann statistics or, the physically more realistic, Dirac-Fermi statistics [29], [13]. In organic
semiconductors in contrast, charge transport is realized by hopping of electrons (and holes) between discrete
energy levels of molecular sites nearby (see Fig. 1). This hopping transport intensifies as the temperature of the
device increases. Organic molecules have two energy states: the Highest Occupied Molecular Orbital (HOMO,
energy EH ) and the Lowest Unoccupied Molecular Orbital (LUMO, energy EL). The HOMO states describe
the electrons in the localized electron pair-bindings between the atoms of the molecule, whereas the LUMO
states describe de-localized electrons in the π-bindings. By crossing the HOMO-LUMO-gap (e.g. by optical
excitation) electrons in the molecule can change from the HOMO state into the LUMO state. Thereby arises
a positively charged cavity in the charge cloud of the molecule which is called a hole. Both types of charge
carriers, electrons and holes, can move by hopping transport between energy levels of neighboring molecules.
In this respect organic semiconductor materials behave like amorphous semiconductors. The random alignment

energy levels

E0 �

energy

Figure 1.1: Schematic image describing hopping-transport phenonmenon between Gaussian distributed energy
levels of neigboring molecules. Then mean energy level is denoted by E0 and the standard deviation by σ (also
called disorder parameter).

of the molecules leads to a disordered system with Gaussian distributed energy levels. As a consequence,
the statistial relation between carrier densities and chemical potentials cannot be described by the classical
Boltzmann or Dirac-Fermi statistics and instead Gauss-Fermi statistics [31] should be used. Additionally, for
organic semiconductors one has to consider further special features like the dependence of mobility functions
on the electric field strength. For a complete analysis of the isothermal stationary drift-diffusion model for organic
semiconductors based on the Gauss-Fermi statistics, the interested reader can refer to the work in [7], while the
isothermal, non-stationary case was treated in [17].

In this work, we are interested in a more detailed drift-diffusion-type description of the charge transport balancing
currents of both electrons and holes in contrast to the net current flow in the p(x)-Laplace thermistor model
discussed in [25, 3]. Furthermore, we want to evaluate the heat produced by both types of current flow and
the generation-recombination of charge carriers and balance it by means of a heat flow equation. Since the
mobilities of the charge carriers and the reaction rate constant depend on the local device temperature, we obtain
an electrothermal feedback. For this purpose, we use a drift-diffusion model consisting of a “generalized Van
Roosbroeck” system for organic semiconductors coupled to the heat flow equation. For classical semiconductors
a similar energy-drift-diffusion model (based on the ideas in [33, 35]) with, in principle, the same model frame
was studied in [18]. However, the special features of the drift-diffusion models for organic devices, especially the
dependence of the mobility on the electric field strength, will not allow to proceed in the analysis as in [18].

The paper is organized as follows: In section 2 we collect and prove certain properties of the Gauss–Fermi
statistics, mobility functions, and generation/recombination of electrons and holes. In section 3 we introduce
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the “generalized Van Roosbroeck system for organic semiconductors” coupled to the heat flow equation, we
describe the notion of weak and entropy solutions, and state the main result of the paper. Section 4 is devoted
to proving existence of a solution to the system introduced in section 3 using Schauder’s fixed point theorem.
This is done by first introducing the iteration scheme where we define the fixed point map, and through a series of
lemmas we collect relevant assertions for certain solutions of subproblems that help us to verify the continuity of
the fixed point map and assert the existence result. Section 5 is allocated to concluding remarks and discussion.

2 Drift-diffusion models for organic semiconductors

2.1 Statistical relation between densities and chemical potentials

In organic semiconductor materials, the energy positions are Gaussian distibuted, such that both, the electrons
and holes, can be described by a Gaussian density of state

NGauss(E) =
N0√
2πσ2

exp
[
−
(E − E0√

2σ

)2]
,

(see Fig. 1), where N0 is the total density of transport states. E0 denotes the corresponding average HOMO-
and LUMO-levels, respectively, and σ2 their variance. σ is also called the disorder parameter which character-
izes the disorder of the organic material. For organic semiconductors which do not underly an outer field the
density of electrons is given by the Gauss-Fermi integral

n =

∫ ∞
−∞

NGauss(E)
1

exp
(
E−EF
kBT

)
+ 1

dE

=
Nn0

σn
√

2π

∫ ∞
−∞

exp
(
−(E − EL)2

2σ2
n

) 1

exp
(
E−EF
kBT

)
+ 1

dE,

where EF denotes the Fermi energy and the Fermi function f(E, T ) =
(

exp
(
E−EF
kBT

)
+ 1
)−1

gives the
probability that an electron is in the quantum state with the energy E. The notation kB stands for Boltzmann’s
constant and EL is the LUMO-energy. Using the variable ξ = E−EL

σn
we obtain

n =
Nn0

σn
√

2π
σn

∫ ∞
−∞

exp
(
−ξ

2

2

) 1

exp
(
σn
kBT

ξ − EF−EL
kBT

)
+ 1

dξ

=
Nn0√

2π

∫ ∞
−∞

exp
(
−ξ

2

2

) 1

exp
(
znξ − η0

n

)
+ 1

dξ

= Nn0G
(
η0
n; zn

)
, η0

n :=
EF − EL
kBT

zn :=
σn
kBT

(2.1)

with the dimensionless quantities η0
n and zn. Relation (2.1) is valid for homogeneous semiconductors in absence

of an outer field. It can be generalized to the situation that in the semiconductor an electric field −∇ψ with a
spatially weakly varying potential ψ is present. Then the concept of bent bands is applied and the energy level
EL has to be replaced by EL − qψ and ξ by ξ̃ = E−EL+qψ

σn
and the electron density n is expressed by

n =
Nn0

σn
√

2π

∫ ∞
−∞

exp
(
−(E − EL + qψ)2

2σ2
n

) 1

exp
(
E−EF
kBT

)
+ 1

dE

=
Nn0√

2π

∫ ∞
−∞

exp
(
− ξ̃

2

2

) 1

exp
(
σn
kBT

ξ̃ − EF−EL+qψ
kBT

)
+ 1

dξ̃

= Nn0G
(
ηn; zn

)
, ηn :=

EF − EL + qψ

kBT
=
q(ψ − ϕn)− EL

kBT
, zn :=

σn
kBT

.

(2.2)
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Similarly, using the the HOMO energy EH , the hole density p is obtained as function of the renormalized
chemical potential ηp of the holes,

p = Np0G(ηp; zp), ηp :=
EH − q(ψ − ϕp)

kBT
, zp :=

σp
kBT

.

The densities of transport states Ni0, i = n, p, the average HOMO- and LUMO-levels EH and EL, and
the disorder parameters σn, σp are considered as temperature dependent quantities. We will assume that
Ni0(·, T ) ≤ Ni0 in the device for all T > 0. Since the Fermi function f takes only values between 0 and 1,
relation (2.2) ensures

0 < n = Nn0G(ηn; zn) <
Nn0√

2π

∫ ∞
−∞

exp
(
−ξ

2

2

)
dξ = Nn0 ∀ηn ∈ R, ∀zn ≥ 0

such that the carrier density in organic materials remains bounded for all values of ηn. Considering the infinite
narrow distribution σ → 0, the density of state NGauss(E) converges to Nn0δ(E − E0). Let

G(η; 0) =
1

exp{−η}+ 1

(
=

1√
2π

∫ ∞
−∞

exp
{
−ξ

2

2

} 1

exp{−η}+ 1
dξ
)

denote the statistical relation for the density of state Nn0δ(E − E0). From∫ ∞
−∞

exp
{
−ξ

2

2

} 1

exp{zξ}+ 1
dξ =

∫ ∞
0

exp
{
−ξ

2

2

}( 1

exp{zξ}+ 1
+

1

exp{−zξ}+ 1

)
dξ

=

∫ ∞
0

exp
{
−ξ

2

2

}
dξ =

√
π

2

it results G(0; 0) = 1
2 and G(0; z) = 1

2 for all z > 0.

Additionally, the mapping η 7→ G(η; z) is strictly monotone increasing, G is differentiable w.r.t. η and

dG
dη

(η; z) =
1√
2π

∫ ∞
−∞

exp
(
−ξ

2

2

) exp
(
zξ − η

)(
exp(zξ − η) + 1

)2 dξ.

Note that the fraction in the integrand takes only values between 0 and 1. Therefore

dG
dη

(η; z) ∈ (0, 1) and lim
η→+∞

dG
dη

(η; z) = lim
η→−∞

dG
dη

(η; z) = 0.

Lemma 2.1 The map z 7→ G(η; z) is continuously differentiable at all z > 0 for all η ∈ R. The derivative
follows the estimate

∂

∂z
G(η; z)


> 0 if η < 0

= 0 if η = 0

< 0 if η > 0

and
∣∣∣ ∂
∂z
G(η; z)

∣∣∣ ≤ 1

z
(1 + exp |η|) ∀z > 0, ∀η ∈ R.

Proof. For all z > 0 we calculate

∂

∂z
G(η; z) = − 1√

2π

∫ ∞
−∞

exp
{
−ξ

2

2

} exp(zξ − η)ξ

(exp(zξ − η) + 1)2
dξ. (2.3)

We write
exp(zξ − η)ξ

(exp(zξ − η) + 1)2
=

ξ exp(zξ)

(exp(zξ) + 1)2

exp(−η)(exp(zξ) + 1)2

(exp(zξ − η) + 1)2
, (2.4)
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where the second factor is positive and bounded by 1+exp |η|. To see this, we consider with a := exp(zξ) > 0

and b := exp(−η) the expression I := b(a+1)2

(ab+1)2
= b(a2+2a+1)

a2b2+2ab+1
, which can be estimated form above in the

case b > 1 by

I ≤ b2a2 + 2ab+ b

a2b2 + 2ab+ 1
≤ b2a2 + 2ab+ 1 + b

a2b2 + 2ab+ 1
≤ 1 + b

and in the case b < 1 by

I =
1

b

b2a2 + 2ab2 + b2

b2a2 + 2ab+ 1
≤ 1

b

b2a2 + 2ab+ 1

b2a2 + 2ab+ 1
=

1

b
.

Next, we take a look at the absolute value of the first factor in (2.4): Since |y exp y|
(exp y+1)2

< 1 for y ∈ R, we

estimate |ξ exp(zξ)|
(exp(zξ)+1)2

< 1
z . In summary, the second factor in the integrand of (2.3) for all ξ ∈ R can be

uniformly estimated by a constant depending only on z and η, and the integral in (2.3) exists, meaning that the
derivative ∂

∂zG(η; z) exists for all z > 0 and for all η ∈ R.

On the other hand, writing the integral in (2.3) as integral over (0,∞), we calculate

∂

∂z
G(η; z) =

1√
2π

∫ ∞
0

exp
{
−ξ

2

2

}{
− exp(zξ − η)ξ

(exp(zξ − η) + 1)2
+

exp(−zξ − η)ξ

(exp(−zξ − η) + 1)2

}
dξ

=
1√
2π

∫ ∞
0

exp
{
−ξ

2

2

}{
− exp(zξ − η)ξ

(exp(zξ − η) + 1)2
+

exp(zξ − η)ξ

(exp(−η) + exp(zξ))2

}
dξ

=
1√
2π

∫ ∞
0

exp
{
−ξ

2

2

} exp(zξ − η)ξ

(exp(zξ − η) + 1)2

[
− 1 +

( exp(zξ − η) + 1

exp(−η) + exp(zξ)

)2]
dξ.

For arbitrary exp(zξ) > 1 we have,

exp(zξ − η) + 1

exp(−η) + exp(zξ)


∈ (0, 1) if η > 0,

= 1 if η = 0,

> 1 if η < 0.

Therefore, ∂
∂zG(η; z) is negative for η > 0, is zero for η = 0 and positive for η < 0. �

2.2 Mobility and recombination laws

Due to the energetic disorder in organic semiconductor materials with Gaussian density of state, charge trans-
port and recombination processes are different from their inorganic counterparts. In particular, the mobility
functions µn, µp show a positive feedback with respect to temperature T , densities n or p, and with respect to
electrical field strength F = |∇ψ|. Numerical solutions of the master equation for hopping transport in organic
materials were used e.g. in [32] to determine these dependencies. In case of the electron mobility (and anal-
ogously for the hole mobility), [32] obtained the following product form as extension of the Gaussian disorder
model

µn(T, n, F ) = µn0(T )× g1(n, T )× g2(F, T ),

see also the discussion in [7]. To treat also heterostructures, we additionally take spatial dependence into ac-
count. For the analysis we suppose that µn : Ω×(0,∞)×[0, Nn0]×R+ → R, µp : Ω×(0,∞)×[0, Np0]×
R+ → R are Caratheodory functions fulfilling

for all τ > 0 there exists µτ such that µn(·, T, n, F ), µp(·, T, p, F ) ≤ µτ <∞
for all (T, n, p, F ) ∈ [τ,∞)× [0, Nn0]× [0, Np0]× R+ a.e. in Ω,

0 < µ ≤ µn(·, T, n, F ), µp(·, T, p, F )

for all (T, n, p, F ) ∈ [Ta,∞)× [0, Nn0]× [0, Np0]× R+ a.e. in Ω,

(2.5)
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where Ta is the ambient temperature. However, one fundamental difficulty for the analytical treatment remains,
namely the dependence of the mobility functions on F = |∇ψ|.

Concerning the recombination of charge carriers, we follow [8] and write the generation-recombination laws for
electrons and holes in the form

R = r(·, n, p, T )
(

1− exp
q(ϕn − ϕp)

kBT

)
, (2.6)

where we suppose for the analytical investigations r(·, n, p, T ) : Ω × [0, Nn0] × [0, Np0] × (0,∞) → R+

is a Caratheodory function such that for all τ > 0 there exists an rτ with 0 ≤ r(·, n, p, T ) ≤ rτ for all
(n, p, T ) ∈ [0, Nn0]× [0, Np0]× (τ,∞) and a.a. x ∈ Ω.

Typically, the function r has the form r(·, n, p, T ) = r0(·, n, p, T )np with r0(·, n, p, T ) : Ω × [0, Nn0] ×
[0, Np0] × (0,∞) → R+. The particular form of the rate in (2.6) guarantees compatibility with thermody-
namic equilibrium. Especially in equilibrium it reflects that the quasi Fermi levels of electrons and holes have to
coincide.

3 Stationary energy model

According to the discussion in the introduction, we consider the following energy-drift-diffusion model for the
interplay of electronic and heat transport in organic semiconductor devices. We use the notation from the last
section and take into account the electrothermal effects of Joule heating resulting from both electron and hole
current, and the reaction heat as source terms in the heat flow equation. A corresponding model frame was
already formulated in [33, p. 42, p. 121] for classical semiconductors. The paper [18] deals with analytical
investigations of this problem for the classical, inorganic situation. We study the coupled system

−∇ · (ε0εr∇ψ) = q(C − n+ p),

−∇ · jn = −qR, jn = −qnµn(T, n, |∇ψ|)∇ϕn,
∇ · jp = −qR, jp = −qpµp(T, p, |∇ψ|)∇ϕp,

−∇ · (λ∇T ) = qnµn(T, n, |∇ψ|)|∇ϕn|2 + qpµp(T, p, |∇ψ|)|∇ϕp|2 + qR(ϕp − ϕn),

(3.1)

where

n = Nn0G
(q(ψ − ϕn)− EL

kBT
;
σn
kBT

)
, p = Np0G

(EH − q(ψ − ϕp)
kBT

;
σp
kBT

)
,

R = r(·, n, p, T )
(

1− exp
q(ϕn − ϕp)

kBT

)
.

We remark that additional thermoelectric effects (Peltier, Thomson, and Seebeck) are not included in the above
model. In [22, Sect. II.D] it is argued that in the case of organic semiconductors such effects are neglible as the
thermal voltages are small compared to the applied voltage.

3.1 Rescaling of the model equation

To simplify notation in the analytical investigations, we perform the following rescaling of the problem. We define
the new quantities

ψ̃ := qψ, ψ̃D := qψD, ϕ̃i := qϕi, ϕ̃Di := qϕDi , ṼG := qVG, T̃ := kBT, T̃a := kBTa,

i = n, p, and new coefficients

ε̃ :=
ε0εr
q2

, λ̃ :=
λq

kB
.
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We consider (3.1) in the rescaled form in Ω

−∇ · (ε̃∇ψ̃) = C − n+ p,

−∇ · j̃n = −R̃, j̃n = −nµ̃n(T̃ , n, |∇ψ̃|)∇ϕ̃n,

∇ · j̃p = −R̃, j̃p = −pµ̃p(T̃ , p, |∇ψ̃|)∇ϕ̃p,

−∇ · (λ̃∇T̃ ) = nµ̃n(T̃ , n, |∇ψ̃|)|∇ϕ̃n|2 + pµ̃p(T̃ , p, |∇ψ̃|)|∇ϕ̃p|2 + R̃(ϕ̃p − ϕ̃n)

(3.2)

with suitable functions µ̃n, µ̃p, r̃ and

n = Nn0G
( ψ̃ − ϕ̃n − EL

T̃
;
σn

T̃

)
, p = Np0G

(EH − (ψ̃ − ϕ̃p)
T̃

;
σp

T̃

)
,

R̃ = r̃(·, n, p, T̃ )
(

1− exp
ϕ̃n − ϕ̃p

T̃

)
.

Finally, we omit the tildes above all quantities in (3.2) and obtain the model equations in Ω for the analytical
investigations

−∇ · (ε∇ψ) = C − n+ p,

−∇ · jn = −R, jn = −nµn(T, n, |∇ψ|)∇ϕn,
∇ · jp = −R, jp = −pµp(T, p, |∇ψ|)∇ϕp,

−∇ · (λ∇T ) = nµn(T, n, |∇ψ|)|∇ϕn|2 + pµp(T, p, |∇ψ|)|∇ϕp|2 +R(ϕp − ϕn)

(3.3)

with

n = Nn0G
(ψ − ϕn − EL

T
;
σn
T

)
, p = Np0G

(EH − (ψ − ϕp)
T

;
σp
T

)
,

R = r(·, n, p, T )
(

1− exp
ϕn − ϕp

T

)
.

For the formulation of boundary conditions we decompose ∂Ω into Ohmic contacts ΓD = ∪Ii=1ΓDi, a gate
contact ΓG and the semiconductor-insulator interface ΓN , i.e. Ohmic contacts like semiconductor-metal inter-
faces are modeled by Dirichlet boundary conditions, semiconductor-insulator interfaces are realized by no flux
boundary conditions, Gate contacts are described by Robin boundary conditions for the electrostatic potential
ψ and no-flux boundary conditions in the continuity equations. For the heat flow equation boundary conditions
of third kind are used. Let ν denote the outer normal vector. Then, in summary we close our system by the
following set of boundary conditions

ψ = ψD, ϕn = ϕDn , ϕp = ϕDp on ΓD,

ε∇ψ · ν = jn · ν = jp · ν = 0 on ΓN ,

ε∇ψ · ν + αox(ψ − VG) = 0, jn · ν = jp · ν = 0 on ΓG,

λ∇T · ν + κ(T − Ta) = 0 on ∂Ω

(3.4)

with suitable coefficient functions αox and κ, a scaled gate voltage VG and ambient temperature Ta.

3.2 Notation and assumptions

We work with the Lebesgue spaces Lp(Ω) and the Sobolev spaces W 1,q(Ω). Moreover, we use the closed
subspace of H1(Ω) = W 1,2(Ω),

H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD = 0}.

In our estimates, positive constants, which may depend at most on the data of our problem, are denoted by c.
In particular, we allow them to change from line to line.

We discuss the stationary energy model for organic semiconductor devices (3.3), (3.4) under the general As-
sumptions (A):
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� Ω ∈ Rd, d = 2, 3, is a bounded Lipschitz domain, ΓD, ΓN , ΓG ⊂ Γ := ∂Ω are disjoint subsets such
that ΓD ∪ ΓN ∪ ΓG = Γ and mes(ΓD) > 0,

� ψD ∈W 1,∞(Ω), ϕDi ∈ H1(Ω)∩L∞(Ω), ‖ϕDi ‖L∞ ≤ K , i = n, p, ε ∈ L∞(Ω), 0 < ε ≤ ε a.e. in
Ω, C ∈ L∞(Ω), VG ∈ L∞(ΓG), αox ∈ L∞+ (ΓG), λ ∈ L∞(Ω), 0 < λ ≤ λ a.e. in Ω, κ ∈ L∞+ (Γ),
‖κ‖L1(Γ) > 0, Ta = const > 0,

� EJ , σi, Ni0 : Ω×(0,∞)→ R+ are Caratheodory functions with |EJ(·, T )| ≤ Ê, 0 < σi(·, T ) ≤ σ,
0 < Ni0 ≤ Ni0(·, T ) ≤ Ni0 a.e. in Ω for all T ∈ (0,∞), |EJ(·, T1) − EJ(·, T2)| ≤ c|T1 − T2|,
J = E,H , |σi(·, T1)− σi(·, T2)| ≤ c|T1 − T2|, |Ni0(·, T1)−Ni0(·, T2)| ≤ c|T1 − T2| a.e. in Ω for
all T1, T2 ∈ [Ta,∞), i = n, p,

� r(·, n, p, T ) : Ω × [0, Nn0] × [0, Np0] × (0,∞) → R+ is a Caratheodory function such that for
all τ > 0 there exists an rτ with 0 ≤ r(·, n, p, T ) ≤ rτ for all (n, p, T ) ∈ [0, Nn0] × [0, Np0] ×
[τ,∞) and a.a. x ∈ Ω

� µi : Ω × (0,∞) × [0, Ni0] × R+ → R+, i = n, p, are Caratheodory functions such that for all
τ > 0 there exists µτ with µn(·, T, n, F ), µp(·, T, p, F ) ≤ µτ < ∞ for all (T, n, p, F ) ∈ [τ,∞) ×
[0, Nn0]× [0, Np0]× R+ a.e. in Ω and 0 < µ ≤ µn(·, T, n, F ), µp(·, T, p, F ) for all (T, n, p, F ) ∈
[Ta,∞)× [0, Nn0]× [0, Np0]× R+ a.e. in Ω.

In the following we set r := rTa as well as µ := µTa .

3.3 Concept of solution

First let us note that the right hand side of the heat flow equation in (3.3) is a priori only anL1 function. Therefore
we prefer to follow the concept of entropy solutions for the temperature distribution T , see e.g. [2, 30, 23] (for the
case of Dirichlet boundary conditions) or [4] (for Robin boundary conditions). For the remaining three equations
in (3.3) a weak formulation is appropriate. Thus in the present paper, we work with the following concept of
solutions for the stationary energy model for organic semiconductor devices (3.3), (3.4): Find (ψ,ϕn, ϕp, T ) ∈
(ψD +H1

D(Ω))× (ϕDn +H1
D(Ω)∩L∞(Ω))× (ϕDp +H1

D(Ω)∩L∞(Ω))×{T ∈W 1,q(Ω) : (lnT )− ∈
L∞(Ω)}, where q ∈ [1, d

d−1) such that∫
Ω
ε∇ψ · ∇ψ dx+

∫
ΓG

αox(ψ − VG)ψ dΓ =

∫
Ω

(C − n+ p)ψ dx,∫
Ω

(
nµn(T, n, |∇ψ|)∇ϕn · ∇ϕn + pµp(T, p, |∇ψ|)∇ϕp · ∇ϕp

)
dx

=

∫
Ω
r(n, p, T )

(
1− exp

ϕn − ϕp
T

)
(ϕn − ϕp) dx ∀ψ, ϕn, ϕp ∈ H1

D(Ω),∫
Ω
λ∇T · ∇(Cm(T − ω)) dx+

∫
Γ
κ(T − Ta)Cm(T − ω) dΓ

≤
∫

Ω
hCm(T − ω) dx ∀ω ∈ H1(Ω) ∩ L∞(Ω), ∀m ≥ 0,

(3.5)

where the densities n and p and the right hand side h in the heat flow equation have to be determined pointwise
by

n = Nn0(T )G
(ψ−ϕn−EL(T )

T
;
σn(T )

T

)
, p = Np0(T )G

(EH(T )−(ψ−ϕp)
T

;
σp(T )

T

)
,

h = nµn(T, n, |∇ψ|)|∇ϕn|2 + pµp(T, p, |∇ψ|)|∇ϕp|2

+ r(n, p, T )
(

exp
ϕn − ϕp

T
− 1
)

(ϕn − ϕp).

(3.6)
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The notation Cm in the entropy formulation of the heat flow equation in (3.5) means the truncation function
Cm : R→ [−m,m] realized by Cm(s) := max{−m,min{s,m}}.
The choice of spaces guarantees that all terms in (3.5) are well-defined. The following lemma ensures that we
only have to consider admissible temperatures T satisfying T ≥ Ta (see the definition of the setN in (4.1)).

Lemma 3.1 We assume (A). Then any solution (ψ,ϕn, ϕp, T ) to (3.5) satisfies T ≥ Ta a.e. in Ω.

Proof. Let (ψ,ϕn, ϕp, T ) be a solution to (3.5), then h defined in (3.6) is a nonnegative L1 function. Therefore,
the result follows from Lemma 3.5 in [4] (see also Lemma 4.6). �

3.4 Main result

The main result of our paper is the following existence theorem for the stationary energy-drift-diffusion model for
organic semiconductors which we prove in Section 4.

Theorem 3.1 Under Assumption (A) there exists a solution (ψ,ϕn, ϕp, T ) to Problem (3.5) with ψ ∈ ψD +
H1
D(Ω), ϕi ∈ ϕDi + H1

D(Ω), i = n, p, and T ∈ W 1,q(Ω), q ∈ [1, d
d−1). There are positive constants

cψ,L∞ , cψ,H1 , cH1 , cc, cc, cW 1,q depending only on the data such that

‖ψ‖L∞ ≤ cψ,L∞ , ‖ψ‖H1 ≤ cψ,H1 ,

‖ϕi‖L∞ ≤ K, ‖ϕi‖H1 ≤ cH1 , i = n, p,

T ≥ Ta a.e. Ω, ‖T‖W 1,q ≤ cW 1,q ,

and the by (3.6) related densities n and p are bounded by cc ≤ n, p ≤ cc a.e. on Ω.

Corollary 3.1 Supposing additionally to Assumption (A) that

ϕDi = const, i = n, p, ϕDn = ϕDp on Ω (3.7)

then there is a unique solution to Problem (3.5). This solution is the thermodynamic equilibrium and has the
form (ψ∗, ϕDn , ϕ

D
p , Ta), where ψ∗ is the unique weak solution to the nonlinear Poisson equation

−∇ · (ε∇ψ∗) = C −Nn0(Ta)G
(ψ∗ − ϕDn − EL(Ta)

Ta
;
σn(Ta)

Ta

)
+Np0(Ta)G

(EH(Ta)− (ψ∗ − ϕDp )

Ta
;
σp(Ta)

Ta

)
in Ω,

ψ∗ = ψD on ΓD, ε∇ψ∗ · ν = 0 on ΓN , ε∇ψ∗ · ν + αox(ψ∗ − VG) = 0 on ΓG.

(3.8)

The proof of the corollary is given in Subsection 4.3. A general uniqueness result is not to be expected. Even in
the classical, isothermal case, where the stationary van Roosbroeck system applies it is well known that certain
devices admit multiple stationary states for certain biasing conditions, see [27].

4 Existence proof

This section is devoted to the proof of Theorem 3.1 which is based on Schauder’s fixed point theorem. First, in
Subsection 4.1 we shortly introduce the iteration scheme used to define the fixed point mapQ. In Subsection 4.2
we supply and prove results for relevant subproblems with frozen arguments that are needed to ensure the well-
posedness of the iteration scheme and additionally guarantee the bounds of solutions stated in Theorem 3.1.
This concerns results for the Poisson equation (Lemma 4.1), the continuity equations (Lemma 4.3, Lemma 4.4)
and the heat equation with right-hand side only in L1 (Theorem 4.1, Lemma 4.5, Lemma 4.6). Finally, in the
Subsection 4.3, we show the continuity of the fixed point map Q, see Lemma 4.7 (for the sub problem of the
Poisson equation) and Lemma 4.8 (for the final result).

DOI 10.20347/WIAS.PREPRINT.2593 Berlin 2019



A. Glitzky, M. Liero, G. Nika 10

4.1 Iteration scheme

Let

N :=
{

(ϕn, ϕp, T ) ∈ L2(Ω)3 : ‖ϕn‖H1 , ‖ϕp‖H1 ≤ cH1 , ‖T‖W 1,4/3 ≤ cT,W 1,4/3 ,

−K ≤ ϕn, ϕp ≤ K, and T ≥ Ta a.e. in Ω
}
,

(4.1)

where cH1 > 0 will be given in Lemma 4.4 and cT,W 1,4/3 > 0 will be fixed in (4.9). The fixed point map

Q : N → N with (ϕn, ϕp, T ) = Q(ϕ̃n, ϕ̃p, T̃ ) will be defined by the following four steps:

1. For given (ϕ̃n, ϕ̃p, T̃ ) ∈ N we consider the nonlinear Poisson equation

−∇ · (ε∇ψ) = C −Nn0(T̃ )G
(ψ − ϕ̃n − EL(T̃ )

T̃
,
σn(T̃ )

T̃

)
+ Np0(T̃ )G

(EH(T̃ )− (ψ − ϕ̃p)
T̃

;
σp(T̃ )

T̃

)
in Ω,

ψ = ψD on ΓD, ε∇ψ · ν + αox(ψ − VG) = 0 on ΓG,

ε∇ψ · ν = 0 on ΓN

(4.2)

and obtain by Lemma 4.1 a unique weak solution ψ ∈ ψD+H1
D(Ω). It fulfills ‖ψ‖L∞ ≤ cψ,L∞ and ‖ψ‖H1 ≤

cψ,H1 .

2. We set now

ñ :=Nn0(T̃ )G
(ψ−ϕ̃n−EL(T̃ )

T̃
;
σn(T̃ )

T̃

)
, p̃ :=Np0(T̃ )G

(EH(T̃ )−(ψ−ϕ̃p)
T̃

;
σp(T̃ )

T̃

)
. (4.3)

Lemma 4.3 ensures the uniform estimates

0 < cn ≤ ñ ≤ cn, 0 < cp ≤ p̃ ≤ cp, (4.4)

0 < cu ≤ ñµn(T̃ , ñ, |∇ψ|), p̃µp(T̃ , p̃, |∇ψ|) ≤ co. (4.5)

3. Next, we solve the continuity equations with frozen electron density ñ and mobility µn(T̃ , ñ, |∇ψ|) as well as
hole density p̃ and mobility µp(T̃ , p̃, |∇ψ|) and reaction rate coefficient r(ñ, p̃, T̃ ) for a weak solution (ϕn, ϕp)
to

∇ · (ñµn(T̃ , ñ, |∇ψ|)∇ϕn) = r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

in Ω,

∇ · (p̃µp(T̃ , p̃, |∇ψ|)∇ϕp) = −r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

in Ω,

ϕn = ϕDn on ΓD, ñµn(T̃ , ñ, |∇ψ|)∇ϕn · ν = 0 on ΓN ∪ ΓG,

ϕp = ϕDp on ΓD, p̃µp(T̃ , p̃, |∇ψ|)∇ϕp · ν = 0 on ΓN ∪ ΓG.

(4.6)

By Lemma 4.4 there exists a unique weak solution (ϕn, ϕp) ∈ (ϕDn +H1
D(Ω))× (ϕDp +H1

D(Ω)) to (4.6). It
fulfills the uniform estimates

‖ϕn‖L∞ , ‖ϕp‖L∞ ≤ K, ‖ϕn‖H1 , ‖ϕp‖H1 ≤ cH1 ,

‖ñµn(T̃ , ñ, |∇ψ|)|∇ϕn|2‖L1 , ‖p̃µp(T̃ , p̃, |∇ψ|)|∇ϕp|2‖L1 ≤ cJ ,

‖r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)‖L1 ≤ cR
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with the constant K from Assumption (A) and cH1 , cJ , cR > 0.

4. These estimates ensure, that the source term for the heat equation

h := ñµn(T̃ , ñ, |∇ψ|)|∇ϕn|2 + p̃µp(T̃ , p̃, |∇ψ|)|∇ϕp|2

+ r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)
(4.7)

resulting from (ϕ̃n, ϕ̃p, T̃ ) ∈ N is uniformly bounded in L1(Ω), ‖h‖L1 ≤ ch. With the source terms h ∈
L1(Ω) and g := κTa ∈ L1(Γ) we solve now the linear heat flow equation

−∇ · (λ∇T ) = h in Ω,

λ∇T · ν + κT = g on Γ.
(4.8)

According to Theorem 4.1, there exists exactly one entropy solution T to (4.8). Moreover, it fulfills the estimate

‖T‖W 1,4/3 ≤ cE4/3(ch + ‖κTa‖L1(Γ)) =: cT,W 1,4/3 . (4.9)

The continuous imbedding W 1,4/3(Ω) ↪→ L2(Ω) guarantees T ∈ L2(Ω), and Lemma 4.6 ensures T ≥ Ta.
In summary, this yields that (ϕn, ϕp, T ) = Q(ϕ̃n, ϕ̃p, T̃ ) ∈ N .

4.2 Solvability and properties of solutions to subproblems

(1) Poisson equation. Let

N ∗ :=
{

(ϕn, ϕp, T ) ∈ (L2(Ω))3 : −K ≤ ϕn, ϕp ≤ K, T ≥ Ta, a.e. in Ω
}
. (4.10)

For given (ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ ⊃ N we are looking for weak solutions to the nonlinear Poisson equation (4.2).

Lemma 4.1 We assume (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ be arbitrarily given. Then there exists a unique weak
solution ψ ∈ ψD + H1

D(Ω) to the nonlinear Poisson equation (4.2). There are constants cψ,L∞ , cψ,H1 > 0

not depending on the choice of (ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ such that

‖ψ‖L∞ ≤ cψ,L∞ , ‖ψ‖H1 ≤ cψ,H1 .

Proof. Due to the properties of the function G, for given (ϕ̃n, ϕ̃p, T̃ ) the operatorB
(ϕ̃n,ϕ̃p,T̃ )

: ψD+H1
D(Ω)→

(H1
D(Ω))∗,

〈B
(ϕ̃n,ϕ̃p,T̃ )

ψ,ψ〉 :=

∫
Ω
ε∇ψ · ∇ψ dx+

∫
ΓG

αox(ψ − VG)ψ dΓ

+

∫
Ω

(
Nn0(T̃ )G

(ψ−ϕ̃n−EL(T̃ )

T̃
;
σn(T̃ )

T̃

)
−Np0(T̃ )G

(EH(T̃ )−(ψ−ϕ̃p)
T̃

;
σp(T̃ )

T̃

)
−C

)
ψ dx,

ψ ∈ H1
D(Ω), is strongly monotone and Lipschitz continuous (note that ‖∇·‖L2 is an equivalent norm on

H1
D(Ω), that ∂G∂η (η; z) ∈ (0, 1) for all η ∈ R, z > 0 and that T̃ ≥ Ta). Thus, the unique solution ψ ∈

ψD +H1
D(Ω) to B

(ϕ̃n,ϕ̃p,T̃ )
ψ = 0 is the unique weak solution to (4.2). Since G(η, z) ∈ (0, 1) for all η ∈ R,

z > 0 we find for

f := C −Nn0(T̃ )G
(ψ − ϕ̃n − EL(T̃ )

T̃
;
σn(T̃ )

T̃

)
+Np0(T̃ )G

(EH(T̃ )− (ψ − ϕ̃p)
T̃

;
σp(T̃ )

T̃

)
that according to Assumption (A)

‖f‖L∞ ≤ ‖C‖L∞ +Nn0 +Np0 < c.

With this estimate of the right hand side the following Lemma 4.2 which is proved in [7] completes the proof of
Lemma 4.1. �
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Lemma 4.2 We assume (A) and f ∈ L∞(Ω). Then the weak solution to

−∇ · (ε∇ψ) = f in Ω,

ψ = ψD on ΓD, ε∇ψ · ν + αox(ψ − VG) = 0 on ΓG, ε∇ψ · ν = 0 on ΓN
(4.11)

belongs to H1(Ω) ∩ L∞(Ω) and

‖ψ‖L∞≤ c1(‖f‖L∞ , ‖VG‖L∞(ΓG), ‖ψD‖W 1,∞), ‖ψ‖H1≤ c2(‖f‖L∞ , ‖VG‖L∞(ΓG), ‖ψD‖H1).

(2) Bounds for densities and mobilities.

Lemma 4.3 We assume (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ and let ψ be the weak solution to (4.2) and ñ and p̃ be
defined by (4.3). Then there are constants cn, cn, cp, cp, cu, co > 0 such that the defined densities and the
mobility functions fulfill the uniform estimates

cn ≤ ñ ≤ cn, cp ≤ p̃ ≤ cp, cu ≤ ñµn(T̃ , ñ, |∇ψ|), p̃µp(T̃ , p̃, |∇ψ|) ≤ co a.e. in Ω.

Proof. Since EL(T̃ ), EH(T̃ ), ϕ̃n, ϕ̃p, and ψ have upper and lower bounds and T̃ is bounded from below by
Ta we obtain the estimates for η̃n and η̃p

−
cψ,L∞ +K + Ê

Ta
≤ η̃n :=

ψ − ϕ̃n − EL(T̃ )

T̃
≤
cψ,L∞ +K + Ê

Ta
,

−
Ê + cψ,L∞ +K

Ta
≤ η̃p :=

EH(T̃ )− (ψ − ϕ̃p)
T̃

≤
Ê + cψ,L∞ +K

Ta
.

(4.12)

For η < 0 the function z 7→ G(η, z) is strictly monotone increasing, see Lemma 2.1. Thus we obtain G(η; z) >
G(η; 0) for all η < 0 and all z > 0. Because of the strict monotonicity of the mapping η 7→ G(η; z) we find for
η̃i, i = n, p, in the range of relation (4.12) and all z > 0 an estimate from below by

Ni0G(η̃i, z) ≥ Ni0G
(
−
Ê + cψ,L∞ +K

Ta
; z
)
> Ni0G

(
−
Ê + cψ,L∞ +K

Ta
; 0
)

=: ci

which leads to the estimates

cn < ñ = Nn0(T̃ )G(η̃n;σn(T̃ )/T̃ ) ≤ Nn0 =: cn,

cp < p̃ = Np0(T̃ )G(η̃p;σp(T̃ )/T̃ ) ≤ Np0 =: cp.

Exploiting (2.5) we therefore obtain

0 < cu ≤ ñµn(T̃ , ñ, |∇ψ|), p̃µp(T̃ , p̃, |∇ψ|) ≤ co a.e. in Ω (4.13)

with positive constants cu, co. �

(3) Continuity equations.

Lemma 4.4 We assume (A). Let (ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ and let ψ be the weak solution to (4.2) and ñ and p̃ be
given by (4.3). Then there exists a unique weak solution (ϕn, ϕp) ∈ (ϕDn + H1

D(Ω)) × (ϕDp + H1
D(Ω)) to

(4.6). It fulfills the estimates

−K ≤ ϕn, ϕp ≤ K a.e. on Ω, ‖ϕn‖H1 , ‖ϕp‖H1 ≤ cH1 ,

‖ñµn(T̃ , ñ, |∇ψ|)|∇ϕn|2‖L1 , ‖p̃µp(T̃ , p̃, |∇ψ|)|∇ϕp|2‖L1 ≤ cJ ,

‖r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)‖L1 ≤ cR

withK from Assumption (A) and constants cH1 , cR, cJ > 0 independent of the special choice of (ϕ̃n, ϕ̃p, T̃ ) ∈
N ∗ (and the resulting ψ, ñ and p̃).

DOI 10.20347/WIAS.PREPRINT.2593 Berlin 2019



An existence result for a class of electrothermal drift-diffusion models 13

Proof. 1. We use the notation

ãn := ñµn(T̃ , ñ, |∇ψ|), ãp := p̃µp(T̃ , p̃, |∇ψ|), r̃ := r(ñ, p̃, T̃ ).

Let ρM : R2 → [0, 1] be a fixed Lipschitz continuous function with

ρM (y, z) :=

{
0 if max{|y|, |z|} ≥M,

1 if max{|y|, |z|} ≤ M
2 .

The operator AM
(ϕ̃n,ϕ̃p,T̃ )

: (ϕDn +H1
D(Ω))× (ϕDp +H1

D(Ω))→ (H1
D(Ω)∗)2,

AM
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = ÂM
(ϕ̃n,ϕ̃p,T̃ )

(
(ϕn, ϕp), (ϕn, ϕp)

)
with the argument splitting〈

ÂM
(ϕ̃n,ϕ̃p,T̃ )

(
(ϕn, ϕp), (ϕ̂n, ϕ̂p)

)
, (ϕn, ϕp)

〉
:=∫

Ω

( ∑
i=n,p

ãi∇ϕ̂i · ∇ϕi + ρM (ϕn, ϕp) r̃
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)
)

dx, ϕi ∈ H1
D(Ω),

is an operator of variational type (see [26, p. 182]). Have in mind that by (4.13) the main part (in the arguments
ϕ̂n, ϕ̂p) is bounded, continuous, and monotone. Furthermore, the regularized reaction term is bounded and
the map (ϕn, ϕp) 7→ ρM (ϕn, ϕp)(exp{ϕn−ϕp

T̃
}− 1

)
is Lipschitz continuous. Since, additionally the operator

AM
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) is coercive, the problem AM
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = 0 has at least one solution (ϕMn , ϕ
M
p ) ∈

(ϕDn +H1
D(Ω))× (ϕDp +H1

D(Ω)).

2. Using the test function ((ϕMn − K)+, (ϕMp − K)+) ∈ H1
D(Ω)2 for AM

(ϕ̃n,ϕ̃p,T̃ )
(ϕMn , ϕ

M
p ) = 0 with K

from Assumption (A) we obtain

0 =

∫
Ω

∑
i=n,p

ãi|∇(ϕMi −K)+|2 dx

+

∫
Ω
ρM (ϕMn , ϕ

M
p )r̃

(
exp

ϕMn − ϕMp
T̃

− 1
)(

(ϕMn −K)+ − (ϕMp −K)+
)

dx.

Examining the four different cases ϕMn (ϕMp ) > K (≤ K), we find that the integrand in the last line is always

non-negative (note that ρM and r are also non-negative). Thus, (4.13) ensures that ϕMn , ϕ
M
p ≤ K a.e. in Ω.

On the other hand, testing by (−(ϕMn + K)−,−(ϕMp + K)−) gives the estimates ϕMn , ϕ
M
p ≥ −K a.e. in

Ω. Therefore, if we choose M ≥ 2K , each solution to AM
(ϕ̃n,ϕ̃p,T̃ )

(ϕn, ϕp) = 0 is a weak solution to (4.6),

too. The estimates of Step 2 can be done in exactly the same way but leaving out the factor ρM to obtain the
upper and lower bounds for all weak solutions (ϕn, ϕp) to (4.6), such that ‖ϕi‖L∞ ≤ K , i = n, p.

3. To verify the uniqueness of the weak solution to (4.6) we suppose there would be two different solutions
(ϕn, ϕp) and (ϕ̂n, ϕ̂p). Using the test function (ϕn − ϕ̂n, ϕp − ϕ̂p) ∈ H1

D(Ω)2 for (4.6) leads to

0 =

∫
Ω

∑
i=n,p

ãi|∇(ϕi − ϕ̂i)|2 dx

+

∫
Ω
r̃
(

exp
ϕn − ϕp

T̃
− exp

ϕ̂n − ϕ̂p
T̃

)(
ϕn − ϕp − (ϕ̂n − ϕ̂p)

)
dx.

Since mes ΓD > 0, the estimate (4.13), the monotonicity of the exponential function, and r̃ ≥ 0 ensure
(ϕn, ϕp) = (ϕ̂n, ϕ̂p).
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4. Finally, we establish the uniform H1-estimate for the weak solution to (4.6) by testing with (ϕn − ϕDn , ϕp −
ϕDp ) ∈ H1

D(Ω)2, using Hölder’s and Young’s inequalities and the fact that T̃ ≥ Ta and ϕn, ϕp ∈ [−K,K]
a.e. in Ω from Step 2:∫

Ω

( ∑
i=n,p

ãi|∇(ϕi − ϕDi )|2 + r̃
(

exp
ϕn − ϕp

T̃
− 1
)(
ϕn − ϕp

))
dx

≤
∫

Ω

1

2

∑
i=n,p

ãi
(
|∇(ϕi − ϕDi )|2 + |∇ϕDi |2

)
dx+ 2rK exp

2K

Ta
mes(Ω).

Again taking advantage from (4.13), the non-negativity of the function r, the monotonicity of the exponential
function, and that ϕDi ∈ H1(Ω) are given functions, and using the constants r andK from Assumption (A), we
obtain the estimates ‖ϕi‖H1 ≤ cH1 , i = n, p, where the constant cH1 is independent of the special choice of
(ϕ̃n, ϕ̃p, T̃ ) ∈ N ∗ (and the resulting ψ, ñ and p̃). Together with Lemma 4.3 we additionally derive the uniform
estimates

‖ñµn(T̃ , ñ, |∇ψ|)|∇ϕn|2‖L1 , ‖p̃µp(T̃ , p̃, |∇ψ|)|∇ϕp|2‖L1 ≤ cJ .

5. Finally, we find by the upper bound of r in Assumption (A) and the bounds for ϕn, ϕp, and the lower estimate

T̃ ≥ Ta that

‖r(ñ, p̃, T̃ )
(

exp
ϕn − ϕp

T̃
− 1
)

(ϕn − ϕp)‖L1 ≤ cR. �

The estimates in Step 4 and 5 of the previous proof ensure for the function h defined in (4.7) that ‖h‖L1 ≤
2cJ + cR.

(4) Entropy solutions of the heat flow equation. Under the first two assumptions in (A), we consider the
stationary linear heat flow equation with Robin boundary conditions and right hand side h ∈ L1(Ω) as well as
boundary data g ∈ L1(Γ), namely

−∇ · (λ(x)∇T ) = h(x) in Ω,

− λ(x)∇T · ν = κ(x)T − g(x) on Γ.
(4.14)

The following three results are proven in [4].

Theorem 4.1 Let h ∈ L1(Ω), g ∈ L1(Γ). Then there exists a unique entropy solution T to (4.14). This entropy
solution belongs to W 1,q(Ω), for all 1 ≤ q < d

d−1 . Especially, there are constants cEq > 0 not depending on
f and g such that

‖T‖W 1,q ≤ cEq(‖h‖L1 + ‖g‖L1(Γ)), 1 ≤ q < d
d−1 .

Lemma 4.5 Let hl → h in L1(Ω), gl → g in L1(Γ). Then the corresponding entropy solutions T l to (4.14)
converge weakly in W 1,q(Ω) to the entropy solution T for data h and g, 1 ≤ q < d

d−1 .

Lemma 4.6 Let h ∈ L1
+(Ω) and g = κTa with Ta = const > 0. Then the entropy solution T to (4.14) fulfills

T ≥ Ta a.e. on Ω.

4.3 Continuity of the fixed point mapQ and existence result

We prove the continuity of the fixed point map Q : N 7→ N in two steps, first we verify the continuous
dependence of the solution to the nonlinear Poisson equation on the arguments (ϕ̃n, ϕ̃p, T̃ ) and in the second
step the continuity ofQ itself is established.

Lemma 4.7 We assume (A). Let (ϕ̃ln, ϕ̃
l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈ N with ϕ̃ln → ϕ̃n, ϕ̃lp → ϕ̃p, and T̃ l → T̃ in

L2(Ω), let ψl and ψ denote the corresponding unique weak solutions to (4.2). Then ψl → ψ in H1(Ω).
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Proof. Since mes ΓD > 0, the expression ‖∇·‖L2 is an equivalent norm on H1
D(Ω) such that α‖w‖2H1(Ω) ≤

ε‖∇w‖2L2 for all w ∈ H1
D(Ω). We use the short notation Ñi0 := Ni0(T̃ ), Ñ l

i0 := Ni0(T̃ l), σ̃i := σi(T̃ ),

σ̃li := σi(T̃
l), i = n, p, ẼJ := EJ(T̃ ), ẼlJ := EJ(T̃ l), J = L,H . We test (4.2) (for the corresponding

solutions ψl and ψ) by ψl − ψ ∈ H1
D(Ω) and obtain

α‖ψl − ψ‖2H1

≤
∫

Ω

[
Ñn0G

(ψ − ϕ̃n − ẼL
T̃

;
σ̃n

T̃

)
− Ñ l

n0G
(ψl − ϕ̃ln − ẼlL

T̃ l
;
σ̃ln

T̃ l

)]
(ψl − ψ) dx

−
∫

Ω

[
Ñp0G

(ẼH − (ψ−ϕ̃p)
T̃

;
σ̃p

T̃

)
− Ñ l

p0G
(ẼlH − (ψl − ϕ̃lp)

T̃ l
;
σ̃lp

T̃ l

)]
(ψl − ψ) dx

=

4∑
j=1

Ij ,

where

I1 :=

∫
Ω

(
Ñn0 − Ñ l

n0

)
G
(ψ − ϕ̃n − ẼL

T̃
;
σ̃n

T̃

)
(ψl − ψ) dx

−
∫

Ω

(
Ñp0 − Ñ l

p0

)
G
(ẼH − (ψ − ϕ̃p)

T̃
;
σ̃p

T̃

)
(ψl − ψ) dx,

I2 :=

∫
Ω
Ñ l
n0

[
G
(ψ − ϕ̃n − ẼL

T̃
;
σ̃n

T̃

)
− G

(ψ − ϕ̃ln − ẼlL
T̃ l

;
σ̃n

T̃

)]
(ψl − ψ) dx

−
∫

Ω
Ñ l
p0

[
G
(ẼH − (ψ − ϕ̃p)

T̃
;
σ̃p

T̃

)
− G

(ẼlH − (ψ − ϕ̃lp)
T̃ l

;
σ̃p

T̃

)]
(ψl − ψ) dx,

I3 :=

∫
Ω
Ñ l
n0

[
G
(ψ − ϕ̃ln − ẼlL

T̃ l
;
σ̃n

T̃

)
− G

(ψ − ϕ̃ln − ẼlL
T̃ l

;
σ̃ln

T̃ l

)]
(ψl − ψ) dx

−
∫

Ω
Ñ l
p0

[
G
(ẼlH − (ψ − ϕ̃lp)

T̃ l
;
σ̃p

T̃

)
− G

(ẼlH − (ψ − ϕ̃lp)
T̃ l

;
σ̃lp

T̃ l

)]
(ψl − ψ) dx,

I4 :=

∫
Ω
Ñ l
n0

[
G
(ψ − ϕ̃ln − ẼlL

T̃ l
;
σ̃ln

T̃ l

)
− G

(ψl − ϕ̃ln − ẼlL
T̃ l

;
σ̂ln

T̃ l

)]
(ψl − ψ) dx

−
∫

Ω
Ñ l
p0

[
G
(ẼlH − (ψ − ϕ̃lp)

T̃ l
;
σ̃lp

T̃ l

)
− G

(ẼlH − (ψl − ϕ̃lp)
T̃ l

;
σ̃lp

T̃ l

)]
(ψl − ψ) dx.

Due to the monotonicity of η 7→ G(η, z) the term I4 is non-positive and can be omitted in our estimates.
According to Assumption (A) and the boundedness of G we find

|I1| ≤ c‖T̃ − T̃ l‖L2‖ψl − ψ‖L2 .

Since

|I2| ≤
∫

Ω
c
∣∣∣G(ψ − ϕ̃n − ẼL

T̃
;
σ̃n

T̃

)
− G

(ψ − ϕ̃ln − ẼlL
T̃ l

;
σ̃n

T̃

)∣∣∣|ψl − ψ| dx
+

∫
Ω
c
∣∣∣G(ẼH − (ψ − ϕ̃p)

T̃
;
σ̃p

T̃

)
− G

(ẼlH − (ψ − ϕ̃lp)
T̃ l

;
σ̃p

T̃

)∣∣∣|ψl − ψ| dx,
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we estimate the term with the large absolute value bars by the derivative of G with respect to the first variable

in an intermediate point (which is uniformly bounded) times |ψ−ϕ̃n−ẼL
T̃

− ψ−ϕ̃ln−ẼlL
T̃ l

| and | ẼH−(ψ−ϕ̃p)

T̃
−

ẼlH−(ψ−ϕ̃lp)

T̃ l
|, respectively, which then due to the Lipschitz continuity of EL and EH , and the lower bound Ta

of the temperature for these absolute values gives a bound

c
(∣∣∣ 1

T̃ l
− 1

T̃

∣∣∣+
|T̃ l − T̃ |
Ta

+
∑
i=n,p

|ϕ̃li − ϕ̃i|
)
≤ c
( 1

Ta
|T̃ l − T̃ |+

∑
i=n,p

|ϕ̃li − ϕ̃i|
)
.

Moreover, using Lemma 2.1 we derive∣∣∣G(η;
σ̃i

T̃

)
− G

(
η;
σ̃i

T̃ l

)∣∣∣+
∣∣∣G(η;

σ̃i

T̃ l

)
− G

(
η;
σ̃li

T̃ l

)∣∣∣
≤ max

zθ1∈[
σ̃i
T̃
,
σ̃i
T̃ l

]

∣∣∣∂G
∂z

(η; zθ1)
∣∣∣σ̃i∣∣∣ 1

T̃
− 1

T̃ l

∣∣∣+ max
zθ2∈[

σ̃i
T̃ l
,
σ̃l
i
T̃ l

]

∣∣∣∂G
∂z

(η; zθ2)
∣∣∣ 1

T̃ l
|T̃ − T̃ l|

≤ max{T̃ , T̃ l}(1 + e|η|)
∣∣∣ 1

T̃
− 1

T̃ l

∣∣∣+ max
{ 1

σ̃i
,

1

σ̃li

}
(1 + e|η|)|T̃ − T̃ l|

≤ (
1

Ta
+

1

σ
)(1 + e|η|)|T̃ − T̃ l|.

With this, we can continue the estimate for I3

|I3| ≤
∫

Ω
c
∣∣∣G(ψ − ϕ̃ln − ẼlL

T̃ l
;
σ̃n

T̃

)
− G

(ψ − ϕ̃ln − ẼlL
T̃ l

;
σ̃ln

T̃ l

)∣∣∣|ψl − ψ| dx
+

∫
Ω
c
∣∣∣G(ẼlH − (ψ − ϕ̃lp)

T̃ l
;
σ̃p

T̃

)
− G

(ẼlH − (ψ − ϕ̃lp)
T̃ l

;
σ̃lp

T̃ l

)∣∣∣|ψl − ψ| dx
by finding the upper bound for the two terms with the large absolute value bars

c
(

1 + exp
∣∣∣ψ − ϕ̃ln − ẼlL

T̃ l

∣∣∣)|T̃ l − T̃ |, and c
(

1 + exp
∣∣∣ẼlH − (ψ − ϕ̃lp)

T̃ l

∣∣∣)|T̃ l − T̃ |,
respectively. Note that the argument in the exponential is uniformly bounded since (ϕ̃ln, ϕ̃

l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈
N , |ẼlL|, |ẼlH | ≤ Ê, and ‖ψ‖L∞ ≤ cψ,L∞ by Lemma 4.1. Collecting now all the previous arguments we
arrive at

‖ψl − ψ‖2H1 ≤ c
∫

Ω

( ∑
i=n,p

|ϕ̃li − ϕ̃i|+ |T̃ l − T̃ |
)
|ψl − ψ| dx

≤ c
( ∑
i=n,p

‖ϕ̃li − ϕ̃i‖L2 + ‖T̃ l − T̃‖L2

)
‖ψl − ψ‖L2

which ensures that ‖ψl − ψ‖H1 → 0 since ϕ̃ln → ϕ̃n, ϕ̃lp → ϕ̃p, and T̃ l → T̃ in L2(Ω). �

Lemma 4.8 Let the Assumption (A) be fulfilled. Then the mapQ : N → N is continuous.

Proof. 1. Let (ϕ̃ln, ϕ̃
l
p, T̃

l), (ϕ̃n, ϕ̃p, T̃ ) ∈ N with ϕ̃ln → ϕ̃n, ϕ̃lp → ϕ̃p, and T̃ l → T̃ in L2(Ω), let ψl and

ψ denote the corresponding unique weak solutions to (4.2), ñl, ñ and let p̃l, p̃ be the corresponding quantities
in (4.3). We have to show that (ϕln, ϕ

l
p, T

l) := Q(ϕ̃ln, ϕ̃
l
p, T̃

l)→ (ϕn, ϕp, T ) := Q(ϕ̃n, ϕ̃p, T̃ ) in L2(Ω)3.

Lemma 4.7 ensures that ψl → ψ in H1(Ω).

2. By Lemma 4.4 we have ‖ϕln‖H1 , ‖ϕlp‖H1 ≤ cH1 . We show that all weakly convergent subsequences of

{(ϕln, ϕlp)} in H1(Ω)2 converge weakly to the same limit (ϕn, ϕp). Then using [14, Lemma 5.4] we have
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(ϕln, ϕ
l
p) ⇀ (ϕn, ϕp) in H1(Ω)2 for the entire sequence and as a consequence ϕln → ϕn, ϕlp → ϕp in

L2(Ω).

Let {(ϕlkn , ϕlkp )} be some subsequence in H1(Ω)2 that converges weakly to some (ϕ∗n, ϕ
∗
p) ∈ H1(Ω)2.

Our goal is to verify that ϕ∗n = ϕn and ϕ∗p = ϕp. Since ϕ̃lkn → ϕ̃n, ϕ̃lkp → ϕ̃p, and T̃ lk → T̃ in L2(Ω)

and ψlk → ψ in H1(Ω) we obtain, for a further, non-relabeled subsequence, that ϕ̃lkn → ϕ̃n, ϕ̃lkp → ϕ̃p,

T̃ lk → T̃ , ψlk → ψ, and ∇ψlk → ∇ψ a.e. in Ω. Because of the continuity of the functions (ψ,ϕn, T ) 7→
Nn0(T )G(ψ−ϕn−EL(T )

T ; σn(T )
T ), (ψ,ϕp, T ) 7→ Np0(T )G(

EH(T )−(ψ−ϕp)
T ;

σp(T )
T ) for T ≥ Ta as well as

that of the mobility functions µn and µp (with respect to T , n, p and |∇ψ|) we find for that subsequence

ñlk := Nn0(T̃ lk)G
(
ψlk−ϕ̃lkn −EL(T̃ lk )

T̃ lk
; σn(T̃ lk )

T̃ lk

)
→ ñ := Nn0(T̃ )G

(
ψ−ϕ̃n−EL(T̃ )

T̃
; σn(T̃ )

T̃

)
,

p̃lk := Np0(T̃ lk)G
(
EH(T̃ lk )−(ψlk−ϕ̃lkp )

T̃ lk
;
σp(T̃ lk )

T̃ lk

)
→ p̃ := Np0(T̃ )G

(
EH(T̃ )−(ψ−ϕ̃p)

T̃
;
σp(T̃ )

T̃

)
,

µn(T̃ lk , ñlk , |∇ψlk |)→ µn(T̃ , ñ, |∇ψ|), µp(T̃
lk , p̃lk , |∇ψlk |)→ µp(T̃ , p̃, |∇ψ|) a.e. in Ω.

The pointwise a.e. convergences for this subsequence and Assumption (A) additionally ensure the following
convergences

ãlkn := ñlkµn(T̃ lk , ñlk , |∇ψlk |)→ ãn := ñµn(T̃ , ñ, |∇ψ|),

ãlkp := p̃lkµp(T̃
lk , p̃lk , |∇ψlk |)→ ãp := p̃µp(T̃ , p̃, |∇ψ|),

r̃lk := r(ñlk , p̃lk , T̃ lk)→ r̃ := r(ñ, p̃, T̃ ) a.e. in Ω.

(4.15)

Using (ϕlkn − ϕn, ϕlkp − ϕp) ∈ H1
D(Ω)2 as a test function in (4.6) we obtain∫

Ω

∑
i=n,p

{
ãlki ∇ϕ

lk
i − ãi∇ϕi

}
· ∇(ϕlki − ϕi) dx

=

∫
Ω

(
r̃
(

exp
ϕn−ϕp
T̃

− 1
)
− r̃lk

(
exp

ϕlkn−ϕlkp
T̃ lk

− 1
))(

ϕlkn−ϕn − ϕlkp +ϕp

)
dx.

(4.16)

We introduce the following decomposition

ãlki ∇ϕ
lk
i = ãlki ∇(ϕlki − ϕi) + ãlki ∇ϕi ,

r̃lk exp
ϕlkn − ϕlkp
T̃ lk

= (r̃lk − r̃) exp
ϕlkn − ϕlkp
T̃ lk

+ r̃
[

exp
ϕlkn − ϕlkp
T̃ lk

− exp
ϕlkn − ϕlkp

T̃

]
+ r̃ exp

ϕlkn − ϕlkp
T̃

.

Then, the fact that T̃ , T̃ lk ≥ Ta and ϕlkn , ϕ
lk
p ∈ [−K,K] a.e. in Ω due to Lemma 4.4 with exp

ϕ
lk
n −ϕ

lk
p

T̃ lk
≤ c

together with Lipschitz continuity of the map (ϕn, ϕp, T ) 7→ exp
ϕn−ϕp
T on [−K,K]2× [Ta,∞), the bounds

from (4.13) and mes(ΓD) > 0 yield from (4.16)

c
∑
i=n,p

‖ϕlki − ϕi‖
2
H1 +

∫
Ω
r̃
(

exp
ϕlkn − ϕlkp

T̃
− exp

ϕn − ϕp
T̃

)(
ϕlkn − ϕn − ϕlkp + ϕp

)
dx

≤ c
∑
i=n,p

‖∇(ϕlki − ϕi)‖L2

(∫
Ω

∣∣ãlki − ãi∣∣2|∇ϕi|2 dx

) 1
2

+ c
∑
i=n,p

‖ϕlki − ϕi‖L2

((∫
Ω

∣∣r̃lk − r̃∣∣2dx

) 1
2

+ ‖T̃ lk − T̃‖L2

)
.
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Due to (4.13) and ‖ϕi‖H1 ≤ cH1 the first integral on the right hand side has an integrable majorant. Since by
assumption, the function r is bounded also the integrand of the integral in the last line has an integrable majorant.
Thus we can apply for both integrals Lebesgue’s dominated convergence theorem to show that both integrals
tend to zero, and T̃ lk → T̃ in L2(Ω) by assumption. Therefore, in summary it follows ‖ϕlki − ϕi‖H1 → 0

for the subsequence related to the a.e. convergence of ϕ̃lkn , ϕ̃
lk
p , T̃

lk , ψlk and∇ψlk . Since by assumption this
subsequence also weakly converges to ϕ∗i , we find that ϕ∗i = ϕi and that the entire subsequence converges
weakly to ϕi, i = n, p.

Since the subsequence was arbitrary, we verified that all weakly convergent subsequences of {(ϕln, ϕlp)} con-

verge weakly to (ϕn, ϕp). Thus by [14, Lemma 5.4] follows (ϕln, ϕ
l
p) ⇀ (ϕn, ϕp) in H1(Ω)2 for the entire

sequence and therefore ϕli → ϕi in L2(Ω), i = n, p.

3. It remains to show for the corresponding solutions to (4.8) that T l → T in L2(Ω). For this purpose we show
T l ⇀ T in W 1,4/3(Ω). According to Theorem 4.1 and (4.9) we have ‖T l‖W 1,4/3 ≤ cT,W 1,4/3 for all l. We

show that all weakly convergent subsequences of {T l} in the reflexive Banach space W 1,4/3(Ω) converge
weakly to T . Then it results T l ⇀ T in W 1,4/3(Ω) for the entire sequence and therefore T l → T in L2(Ω)
which we finally aim to prove. Let for some subsequence {T lk} and some T ∗ ∈ W 1,4/3(Ω) hold true that
T lk ⇀ T ∗ in W 1,4/3(Ω). We verify that T ∗ = T .

For this purpose we start with further convergences of non-relabeled subsequences, where especiallyϕlki → ϕi
in H1(Ω), i = n, p. Since∣∣∣ãlki |∇ϕlki |2 − ãi|∇ϕi|2∣∣∣ ≤ ãlki |∇(ϕlki − ϕi)||∇ϕ

lk
i |+ ãlki |∇ϕi||∇(ϕlki − ϕi)|+ |ã

lk
i − ãi||∇ϕi|

2

it follows with (4.5)∫
Ω

∣∣∣ãlki |∇ϕlki |2 − ãi|∇ϕi|2∣∣∣ dx ≤ c‖ϕlki − ϕi‖H1‖ϕlki ‖H1 + c‖ϕi‖H1‖ϕlki − ϕi‖H1

+
(∫

Ω
|ãlki − ãi|

2|∇ϕi|2 dx
) 1

2 ‖ϕi‖H1 .

Note that ‖ϕlki ‖H1 , ‖ϕi‖H1 ≤ cH1 . Due to (4.15), Lebesgue’s dominated convergence theorem gives the
convergence to zero of the last integral for a further, non-relabeled subsequence. Hence the right hand side in
the estimate tends to zero.

Moreover, Step 2 ensures ϕlki → ϕi in L2(Ω), and therefore, for a further, non-relabeled subsequence ϕlki →
ϕi a.e. in Ω, i = n, p. Together with

r̃lk → r̃ and exp
ϕlkn − ϕlkp
T̃ lk

→ exp
ϕn − ϕp

T̃
a.e. in Ω,

and the integrable majorant 4Kr exp 2K
Ta

Lebesgue’s dominated convergence theorem gives for this subse-
quence ∫

Ω

∣∣∣r̃lk( exp
ϕlkn−ϕlkp
T̃ lk

− 1
)

(ϕlkn − ϕlkp )− r̃
(

exp
ϕn−ϕp
T̃

− 1
)

(ϕn − ϕp)
∣∣∣ dx→ 0

such that in summary

hlk :=
∑
i=n,p

ãlki |∇ϕ
lk
i |

2 + r̃lk
(

exp
ϕlkn−ϕlkp
T̃ lk

− 1
)

(ϕlkn − ϕlkp )

→ h :=
∑
i=n,p

ãi|∇ϕi|2 + r̃
(

exp
ϕn−ϕp
T̃

− 1
)

(ϕn − ϕp) in L1(Ω).
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According to Lemma 4.5 we find for the entropy solutions T lk and T of (4.8) with right hand sides hlk and h,
respectively, that T lk ⇀ T inW 1,4/3(Ω). By Theorem 4.1 the solution to (4.8) with right hand side h is unique,
it follows that T lk ⇀ T ∗ = T in W 1,4/3(Ω), for this subsequence.

4. Since we verified for arbitrary weakly convergent subsequences T lk ⇀ T ∗ in W 1,4/3(Ω) that T ∗ = T we
obtain the weak convergence of the entire sequence T l ⇀ T in W 1,4/3(Ω). And by the compact embedding
(for d ≤ 3) ofW 1,4/3(Ω) into L2(Ω) we obtain the strong convergence of the entire sequence in L2(Ω) which
proves in summary the continuity of the operator Q. �

Proof of Theorem 3.1. The set N is nonempty, convex, and precompact in L2(Ω)3. Thus, by Lemma 4.8,
Schauder’s fixed point theorem ensures the existence of a fixed point (ϕn, ϕp, T ) ∈ N ofQ. For a fixed point

(ϕn, ϕp, T ) ∈ N of the mapping Q we solve B(ϕn,ϕp,T )ψ = 0 and calculate n = Nn0G
(
ψ−ϕn−EL

T ; σnT

)
and p = Np0G

(
EH−(ψ−ϕp)

T ;
σp
T

)
. Then the quadruple (ψ,ϕn, ϕp, T ) is a solution to problem (3.5) in the

sense introduced in Subsection 3.3. The bounds of the solution stated in Theorem 3.1 result from Lemma 4.1,
Lemma 4.4, Lemma 4.6, Theorem 4.1, and Lemma 4.3. Thus, the proof of Theorem 3.1 is complete. �

Proof of Corollary 3.1. Let (ψ,ϕn, ϕp, T ) be a solution to (3.5) with boundary conditions fulfilling (3.7). Testing
the continuity equations by (ϕn − ϕDn , ϕp − ϕDp ) ∈ H1

D(Ω)2 and taking into account the relations (3.7) it
results∫

Ω

(
nµn|∇(ϕn − ϕDn )|2 + pµp|∇(ϕp − ϕDp )|2 + r

(
exp

ϕn − ϕp
T

− 1
)
(ϕn − ϕp)

)
dx = 0.

Since mes(ΓD) > 0, the lower bounds for µi and r as well as the lower bounds for n and p from Theorem 3.1
and the strict monotonicity of the exponential function ensure that ϕn = ϕDn = ϕDp = ϕp = const. There-
fore the source term h in the heat flow equation is zero. Thus the Robin boundary condition and the unique
solvability of the heat flow equation lead to T = Ta. Finally with all these information and substituting n
and p by the statistical relation, ψ has to fulfill the nonlinear Poisson equation (3.8). The unique solvabil-
ity of the nonlinear Poisson equation relies on the Lipschitz continuity and strict monotonicity of the function

y 7→ Nn0(Ta)G
(
y−ϕDn −EL(Ta)

Ta
; σn(Ta)

Ta

)
−Np0(Ta)G

(
EH(Ta)−(y−ϕDp )

Ta
;
σp(Ta)
Ta

)
. �

5 Concluding remarks

Theorem 3.1 gives an existence result for the stationary energy-drift-diffusion model (3.3), (3.4) for organic
semiconductors in two and three spatial dimensions. Here the components electrostatic potential ψ and the
quasi Fermi potentials ϕn, ϕp are to be understood as weak solutions to the van Roosbroeck system, whereas
the temperature distribution T is an entropy solution to the heat equation.

In two spatial dimensions the following higher regularity of the solutions can be verified.

Corollary 5.1 In the case d = 2, let Assumption (A) and ϕDn , ϕ
D
p ∈ W 1,∞(Ω) be fulfilled. Then there exist

qψ, qϕ, qT > 2 and cqψ , cqϕ , cqT > 0 such that for all solutions (ψ,ϕn, ϕp, T ) to (3.5)

‖ψ‖
W

1,qψ ≤ cqψ , ‖ϕn‖W 1,qϕ ≤ cqϕ , ‖ϕp‖W 1,qϕ ≤ cqϕ , ‖T‖W 1,qT ≤ cqT .

In particular, all four components ψ, ϕn, ϕp, T are continuous functions and T is also a weak solution of the
heat flow equation.

Proof. Let (ψ,ϕn, ϕp, T ) be any solution to problem (3.5) and

n = Nn0G
(ψ − ϕn − EL

T
;
σn
T

)
, p = Np0G

(EH − (ψ − ϕp)
T

;
σp
T

)
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be the corresponding densities. According to (4.13) we obtain

0 < cu ≤ an := nµn(T, n, |∇ψ|), ap := pµp(T, p, |∇ψ|) ≤ co a.e. in Ω, an, ap ∈ L∞(Ω).

Due to ‖ϕn‖L∞ , ‖ϕp‖L∞ ≤ K , also the expression R = R(n, p, T ) has a fixed L∞ bound. With the
supposed regularity of ϕDn , ϕ

D
p and Gröger’s regularity result for elliptic equations with nonsmooth data in 2D

(see [19]) applied to
−∇ · (an∇ϕn) = R, −∇ · (ap∇ϕp) = −R,

we find an exponent qϕ > 2 and cqϕ > 0 with ‖ϕn‖W 1,qϕ , ‖ϕp‖W 1,qϕ ≤ cqϕ . Using the same regularity
result for the Poisson equation with a fixed L∞ bound for the right hand side gives a qψ > 2 and cqψ > 0
with ‖ψ‖

W
1,qψ ≤ cqψ . Have in mind the Assumption (A) for the coefficients ε and λ. The previous arguments

ensure for h := nµn(T, n, |∇ψ|)|∇ϕn|2 + pµp(T, p, |∇ψ|)|∇ϕp|2 +R(ϕp − ϕn) that h ∈ L
qϕ
2 (Ω) with

a fixed bound for the norm (and with qϕ
2 > 1). Thus, for some q̃ > 2 we have h ∈ W 1,(q̃)′(Ω)∗ ⊂ H1(Ω)∗

with 1
q̃ + 1

q̃′ = 1. Therefore there exists a unique weak solution T̃ ∈ H1(Ω) to the heat equation

−∇ · (λ∇T ) = h

with Robin boundary conditions. Since Cm(T̃ − ω) ∈ H1(Ω) for all ω ∈ H1(Ω) ∩ L∞(Ω), m ≥ 0, is an
admissible test function in the weak formulation, we find that T̃ is an entropy solution (compare (3.5)) to the
heat equation, too. By Theorem 4.1 the entropy solution is unique and we have T̃ = T . Additionally, again by
Gröger’s regularity result for elliptic equations in 2D in [19] - now with Robin boundary conditions - there exists
a qT ∈ (2, q̃) and cqT > 0 with ‖T‖W 1,qT ≤ cqT . Finally, since d = 2 and qψ, qϕ, qT > 2 Sobolev’s
embedding theorem ensures that ψ, ϕn, ϕp T are continuous functions. �

In analogy to the classical, inorganic situation, uniqueness is not generally to be expected. In particular, mea-
sured S-shaped current-voltage characteristics with regions of negative differential resistance for organic n-i-n
resistors in [10] and organic LEDs in [9] underline the thermistor like behavior of organic semiconductor devices.
Even the simplified p(x)−Laplace thermistor model introduced in [25] reproduces this behavior such that for a
certain range of applied voltages there exist different solutions, see [24].

For a similar model frame in the inorganic situation (but assuming also a Dirichlet boundary of positive measure
for the heat flow equation and not Robin type boundary conditions as in the present paper), [18] applies the
implicit function theorem in the scale of Sobolev-Campanato spaces to verify local existence and uniqueness
of solutions for data nearly compatible with thermodynamic equilibrium. Moreover in the inorganic setting, local
uniqueness of the solution near thermodynamic equilibrium has been verified in [15] for models with cross
diffusion and under consideration of thermoelectric powers. There also Dirichlet boundary parts for all equations
are assumed and the heat flow equation was substituted by a balance equation for the total energy. The used
variables are the electrostatic potential, electrochemical potentials divided by temperature and minus the inverse
temperature. The techniques work in 2D and are based on the implicit function theorem and regularity results in
W 1,p with p > 2 for systems of strongly coupled elliptic differential equations with mixed boundary conditions
and non-smooth data.

In the simplified model for organic semiconductor devices investigated in the present paper thermoelectric forces
due to Thomson, Peltier, and Seebeck effects, leading e.g. to cross diffusion terms, were completely neglected.
The next modeling steps for organic semiconductors should also include theses effects and the resulting cou-
pling terms in the balance equations. In this direction, a reformulation of the heat flow equation as an entropy
balance or balance for the total energy as done in [1, 28] or discussed in the earlier papers [5, 6] – all for the
inorganic situation – is desired in order to thermodynamically design energy models for organic semiconductor
devices.
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[1] G. Albinus, H. Gajewski, and R. Hünlich, Thermodynamic design of energy models of semiconductor devices, Non-
linearity 15 (2002), 367–383.

DOI 10.20347/WIAS.PREPRINT.2593 Berlin 2019



An existence result for a class of electrothermal drift-diffusion models 21
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