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Existence, iteration procedures and directional differentiability
for parabolic QVIs

Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg

Abstract

We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate
assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two
methods: one by time discretisation through elliptic QVIs and the second by iteration through
parabolic variational inequalities (VIs). Using these results, we show the directional differentiability
(in a certain sense) of the solution map which takes the source term of a parabolic QVI into the
set of solutions, and we relate this result to the contingent derivative of the aforementioned map.
We finish with an example where the obstacle mapping is given by the inverse of a parabolic
differential operator.

1 Introduction

Quasi-variational inequalities (QVIs) are versatile models that are used to describe many different phe-
nomena from fields as varied as physics, biology, finance and economics. QVIs were first formulated
by Bensoussan and Lions [8, 31] in the context of stochastic impulse control problems and since then
have appeared in many models where nonsmoothness and nonconvexity are present, including su-
perconductivity [28, 4, 36, 7, 39], the formation and growth of sandpiles [38, 5, 37, 35, 7] and networks
of lakes and rivers [37, 35, 6], generalised Nash equilibrium problems [23, 17, 33], and more recently
in thermoforming [2].

In general, QVIs are more complicated than variational inequalities (VIs) because solutions are sought
in a constraint set which depends on the solution itself. This is an additional source of nonlinearity
and nonsmoothness and creates considerable issues in the analysis and development of solution
algorithms to QVI and the associated optimal control problems.

We focus in this work on parabolic QVIs with constraint sets of obstacle type and we address the
issues of existence of solutions and directional differentiability for the solution map taking the source
term of the QVI into the set of solutions. This extends to the parabolic setting our previous work [2]
where we provided a differentiability result for solution mappings associated to elliptic QVIs. Literature
for evolutionary QVIs is scarce in the infinite-dimensional setting: among the few works available, we
refer to [24] for a study of parabolic QVIs with gradient constraints, [25] for existence and numerical
results in the hyperbolic setting, [18] for QVIs arising in hydraulics, [27] for state-dependent sweeping
processes, and evolutionary superconductivity models in [39], as well as the work [19]. Differentiability
analysis for parabolic (non-quasi) VIs was studied in [26] and [15].

Let us now enter into the specifics of our setting. Let V ⊂ H ⊂ V ∗ be a Gelfand triple of separable
Hilbert spaces with V

c
↪−→ H a compact embedding. Furthermore, we assume that there exists an

ordering to elements of H via a closed convex cone H+ satisfying H+ = {h ∈ H : (h, g) ≥
0 ∀g ∈ H+}; the ordering then is ψ1 ≤ ψ2 if and only if ψ2 − ψ1 ∈ H+. This also induces an
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ordering for V and V ∗ as well as for the associated Bochner spaces L2(0, T ;H), L2(0, T ;V ) and
so on. We define V+ := {v ∈ V : v ≥ 0}. We write v+ for the orthogonal projection of v ∈ H
onto the space H+ and we have the decomposition v = v+ − v−. Suppose that v ∈ V implies that
v+ ∈ V and that there exists a constant C > 0 such that for all v ∈ V ,∥∥v+

∥∥
V
≤ C ‖v‖V .

An example of such a space V is V = W 1,p(Ω) for 1 ≤ p ≤ ∞; we refer to [1] for a definition of the
Sobolev space W 1,p(Ω) over a domain Ω.

Let A : V → V ∗ be a linear, symmetric, bounded and coercive operator which is T-monotone, which
means that

〈Av+, v−〉V ∗,V ≤ 0 for all v ∈ V ,

and let Φ: L2(0, T ;V )→ L2(0, T ;V ) be a mapping which is increasing, i.e.,

if ψ1 ≤ ψ2, then Φ(ψ1) ≤ Φ(ψ2).

Further assumptions will be introduced later as and when required. We consider parabolic QVIs of the
following form.

QVI Problem: Given f ∈ L2(0, T ;H) and z0 ∈ V , find z ∈ L2(0, T ;V ) with z′ ∈ L2(0, T ;V ∗)
such that for all v ∈ L2(0, T ;V ) with v(t) ≤ Φ(z)(t),

z(t) ≤ Φ(z)(t) :

∫ T

0

〈z′(t) + Az(t)− f(t), z(t)− v(t)〉V ∗,V ≤ 0,

z(0) = z0.

(1)

We write the solution mapping taking the source term into the (weak or strong) solution as Pz0 so
that (1) reads z ∈ Pz0(f) (sometimes we omit the subscript). In this paper, we contribute three main
results associated to this QVI:

� Existence of solutions to (1) via time-discretisation (Theorem 2.9): we show that solutions to
(1) can be formulated as the limit of a sequence constructed from considering time-discretised
elliptic QVI problems. This result makes use of the theory of sub- and supersolutions and the
Tartar–Birkhoff fixed point method.

� Approximation of solution to (1) by solutions of parabolic VIs (Theorem 3.8): we define an it-
erative sequence of solutions of parabolic VIs and show that the sequence converges in a
monotone fashion to a solution of the parabolic QVI; this is another QVI existence result. The
existence for the aforementioned parabolic VIs comes from either Theorem 2.9 or from a certain
result of Brezis (which will be given in the relevant section), giving rise to two different sets of
assumptions under which the theorem holds.

� Directional differentiability for the source-to-solution mapping P (Theorem 5.15): we prove that
the map P is directionally differentiable in a certain sense using Theorem 3.8 and some tech-
nical lemmas related to the expansion formulae for parabolic VI solution mappings.

Thus we give two existence results and a differential sensitivity result. It should be noted that the
differentiability result essentially gives a characterisation of the contingent derivative (a concept fre-
quently used in set-valued analysis) of P (between appropriate spaces) in terms of a parabolic QVI;
see Proposition 5.16 for details.
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Existence, iteration procedures and directional differentiability for parabolic QVIs 3

1.1 Notations and layout of paper

We shall usually write the duality pairing between V and V ∗ as 〈·, ·〉 rather than 〈·, ·, 〉V ∗,V for ease

of reading. We use the notations ↪→ and
c
↪−→ to represent continuous and compact embeddings re-

spectively. Let us define the Sobolev–Bochner spaces

W (0, T ) := L2(0, T ;V ) ∩H1(0, T ;V ∗),

Ws(0, T ) := L2(0, T ;V ) ∩H1(0, T ;H),

and defining the linear parabolic operator L : W (0, T )→ L2(0, T ;V ∗) by Lv := v′ + Av, we also
define the following space

Wr(0, T ) := {w ∈ W (0, T ) : Lw ∈ L2(0, T ;H)}.

Note the relationships Ws(0, T ) ↪→ W (0, T ) and Wr(0, T ) ⊂ W (0, T ).

If z ∈ W (0, T ) satisfies (1), we say that it is a weak solution or simply a solution. A weaker notion of
solution is given by transferring the time regularity of the solution onto the test function and requiring
only z ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) to satisfy

z(t) ≤ Φ(z)(t) :

∫ T

0

〈v′(t) + Az(t)− f(t), z(t)− v(t)〉 ≤ 0 ∀v ∈ W (0, T ) : v(t) ≤ Φ(z)(t)

v(0) = z0

(2)
and we call z a very weak solution. Note that the initial data also has been transferred onto the test
function (indeed, the weak solution is not sufficiently regular to have a prescribed initial data).

The paper is structured as follows. In §2 we consider the existence of solutions to (1) via the method
of time discretisation: we characterise a solution of the parabolic QVI as the limit of solutions of elliptic
QVIs. In §3, we approximate solutions of the QVI by a sequence of solutions of parabolic VIs that
are defined iteratively. In §4 we consider parabolic VIs and directional differentiability with respect to
perturbations in the obstacle and we make use of this in §5 to prove that the source-to-solution map P
is directionally differentiable in a particular sense. We highlight some possible alternative approaches
in §6 and finish with an example in §7.

2 Existence for parabolic QVIs through time discretisation

We prove existence to (1) by the method of time discretisation via elliptic QVIs of obstacle type. This
is in contrast to [25] where the discretisation for evolutionary QVI was done in such a way as to yield a
sequence of elliptic VIs, and as far as we are aware, our approach is novel in these type of problems.

We make the following basic assumption.

Assumption 2.1. Let Φ(0) ≥ 0 and

Φ: V → C0([0, T ];V ). (3)

Let N ∈ N, hN := T/N and for n = 0, 1, ..., N , tNn := nhN . This divides the interval [0, T ] into N
subintervals of length hN ; we will usually write h for hN . We approximate the source term by

fNn :=
1

h

∫ tNn

tNn−1

f(t) dt

WIAS Preprint No. 2592 Berlin 2019



A. Alphonse, M. Hintermüller, C. N. Rautenberg 4

and we consider the following elliptic QVI problem.

Discretised problem: Given zN0 := z0, find zNn ∈ V such that

zNn ≤ Φ(zNn )(tNn−1) :

〈
zNn − zNn−1

h
+ AzNn − fNn , zNn − v

〉
≤ 0 ∀v ∈ V : v ≤ Φ(zNn )(tNn−1).

(4)
This problem is sensible since by (3), for fixed t, the mapping v 7→ Φ(v)(t) is well defined from
V into V , since we may consider V ⊂ L2(0, T ;V ) (elements of V can be thought of constant-in-
time elements of L2(0, T ;V )), and Φ(v) can be evaluated pointwise in time. We consider first the
existence of solutions to (4).

2.1 Existence and uniform estimates for the elliptic approximations

The inequality (4) can be rewritten as〈
zNn + hAzNn − hfNn − zNn−1, z

N
n − v

〉
≤ 0 ∀v ≤ Φ(zNn )(tNn−1). (5)

We write the solution of (4) or (5) as QtNn−1
(hfNn + zNn−1) 3 zNn . Related to (5) is the following VI:

Find v ∈ V, v ≤ Φ(ψ)(t) : 〈v + hAv − g, v − ϕ〉 ≤ 0 ∀v ∈ V : v ≤ Φ(ψ)(t);

denote by Et,h(g, ψ) = v the solution of this problem. For fixed t and h and sufficiently smooth data,
this mapping is well defined since the obstacle Φ(ψ)(t) ∈ V . To ease notation, we write EtNn (g, ψ)
instead of EtNn ,hN (g, ψ) (where hN is the step size) because specifying hN is redundant.

Let us make an observation which follows from the theory of Birkhoff–Tartar [41, 12]. Suppose there
exists a subsolution zsub and a supersolution zsup to (4), i.e., zsub ≤ EtNn−1

(hfNn + zNn−1, zsub) and

zsup ≥ EtNn−1
(hfNn + zNn−1, z

sup). Then the QVI problem (4) has a solution zNn = EtNn−1
(hfNn +

zNn−1, z
N
n ) ∈ [zsub, z

sup]. The next lemma applies this idea. First, let us set Ahw := w + hAw (this
Ah is the elliptic operator appearing in (5)) and define z̄n,N as the solution of the following elliptic PDE:

Ahz̄n,N = hfNn + zNn−1.

Lemma 2.2. Suppose that

f ≥ 0 is increasing, z0 ≥ 0, (D1)

z0 ≤ Φ(z0)(0) and 〈Az0 − f(t), v〉 ≤ 0 for all v ∈ V+ and a.e. t, (D2)

t 7→ Φ(v)(t) is increasing for all v ∈ V+. (6)

Then the approximate problem (4) has a non-negative solution zNn ∈ [zNn−1, z̄n,N ]. Thus the sequence
{zNn }n∈N is increasing.

Proof. We first show that zN0 = z0 is a subsolution for the QVI for zN1 . Indeed, let w := EtN0 (hfN1 +

zN0 , z0) which satisfies

w ≤ Φ(z0)(0) : 〈w − z0 + hAw − hfN1 , w − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(z0)(0).
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The choice v = w + (z0 − w)+ is a feasible test function due to the upper bound on the initial data
from assumption (D2). This leads to

(z0 − w, (z0 − w)+)H ≤ h〈Aw − fN1 , (z0 − w)+〉
= h〈Aw − Az0 + Az0 − fN1 , (z0 − w)+〉
≤ h〈Az0 − fN1 , (z0 − w)+〉 (by T-monotonicity of A)

= h〈Az0 −
1

h

∫ tN1

0

f(s) ds, (z0 − w)+〉

=

∫ tN1

0

〈Az0 − f(s), (z0 − w)+〉 ds

≤ 0,

again by assumption (D2). This shows that z0 ≤ EtN0 (hfN1 + zN0 , z0) is indeed a subsolution.

The function z̄1,N defined throughAhz̄1,N = hfN1 +z0 is a supersolution since z̄1,N = EtNn−1
(hfN1 +

z0,∞) ≥ EtNn−1
(hfN1 +z0, z̄1,N) (thanks to the fact that Φ is increasing). Then we apply the theorem

of Birkhoff–Tartar to obtain existence of zN1 ∈ V with zN1 ∈ [zN0 , z̄1,N ].

Suppose that zNn ∈ [zNn−1, z̄
N
n ] ∩QtNn−1

(fNn + zNn−1). Observe that

zNn = EtNn−1
(fNn + zNn−1, z

N
n ) ≤ EtNn−1

(fNn+1 + zNn , z
N
n ) ≤ EtNn (fNn+1 + zNn , z

N
n )

with the final inequality because the obstacle associated to tNn is greater than or equal to the obstacle
associated to tNn−1 by assumption (6). We also have

z̄Nn+1 = EtNn (fNn+1 + zNn ,∞) ≥ EtNn (fNn+1 + zNn , z̄
N
n+1)

that is, zNn and z̄Nn+1 are sub- and super-solutions respectively for QtNn
(fNn+1 + zNn ) (and the su-

persolution is greater than the subsolution). Therefore, by Birkhoff–Tartar there exists a zNn+1 ∈
QtNn

(fNn+1 + zNn ) in the interval [zNn , z̄
N
n+1].

It appears that we may select any solution zNn as given by the Tartar–Birkhoff theorem in the previous
lemma, regardless of how we choose zNn−1. For example, we may choose zNn−1 to be the minimal
solution on its corresponding interval (with endpoints given by the sub- and supersolution) and zNn to
be the maximal solution on its corresponding interval, with no effect on the resulting analysis (though
of course, different choices may lead to different solutions of the original parabolic QVI in question in
the end).

We now obtain some bounds on the sequence {zNn }. For this, we use the fact that if f ∈ L2(0, T ;H),
then

N∑
n=1

h
∥∥fNn ∥∥2

H
≤ ‖f‖2

L2(0,T ;H) . (7)

Lemma 2.3. Under the assumptions of Lemma 2.2, the following uniform bounds hold:∥∥zNn ∥∥H ≤ C, (8)

h

n∑
i=1

∥∥zNi ∥∥2

V
≤ C, (9)

1

h

n∑
i=1

∥∥zNi − zNi−1

∥∥2

H
≤ C. (10)

WIAS Preprint No. 2592 Berlin 2019
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(The final bound needs symmetry of A and the increasing property of the sequence {zNn }n∈N).

Proof. In this proof, we omit the superscript N in various quantities for clarity.

We follow the argumentation of [20, §6.3.3]. Testing the QVI (5) with v = 0, which is valid since 0 ≤
Φ(0)(tn−1) ≤ Φ(zn)(tn−1) by assumption on the non-negativity at zero and the second inequality
by the increasing property of Φ and the fact that zn ≥ 0, and using the relation

(a− b, a)H =
1

2
‖a‖2

H −
1

2
‖b‖2

H +
1

2
‖a− b‖2

H ,

we find
1

2

(
‖zn‖2

H − ‖zn−1‖2
H + ‖zn − zn−1‖2

H

)
+ hCa ‖zn‖2

V ≤ h〈fn, zn〉

≤ h ‖fn‖V ∗ ‖zn‖V

≤ h

2Ca
‖fn‖2

V ∗ +
hCa

2
‖zn‖2

V .

This leads to

‖zn‖2
H − ‖zn−1‖2

H + ‖zn − zn−1‖2
H + hCa ‖zn‖2

V ≤
h

Ca
‖fn‖2

V ∗ ,

whence summing up and using (7),

‖zm‖2
H − ‖z0‖2

H +
m∑
n=1

‖zn − zn−1‖2
H + hCa

m∑
n=1

‖zn‖2
V ≤ C.

For the final bound, testing (4) with zn−1, which is valid since by Lemma 2.2, zn−1 ≤ zn ≤ Φ(zn)(tn−1),
we find 〈

zn − zn−1

h
+ Azn − fn, zn − zn−1

〉
≤ 0,

which leads to

1

h
‖zn − zn−1‖2

H + 〈Azn, zn − zn−1〉 ≤
h

2
‖fn‖2

H +
‖zn − zn−1‖2

H

2h
,

and here we use

〈Azn, zn − zn−1〉

=
1

2
〈Azn − Azn−1, zn − zn−1〉+

1

2
〈Azn − Azn−1, zn − zn−1〉+ 〈Azn−1, zn − zn−1〉

=
1

2
〈Azn − Azn−1, zn − zn−1〉+

1

2
〈Azn, zn〉+

1

2
〈Azn−1, zn−1〉 − 〈Azn, zn−1〉+ 〈Azn−1, zn〉

− 〈Azn−1, zn−1〉

=
1

2
〈Azn − Azn−1, zn − zn−1〉+

1

2
〈Azn, zn〉 −

1

2
〈Azn−1, zn−1〉

to get

1

h
‖zn − zn−1‖2

H + 〈Azn − Azn−1, zn − zn−1〉+ 〈Azn, zn〉 − 〈Azn−1, zn−1〉 ≤ h ‖fn‖2
H .

Neglecting the second term and summing this up from n = 1 to n = m and using (7), we obtain

1

h

m∑
n=1

‖zn − zn−1‖2
H + 〈Azm, zm〉 ≤ 〈Az0, z0〉+ C.
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Existence, iteration procedures and directional differentiability for parabolic QVIs 7

2.2 Interpolants

We define the piecewise constant interpolants

zN(t) :=
N∑
n=1

zNn χ[tNn−1,t
N
n )(t) and zN− (t) :=

N∑
n=1

zNn−1χ[tNn−1,t
N
n )(t),

where χA represents the characteristic function on the set A. In order to ease the presentation, we
often use the notation TNn := [tNn , t

N
n+1).

Corollary 2.4. Under the assumptions of Lemma 2.3, {zN} and {zN− } are bounded uniformly in
L2(0, T ;V ) ∩ L∞(0, T ;H).

Proof. Since the TNn are disjoint, we see that

∥∥zN∥∥
L∞(0,T ;H)

= ess sup
t∈[0,T ]

∑
n

∥∥zNn ∥∥H χTNn−1
(t) ≤ C ess sup

t∈[0,T ]

∑
n

χTNn−1
(t) = C

by (8), and

∥∥zN∥∥2

L2(0,T ;V )
=

∫ T

0

∥∥∥∥∥
N∑
n=1

zNn χTNn−1
(t)

∥∥∥∥∥
2

V

=
N∑
n=1

∫
TNn−1

∥∥zNn ∥∥2

V
= h

N∑
n=1

∥∥zNn ∥∥2

V
≤ C

by (9). A similar argument leads to the bounds on zN− .

To be able to handle the time derivative, it is useful to construct the interpolant

ẑN(t) := z0 +

∫ t

0

N∑
n=1

zNn − zNn−1

h
χ[tNn−1,t

N
n )(s) ds

= zNn−1 +
zNn − zNn−1

h
(t− tNn−1) if t ∈ [tNn−1, t

N
n ),

known as Rothe’s function, which also has the time derivative

∂tẑ
N(t) =

zNn − zNn−1

h
if t ∈ [tNn−1, t

N
n ).

Corollary 2.5. Under the assumptions of Lemma 2.3, {ẑN} is bounded uniformly in Ws(0, T ).

WIAS Preprint No. 2592 Berlin 2019
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Proof. We see that

∥∥ẑN∥∥2

L2(0,T ;V )
=

N∑
n=1

∫ tNn

tNn−1

∥∥ẑN(t)
∥∥2

V

≤ 2
N∑
n=1

∫ tNn

tNn−1

‖zNn−1‖2
V +

2

h2

N∑
n=1

∫ tNn

tNn−1

(t− tNn−1)2‖zNn − zNn−1‖2
V

= 2h
N∑
n=1

‖zNn−1‖2
V +

2

3h2

N∑
n=1

[(t− tNn−1)3]
tNn
tNn−1
‖zNn − zNn−1‖2

V

≤ C1 +
2

3h2

N∑
n=1

(tNn − tNn−1)3‖zNn − zNn−1‖2
V

= C1 +
2h

3

N∑
n=1

‖zNn − zNn−1‖2
V

≤ C2,

with the last two inequalities by (9). Regarding the time derivative, using (10), we find

∥∥∂tẑN∥∥2

L2(0,T ;H)
=

N∑
n=1

∫
TNn−1

∥∥∂tzN(t)
∥∥2

H

=
N∑
n=1

∫
TNn−1

∥∥∥∥zNn − zNn−1

h

∥∥∥∥2

H

=
1

h

N∑
n=1

∥∥zNn − zNn−1

∥∥2

H

≤ C3.

2.3 Passing to the limit in the interpolants

By the previous subsection, we have the existence of z, ẑ such that, for a relabelled subsequence, the
following convergences hold:

zN
∗
⇀ z in L∞(0, T ;H),

zN ⇀ z in L2(0, T ;V ),

ẑN ⇀ ẑ in Ws(0, T ).

(11)

Lemma 2.6. We have ẑ ≡ z. Furthermore,

zN− ⇀ z in L2(0, T ;V ) and weakly-star in L∞(0, T ;H).

Proof. Observe that∫ T

0

∥∥zN− (t)− zN(t)
∥∥2

H
=
∑
n

∫
TNn−1

∥∥zNn−1 − zNn
∥∥2

H
= h

∑
n

∥∥zNn−1 − zNn
∥∥2

H
≤ Ch2

WIAS Preprint No. 2592 Berlin 2019



Existence, iteration procedures and directional differentiability for parabolic QVIs 9

by (10). Thus as N → ∞, zN− − zN → 0 in L2(0, T ;H). Since zN ⇀ z in L2(0, T ;V ), zN → z
in L2(0, T ;H) and we obtain zN− → z in L2(0, T ;H) and weakly in L2(0, T ;V ).

Now consider∫ T

0

∥∥zN− (t)− ẑN(t)
∥∥2

H
=

∫ T

0

∥∥∥∥∥∑
n

χ[tn−1,tn)(t)(t− tn−1)
zNn − zNn−1

h

∥∥∥∥∥
2

H

=
∑
n

∫ tn

tn−1

∥∥∥∥χ[tn−1,tn)(t)(t− tn−1)
zNn − zNn−1

h

∥∥∥∥2

H

≤ 1

h2

∑
n

∫ tn

tn−1

(t− tn−1)2
∥∥zNn − zNn−1

∥∥2

H

=
h

3

∑
n

∥∥zNn − zNn−1

∥∥2

H
(see the proof of Corollary 2.5)

≤ Ch2

with the final line by (10). This shows that zN− − ẑN → 0 in L2(0, T ;H), allowing us to identify ẑ = z
as desired.

The convergence results above obviously imply that ẑN → z in C0([0, T ];H) (due to Aubin–Lions),
so that z0 = ẑN(0)→ z(0), i.e., z has the right initial data. Let us now see that z is feasible.

Lemma 2.7 (Feasibility of the limit). Let the following conditions hold:

{vn} ⊂ V+ =⇒
∑N

n=1 Φ(vn)(t)χTn−1(t) ≤ Φ
(∑N

n=1 vnχTn−1(·)
)

(t), (12)

vn ⇀ v in L2(0, T ;V ) and weakly-* in L∞(0, T ;H) with vn(t) ≤ Φ(vn)(t)

=⇒ v(t) ≤ Φ(v)(t). (13)

Then z(t) ≤ Φ(z)(t) for a.e. t.

Proof. Since by (6), for t ∈ TNn−1, zNn ≤ Φ(zNn )(tNn−1) ≤ Φ(zNn )(t), we have

zN(t) ≤
N∑
n=1

Φ(zNn )(t)χ[tNn−1,t
N
n )(t).

Using the assumption (12) applied to the right-hand side above, we have

zN(t) ≤ Φ

(
N∑
n=1

zNn χ[tNn−1,t
N
n )(·)

)
(t) = Φ(zN)(t).

Passing to the limit here using (13) gives the result.

Regarding the assumptions of the previous lemma, (13) is a mild continuity requirement on Φ whereas
for (12), consider the superposition case Φ(v)(t) := Φ̂(t, v(t)) for v ∈ L2(0, T ;V ). Then if
{vn}n∈N ⊂ V , we have ∑

n

Φ(vn)(t)χTNn−1
(t) =

∑
n

Φ̂(t, vn)χTNn−1
(t),
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and now supposing t ∈ TNj−1 for some j, this becomes

∑
n

Φ(vn)(t)χTNn−1
(t) = Φ̂(t, vj) = Φ̂

(
t,
∑
n

vnχTNn−1
(t)

)
= Φ

(∑
n

vnχTNn−1

)
(t)

and since j is arbitrary, this holds for all t. Hence (12) holds with equality.

In order to pass to the limit in the inequality satisfied by the interpolant zN , we have to be able to
approximate test functions in the limiting constraint set. This is possible as the next lemma shows.

Lemma 2.8 (Recovery sequence). Assume the condition

∀ε > 0, {wN} : wN ⇀ w in L2(0, T ;V ) and weakly-∗ in L∞(0, T ;H),∃N0 ∈ N :

N ≥ N0 =⇒
N∑
n=1

∫
TNn−1

∥∥Φ(wN(t))(tNn−1)− Φ(w)(t)
∥∥2

V
≤ ε. (14)

Then for every v ∈ L2(0, T ;V ) with v(t) ≤ Φ(z)(t), there exists a vN ∈ L2(0, T ;V ) such that

vN |TNn−1
≤ Φ(zNn )(tNn−1)

vN → v in L2(0, T ;V ).

Proof. Let v ∈ L2(0, T ;V ) with v(t) ≤ Φ(z)(t) and define

vNn (t) := v(t) + Φ(zNn )(tNn−1)− Φ(z)(t)

which satisfies vNn (t) ≤ Φ(zNn )(tNn−1) and set

vN(t) :=
N∑
n=1

χTn−1(t)(v(t) + Φ(zNn )(tNn−1)− Φ(z)(t)).

Take ε > 0. We have∫ T

0

∥∥vN(t)− v(t)
∥∥2

V
=

N∑
n=1

∫
TNn−1

∥∥Φ(zNn )(tNn−1)− Φ(z)(t)
∥∥2

V

=
N∑
n=1

∫
TNn−1

∥∥Φ(zN(t))(tNn−1)− Φ(z)(t)
∥∥2

V

≤ ε

by assumption (14) as long as N ≥ N0. This shows that vN → v.

Let us consider two cases under which the assumption (14) of the previous lemma holds.

1. SUPERPOSITION CASE. In case where Φ(v)(t) := Φ̂(v(t)), (14) translates to a complete continuity
assumption. Indeed, the sum term in (14) is

N∑
n=1

∫
TNn−1

∥∥Φ(wN(t))(tNn−1)− Φ(w)(t)
∥∥2

V
=

N∑
n=1

∫
TNn−1

∥∥∥Φ̂(wN(t))− Φ̂(w(t))
∥∥∥2

V

=

∫ T

0

∥∥∥Φ̂(wN(t))− Φ̂(w(t))
∥∥∥2

V
,
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so that (14) simply asks for Φ(wN)→ Φ(w) in L2(0, T ;V ) whenever wN ⇀ w in L2(0, T ;V ) and
weakly-* in L∞(0, T ;H).

2. VI CASE. When Φ(v)(t) ≡ ψ(t) for some obstacle ψ and if ψ ∈ C0([0, T ];V ) then for every
ε > 0, there exists δ > 0 such that |t− s| ≤ δ implies ‖ψ(t)− ψ(s)‖V ≤

√
ε/T . When t ∈ TNn−1,

we have |tNn−1− t| ≤ |tNn−1− tNn | ≤ hN → 0 as N →∞. So for sufficiently large N , say N ≥ N0,
we have |tNn−1 − t| ≤ δ and thus

ε ≥
∑
n

∫
TNn−1

∥∥ψ(tNn−1)− ψ(t)
∥∥2

V
=
∑
n

∫
TNn−1

∥∥Φ(wN(t))(tNn−1)− Φ(w)(t)
∥∥2

V

and so (14) also holds.

Theorem 2.9. Let Assumption 2.1, (D1), (D2), (6), (12), (13) and (14) hold. Then there exists a non-
negative solution z ∈ Ws(0, T ) to (1) which is the limit of the interpolants {zN}, {ẑN}. Furthermore,
the map t 7→ z(t) is increasing.

Proof. Let v ∈ L2(0, T ;V ) satisfy v(t) ≤ Φ(z)(t) and let us take vN as defined in the proof of
Lemma 2.8. Then by (4),∫ T

0

〈∂tẑN(t) + AzN(t)− fN(t), zN(t)− vN(t)〉

=
N∑
n=1

∫ tNn

tNn−1

〈∂tẑN(t) + AzN(t)− fN(t), zN(t)− vN(t)〉

=
N∑
n=1

∫ tNn

tNn−1

〈
zNn − zNn−1

h
+ AzNn − fNn , zNn − vNn (t)

〉
≤ 0.

Writing the duality product involving the time derivative as an inner product, we have, using the con-
vergences in (11) and the weak lower semicontinuity of the bilinear form generated by A,

0 ≥
∫ T

0

(∂tẑ
N(t), zN(t)− vN(t)) + 〈AzN(t)− fN(t), zN(t)− vN(t)〉

→
∫ T

0

(z′(t), z(t)− v(t))H + 〈Az(t)− f(t), z(t)− v(t)〉

so that z ∈ P(f) ∩Ws(0, T ). Since {zNn } are non-negative, it follows that z is too.

By (11), it follows that zNj(t) → z(t) in H for almost every t ∈ [0, T ]. Let now s ≤ r and suppose

that s ∈ TNjm−1 and r ∈ TNjn−1 with m ≤ n. Then we have zNj(s) = z
Nj
m ≤ z

Nj
n = zNj(t) since the

sequence {zNji }i∈N is increasing. Passing to the limit, we find for almost every r and s with s ≤ r
that z(s) ≤ z(r), i.e., t 7→ z(t) is increasing.

3 Parabolic VI iterations of parabolic QVIs

In this section, we will show the existence of sequences of solutions to VIs that converge to solutions
of QVIs. We begin with collecting some facts regarding parabolic VIs.

WIAS Preprint No. 2592 Berlin 2019



A. Alphonse, M. Hintermüller, C. N. Rautenberg 12

Consider the parabolic VI

z(t) ≤ ψ(t) :

∫ T

0

〈z′(t) + Az(t)− f(t), z(t)− v(t)〉 ≤ 0 ∀v ∈ L2(0, T ;V ) s.t. v(t) ≤ ψ(t),

z(0) = z0.
(15)

We write the solution as z := σz0(f, ψ) when it exists. Given f ∈ L2(0, T ;H) and ψ ∈ V indepen-
dent of time, the solution z ∈ Ws(0, T ) exists uniquely, see e.g. [3, 11, 9].

The problem (15) can be transformed to a parabolic VI with zero initial data with right-hand side
f − Az0 and obstacle ψ − z0 with the substitution u(t) = z(t)− z0:

σ0(f − Az0, ψ − z0) = σz0(f, ψ)− z0.

We often write simply σ rather than σz0 when we do not need to emphasise the initial data. The next
lemma shows that σ is increasing in its arguments.

Lemma 3.1 (I. Comparison principle for parabolic VIs). Suppose for i = 1, 2 that zi ∈ W (0, T ) is a
solution of (15) with data fi ∈ L2(0, T ;V ∗) and obstacle ψi such that f1 ≤ f2 and ψ1 ≤ ψ2. Then
z1 ≤ z2.

Proof. The zi satisfy the inequalities

z1(t) ≤ ψ1(t) :

∫ T

0

〈z′1(t) + Az1(t)− f1(t), z1(t)− v1(t)〉 ≤ 0,

z2(t) ≤ ψ2(t) :

∫ T

0

〈z′2(t) + Az2(t)− f2(t), z2(t)− v2(t)〉 ≤ 0,

for all v1, v2 ∈ L2(0, T ;V ) such that v1(t) ≤ ψ1(t) and v2(t) ≤ ψ2(t). Let us take here v1 =
z1− (z1− z2)+, which is clearly a feasible test function, and take v2 = z2 + (z1− z2)+ which is also
feasible since

v2 ≤

{
z2 ≤ ψ2 : if z1 ≤ z2,

z1 ≤ ψ1 ≤ ψ2 : if z1 ≥ z2.

This gives us ∫ T

0

〈z′1(t) + Az1(t)− f1(t), (z1(t)− z2(t))+〉 ≤ 0,∫ T

0

〈z′2(t) + Az2(t)− f2(t),−(z1(t)− z2(t))+〉 ≤ 0.

Adding yields∫ T

0

〈(z1−z2)′(t)+Az1(t)−Az2(t), (z1(t)−z2(t))+〉 ≤
∫
〈f1(t)−f2(t), (z1(t)−z2(t))+〉 ≤ 0

whence using T-monotonicity and coercivity, we obtain z1 ≤ z2.

We start by giving some existence results for (15). The first one is a result of applying Theorem 2.9
of §2 using the obstacle mapping Φ(v)(t) ≡ ψ(t) (it can be seen that all of the assumptions of the
theorem are satisfied, refer also to the remarks below the proof of Lemma 2.8).
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Proposition 3.2 (Existence via time discretisation). Let ψ ∈ C0([0, T ];V ) be non-negative with
t 7→ ψ(t) increasing and let (D1) and

z0 ≤ ψ(0) and 〈Az0 − f(t), v〉 ≤ 0 for all v ∈ V+ and a.e. t

hold. Then (15) has a unique non-negative solution z = σ(f, ψ) ∈ Ws(0, T ) which is increasing in
time.

The next proposition applies a result due to Brezis–Stampacchia (see [29, §2.9.6.1, p. 286]) to obtain
existence of a very weak solution and then a further argument is required to obtain additional regularity.

Proposition 3.3 (Existence II). Let ψ ∈ Wr(0, T ) be such that t 7→ ψ(t) is increasing with z0 ≤
ψ(0). Then (15) has a unique solution z = σ(f, ψ) ∈ Wr(0, T ).

Proof. First observe that since z0 ≤ ψ(0) and t 7→ ψ(t) is increasing, Theorem 7.1 of [40, §III]
gives the existence of a weak solution z ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) (see the introduction for the
definition):

z(t) ≤ ψ(t) :

∫ T

0

〈v′(t)+Az(t)−f(t), z(t)−v(t)〉 ≤ 0 ∀v ∈ W (0, T ) : v ≤ ψ(t), v(0) = z0.

Indeed, if for simplicity we take z0 ≡ 0, the domain of L isD(L) := {v ∈ H1(0, T ;V ∗) : v(0) = 0}
and the condition (7.5) of [40, §III.7] follows since ψ is increasing in time (see also [40, p. 150]) and
condition (7.7) of [40, §III.7] holds for the function v0 := ψ. Hence the aforementioned theorem is
applicable.

Now, given v ∈ L2(0, T ;V ) with v(t) ≤ ψ(t), consider the PDE

εv′ε + εAvε + vε = v + εLψ vε(0) = z0,

which, by standard parabolic theory, has a strong solution vε ∈ Ws(0, T ) thanks to the regularity on
ψ. A rearrangement and adding and subtracting the same term leads to

εv′ε + εAvε − εLψ + vε − ψ = v − ψ,
(vε − ψ)(0) = z0 − ψ(0).

Testing the equation above with (vε − ψ)+ and using the non-negativity of the right-hand side,∫ T

0

〈L(vε − ψ), (vε − ψ)+〉 ≥ 1

2

∥∥(vε(T )− ψ(T ))+
∥∥2

H
− 1

2

∥∥(z0 − ψ(0))+
∥∥2

H

+ Ca

∫ T

0

∥∥(vε(t)− ψ(t))+
∥∥2

V

we find ∫ T

0

∥∥(vε(t)− ψ(t))+
∥∥2

H
≤
∫ T

0

(v(t)− ψ(t), (vε(t)− ψ(t))+)H ≤ 0

which implies that vε(t) ≤ ψ(t). Then [40, §III, Proposition 7.2] implies that the solution is actually
strong, i.e., (15) holds and it belongs to W (0, T ) with the additional regularity Lz ∈ L2(0, T ;H),
i.e., z ∈ Wr(0, T ).

Some related regularity results given sufficient smoothness for f can be found in e.g. [10, Theorem
2.1].
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3.1 Parabolic VIs with obstacle mapping

Take Φ as in the introduction and fix ψ ∈ L2(0, T ;V ). Define the map Sz0(f, ψ) := σz0(f,Φ(ψ)),
that is, z = Sz0(f, ψ) solves

z(t) ≤ Φ(ψ)(t) :

∫ T

0

〈z′(t) + Az(t)− f(t), z(t)− v(t)〉 ≤ 0

∀v ∈ L2(0, T ;V ) : v(t) ≤ Φ(ψ)(t),

z(0) = z0.

(16)

Let us translate the content of Propositions 3.2 and 3.3 to this setting.

Proposition 3.4 (Existence for (16)). Let

t 7→ Φ(ψ)(t) be increasing, (17)

z0 ≤ Φ(ψ)(0), (18)

and either 
(D1),

〈Az0 − f(t), v〉 ≤ 0 for all v ∈ V+ and a.e. t,

Φ(ψ) ∈ C0([0, T ];V ) and Φ(ψ) ≥ 0,

(19)

(20)

or

Φ(ψ) ∈ Wr(0, T ). (21)

Then (16) has a solution z = S(f, ψ) ∈ W (0, T ) with the regularity that, in the first case, z ∈
Ws(0, T ) is non-negative and t 7→ z(t) is increasing, whereas in the second case, z ∈ Wr(0, T ).

Proof. The first set of assumptions imply that the hypotheses of Proposition 3.2 hold for the obstacle
Φ(ψ), whilst under the second set of assumptions, we apply Proposition 3.3.

The next lemma states that the solution mapping S(f, ψ) = z is increasing with respect to the
arguments. This follows simply by using Lemma 3.1 and the fact that Φ is increasing.

Lemma 3.5 (II. Comparison principle for parabolic VIs). Suppose for i = 1, 2 that zi ∈ W (0, T ) is a
solution of (16) with data fi ∈ L2(0, T ;V ∗) and obstacle ψi such that f1 ≤ f2 and ψ1 ≤ ψ2. Then
z1 ≤ z2.

3.2 Iteration scheme to approximate a solution of the parabolic QVI

We say that a function zsub ∈ L2(0, T ;V ) is a subsolution for (1) if zsub ≤ S(f, zsub), and a
supersolution is defined with the opposite inequality.

Remark 3.6. Let Φ(0) ≥ 0. If f ≥ 0, the function 0 is a subsolution, and the function z̄ defined by

z̄′ + Az̄ − f = 0

z̄(0) = z0

is a supersolution to (1). Both claims follow by the comparison principle: the first claim is clear and
the second follows upon realising that z̄ = S(f,∞) ≥ S(f, z̄). We need the sign condition on f for
zsub = 0 ≤ zsup = z̄.
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Lemma 3.7. If d ≥ 0, any subsolution of P(f) is a subsolution for P(f + sd) where s ≥ 0.

Proof. This is obvious: if w is a subsolution of P(f), then w ≤ S(f, w) ≤ S(f + sd, w).

The previous lemma tells us in particular that any element of P(f) is a subsolution for P(f + sd).
The next theorem, which shows that a solution of the QVI can be approximated by solutions of VIs
defined iteratively with respect to the obstacle, is based on an iteration idea of Bensoussan and Lions
in [11, Chapter 5.1] (there, the authors consider Φ to be of impulse control type). The theorem and its
sister result Theorem 3.10 show in particular that the approximating sequences converge to extremal
(the smallest or largest) solutions of the QVI in certain intervals.

Theorem 3.8 (Increasing approximation of the minimal solution of QVI by solutions of VIs). Let zsub ∈
L2(0, T ;V ) be a subsolution for P(f) such that Φ(zsub) ≥ 0 and

z0 ≤ Φ(zsub)(0). (22)

Let either

t 7→ Φ(zsub)(t) is increasing,

Φ(zsub) ∈ C0([0, T ];V ),

(D1),

(19),

Φ(0) ≥ 0,

∀ψ ∈ L2(0, T ;V ), t 7→ ψ(t) is increasing =⇒ t 7→ Φ(ψ)(t) is increasing,

Φ: Ws(0, T )→ C0([0, T ];V ),

wn ⇀ w in L2(0, T ;V ) and weakly-* in L∞(0, T ;H) =⇒
Φ(wn)→ Φ(w) in L2(0, T ;V ),

(23)

(24)

(O1a)

(25)

(26)

(O2a)

or

∀ψ ∈ L2(0, T ;V ) : ψ ≥ zsub, t 7→ Φ(ψ)(t) is increasing,

Φ(zsub) ∈ Wr(0, T ),

Φ(ψ) ≥ 0 ∀ψ ∈ L2(0, T ;V ),

Φ: Wr(0, T )→ Wr(0, T ),

w ∈ Wr(0, T ) : w(0) = z0 =⇒ z0 ≤ Φ(w)(0), or Φ(v) ≤ Φ(w) =⇒
Φ(v)(0) ≤ Φ(w)(0),

wn ∈ Wr(0, T ), wn ⇀ w in L2(0, T ;V ) and weakly-* in L∞(0, T ;H) =⇒
Φ(wn)→ Φ(w) in W (0, T ),

(27)

(28)

(O1b)

(O2b)

(29)

(O3b)

hold. Then the sequence {zn}n∈N denoted by

z0 := zsub,

zn := Sz0(f, z
n−1) for n = 1, 2, 3, ...,

is well defined, monotonically increasing and satisfies

zn ↗ z where z ∈ Pz0(f) is the minimal very weak solution in [zsub,∞),

zn ⇀ z in L2(0, T ;V ) and weakly-* in L∞(0, T ;H).

Furthermore,
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� in the first case, zn ∈ Ws(0, T ) with zn ≥ 0 , ∂tzn ⇀ ∂tz in L2(0, T ;H) and z ∈ Ws(0, T )
is a strong solution (i.e. it satisfies (1) with additional regularity on the time derivative), and both
zn and z are increasing in time

� or, in the second case, zn ∈ Wr(0, T ).

Before we proceed, let us observe that

1 since Φ is increasing, (O1a) is equivalent to ψ ≥ 0 =⇒ Φ(ψ) ≥ 0

2 (O3b) implicitly implies that Φ(w) ∈ W (0, T ).

Proof. The proof is split into five steps.

1. MONOTONICITY OF {zn}. The zn (if they exist) satisfy for all v ∈ L2(0, T ;V ) with v(t) ≤
Φ(zn−1)(t) the inequality

zn(t) ≤ Φ(zn−1)(t) :

∫ T

0

〈znt (t) + Azn(t)− f(t), zn(t)− v(t)〉 ≤ 0

zn(0) = z0.

(30)

Since z0 is a subsolution, z1 = S(f, z0) ≥ z0. Suppose that zj ≥ zj−1 for some j; then zj+1 =
S(f, zj) ≥ S(f, zj−1) = zj (the inequality due to Lemma 3.5). This shows that zn is a monotonically
increasing sequence.

2. EXISTENCE OF {zn}. For the actual existence, we apply Proposition 3.4 as we see now.

First case. In case of (D1), (22), (19), (24), (23) and since Φ(zsub) ≥ 0, Proposition 3.4 tells us that
z1 = S(f, zsub) ∈ Ws(0, T ). We find z1 ≥ S(0, 0) = 0 by Lemma 3.5, and hence by (O1a),
Φ(z1) ≥ 0.

Let us also see why z0 ≤ Φ(z1)(0). The monotonicity above implies that Φ(zsub) ≤ Φ(z1). As
z1 ∈ Ws(0, T ), (26) implies that Φ(z1) ∈ C0([0, T ];V ), which along with (24) implies that we can
take the trace of the previous inequality at time 0, giving z0 ≤ Φ(zsub)(0) ≤ Φ(z1)(0) where the first
inequality is with the aid of (18). Making use of (26), the increasing property and (25) (which tells us
that t 7→ Φ(z1)(t) is increasing, since t 7→ z1(t) is), Proposition 3.4 is again applicable and we use
it to obtain z2.

By bootstrapping this argument we get that zn ∈ Ws(0, T ) is well defined. Furthermore we have
zn ≥ 0 by the sign condition on the data.

Second case. In case of (27) and (28), (18), (17) and (21) and (18) hold for the obstacle zsub and we
get z1 = S(f, zsub) ∈ Wr(0, T ). Applying (O2b) to this, Φ(z1) ∈ Wr(0, T ). Suppose that the first
part of (29) holds. Then since z1(0) = z0, we find that z0 ≤ Φ(z1)(0) and then again (D2) is satisfied
for the obstacle Φ(z1), giving existence of z2 = S(f, z1). Repeating this, we get zn ∈ Wr(0, T ). If
instead the second part of (29) holds, we get by monotonicity that z0 ≤ z1 and using the increasing
property of Φ, z0 ≤ Φ(z0)(0) ≤ Φ(z1)(0) (the first inequality by (22)) and again we can apply the
existence and proceed in this manner for general n.

3. UNIFORM BOUNDS ON {zn}. By (O1a) and the fact that zn ≥ 0, or by (O1b), we find that 0 is a
valid test function in (30) and testing with it yields

1

2

d

dt

∫ T

0

‖zn(t)‖2
H + Ca

∫ T

0

‖zn(t)‖2
V ≤ ε

∫ T

0

‖zn(t)‖2
H + Cε

∫ T

0

‖f(t)‖2
H

WIAS Preprint No. 2592 Berlin 2019



Existence, iteration procedures and directional differentiability for parabolic QVIs 17

which immediately leads to bounds in L∞(0, T ;H) and L2(0, T ;V ) giving the weak convergences
stated in the theorem to some z, for the full sequence (and not a subsequence) thanks to the mono-
tonicity property.

3.1. Uniform bounds on ∂tzn under first set of assumptions. In this case, we can obtain a bound on the
time derivative. Indeed, due to the work on the time discretisations in §2, from (11) and Lemma 2.6 we
know that for each j, the interpolant (zj)N of the time-discretised solutions is such that (zj)N ⇀ zj

in L2(0, T ;V ) and ∂t(ẑj)N ⇀ ∂tz
j in L2(0, T ;H). One should bear in mind that the {(zj)N}N are

interpolants constructed from solutions of elliptic VIs and not QVIs since the {zj}j∈N are solutions of
VIs. One observes the bound∥∥∂tzj∥∥L2(0,T ;H)

≤ lim inf
N→∞

∥∥∂t(ẑj)N∥∥L2(0,T ;H)
≤ C

where the constant C ultimately arises from (10). Evidently, it only depends on the initial data and the
source term. Hence, in this case,

∂tz
j ⇀ ∂tz in L2(0, T ;H). (31)

4. PASSAGE TO THE LIMIT. Either of the conditions (O2a) and (O3b) allow us to pass to the limit in
zn(t) ≤ Φ(zn−1)(t) to deduce the feasibility of z since order is preserved in norm convergence. Now
let v∗ ∈ L2(0, T ;V ) be a test function such that v∗ ≤ Φ(z). We use

vn(t) := v∗(t) + Φ(zn−1)(t)− Φ(z)(t)

as the test function in the VI (30).

4.1. Under first set of assumptions. In this case, using the strong convergence vn → v∗ assured by
(O2a), we can use (31) and pass to the limit after writing the duality pairing for the time derivative as
an inner product to get the inequality∫ T

0

(z′(t), z(t)− v∗(t))H + 〈Az(t)− f(t), z(t)− v∗(t)〉 ≤ 0.

4.2. Under second set of assumptions. In this case, we take the limiting test function v∗ ∈ W (0, T )
with v∗(0) = z0 and rewrite (30), using the monotonicity of the time derivative and assumption (O3b)
(which guarantees that Φ(z) ∈ W (0, T ), and hence vn ∈ W (0, T )) as

zn(t) ≤ Φ(zn−1)(t) :

∫ T

0

〈vnt (t) + Azn(t)− f(t), zn(t)− vn(t)〉 ≤ 0

zn(0) = z0.

By (O3b), we find that vn → v∗ inW (0, T ), and hence we can pass to the limit in the above to obtain
(2).

5. MINIMALITY OF THE SOLUTION. Suppose that z∗ ∈ P(f) is the minimal solution on the interval
[zsub,∞), which in particular implies z∗ ≤ z.We see by the comparison principle and since z0 = zsub

is a subsolution that
z∗ = S(f, z∗) ≥ S(f, z0) ≥ z0.

By this, we find z1 = S(f, z0) ≤ S(f, z∗) = z∗. Similarly, z2 = S(f, z1) ≤ S(f, z∗) = z∗, and
thus

zn ≤ z∗.

Passing to the limit shows that z ≤ z∗ so that z = z∗.
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Remark 3.9. Note that the compactness assumptions (O2a) and (O3b) are only required for identify-
ing the limit point z and showing that it is feasible.

Theorem 3.10 (Decreasing approximation of the maximal solution of QVI by solutions of VIs). Let
z0 := zsup be a supersolution of P(f) and assume that

w ∈ Wr(0, T ) : w(0) = z0 =⇒ z0 ≤ Φ(w)(0), or Φ(v) ≥ Φ(w) =⇒ Φ(v)(0) ≤ Φ(w)(0).

Under the assumptions of the previous theorem (except (29)) except with zsub replaced with zsup and
(27) replaced with

t 7→ Φ(ψ)(t) is increasing for all ψ ∈ L2(0, T ;V ) with ψ ≤ zsup,

the sequence {zn} is monotonically decreasing and converges to a solution z ∈ P(f) with the same
regularity and convergence results as stated in Theorem 3.8. Furthermore, z is the maximal solution
of (1) or (2) in the interval (−∞, zsup].

Proof. It follows that z ∈ P(f) ∩ (−∞, zsup] by the same argumentation as in the proof of the
previous theorem. Let us prove the claim of the maximality of the solution. Suppose that there exists
a maximal solution z∗ ∈ (−∞, zsup] so that z∗ ≥ z where z = limn z

n with z0 = zsup. We have
z0 = zsup ≥ S(f, zsup) ≥ S(f, z∗) = z∗, and thus z1 = S(f, z0) ≥ S(f, z∗) = z∗. Iterating
shows that

zn ≥ z∗,

whence passing to the limit, z ≥ z∗, and thus z = z∗ is the maximal solution.

3.3 Transformation of VIs with obstacle to zero obstacle VIs

It will become useful to relate solutions of the parabolic VI (16) with non-trivial obstacle to solutions
of parabolic VIs with zero (lower) obstacle. We achieve this as follows. Take w0 ≥ 0 and define
S̄w0 : L2(0, T ;H)→ Ws(0, T ) by S̄w0(g) := w the solution to the parabolic VI with lower obstacle

w(t) ≥ 0 :

∫ T

0

〈w′(t) + Aw(t)− g(t), w(t)− v(t)〉 ≤ 0 ∀v ∈ L2(0, T ;V ) : v(t) ≥ 0,

w(0) = w0.

Omitting when convenient the subscript, we obtain the following estimate for wi = S̄(gi):

1

2
‖w1(t)− w2(t)‖2

H + Ca ‖w1 − w2‖2
L2(0,t;V ) ≤

∫ t

0

(g1(r)− g2(r), w1(r)− w2(r))H

which then leads to ∥∥S̄(g1)− S̄(g2)
∥∥
L∞(0,T ;H)

≤ 2 ‖g1 − g2‖L1(0,T ;H) , (32)

and (due to Young’s inequality applied to the right-hand side)∥∥S̄(g1)− S̄(g2)
∥∥2

L∞(0,T ;H)
+ Ca

∥∥S̄(g1)− S̄(g2)
∥∥2

L2(0,T ;V )
≤ 1

Ca
‖g1 − g2‖2

L2(0,T ;V ∗) ,

hence also ∥∥S̄(g1)− S̄(g2)
∥∥
L∞(0,T ;H)

≤ 1√
Ca
‖g1 − g2‖L2(0,T ;V ∗) . (33)
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Let us note that (32) in particular implies∥∥S̄(g1)− S̄(g2)
∥∥
Lp(0,T ;H)

≤ 2T
1
p ‖g1 − g2‖L1(0,T ;H) . (34)

The relationship between solutions of VIs with non-trivial obstacles and VIs with zero obstacle is given
in the next result.

Proposition 3.11. Let (17), (18) hold and let g ∈ L2(0, T ;H), z0 ∈ V and ψ ∈ L2(0, T ;V ) be
such that Φ(ψ) ∈ Wr(0, T ).

Then
Sz0(g, ψ) = Φ(ψ)− S̄w0(LΦ(ψ)− g) (35)

holds in Wr(0, T ) where w0 = Φ(ψ)(0)− z0.

Furthermore, if (D1), (19), and (20) hold, then in fact Sz0(g, ψ) ∈ Ws(0, T ) and hence the spatial
regularity ASz0(g, ψ) ∈ L2(0, T ;H).

Proof. Under the hypotheses, Proposition 3.4 can be applied to deduce that z := Sz0(g, ψ) is well
defined in Wr(0, T ) and it solves the VI (16). Set w := Φ(ψ)− z (which belongs to Wr(0, T )) and
observe that∫ T

0

〈∂tΦ(ψ) + AΦ(ψ)− w′ − Aw − g,Φ(ψ)− w − v〉 ≤ 0,

w(0) = w0 := Φ(ψ)(0)− z0 ∈ H.

The upper bound on z0 implies that w0 ≥ 0. Now define ϕ(t) := Φ(ψ)(t) − v(t). Then the above
reads

w(t) ≥ 0 :

∫ T

0

〈w′(t) + Aw(t) + g(t)− ∂tΦ(ψ)− AΦ(ψ), w(t)− ϕ(t)〉 ≤ 0

∀ϕ ∈ L2(0, T ;V ) : ϕ(t) ≥ 0,

w(0) = w0.

This shows the desired identity S̄w0(LΦ(ψ) − g) = w = Φ(ψ) − z = Φ(ψ) − Sz0(g, ψ). Under
the additional assumptions, Proposition 3.4 yields z ∈ Ws(0, T ) and w = Φ(ψ)− z ∈ Wr(0, T ) +
Ws(0, T ).

4 Expansion formula for variations in the obstacle and source
term

The aim in this section is obtain differential expansion formulae for the solution mapping of parabolic
VIs with respect to perturbations on the source term and the obstacle. This will form the backbone of
our QVI differentiability result in the next section.

4.1 Definitions and cones from variational analysis

To state directional differentiability results for VIs, we need some concepts and notation which we shall
collect in this subsection. Let us define the lower obstacle sets

K0 := {v ∈ V : v ≥ 0} = V+ and K0 := {v ∈ W (0, T ) : v(t) ∈ K0 for a.e. t ∈ [0, T ]},
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and for y ∈ K0, the radial cone at y

T rad
K0

(y) := {v ∈ W (0, T ) : ∃ρ∗ > 0 s.t. y + ρv ∈ K0 for all ρ < ρ∗}
= {v ∈ W (0, T ) : ∃ρ∗ > 0 s.t. y(t) + ρv(t) ∈ K0 for a.e. t ∈ [0, T ] for all ρ < ρ∗}.

(36)

We shall consider K0 as a subset of the Banach space L2(0, T ;V ). The tangent cone is defined as
the closure of the radial cone:

T tan
K0,L2(0,T ;V )(y) := clL2(0,T ;V )T

rad
K0

(y).

Obviously, T rad
K0

(y) ⊂ T tan
K0,L2(0,T ;V )(y). We now show that the tangent cone is contained in a set

which has a convenient description (see also the discussion after Remark 5.6 in [15]).

Lemma 4.1. The tangent cone of K0 can be characterised as

T tan
K0,L2(0,T ;V )(y) ⊂ {v ∈ L2(0, T ;V ) : v(t) ≥ 0 q.e. on {ȳ(t) = 0} for a.e. t ∈ [0, T ]} (37)

where ȳ(t) is a quasi-continuous representative of y(t).

Proof. If w ∈ T rad
K0

(y), then from (36), w ∈ L2(0, T ;V ) and there exists ρ∗ ≥ 0 such that y(t) +
ρw(t) ∈ K0 for almost every t and for all ρ ∈ [0, ρ∗), meaning thatw(t) ∈ T rad

K0
(y(t)) ⊂ T tan

K0
(y(t))

for almost every t. This shows that

T rad
K0

(y) ⊂ {w ∈ L2(0, T ;V ) : w(t) ∈ T tan
K0

(y(t)) a.e. t ∈ [0, T ]}

and if we take the closure in L2(0, T ;V ) on both sides,

T tan
K0,L2(0,T ;V )(y) ⊂ clL2(0,T ;V )

(
{w ∈ L2(0, T ;V ) : w(t) ∈ T tan

K0
(y(t)) a.e. t ∈ [0, T ]}

)
. (38)

Suppose that {wn} ⊂ L2(0, T ;V ) is a sequence that belongs to the set on the right-hand side
above with wn → w in L2(0, T ;V ). Thus, for a subsequence, wnj(t) → w(t) in V and wnj(t) ∈
T tan
K0

(y(t)) for almost every t. Since the tangent cones are closed sets, the limit point w(t) ∈
T tan
K0

(y(t)). Hence w ∈ {w ∈ L2(0, T ;V ) : w(t) ∈ T tan
K0

(y(t)) a.e. t ∈ [0, T ]} and the closure
can be omitted on the right-hand side of (38).

From [32, Lemma 3.2], Mignot proves the following description of the tangent cone of K0:

T tan
K0

(y) = {v ∈ V : v ≥ 0 q.e. on {ȳ = 0}},

with ȳ a quasi-continuous representative of the function y. This provides the characterisation stated in
the lemma.

The set K0 is said to be polyhedric at (y, λ) ∈ K0 × T tan
K0,L2(0,T ;V )(y)◦ if

T tan
K0,L2(0,T ;V )(y) ∩ λ⊥ = clL2(0,T ;V )

(
T rad
K0

(y) ∩ λ⊥
)
,

where

T tan
K0,L2(0,T ;V )(y)◦ := {f ∈ L2(0, T ;V ∗) : 〈f, w〉 ≤ 0 for all w ∈ T tan

K0,L2(0,T ;V )(y)}

is the known as the polar cone. The set is polyhedric at y if it is polyhedric at (y, λ) for all λ, and
it is polyhedric if it is polyhedric at y for all y. The concept of polyhedricity is useful because it is
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a sufficient condition guaranteeing the directional differentiability of the metric projection associated
to that set (see [22, 32, 13] and also [42]) and this fact ultimately enables one to obtain directional
differentiability for solution mappings of variational inequalities.

Now, the set K0 is not polyhedric as a subset of the space W (0, T ) since W (0, T ) lacks certain
smoothness properties due to the low regularity of the time derivative. However, K̃0 := K0∩Ws(0, T )
is indeed polyhedric.

Lemma 4.2. The set K̃0 is polyhedric as a subset ofWs(0, T ) and for (y, λ) ∈ K̃0×T tan
K̃0,Ws(0,T )

(y)◦,

clWs(0,T )(T
rad
K̃0

(y) ∩ λ⊥) = T tan
K̃0,Ws(0,T )

(y) ∩ λ⊥

= {z ∈ Ws(0, T ) : z ≥ 0 Ws(0, T )-q.e. in {ȳ = 0}} ∩ λ⊥

where ȳ is a quasi-continuous representative of y and

{ȳ = 0} := {p ∈ [0, T ]× Ω̄ : ȳ(p) = 0}.

Proof. First note that if v ∈ Ws(0, T ), ∂t(v+) = χ{v≥0}∂tv by the chain rule and hence we have the
bound ∥∥v+

∥∥2

Ws(0,T )
≤ C ‖v‖2

L2(0,T ;V ) + ‖∂tv‖2
L2(0,T ;H) ,

which shows that (·)+ : Ws(0, T ) → Ws(0, T ) is a bounded map. It follows that Ws(0, T ) is a
vector lattice in the sense of Definition 4.6 of [42] when associated to the cone K̃0. The boundedness
of (·)+ : Ws(0, T )→ Ws(0, T ) and Lemma 4.8 and Theorem 4.18 of [42] imply that K̃0 is polyhedric
in Ws(0, T ) and hence

clWs(0,T )(T
rad
K̃0

(y) ∩ λ⊥) = clWs(0,T )(T
rad
K̃0

(y)) ∩ λ⊥

= T tan
K̃0,Ws(0,T )

(y) ∩ λ⊥.

The space Ws(0, T ) is also a Dirichlet space in the sense of [32, Definition 3.1] on the set [0, T ]× Ω̄
and so, due to the characterisation of the tangent cone in [32, Lemma 3.2], we find

clWs(0,T )(T
rad
K̃0

(y) ∩ λ⊥) = {z ∈ Ws(0, T ) : z ≥ 0 Ws(0, T )-q.e. in {ȳ = 0}} ∩ λ⊥.

4.2 Directional differentiability for VIs

We now specialise to the case where the pivot space H is a Lebesgue space, a restriction which is
needed for the results of [15].

Assumption 4.3. SetH := L2(Ω, µ) where (Ω,Σ, µ) is a complete measure space and let V ⊂ H
be a separable Hilbert space.

Theorem 4.1 of [15] states that for w0 ∈ V+, the map S̄w0 : L2(0, T ;H)→ Lp(0, T ;H) (defined in
§3.3) is directionally differentiable for all p ∈ [1,∞], i.e.,

S̄w0(g + sd) = S̄w0(g) + sS̄ ′w0
(g)(d) + o(s, d; g) (39)
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where s−1o(s)→ 0 in Lp(0, T ;H) as s→ 0+, and δ := S̄ ′w0
(g)(d) ∈ L2(0, T ;V )∩L∞(0, T ;H)

satisfies, with w = S̄w0(g), the inequality

δ ∈ T tan
K0,L2(0,T ;V )(w) ∩ [w′ + Aw − g]⊥ :

∫ T

0

〈ϕ′ + Aδ − d, δ − ϕ〉 ≤ 1

2
‖ϕ(0)‖2

H

∀ϕ ∈ clW (0,T )(T
rad
K0

(w) ∩ [w′ + Aw − g]⊥).
(40)

Using this, we shall first work to deduce a differentiability formula for the map S under perturbations
of the right-hand side source with a fixed obstacle.

Remark 4.4. Our notation emphasises the fact that the higher-order term in (39) depends on the
base point g. This is important because the behaviour of the higher-order terms is in general unknown
with respect to the base points, such as for example whether there is any kind of uniformity of the
convergence of the higher-order terms on compact or bounded subsets of the base points. Such
uniform convergence does hold in cases where the map has more smoothness, namely if it possesses
the so-called uniform Hadamard differentiability property, but it is not clear whether this is the case for
us when such issues become relevant in §6.

This is in stark contrast to the dependence on the direction: we know that the terms converge uniformly
on compact subsets of the direction since S̄ is Hadamard (and hence compactly) differentiable.

If d(s)→ d, we write

S̄w0(g + sd(s)) = S̄w0(g) + sS̄ ′w0
(g)(d) + ô(s, d, s(d(s)− d); g). (41)

Let us see why ô above is a higher-order term. Let h : (0, 1) → L2(0, T ;H) and take d(s) =
d+ s−1h(s) and p ∈ [1,∞]. Subtracting (39) from (41), we obtain from the Lipschitz nature of S̄,

‖ô(s, d, h(s); g)− o(s, d; g)‖Lp(0,T ;H) =
∥∥S̄(g + s(d+ s−1h(s)))− S̄(g + sd)

∥∥
Lp(0,T ;H)

≤ 2T
1
p ‖h(s)‖L1(0,T ;H) (by (34))

≤ 2T
1
p

+ 1
2 ‖h(s)‖L2(0,T ;H)

using L2(0, T ;H) ↪→ L1(0, T ;H). The estimate

‖ô(s, d, h(s); g)‖Lp(0,T ;H) ≤
T

1
p

√
Ca
‖h(s)‖L2(0,T ;V ∗) + ‖o(s, d; g)‖Lp(0,T ;H) (42)

follows from applying instead the Lipschitz estimate (33) to the first line of the above calculation.

The next proposition guarantees (under certain assumptions) the directional differentiability of one or
both of the maps

Sz0(·, ψ) : L2(0, T ;H+)→ Lp(0, T ;H) and Sz0(·, ψ) : L2(0, T ;H)→ Lp(0, T ;H).

Proposition 4.5. Let f, d ∈ L2(0, T ;H), ψ ∈ L2(0, T ;V ) with Φ(ψ) ∈ Wr(0, T ) and let (17) and
(18) hold. Then

Sz0(f + sd, ψ) = Sz0(f, ψ) + s∂Sz0(f, ψ)(d) + h(s, d) in Wr(0, T ) (43)

where, with w0 := Φ(ψ)(0)− z0,

∂Sz0(f, ψ)(d) := S̄ ′w0
(LΦ(ψ)− f)(d) (44)
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belongs to L2(0, T ;V ) ∩ L∞(0, T ;H), and h is a higher-order term in Lp(0, T ;H) whose conver-
gence is uniform in d on compact subsets of L2(0, T ;H).

The directional derivative α := ∂Sz0(f, ψ)(d) satisfies

α ∈ T tan
K0,L2(0,T ;V )(w) ∩ [w′ + Aw − (LΦ(ψ)− f)]⊥ :

∫ T

0

〈ϕ′ + Aα− d, α− ϕ〉 ≤ 1

2
‖ϕ(0)‖2

H

∀ϕ ∈ clW (T rad
K0

(w) ∩ [w′ + Aw − (LΦ(ψ)− f)]⊥),

w = S̄w0(LΦ(ψ)− f) = Φ(ψ)− Sz0(f, ψ).
(45)

If additionally, for s ≥ 0,

f + sd ≥ 0 and is increasing, z0 ≥ 0,

(19),

(18),

(20),

〈Az0 − f(t)− sd(t), v〉 ≤ 0 for all v ∈ V+ and a.e. t,

(Ds)

(46)

then (43) holds in Ws(0, T ) ∩Wr(0, T ).

Proof. The assumptions imply that Proposition 3.4 applies and we obtain existence of the left-hand
side and the first term on the right-hand side of (43). We can via Proposition 3.11 utilise (35) with the
source terms f and f + sd to write Sz0(f, ψ) and Sz0(f + sd, ψ) in terms of S̄w0 , and then with the
aid of the expansion formula (39), we find

Sz0(f + sd, ψ)− Sz0(f, ψ) = S̄w0(LΦ(ψ)− f)− S̄w0(LΦ(ψ)− f − sd)

= −sS̄ ′w0
(LΦ(ψ)− f)(−d)− o(s,−d;LΦ(ψ)− f).

4.3 Differentiability with respect to the obstacle and the source term

We clearly need some differentiability for the obstacle mapping to proceed the study further and this
comes in the following assumption which we take to stand for the rest of the paper.

Assumption 4.6. Suppose that Φ: L2(0, T ;H)→ W (0, T ) is Hadamard differentiable.

Thus, Φ needs to be defined not just on L2(0, T ;V ) but on the larger space L2(0, T ;H). This
is necessary because it implies the uniform convergence with respect to compact subsets of the
direction in L2(0, T ;H) of the difference quotients to the directional derivative of Φ, which is a fact
that we will use later in §5.5 in the analysis of some higher-order terms that arise. We could have
asked for Φ to be defined on L2(0, T ;H) right from the outset in §1 but note that this enlargement
of the domain is a restriction (and would be an unnecessary restriction for earlier sections): maps
defined on L2(0, T ;H) are also defined on L2(0, T ;V ) but the converse is not true.

We write, for ρ(s)→ ρ,

Φ(ψ + sρ) = Φ(ψ) + sΦ′(ψ)(ρ) + l(s, ρ;ψ), (47)

Φ(ψ + sρ(s)) = Φ(ψ) + sΦ′(ψ)(ρ) + l̂(s, ρ, s(ρ(s)− ρ);ψ). (48)
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Remark 4.7. Assumption 4.6 implies, thanks to W (0, T ) ↪→ C0([0, T ];H) ↪→ Lp(0, T ;H), that

Φ: L2(0, T ;H)→ Lp(0, T ;H) is Hadamard differentiable for any p ∈ [1,∞]. (49)

In this section, we could have merely assumed (49) instead of Assumption 4.6 and most results would
carry through all the way up to the identification of the term r in Proposition 4.9 as a higher-order term
(and hence the differentiability)

Now if h : (0, 1) → L2(0, T ;H) satisfies s−1h(s) → 0 as s → 0+, then from (49) and the mean
value theorem [34, §2, Proposition 2.29],∥∥∥l̂(s, ρ, h(s);ψ)− l(s, h;ψ)

∥∥∥
Lp(0,T ;H)

=
∥∥Φ(ψ + s(ρ+ s−1h(s)))− Φ(ψ + sρ)

∥∥
Lp(0,T ;H)

≤ sup
λ∈[0,1]

‖Φ′(ψ + sρ+ λh(s))h(s)‖Lp(0,T ;H) ,

which leads to the estimate∥∥∥l̂(s, ρ, h(s);ψ)
∥∥∥
Lp(0,T ;H)

≤ sup
λ∈[0,1]

‖Φ′(ψ + sρ+ λh(s))h(s)‖Lp(0,T ;H) + ‖l(s, ρ;ψ)‖Lp(0,T ;H) .

(50)
Recall that Lv := v′ + Av.

Lemma 4.8. The map L(Φ(·)) : L2(0, T ;H) → L2(0, T ;V ∗) is Hadamard differentiable with
derivative L(Φ′(ψ)(ρ)) at the point ψ in direction ρ, and its higher-order term L(l(s, ρ;ψ)) satis-
fies ∥∥∥Ll̂(s, ρ, h(s);ψ)

∥∥∥
L2(0,T ;V ∗)

≤ sup
λ∈(0,1)

‖L(Φ′(ψ + sρ+ λh(s))(h(s)))‖L2(0,T ;V ∗)

+ ‖Ll(s, ρ;ψ)‖L2(0,T ;V ∗) .

Proof. Applying the operator L to (47) we get the following equality in L2(0, T ;V ∗):

LΦ(ψ + sρ) = LΦ(ψ) + sL(Φ′(ψ)(ρ)) + Ll(s, ρ;ψ).

Due to the estimate

‖Ll(s, ρ;ψ)‖L2(0,T ;V ∗) ≤ ‖∂tl(s, ρ;ψ)‖L2(0,T ;V ∗) + Cb ‖l(s, ρ;ψ)‖L2(0,T ;V ) ,

we see that LΦ is Hadamard differentiable in the stated spaces since Φ: L2(0, T ;H) → W (0, T )
is Hadamard differentiable. Subtracting the expansion

LΦ(ψ + sρ+ h(s)) = LΦ(ψ) + sLΦ′(ψ)(ρ) + Ll̂(s, ρ, h(s);ψ)

from the equality above, we obtain

Ll̂(s, ρ, h(s);ψ)− Ll(s, ρ;ψ) = L(Φ(ψ + sρ+ h(s))− Φ(ψ + sρ)).

Since the composite mapping LΦ: L2(0, T ;H) → L2(0, T ;V ∗) is Hadamard differentiable, the
mean value theorem applied to the right-hand side above implies∥∥∥Ll̂(s, ρ, h(s);ψ)− Ll(s, ρ;ψ)

∥∥∥
L2(0,T ;V ∗)

≤ sup
λ∈(0,1)

‖L(Φ′(ψ + sρ+ λh(s))(h(s)))‖L2(0,T ;V ∗) .
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Proposition 4.9. Assume (17) and let f, d ∈ L2(0, T ;H), ψ, ρ ∈ L2(0, T ;V ) and h : (0, 1) →
L2(0, T ;V ) with h(0) = 0 be such that, for s ≥ 0,

t 7→ Φ(ψ + sρ+ h(s))(t) is increasing,

Φ(ψ + sρ+ h(s)),Φ′(ψ)(ρ) ∈ Wr(0, T ), (51)

z0 ≤ Φ(ψ + sρ+ h(s))(0). (52)

Then

Sz0(f + sd, ψ + sρ+ h(s)) = Sz0(f, ψ) + sS ′z0(f, ψ)(d, ρ) + r(s, ρ, h(s);ψ)

holds in Wr(0, T ) where

S ′z0(f, ψ)(d, ρ) := Φ′(ψ)(ρ) + ∂Sz0(f, ψ)(d− LΦ′(ψ)(ρ)),

r(s, ρ, h;ψ) := l̂(s, ρ, h;ψ)− ô(s, LΦ′(ψ)(ρ)− d, Ll(s, ρ, h;ψ);LΦ(ψ)− f),

and α := S ′z0(f, ψ)(d, ρ) ∈ Φ′(ψ)(ρ) + L2(0, T ;V ) ∩ L∞(0, T ;H) satisfies the VI

α− Φ′(ψ)(ρ) ∈ T tan
K0,L2(Φ(ψ)− y) ∩ [y′ + Ay − f ]⊥ :∫ T

0

〈ϕ′ + Aα− d, α− ϕ〉 ≤ 1

2
‖ϕ(0)− Φ′(ψ)(ρ)(0)‖2

H

∀ϕ ∈ Lp(0, T ;H) : ϕ− Φ′(ψ)(ρ) ∈ clW (T rad
K0

(Φ(ψ)− y) ∩ [y′ + Ay − f ]⊥),

y := Sz0(f, ψ).

If additionally 
(Ds),

Φ(ψ + sρ+ h(s)) ∈ C0([0, T ];V ) and Φ(ψ + sρ+ h(s)) ≥ 0,

〈Az0 − f(t)− sd(t), v〉 ≤ 0 for all v ∈ V+ a.e. t,

(53)

(54)

then the formula above holds in Ws(0, T ).

If also 
sup
λ∈[0,1]

‖Φ′(ψ + sρ+ λh(s))h(s)‖Lp(0,T ;H)

s
→ 0 as s→ 0+,

sup
λ∈(0,1)

‖L(Φ′(ψ + sρ+ λh(s))(h(s)))‖L2(0,T ;V ∗)

s
→ 0 as s→ 0+,

(55)

then
r(s, ρ, h(s);ψ)

s
→ 0 in Lp(0, T ;H) as s→ 0,

that is, Sz0 : L2(0, T ;H)× L2(0, T ;V )→ Lp(0, T ;H) is directionally differentiable.

Proof. Due to assumptions (51) and (52), the left-hand side of the expansion formula to be proved
can be written using (35) in Proposition 3.11:

Sz0(f + sd, ψ+ sρ+ h(s)) = Φ(ψ+ sρ+ h(s))− S̄w0(L(Φ(ψ+ sρ+ h(s)))− f − sd), (56)
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where w0 = Φ(ψ+ sρ+ h(s))(0)− z0. The first term on the right-hand side here can be expanded
through the formula (48) for Φ:

Φ(ψ + sρ+ h(s)) = Φ(ψ) + sΦ′(ψ)(ρ) + l̂(s, ρ, h(s);ψ). (57)

This is an equality in Lp(0, T ;H) (and in fact in W (0, T ) by assumption). Note that (51) implies that
we can apply L to all terms in (57) and doing so yields

LΦ(ψ + sρ+ h(s)) = LΦ(ψ) + sLΦ′(ψ)(ρ) + Ll̂(s, ρ, h(s);ψ) ∈ L2(0, T ;H).

Using this and the expansion formula (41) for S̄, the second term on the right-hand side of (56)
becomes

S̄w0(L(Φ(ψ + sρ+ h(s)))− f − sd)

= S̄w0(LΦ(ψ)− f) + sS̄ ′w0
(LΦ(ψ)− f)(LΦ′(ψ)(ρ)− d)

+ ô(s, LΦ′(ψ)(ρ)− d, Ll̂(s, ρ, h(s);ψ);LΦ(ψ)− f), (58)

where the second equality holds since every term inside S̄w0 on the left-hand side is in L2(0, T ;H)
and so (39) applies. Now, plugging (57) and (58) into (56) we find

Sz0(f + sd, ψ + sρ+ h(s))

= Φ(ψ) + sΦ′(ψ)(ρ) + l̂(s, ρ, h(s);ψ)− S̄w0(LΦ(ψ)− f)

− sS̄ ′w0
(LΦ(ψ)− f)(LΦ′(ψ)(ρ)− d)

− ô(s, LΦ′(ψ)(ρ)− d, Ll̂(s, ρ, h(s);ψ);LΦ(ψ)− f)

= Sz0(f, ψ) + s(Φ′(ψ)(ρ) + ∂Sz0(f, ψ)(d− LΦ′(ψ)(ρ))) + l̂(s, ρ, h(s);ψ)

− ô(s, LΦ′(ψ)(ρ)− d, Ll̂(s, ρ, h(s);ψ);LΦ(ψ)− f),

where for the final equality, we again used the formula (35) which is applicable because (52) implies
that z0 ≤ Φ(ψ)(0), and we used the relation (44) between the directional derivatives of S̄ and S:

S̄ ′w0
(LΦ(ψ)− f)(LΦ′(ψ)(ρ)− d) = −∂Sz0(f, v)(d− LΦ′(ψ)(ρ)).

We then set α := Φ′(ψ)(ρ) + ∂S(f, ψ)(d − LΦ′(ψ)(ρ)). From (40), (43), (45), the function δ :=
∂S(f, ψ)(d− LΦ′(ψ)(ρ)) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) satisfies

δ ∈ T tan
K0,L2(w) ∩ [w′ + Aw − (LΦ(ψ)− f)]⊥ :∫ T

0

〈ϕ′ + Aδ − (d− LΦ′(ψ)(ρ)), δ − ϕ〉 ≤ 1

2
‖ϕ(0)‖2

H

∀ϕ ∈ clW (T rad
K0

(w) ∩ [w′ + Aw − (LΦ(ψ)− f)]⊥),

where w = S̄(LΦ(ψ) − f) = Φ(ψ) − S(f, ψ). Recalling the definition of α and making the
substitution ϕ := Φ′(ψ)(ρ) + z in the above variational formulation for δ yields the formulation for α
stated in the proposition. If additionally (Ds), (54), (53), then Proposition 3.11 gives the stated regularity.

Dropping now the dependence on the base points for clarity, we estimate the remainder term r (which
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is defined as in the statement of this proposition) as follows, making use of (42) and Lemma 4.8,

‖r(s, ρ, h(s))‖Lp(0,T ;H)

≤
∥∥∥l̂(s, ρ, h(s))

∥∥∥
Lp(0,T ;H)

+
∥∥∥ô(s, LΦ′(ψ)(ρ)− d, Ll̂(s, ρ, h(s)))

∥∥∥
Lp(0,T ;H)

≤ sup
λ∈[0,1]

‖Φ′(ψ + sρ+ λh(s))h(s)‖Lp(0,T ;H) + ‖l(s, ρ)‖Lp(0,T ;H)

+
T

1
p

√
Ca

∥∥∥Ll̂(s, ρ, h(s))
∥∥∥
L2(0,T ;V ∗)

+ ‖o(s, LΦ′(ψ)(ρ)− d)‖Lp(0,T ;H)

≤ sup
λ∈[0,1]

‖Φ′(ψ + sρ+ λh(s))h(s)‖Lp(0,T ;H) + ‖l(s, ρ)‖Lp(0,T ;H)

+
T

1
p

√
Ca

(
sup
λ∈(0,1)

‖L(Φ′(ψ + sρ+ λh(s))(h(s)))‖L2(0,T ;V ∗) + ‖Ll(s, ρ)‖L2(0,T ;V ∗)

)
+ ‖o(s, LΦ′(ψ)(ρ)− d)‖Lp(0,T ;H) .

Dividing by s and taking the limit s→ 0+, we see that the remainder term vanishes in the limit due to
assumption (55).

Furthermore the convergence to zero is uniform in d on compact subsets since d appears only in the
final term which we know has the same property as S(·, ψ) is Hadamard differentiable.

Remarks 4.10. The assumption h(0) = 0 in the proposition implies that all assumptions that hold for
the perturbed data also hold for the non-perturbed data (i.e. at s = 0). Without this assumption, we
would have to assume in addition Φ(ψ) ∈ Wr(0, T ) and (20) and (D1) along with (53).

5 Directional differentiability

Fix f, d ∈ L2(0, T ;H). We begin by choosing an element of P(f) with sufficient regularity as
described in the following assumption.

Assumption 5.1. Take u0 ∈ V+ and let u ∈ Pu0(f) ∩ W (0, T ) be such that t 7→ Φ(u)(t) is
increasing.

Picking u ∈ Pu0(f) satisfying Assumption 5.1, define the sequence

uns := Su0(f + sd, un−1
s ) for n = 1, 2, 3, ...,

u0
s := u.

Our aim will be to apply Theorem 3.8 or Theorem 3.10 to this sequence in order to show that, under
additional assumptions, it is well defined and has the right convergence properties. Furthermore, we
also want to obtain expansion formulae for each uns .

5.1 Expansion formula for the VI iterates

The following sets of assumptions are to ensure that Theorem 3.8 (or Theorem 3.10) can be applied
for our sequence {uns}n∈N.
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Assumption 5.2. Assume

d ≤ 0 or d ≥ 0, (59)

Φ′(u) : Wr(0, T ) + L2(0, T ;V ) ∩ L∞(0, T ;H)→ Wr(0, T ), (L2)

if ρ ∈ L2(0, T ;V ), and h : (0, 1)→ L2(0, T ;H) is a higher-order term, then as s→ 0+,{
supλ∈[0,1] s

−1 ‖Φ′(u+ sρ+ λh(s))h(s)‖Lp(0,T ;H) → 0,

supλ∈[0,1] s
−1 ‖L(Φ′(u+ sρ+ λh(s))(h(s)))‖L2(0,T ;V ∗) → 0,

(L3)

and either

(Ds), (O1a), (O2a),

〈Au0 − f(t)− sd(t), v〉 ≤ 0 for all v ∈ V+ and for a.e. t,

Φ: Ws(0, T )→ Wr(0, T ) ∩ C0([0, T ];V ),

t 7→ Φ(w)(t) is increasing for all w ∈ L2(0, T ;V+) with t 7→ w(t) increasing,

u ∈ Ws(0, T ) with Φ(u) ≥ 0,

if d ≤ 0, w(0) = u0 =⇒ u0 ≤ Φ(w)(0) for all w ∈ Ws(0, T ),

(60)

(O3a)

(O4a)

(L1a)

(61)

or 

(O1b), (O3b), (O2b),

t 7→ Φ(w)(t) is increasing for all w ∈ L2(0, T ;V ),

Φ(u) ∈ Wr(0, T ) and Φ(u)(0) ≥ u0,

w ∈ Wr(0, T ) : w(0) = z0 =⇒ z0 ≤ Φ(w)(0), or,

if d ≥ 0, Φ(v) ≤ Φ(w) =⇒ Φ(v)(0) ≤ Φ(w)(0),

while if d ≤ 0, Φ(v) ≥ Φ(w) =⇒ Φ(v)(0) ≤ Φ(w)(0).

(O4b)

(L1b)

(62)

Remark 5.3. Regarding (59), observe that if d ≥ 0, the initial element u0
s = u is a subsolution for

P(f + sd) since u = S(f, u) ≤ S(f + sd, u) (see also Lemma 3.7) whilst if d ≤ 0 then u0
s is

instead a supersolution.

Define α1 = δ1 := ∂S(f, u)(d) and for n ≥ 2, we make the recursive definitions:

δn := ∂S(f, u)(d− LΦ′(u)(αn−1)),

αn := Φ′(u)[αn−1] + δn, (63)

on(s) := r(s, αn−1, on−1(s)). (64)

To ease the notation on the higher-order terms, we did not write the base point u in the r term (which
originates from Proposition 4.9) above. We now give two results (with varying assumptions) in the next
proposition concerning convergence behaviour and an expansion formula for the sequence {uns}.

Proposition 5.4. Let Assumption 5.2 hold. Then {uns}n∈N ⊂ W (0, T ) is a well defined non-negative
monotone sequence (increasing if d ≥ 0, decreasing if d ≤ 0) such that

uns = u+ sαn + on(s), as s ↓ 0, (65)

where
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(1) αn satisfies the VI

αn − Φ′(u)(αn−1) ∈ T tan
K0,L2(Φ(u)− u) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈ϕ′ + Aαn − d, αn − ϕ〉 ≤ 1

2

∥∥ϕ(0)− Φ′(u)αn−1(0)
∥∥2

H

∀ϕ : ϕ− Φ′(u)(αn−1) ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥);
(66)

(2) LΦ(uns ) ∈ L2(0, T ;H), αn−Φ′(u)(αn−1) ∈ L2(0, T ;V )∩L∞(0, T ;H),LΦ′(u)(αn−1) ∈
L2(0, T ;H);

(3) s−1on(s)→ 0 in Lp(0, T ;H) as s→ 0+;

(4) under the first set of assumptions,

uns ⇀ us in Ws(0, T ) where uns ≥ 0 and us ∈ Pu0(f + sd) is a non-negative solution;

(5) under the second set of assumptions, uns ∈ Wr(0, T ) and

uns ⇀ us in L2(0, T ;V ) and weakly-star in L∞(0, T ;H) where us ∈ Pu0(f + sd) is a very

weak solution.

Proof. Let us first show monotonicity of the sequence assuming existence. First take d ≥ 0. Then
since u is a subsolution, u ≤ S(f, u) ≤ S(f + sd, u) = u1

s. By the comparison principle, we find
again that u1

s = S(f +sd, u) ≤ S(f +sd, u1
s) = u2

s and in this we obtain that {uns} is an increasing
sequence. Likewise if d ≤ 0, the sequence is decreasing.

1. FIRST CASE. Observe that since u ≤ Φ(u) and Φ(u) ∈ Ws(0, T ), by (O3a), we can take the
trace at t = 0 to get Φ(u)(0) ≥ u0. Since (Ds), (L1a) and (60) hold and as (20) is satisfied for the
obstacle u (thanks to (L1a) and (O3a)), Proposition 3.4 implies that u1

s = S(f + sd, u) ∈ Ws(0, T )
exists and is increasing in time and non-negative.

Regarding the upper bound for the initial data in terms of u1
s, we argue as follows. For d ≥ 0, we

may apply Φ to the inequality u1
s ≥ S(f, u) = u and use the regularity offered by (O3a) to obtain

u0 ≤ Φ(u)(0) ≤ Φ(u1
s)(0). If d ≤ 0, we use the condition (61) to obtain the same conclusion. Then

making use of (O1a), (O3a), and (O4a) we apply Proposition 3.4 to obtain the existence for each u2
s

and subsequently, using these arguments, existence for each uns .

We now show the expansion formula (65) by induction.

1.1 Base case. Using Proposition 4.5 to expand u1
s = S(f + sd, u), which is applicable due to

(L1a), (O3a), and the increasing-in-time property and the non-negativity of u0 from Assumption 5.1,
we obtain a δ1 := ∂S(f, u)(d) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) such that

u1
s = S(f + sd, u) = u+ sδ1 + o(s, d), (67)

where

δ1 ∈ T tan
K0,L2(0,T ;V )(w) ∩ [u′ + Au− f ]⊥ :

∫ T

0

〈ϕ′ + Aδ1 − d, δ1 − ϕ〉 ≤ 1

2
‖ϕ(0)‖2

H

∀ϕ ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥),
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and
o1 = r(·, 0, 0) = l̂(·, 0, 0)− ô(·,−d,−d) = l(·, 0)− o(·,−d)

is clearly a higher-order term. Finally, assumption (O3a) implies that LΦ(u1
s) ∈ L2(0, T ;H), whilst

(L2) gives L(Φ′(u)(δ1)) ∈ L2(0, T ;H).

1.2 Inductive step. Now assume the statement is true for n = k. By definition,

uk+1
s := S(f + sd, uks) = S(f + sd, u+ sαk + ok(s)). (68)

This object is again non-negative since uks ≥ 0 implies that Φ(uks) ≥ Φ(0) ≥ 0 by (O1a). We have
uks ∈ Ws(0, T ), and thus by (O3a), Φ(uks) ∈ Wr(0, T ), and since αk = Φ′(u)(αk−1) + δk ∈
Wr(0, T )+L2(0, T ;V )∩L∞(0, T ;H), (L2) implies that Φ′(u)(αk) ∈ Wr(0, T ). Hence (51) holds
for obstacle u, direction αk and higher-order term ok(s). By (O4a), the obstacle Φ(uks) is increasing
in time. Then, since Φ is increasing,

Φ(usk)(0) = Φ(u+ sαk + ok(s))(0) ≥ Φ(u)(0) ≥ u0.

Proposition 4.9 can now be applied and we find

uk+1
s = u+ s(Φ′(u)(αk) + ∂Su0(f, u)(d− LΦ′(u)(αk))) + r(s, αk, ok(s))

= u+ s(Φ′(u)(αk) + δk+1)) + r(s, αk, ok(s))

= u+ sαk+1 + ok+1(s)

with uk+1
s ∈ Ws(0, T ) ∩Wr(0, T ) and δk+1 = αk+1 − Φ′(u)(αk) ∈ L∞(0, T ;H) ∩ L2(0, T ;H)

(we already argued above that LΦ′(u)(αk) ∈ L2(0, T ;H)), meaning that αk+1 ∈ Wr(0, T ) +
L2(0, T ;V ) ∩ L∞(0, T ;H) as desired. Under Assumption (L3), by the same argument as in the
proof of Proposition 4.9, ok+1 is a higher-order term given that ok is.

Regarding the expression for the derivative, we know that αk+1 − Φ′(u)(αk) = ∂S(f, u)(d −
LΦ′(u)(αk)) solves the VI that appears in Proposition 4.5, i.e.,

αk+1 − Φ′(u)(αk) ∈ T tan
K0,L2(0,T ;V )(w) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈φ′ + A(αk+1 − Φ′(u)(αk))− d+ LΦ′(u)(αk), αk+1 − Φ′(u)(αk)− φ〉 ≤ 1

2
‖φ(0)‖2

H

∀φ ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥),

whence setting ϕ := φ+ Φ′(u)(αk) yields

αk+1 − Φ′(u)(αk) ∈ T tan
K0,L2(0,T ;V )(w) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈ϕ′ + Aαk+1 − d, αk+1 − ϕ〉 ≤ 1

2

∥∥ϕ(0)− Φ′(u)(αk)(0)
∥∥2

H

∀ϕ : ϕ− Φ′(u)(αk) ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥)

as desired.

2. SECOND CASE. We will not repeat some of the same techniques used in the above case and simply
focus on the differences under the different set of assumptions. Due to (L1b), u1

s exists by Proposition
3.4. Using (62) we find u0 ≤ Φ(u1

s)(0). The monotonicity of {uns}n∈N and (62) shows this bound for
all uns . Using (O2b), (O4b) and (62), we infer the existence for all usn by the same proposition.
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We prove the remaining claims again by induction. For the base case, we can expand u1
s = S(f +

sd, u) by using (L1b) and Proposition 4.5 directly and we obtain δ1 := ∂S(f, u)(d) ∈ L2(0, T ;V )∩
L∞(0, T ;H) such that (67) holds. Furthermore, u1

s ∈ Wr(0, T ). Now assume the statement is true
for n = k so that (68) holds. Since uks ∈ Wr(0, T ), LΦ(uks) ∈ L2(0, T ;H), and by (L2), since

αk = αk − Φ′(u)(αk−1) + Φ′(u)(αk−1) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) +Wr(0, T ),

we have LΦ′(u)(αk) ∈ L2(0, T ;H) and so assumption (51) of Proposition 4.9 holds, and as does
(52) as shown above, and the proposition can applied to give

uk+1
s = u+ sαk+1 + ok+1(s)

(just like in the proof of the first case) with uk+1
s ∈ Wr(0, T ) and αk+1−Φ′(u)(αk) ∈ L2(0, T ;V )∩

L∞(0, T ;H) and LΦ′(u)(αk) ∈ L2(0, T ;H) as desired. Note that we used the fact that (O4b)
implies the increasing property of all obstacles considered in the proof.

3. CONCLUSION. The claim of the VI satisfied by the αn follows from Proposition 4.9 whilst the con-
vergence behaviour stated in the result is a consequence of either Theorem 3.8 (if d ≥ 0) or Theorem
3.10 (if d ≤ 0), using the fact that (59) implies that u0

s is either a subsolution or supersolution.

Remark 5.5. Everything up to the convergence of the {uns} stated in the above result holds if we do
not assume (59) and either (O2a) or (O3b) respectively. Also, (L3) was necessary only to prove that
each on is a higher-order term.

5.2 Properties of the iterates

In this section, we give some basic attributes of the directional derivatives αn and the higher-order
terms on. One should not forget that these objects are time-dependent, and we will always denote the
time component by t; this should not be confused with the perturbation parameter s.

Lemma 5.6. The following properties hold:

1 For a.e. t ∈ [0, T ],

α1(t) ≥ 0, q.e. on {u(t) = Φ(u)(t)},
αn(t) ≥ Φ′(u)(αn−1)(t), q.e. on {u(t) = Φ(u)(t)} for n > 1.

2 The sequences
{αn}n∈N and {αn + s−1on(s)}n∈N

are monotone (increasing if d ≥ 0 and decreasing if d ≤ 0) and have the same sign as d.

3 (αn + s−1on(s))|t=0 = 0.

4 Φ′(u)(αn) has the same sign as d.

Proof. The first claim follows from the set that the αn belong to and the characterisation of Lemma
4.1. The second claim is true since the sequence uns is increasing or decreasing in n and due to (65)
and the vanishing behaviour of s−1on(s) and the fact that uns − u has the same sign as d (since if
d ≥ 0, uns is increasing and hence greater than u whilst if d ≤ 0, uns is decreasing and smaller than
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u). For the third claim, in (65), take the trace t = 0 (which is valid since uns , u were defined to have
trace u0 at t = 0) to obtain

u0 = u0 + (sαn + on(s))|t=0.

Finally, we have that

Φ′(u)(αn) = lim
h→0+

Φ(u+ hαn)− Φ(u)

h
,

where the limit is in Lp(0, T ;H), and hence, passing to a subsequence, the limit also holds at almost
every time strongly in H :

Φ′(u)(αn)(t) = lim
hj→0+

Φ(u+ hjα
n)(t)− Φ(u)(t)

hj
,

which is either greater than or less than zero depending on the sign of αn which in turn depends on
the sign of d (see part 2 of this lemma).

The first part of the previous result tells us about the quasi-everywhere behaviour of the directional
derivatives on the coincidence set. We can say a little more about them in an almost everywhere
sense.

Lemma 5.7. We have

α1 ≤ 0 a.e. on {u = Φ(u)} with equality if d ≥ 0.

If Φ is a superposition operator, then for each n,

αn ≤ 0 a.e. on {u = Φ(u)} with equality if d ≥ 0.

Proof. From sαn = uns − u− on(s), since uns ≤ Φ(un−1
s ) ≤ ... ≤ Φn(u0

s) = Φn(u), we find

sαn ≤ Φn(u)− u− on(s). (69)

On the set {u = Φ(u)}, we get sα1 ≤ −o1(s) and dividing here by s and sending to zero, we see
by the sandwich theorem that if d ≥ 0, α1 = 0 on {u = Φ(u)}. If Φ is a superposition operator,
observe that if t is such that u(t) = Φ(u(t)), then in fact

u(t) = Φn(u(t)) for any n ∈ N.

Using this fact on the right-hand side of (69) gives us the result.

5.3 Uniform bounds on the iterates

We give a result on the boundedness of the directional derivatives αn under two different sets of
assumptions. The first set requires some boundedness conditions on the obstacle mapping including
a smallness condition, whilst the second requires instead some regularity and complementarity (for
the latter, see [21, §7.3.1] for the parabolic VI case) for the system.
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Assumption 5.8. Suppose that either

∥∥Φ′(u)(αn−1)
∥∥
L2(0,T ;V )

≤ C∗1
∥∥αn−1

∥∥
L2(0,T ;V )

,∥∥∂tΦ′(u)(αn−1)
∥∥
L2(0,T ;V ∗)

≤ C∗2
∥∥αn−1

∥∥
L2(0,T ;V )

,∥∥Φ′(u)(αn−1)(T )
∥∥2

H
≤ C∗3

∥∥αn−1
∥∥2

L2(0,T ;V )
+ C,

CbC
∗
1 + C∗2 + C∗3 < Ca,

(L4a)

(L5a)

(L6a)

(L7a)

or 
(u′ + Au− f)(u− Φ(u)) = 0 a.e. on (0, T )× Ω,

Φ′(u)(αn) = 0 a.e. on {u = Φ(u)},
‖Φ′(u)(αn)(0)‖H ≤ C,

(L4b)

(L5b)

(L6b)

where all constants are independent of n.

Regarding the fulfillment of assumption (L5b), Lemma 5.6 may be helpful for certain choices of Φ in
applications.

Proposition 5.9 (Bound on {αn}). Let Assumption 5.8 hold. Then αn ⇀ α in L2(0, T ;V ).

Proof. 1. UNDER BOUNDEDNESS ASSUMPTIONS. First suppose that (L4a) — (L7a) hold. In (66) take
ϕ = Φ′(u)(αn−1) as test function (this is admissible since zero is contained in the radial cone and
the orthogonal space that the test function space is obtained from) to get∫ T

0

〈∂tΦ′(u)(αn−1) + Aαn − d, αn − Φ′(u)(αn−1)〉 ≤ 0.

We can neglect the term (d,Φ′(u)(αn−1))H due to part 4 of Lemma 5.6 which tells us that both d
and Φ′(u)(αn) have the same sign. Hence the above inequality becomes

Ca ‖αn‖2
L2(0,T ;V )

≤
∫ T

0

〈Aαn,Φ′(u)(αn−1)〉+ (d, αn)H − 〈∂tΦ′(u)(αn−1), αn − Φ′(u)(αn−1)〉

≤ Cb ‖αn‖L2(0,T ;V )

∥∥Φ′(u)(αn−1)
∥∥
L2(0,T ;V )

+ ‖d‖L2(0,T ;H) ‖α
n‖L2(0,T ;H)

+
∥∥∂tΦ′(u)(αn−1)

∥∥
L2(0,T ;V ∗)

‖αn‖L2(0,T ;V ) +
1

2

∥∥Φ′(u)(αn−1)(T )
∥∥2

H

− 1

2

∥∥Φ′(u)(αn−1)(0)
∥∥2

H

≤ CbC
∗
1 ‖αn‖L2(0,T ;V )

∥∥αn−1
∥∥
L2(0,T ;V )

+ ‖d‖L2(0,T ;H) ‖α
n‖L2(0,T ;V )

+ C∗2
∥∥αn−1

∥∥
L2(0,T ;V )

‖αn‖L2(0,T ;V ) + C∗3
∥∥αn−1

∥∥2

L2(0,T ;V )
+ C (by (L4a), (L5a) and (L6a))

= (CbC
∗
1 + C∗2) ‖αn‖L2(0,T ;V )

∥∥αn−1
∥∥
L2(0,T ;V )

+ ‖d‖L2(0,T ;H) ‖α
n‖L2(0,T ;V )

+ C∗3
∥∥αn−1

∥∥2

L2(0,T ;V )
+ C

≤ (CbC
∗
1 + C∗2)

2

(
‖αn‖2

L2(0,T ;V ) +
∥∥αn−1

∥∥2

L2(0,T ;V )

)
+ Cρ ‖d‖2

L2(0,T ;H) + ρ ‖αn‖2
L2(0,T ;V )

+ C∗3
∥∥αn−1

∥∥2

L2(0,T ;V )
+ C.
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Defining an := ‖αn‖L2(0,T ;V ), this reads(
Ca −

1

2
(CbC

∗
1 + C∗2)− ρ

)
a2
n ≤

(
1

2
(CbC

∗
1 + C∗2) + C∗3

)
a2
n−1 + Cρ ‖d‖2

L2(0,T ;H) + C

which we write as

a2
n ≤

A2

A1

a2
n−1 +

Cρ ‖d‖2
L2(0,T ;H) + C

A1

where we have denoted

A1 := Ca −
1

2
(CbC

∗
1 + C∗2)− ρ and A2 :=

1

2
(CbC

∗
1 + C∗2) + C∗3 .

Solving this recurrence inequality leads to

a2
n ≤

(
A2

A1

)n−1

a2
1 +

Cρ ‖d‖2
L2(0,T ;H) + C

A1

1−
(
A2

A1

)n−1

1− A2

A1

 .

We evidently need A2 < A1 for this sequence to be bounded uniformly, that is,

1

2
(CbC

∗
1 + C∗2) + C∗3 < Ca −

1

2
(CbC

∗
1 + C∗2)− ρ ⇐⇒ CbC

∗
1 + C∗2 + C∗3 < Ca − ρ

i.e., (L7a). Under this condition, the bound is uniform and there is a weak limit for a subsequence of
{αn}n∈N. Since the αn are monotone, they have a pointwise a.e. monotone limit which must agree
with α so indeed αn ⇀ α in L2(0, T ;V ).

2. UNDER REGULARITY ASSUMPTIONS. Now assume instead that (L4b) — (L6b) hold. We want to show
that ϕ ≡ 0 is a valid test function in the VI (66) for αn. Thus we need to prove that −Φ′(u)(αn−1) ∈
clW (T rad

K0
(Φ(u)− u) ∩ [u′ + Au− f ]⊥). On this note, observe that∫ T

0

∫
Ω

(u′ + Au− f)Φ′(u)(αn−1) =

∫
{u=Φ(u)}

(u′ + Au− f)Φ′(u)(αn−1)

+

∫
{u<Φ(u)}

(u′ + Au− f)Φ′(u)(αn−1)

=

∫
{u=Φ(u)}

(u′ + Au− f)Φ′(u)(αn−1) (by (L4b))

= 0. (by (L5b))

The assumption (L5b) implies that −Φ′(u)(αn−1) ≥ 0 a.e. on {u = Φ(u)} and thus it belongs to
T rad
K0

(u − Φ(u)) ∩ [u′ + Au − f ]⊥ (see (36)) and this is obviously a subset of its closure in W .
Therefore, 0 is a valid test function in (66) and testing with this we find∫ T

0

〈Aαn − d, αn〉 ≤ 1

2

∥∥Φ′(u)(αn−1)(0)
∥∥2

H

which easily leads to the desired bound due to the assumption (L6b). As before, the monotonicity of
the sequence implies the convergence for the whole sequence.
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5.4 Characterisation of the limit of the directional derivatives

We now want to study the limiting objects associated to the sequences {αn} and {δn}. First, we
introduce some assumptions that will be of use here and in further sections.

Assumption 5.10. Suppose that

Φ′(u)(·) : L2(0, T ;V )→ Lp(0, T ;V ) is completely continuous, (L8)

L(Φ′(u)(·)) : L2(0, T ;V )→ L2(0, T ;H) is completely continuous, (L9)

and assume that if z : (0, 1) → Lp(0, T ;H) satisfies z(s) → u as s → 0+ and b ∈ L2(0, T ;V ),
then for all s ∈ (0, ε) with ε arbitrarily small, then

‖Φ′(z(s))b‖L2(0,T ;H) ≤ K∗1 ‖b‖Lp(0,T ;H) , (L10)

‖Φ′(z(s))b‖Lp(0,T ;V ) ≤ K∗2 ‖b‖Lp(0,T ;H) , (L11)

‖∂t(Φ′(z(s))b)‖L2(0,T ;V ∗) ≤ K∗3 ‖b‖Lp(0,T ;H) , (L12)

where

K∗1 +
T

1
p (K∗2Cb +K∗3)√

Ca
< 1. (L13)

Regarding (L8), it may be helpful to note that Assumption 4.6 implies Φ: L2(0, T ;V ) → W (0, T )
is completely continuous. As a precursor to characterising the directional derivative α, we study the
limit of {δn}n∈N in the next lemma. Since δn = αn + Φ′(u)(αn−1), if Φ′(u)(·) : L2(0, T ;V ) →
Lp(0, T ;H) is bounded, we can find a subsequence of {δn}n∈N such that δnj ⇀ δ in Lp(0, T ;H)
for some δ. In fact under additional assumptions the convergence holds for the full sequence as shown
below.

Lemma 5.11. If (L8) holds, then δn ⇀ δ in L2(0, T ;V ).

Proof. With the aid of Proposition 5.9, we can pass to the limit in (63), which is αn+1 = Φ′(u)(αn)−
δn+1, to find the weak convergence in L2(0, T ;V ) of the whole sequence {δn} to some δ ∈
L2(0, T ;V ).

To characterise δ as the solution of a VI in itself, it becomes useful to define the set

CK0(y) := {v ∈ L2(0, T ;V ) : v(t) ≥ 0 q.e. on {y(t) = 0} for a.e. t ∈ [0, T ]}.

Lemma 5.12. Under the conditions of the previous lemma, δ satisfies

δ ∈ CK0(u− Φ(u)) ∩ [u′ + Au− f ]⊥ :

∫ T

0

〈z′ + Aδ − (d− LΦ′(u)(α)), δ − z〉 ≤ 1

2
‖z(0)‖2

H

∀z ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥).

Proof. From (45), δn satisfies the VI

δn ∈ T tan
K0,L2(Φ(u)− u) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈z′ + Aδn − (d− LΦ′(u)(αn−1)), δn − z〉 ≤ 1

2
‖z(0)‖2

H

∀z ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥).
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If (L8) holds, we can pass to the limit here using the continuity of Φ′(u)(·) : L2(0, T ;H)→ W (0, T )
and the limiting object δ satisfies the inequality stated in the lemma.

We must check that δ ∈ CK0(Φ(u) − u) ∩ [u′ + Au − f ]⊥ too. It is clear that the orthogonality
condition is satisfied due to the convergence in the previous lemma. By (37),

δn(t) ≥ 0 q.e. on {u(t) = Φ(u)(t)} a.e. t.

Due to Mazur’s lemma, there is a convex combination

vk =

N(k)∑
j=k

a(k)jδ
j

of {δn}n∈N such that vk → δ in L2(0, T ;V ). Since this convergence is strong, for a subsequence,
vkm(t)→ δ(t) in V and hence pointwise q.e. for a.e. t ∈ [0, T ].

By definition, δn(t) ≥ 0 everywhere on {u(t) = Φ(u)(t)} \ An(u)(t) where An(u)(t) ⊂ {u(t) =
Φ(u)(t)} is a set of capacity zero; this implies that

vkm(t) ≥ 0 q.e. on {u(t) = Φ(u)(t)} \ ∪N(km)
j=km

Aj(u)(t), (70)

and using the fact that a countable union of capacity zero sets has capacity zero and the inequality
(70), we can pass to the limit to deduce that δ(t) ≥ 0 quasi-everywhere on {u(t) = Φ(u)(t)} for
a.e. t ∈ [0, T ].

Proposition 5.13. Under the conditions of the previous lemma, α satisfies the QVI

α− Φ′(u)(α) ∈ CK0(Φ(u)− u) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈w′ + Aα− d, α− w〉 ≤ 1

2
‖w(0)− Φ′(u)(α)(0)‖2

H

∀w : w − Φ′(u)(α) ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥).

Proof. From the definition of αn in terms of δn in (63), we obtain

α = Φ′(u)(α) + δ.

Using this fact in the QVI for δ given in Lemma 5.12 yields∫ T

0

〈z′+Aα+∂tΦ
′(u)(α)−d, δ−z〉 ≤ 1

2
‖z(0)‖2

H ∀z ∈ clW (T rad
K0

(Φ(u)−u)∩[u′+Au−f ]⊥)

which translates into the desired result after setting w := Φ′(u)(α) + z.

5.5 Dealing with the higher-order term

We come to the final part which consists in showing that the limit of the higher-order terms on is indeed
a higher-order term itself. The idea is to be able to commute the two limits

lim
n→∞

lim
s→0+

on(s)

s
and lim

s→0+
lim
n→∞

on(s)

s
,

and this can be done typically under a uniform convergence of one of the limits. Such a uniform
convergence is assured by the next result.
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Proposition 5.14. Suppose Assumption 5.10 holds. Then s−1on(s)→ 0 in Lp(0, T ;H) as s→ 0+

uniformly in n and thus the limit o = limn→∞ o
n is also a higher-order term.

Proof. The proof is in four steps.

STEP 1. We first collect some estimates. Due to the mean value estimate (50) and assumption (L11),∥∥∥l̂(s, αn−1, on−1(s))
∥∥∥
Lp(0,T ;V )

≤ K∗2
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+
∥∥l(s, αn−1)

∥∥
Lp(0,T ;V )

. (71)

From the expansions

Φ(u+ sαn−1) = Φ(u) + sΦ′(u)(αn−1) + l(s, αn−1),

Φ(u+ sαn−1 + on−1(s)) = Φ(u) + sΦ′(u)(αn−1) + l̂(s, αn−1, on−1(s)),

we get, from subtracting one from the other and assumption (L12),∥∥∥∂tl̂(s, αn−1, on−1(s))− ∂tl(s, αn−1)
∥∥∥
L2(0,T ;V ∗)

≤ K∗3
∥∥on−1(s)

∥∥
Lp(0,T ;H)

. (72)

STEP 2. By definition of on in (64),

on(s) = l̂(s, αn−1, on−1(s))− ô(s, LΦ′(u)(αn−1)− d, Ll̂(s, αn−1, on−1(s))),

and using the estimates (50), (42) and (L10),

‖on(s)‖Lp(0,T ;H)

≤ sup
λ∈(0,1)

∥∥Φ′(u+ sαn−1 + λon−1(s))(on−1(s))
∥∥
Lp(0,T ;H)

+
∥∥l(s, αn−1)

∥∥
Lp(0,T ;H)

+
T

1
p

√
Ca

∥∥∥Ll̂(s, αn−1, on−1(s))
∥∥∥
L2(0,T ;V ∗)

+
∥∥o(s, LΦ′(u)(αn−1)− d)

∥∥
Lp(0,T ;H)

≤ K∗1
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+
∥∥l(s, αn−1)

∥∥
Lp(0,T ;H)

+
T

1
p

√
Ca

∥∥∥Ll̂(s, αn−1, on−1(s))
∥∥∥
L2(0,T ;V ∗)

+
∥∥o(s, LΦ′(u)(αn−1)− d)

∥∥
Lp(0,T ;H)

.

We estimate the third term above using (71) and (72) of Step 1:∥∥∥Ll̂(s, αn−1, on−1(s))
∥∥∥
L2(0,T ;V ∗)

≤ Cb

∥∥∥l̂(s, αn−1, on−1(s))
∥∥∥
L2(0,T ;V )

+
∥∥∥∂tl̂(s, αn−1, on−1(s))

∥∥∥
L2(0,T ;V ∗)

≤ K∗2Cb
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+ Cb
∥∥l(s, αn−1)

∥∥
L2(0,T ;V )

+K∗3
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+
∥∥∂tl(s, αn−1)

∥∥
L2(0,T ;V ∗)

.
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Inserting this back above, we find

‖on(s)‖Lp(0,T ;H)

≤ (K∗1 +
T

1
p (K∗2Cb +K∗3)√

Ca
)
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+
∥∥l(s, αn−1)

∥∥
Lp(0,T ;H)

+
T

1
pCb√
Ca

∥∥l(s, αn−1)
∥∥
L2(0,T ;V )

+
T

1
p

√
Ca

∥∥∂tl(s, αn−1)
∥∥
L2(0,T ;V ∗)

+
∥∥o(s, LΦ′(u)(αn−1))

∥∥
Lp(0,T ;H)

< C
∥∥on−1(s)

∥∥
Lp(0,T ;H)

+
∥∥l(s, αn−1)

∥∥
Lp(0,T ;H)

+
T

1
pCb√
Ca

∥∥l(s, αn−1)
∥∥
L2(0,T ;V )

+
T

1
p

√
Ca

∥∥∂tl(s, αn−1)
∥∥
L2(0,T ;V ∗)

+
∥∥o(s, LΦ′(u)(αn−1))

∥∥
Lp(0,T ;H)

for some C < 1 by the assumption (L13). The above can be recast as

an(s) ≤ Can−1(s) + bn−1(s),

where

an(s) := ‖on(s)‖Lp(0,T ;H) ,

bn−1(s) :=
∥∥l(s, αn−1)

∥∥
Lp(0,T ;H)

+
T

1
pCb√
Ca

∥∥l(s, αn−1)
∥∥
L2(0,T ;V )

+
T

1
p

√
Ca

∥∥∂tl(s, αn−1)
∥∥
L2(0,T ;V ∗)

+
∥∥o(s, LΦ′(u)(αn−1))

∥∥
Lp(0,T ;H)

.

The recurrence inequality can be solved for an in terms of a1 and the bi:

an ≤ Cn−1a1 + Cn−2b1 + Cn−3b2 + ...+ Cbn−2 + bn−1. (73)

STEP 3. Let us see why
bn−1(s)

s
→ 0 uniformly in n.

By the weak convergence of the αn in L2(0, T ;V ) (and hence strong convergence in L2(0, T ;H)),
{αn−1}n∈N is a compact set in L2(0, T ;H). Since Φ: L2(0, T ;H) → W (0, T ) is Hadamard
differentiable, it is compactly differentiable, meaning that s−1l(s, αn) → 0 in W (0, T ) uniformly,
thus the first three terms in the definition of bn are taken care of. For the final term, we note that
{LΦ′(u)(αn−1)}n∈N is also compact in L2(0, T ;H) by (L9). Therefore, for any ε > 0, there exists a
τ1 > 0 independent of j such that

s ≤ τ1 =⇒ bj(s)

s
≤ (1− C)ε

2
∀j. (74)

STEP 4. As o1(s) = r(s, 0, 0) = o(s, d) is a higher-order term, we know that there is a τ2 > 0 such
that

s ≤ τ2 =⇒
‖o(s, d)‖Lp(0,T ;H)

s
≤ ε

2
. (75)
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Now recalling (73), for s ≤ min(τ1, τ2),

‖on(s)‖Lp(0,T ;H)

s
≤ Cn−1

‖o(s, d)‖Lp(0,T ;H)

s
+ Cn−2 b1(s)

s
+ Cn−3 b2(s)

s
+ ...+

bn−1(s)

s

≤
‖o(s, d)‖Lp(0,T ;H)

s
+ Cn−2 b1(s)

s
+ Cn−3 b2(s)

s
+ ...+

bn−1(s)

s

≤ ε

2
+
ε(1− C)

2

(
Cn−2 + Cn−3 + ...+ C + 1

)
(for any ε > 0 by (74) and (75))

=
ε

2
+
ε(1− C)(1− Cn−1)

2(1− C)

≤ ε.

This shows that on(s)/s tends to zero uniformly in n.

We are finally in position to state the main theorem which condenses the various intermediary results
we obtained above.

Theorem 5.15. Let Assumptions 4.3 and 4.6 hold and take u ∈ Pu0(f) satisfying Assumption 5.1.
Let also Assumptions 5.2, 5.8 and 5.10 hold.

Then there exists a us ∈ P(f + sd) such that, under the first set of assumptions of Assumption 5.2,
us ∈ Ws(0, T ) is a (strong) solution whereas under the second set of assumptions of Assumption
5.2, us ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) is a very weak solution satisfying

us = u+ sα + os, as s ↓ 0,

where
os
s
→ 0 in Lp(0, T ;H) as s→ 0+,

for p ∈ [1,∞], and α satisfies the parabolic QVI

α− Φ′(u)(α) ∈ CK0(Φ(u)− u) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈w′ + Aα− d, α− w〉 ≤ 1

2
‖w(0)− Φ′(u)(α)(0)‖2

H

∀w : w − Φ′(u)(α) ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥).

Let us relate this result to notions of differentiability commonly used in set-valued and multi-valued
analysis. Recall that the map P : F ⇒ U has a contingent derivative β at (f, u) (with u ∈ P(f)) in
the direction d, written β ∈ DP(f, u)(d), if there exist sequences βn → β, dn → d and sn → 0
such that

u+ snβn ∈ P(f + sndn).

We claim that P does indeed possess contingent derivatives and our main results furnishes us with
one such contingent derivative.

Proposition 5.16. The map P : F ⇒ U has a contingent derivative α ∈ DQ(f, u)(d) given by the
previous theorem with either of the following choices:

F = L2
inc(0, T ;H+) and U = Ws(0, T ),

(where L2
inc(0, T ;X) means increasing-in-time elements of L2(0, T ;X)) or

F = L2(0, T ;H) and U = L2(0, T ;V ) ∩ L∞(0, T ;H),
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Proof. Indeed, given u ∈ P(f) and sequences sn → 0 and dn ≡ d, we can, by Theorem 5.15, find
usn ∈ P(f + snd) such that

usn = u+ snαn + o(sn; d) and hence u+ snβn = usn ∈ P(f + sndn),

where the sequence

βn := αn +
o(sn; d)

sn
=
usn − u
sn

is such that βn → α as n→∞ because the term o(sn; d) is higher order.

6 Other approaches to differentiability

We now discuss some possible alternative approaches to deriving Theorem 5.15 (or a variant of this
theorem). The idea here is to bootstrap by using the already-achieved results on elliptic QVIs in [2],
however, we shall see that this is not at all straightforward.

6.1 Time discretisation and elliptic QVI theory

One idea is to apply the elliptic QVI theory of [2] to the time-discrete problems and then pass to the
limit there. With the definition

Ψn,N(z) := Φ(z)(tNn ),

recall the notations defined in §2; in particular QtNn
is the solution mapping defined as z ∈ QtNn

(g) if
and only if

z ∈ V, z ≤ Ψn−1,N(z) : 〈z + hAz − g, z − v〉 ≤ 0 ∀v ∈ V : v ≤ Ψn−1,N(z). (76)

With uN0 := u0 ∈ V for a given initial data, set

uNn := QtNn−1
(hfNn + uNn−1).

Under the assumptions on the source f and the direction d in §2, we know by [2, Theorem 1] that
there exists uNs,1 ∈ QtN0

(hfN1 + uN0 + shdN1 ) and γN1 := Q′
tN0

(hfN1 + u0)(hdN1 ) such that

uNs,1 = uN1 + sγN1 + oN1 (s),

where oN1 (s, hdN1 ;hfN1 + uN0 ) is a higher-order term. Since uNs,0 = uN0 ,

〈uNs,1 − uN0 + hAuNs,1 − (hfN1 + shdN1 ), uNs,1 − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(uNs,1)(tN0 ).

In a similar way, since uN2 = QtN1
(hfN2 +uN1 ), we know that there exists a function uNs,2 ∈ QtN1

(hfN2 +

uN1 + s(hdN2 + αN1 ) + oN1 (s)) and γN2 = Q′
tN1

(hfN2 + uN1 )(hdN2 + γN1 ) such that

uNs,2 = uN2 + sγN2 + oN2 (s),

where oN2 (s, hdN2 +αN1 , o
N
1 (s);hfN2 + uN1 ) is a higher-order term and since uN1 + sαN1 + oN1 (s) =

uNs,1,

〈uNs,2 − uNs,1 + hAuNs,2 − (hfN2 + shdN2 ), uNs,2 − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(uNs,2)(tN1 ).

Along these lines, we obtain the following lemma.
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Lemma 6.1. Given uNn defined as above, there exists uNs,n ∈ QtNn−1
(hfNn + uNn−1 + shdNn ) and γNn

such that
uNs,n = uNn + sγNn + oNn (s), (77)

where γNn satisfies

〈γNn − γNn−1 + hAγNn − hdNn , γNn − v〉 ≤ 0 ∀v ∈ Kn(γNn ),

Kn(w) := {ϕ ∈ V : ϕ ≤ Ψ′n,N(uNn )(w) q.e. onA(uNn )

& 〈uNn − uNn−1 + hAuNn − hfNn , ϕ−Ψ′n,N(uNn )(w)〉 = 0},
(78)

and
oNn (s) = oNn (s, hdNn + γNn−1, o

N
n−1(s);hfNn + uNn−1)

is a higher-order term. Here,A(uNn ) = {}.

Proof. We prove this by induction. The base case has been shown above. Suppose it holds for the
nth case. Then given uNn+1 = QtNn−1

(hfNn+1 + uNn ), there exists

uNs,n+1 ∈ QtNn−1
(hfNn+1 + uNn + s(hdNn+1 + γNn ) + oNn (s)) = Q(hfNn+1 + uNs,n + shdNn+1)

(thanks to the formula relating uNs,n and uNn ) such that

uNs,n+1 = QtNn−1
(hfNn+1 + uNn ) + sQ′tNn−1

(hfNn+1 + uNn )(hdNn+1 + γNn ) + oNn+1(s)

= uNn+1 + sQ′tNn−1
(hfNn+1 + uNn )(hdNn+1 + γNn ) + oNn+1(s)

= uNn+1 + sγNn+1 + oNn+1(s),

which ends the proof.

By definition, uNs,n solves the QVI

uNs,n ≤ Φ(uNs,n)(tNn−1) : 〈uNs,n − uNs,n−1 + hAuNs,n − (hfNn + shdNn ), uNs,n − v〉 ≤ 0 (79)

for all v ∈ V s.t. v ≤ Φ(uNs,n)(tNn−1). It is then clear from (79) (since the structure of the time-
discretised QVI is the same as those considered in §2 and we can apply the same argumentation as
there) that the interpolants uNs , ûNs constructed from {uNs,n}n∈N and which satisfy∫ T

0

〈∂tûNs (t) + AuNs (t)− fN(t)− sdN(t), uNs (t)− vN(t)〉 ≤ 0,

are bounded in the appropriate spaces and hence there exists a us such that uNs → us and∫ T

0

〈∂tus(t) + Aus(t)− f(t)− sd(t), us(t)− v(t)〉 ≤ 0 ∀v ∈ L2(0, T ;V ) : v ≤ Φ(us),

i.e., us ∈ P(f + sd). Clearly, similar claims are true for uN , ûN constructed as interpolants from
{uNn }n∈N. We now need to obtain uniform bounds on the γNn and the higher-order term.

Lemma 6.2. Suppose that v = 0 is a valid test function in (78) (which is the case in the VI setting).
Then ∥∥γNn ∥∥H + h

n∑
i=1

∥∥γNi ∥∥2

V
≤ C,

and hence ∥∥γN∥∥
L∞(0,T ;H)

+
∥∥γN∥∥

L2(0,T ;V )
≤ C.
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Proof. Since 0 is feasible, the proof for the boundedness of the first two estimates follows that of
the first two estimates of Lemma 2.3. The proof of Corollary 2.4 shows that these bounds imply the
boundedness in the Bochner spaces above.

Multiplying (77) by χTNn−1
and summing up over N , we find

uNs = uN + sγN + oN(s).

Due to the bounds on the left-hand side and the first two terms on the right-hand side, we can pass to
the limit in oN too and we find

us = u+ sγ∗ + o∗(s),

for some γ∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), and the equality also holds in this space. It remains to
be seen that o∗ is a higher-order term and to characterise the term γ∗.

Here we come to a roadblock since we do not know how the terms oN depend on the moving base
point and thus we cannot say anything about the uniform convergence of the oN and are unable to
identify the limit of the higher-order terms as higher order; recall that we warned the reader of this
issue in Remark 4.4. Alternatively, if we were able to identify γ∗ as α from the previous sections, this
would suffice to show the higher-order behaviour. But it seems difficult to handle the constraint set
satisfied by γNn and obtain a type of Mosco convergence for recovery sequences to approximate the
limiting test function space.

6.2 Elliptic regularisation of the parabolic (Q)VI

Another possible approach is through regularising the parabolic QVI as an elliptic QVI, applying the
elliptic theory of [2] to the regularised problem and then passing to the limit in the regularisation
parameter. This elliptic regularisation of parabolic problems can be seen in the work of Lions [30,
p. 407].

The idea is to include in the parabolic inequality a term involving the second time derivative of the
solution, i.e., −εu′′ with ε > 0; more precisely we wish to consider the QVI

u(t) ≤ Φ(u)(t) :

∫ T

0

〈−εu′′(t) + u′(t) + Au(t)− f(t), u(t)− v(t)〉 ≤ 0

∀v ∈ L2(0, T ;V ) s.t. v(t) ≤ Φ(u)(t),

u(0) = 0,

u′(T ) = 0.
(80)

The ‘final time’ condition is necessary to have a well defined problem. Define V := {v ∈ Ws(0, T ) :
v(0) = 0}. Integrating by parts in (80) and using the initial and final conditions on u and the test
function space, we obtain the weak form: find u ∈ V such that

u(t) ≤ Φ(u)(t) :

∫ T

0

ε(u′(t), u′(t)− v′(t))H + 〈u′(t) + Au(t)− f(t), u(t)− v(t)〉 ≤ 0

∀v ∈ V s.t. v(t) ≤ Φ(u)(t),

u(0) = 0,

u′(T ) = 0.
(81)
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Thinking of the time component as simply another space dimension, the resulting elliptic operator
Â : V → V∗ is

〈Âu, w〉 :=

∫ T

0

ε(u′, w′)H + (u′, w)H + 〈Au,w〉V ∗,V ,

which is clearly T-monotone, bounded and coercive in the Sobolev–Bochner space V ; for the latter,
observe that ∫ T

0

(u′, u)H =
1

2
‖u(T )‖2

H ≥ 0.

Clearly the solution of (81) depends on ε so let us write it as uε. Working formally, we may apply [2,
Theorem 1.6] and we find existence of a uεs solving (81) with source term f + sd and a αε such that

uεs = uε + sαε + oε(s),

where oε is a higher-order term. As for αε, it satisfies

αε ∈Kuε(αε) :

∫ T

0

(ε∂tα
ε, ∂tα

ε − v′)H + (∂tα
ε, αε − v)H + 〈Aαε, αε − v〉 − 〈d, αε − v〉 ≤ 0

∀v ∈ Kuε(αε),

Kuε(w) := {ϕ ∈ V : ϕ ≤ Φ′(uε)(w) q.e. onA(uε) and 〈Âuε − f, ϕ− Φ′(uε)(w)〉 = 0}.
Testing (81) with v = 0, we obtain the bound

ε ‖∂tuε‖2
L2(0,T ;H) +

1

2
‖u‖2

L∞(0,T ;H) + Ca ‖u‖2
L2(0,T ;V ) ≤ C,

so uε is bounded in at least L2(0, T ;V ) ∩ L∞(0, T ;H) uniformly in ε. In a similar way, uεs is also
bounded in this space uniformly in ε and s. Let us also suppose that we have a uniform bound on αε.
Then it remains to be seen that the limit of the oε is a higher-order term, and this is where we once
again run into problems. A monotonicity in ε result on the solutions of (81) would be useful.

It is worth remarking that this technical issues also arises in the VI case and in the simpler uncon-
strained (PDE) case.

7 Example

We study here an example where the obstacle mapping is given by the inverse of a parabolic differ-
ential operator. This example is motivated by applications in thermoforming (which is a process that
manufactures shapes such as car panels from a given mould shape; see [2] and references therein
for more information): in [2], we studied an elliptic nonlinear PDE-QVI model that describes such a
thermoforming process but in reality, the full model is a highly complicated evolutionary system of
equations and QVIs involving obstacle maps that are inverses of differential operators. As a first ini-
tial step on the road to studying the full problem, we consider a simplification and study the following
example.

Let H = L2(0, ω) and V = H1
0 (0, ω) and consider the following nonlinear heat equation:

w′ +Bw = g(ψ) on (0, T )× (0, ω),

w(·, 0) = w(·, ω) = 0 on (0, T ),

w(0, ·) = w0 on (0, ω),

(82)

where

WIAS Preprint No. 2592 Berlin 2019



A. Alphonse, M. Hintermüller, C. N. Rautenberg 44

(1) g : R→ R is C1, non-negative and increasing,

(2) g, g′ ∈ L∞(R),

(3) g, g′ : L2(0, T ;H)→ L2(0, T ;H) are continuous,

(4) g : L2(0, T ;H)→ L2(0, T ;H) is directionally differentiable,

(5) B : V → V ∗ is a linear, bounded, coercive and T-monotone operator giving rise to a differen-
tiable bilinear form,

(6) w0 ∈ V and ψ ∈ L2(0, T ;V ) are given data.

We denote by CB
b and CB

a the constants of boundedness and coercivity for the operator B while
A : V → V ∗ denotes an operator which is assumed to satisfy all assumptions given in the introduction
of this paper and it should also give rise to a bilinear form which is smooth. Letting W = H2(Ω), we
further assume that

(7) A : L2(0, T ;W )→ L2(0, T ;H),

(8) the following norms are equivalent:

‖u‖L2(0,T ;H) + ‖Au‖L2(0,T ;H) , ‖u‖L2(0,T ;H) + ‖Bu‖L2(0,T ;H) , ‖u‖L2(0,T ;W ) .

This equivalence of norms assumption is related to (boundary) regularity results which follow given
enough smoothness of the boundary and depending on the specific elliptic operators, see [16, Theo-
rem 4, §6.3]. The equivalence of norms implies

w ∈ L2(0, T ;V ) : Bw ∈ L2(0, T ;H) =⇒ w ∈ L2(0, T ;W ). (83)

Define Φ(ψ) := w as the solution of (82). By the standard theory of parabolic PDEs, Φ maps
L2(0, T ;H) intoWs(0, T ). This regularity implies (using the equation itself) that forψ ∈ L2(0, T ;H),
BΦ(ψ) ∈ L2(0, T ;H) and hence by (83) and the assumption on the range of the operator A,
Φ(ψ) ∈ L2(0, T ;W ) and AΦ(ψ) ∈ L2(0, T ;H). It follows then that LΦ(ψ) ∈ L2(0, T ;H) too
(recall that L = ∂t + A). Since Φ(ψ) ∈ L2(0, T ;W ) ∩ H1(0, T ;H), the theorem of Aubin–Lions
[14, Theorem II.5.16] gives the continuity in time Φ(ψ) ∈ C0([0, T ];V ).

We proceed now with checking the assumptions that will eventually enable us to use Theorem 5.15.

Lemma 7.1. Assumption 4.6 on the Hadamard differentiability of Φ holds and the directional derivative
satisfies

Φ′(ψ)(h) = Φ0(g′(ψ)(h))

where Φ0 is the solution mapping associated to the equation (82) with zero initial condition (i.e. Φ0 is
the same as Φ except for the initial condition).

Proof. Take ψ, h ∈ L2(0, T ;H) and denote ws := Φ(ψ + sh) and w := Φ(ψ). Their difference
satisfies (

ws − w
s

)′
+B

(
ws − w

s

)
=
g(ψ + sh)− g(ψ)

s
,

(ws − w)(0) = 0.
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Consider the solution η of the PDE

η′ +Bη = g′(ψ)(h),

η(0) = 0.

Letting (ws − w)/s =: ηs we observe

(ηs − η)′ +B(ηs − η) =
g(ψ + sh)− g(ψ)

s
− g′(ψ)(h),

whence, through standard energy estimates,

‖ηs − η‖L∞(0,T ;H) + ‖ηs − η‖L2(0,T ;V ) ≤ C

∥∥∥∥g(ψ + sh)− g(ψ)

s
− g′(ψ)(h)

∥∥∥∥
L2(0,T ;H)

,

which implies that ηs → η in L2(0, T ;V ) ∩ L∞(0, T ;H) due to the differentiability assumption on
g. We also have

‖η′s − η′‖L2(0,T ;V ∗) ≤ C

∥∥∥∥g(ψ + sh)− g(ψ)

s
− g′(ψ)(h)

∥∥∥∥
L2(0,T ;V ∗)

+ CCB
b ‖ηs − η‖L2(0,T ;V ) ,

and hence ηs → η inW (0, T ) showing that Φ: L2(0, T ;H)→ W (0, T ) is differentiable as desired
with Φ′(ψ)(h) = Φ0(g′(ψ)(h)) being the solution of the same PDE with source term g′(ψ)(h) and
zero initial data. Along the same lines as the previous arguments, Φ′(ψ)(h) ∈ Ws(0, T ).

Given a source term f ∈ L2(0, T ;H+) and initial condition u0 ∈ V+ satisfying u0 ≤ Φ(0)(0) = w0

and (60), we fix a solution u solving the QVI

Find u ∈ W (0, T ) with u ≤ Φ(u) :

∫ T

0

〈u′(t) + Au(t)− f(t), u(t)− v(t)〉 ≤ 0

∀v ∈ L2(0, T ;V ) : v ≤ Φ(u),

u(0) = u0.
(84)

The fact that such a solution indeed exists will be shown later.

Lemma 7.2. Let d ∈ L2(0, T ;H+) be such that f + sd is increasing in time and let w0 ∈ V+ and
Bw0 ≤ 0. Then Assumption 5.2 holds.

Proof. We showed in the previous paragraph the satisfaction of (O3a), and the condition (61) is irrel-
evant since d ≥ 0. Let us check the remaining assumptions.

� Regarding the increasing property of Φ in time, we argue as follows. Making the substitution w̄ =
w − w0 in (82) in order to remove the initial condition, the transformed PDE is

w̄′ +Bw̄ = g(ψ)−Bw0 on (0, T )× (0, ω),

w̄(·, 0) = w̄(·, ω) = 0 on (0, T ),

w̄(0, ·) = 0 on (0, ω).

The solution of this can be written in terms of the Green’s function

G(x, y, t) :=
2

L

∞∑
n=1

sin
(nπx
L

)
sin
(nπy
L

)
e−

n2π2t
L2
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through the integral representation

w̄(t, x) :=

∫ t

0

∫ L

0

(g(ψ(s, y))−Bw0(y))G(x, y, t− s) dyds.

Take ψ to be increasing in time. For t1 ≤ t2,

w̄(t1, x)− w̄(t2, x)

=

∫ t1

0

∫ L

0

(g(ψ(s, y))−Bw0(y))G(x, y, t1 − s) dyds

−
∫ t2

0

∫ L

0

(g(ψ(s, y))−Bw0(y))G(x, y, t2 − s) dyds

=

∫ t1

0

∫ L

0

(g(ψ(t1 − r, y))−Bw0(y))G(x, y, r) dydr

−
∫ t2

0

∫ L

0

(g(ψ(t2 − r, y))−Bw0(y))G(x, y, r) dydr (where r := ti − s)

=

∫ t1

0

∫ L

0

(g(ψ(t1 − r, y))− g(ψ(t2 − r, y))G(x, y, r) dydr

−
∫ t2

t1

∫ L

0

(g(ψ(t2 − r, y))−Bw0(y))G(x, y, r) dydr

≤ 0

since ψ is increasing in time and g is increasing which implies that the first term is less than
zero, and the second term is also clearly non-positive as its integrand is non-negative (due to the
assumption on w0). This shows that t 7→ w̄(t) = w(t) − w0 = Φ(ψ)(t) − w0 is increasing,
implying (O4a).

� If ψ1 ≤ ψ2 and wi := Φ(ψi), the difference solves

(w1 − w2)′ +B(w1 − w2) = g(ψ1)− g(ψ2),

with zero initial data. Testing with (w1−w2)+ and using the fact that g is increasing, the right-hand
side is non-positive, showing that Φ(ψ1) ≤ Φ(ψ2).

� Multiplying the equation by w− leads to

1

2

d

dt

∥∥w−∥∥2

H
+ CB

a

∥∥w−∥∥2

V
≤ (g(ψ),−w−)H ≤ 0,

since g ≥ 0, which shows that Φ(ψ) is non-negative too as long as w0 ∈ V+, thus (O1a) and
(L1a).

� Let ψn ⇀ ψ in L2(0, T ;V ) and set wn := Φ(ψn) and w := Φ(ψ) so that

w′n +Bwn = g(ψn) and w′ +Bw = g(ψ).

Subtracting one from the other and testing with the difference, we obtain

1

2

d

dt
‖wn − w‖2

H + CB
a ‖wn − w‖

2
V ≤ ‖g(ψn)− g(ψ)‖H ‖wn − w‖H .

Making use of Young’s inequality on the right-hand side and then integrating over time, we find due
to the continuity of g in L2(0, T ;H) that wn → w in L2(0, T ;V )∩L∞(0, T ;H) and so (O2a) is
also valid.
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� If h, ψ ∈ L2(0, T ;V ), Φ′(ψ)(h) = Φ0(g′(ψ)(h)) ∈ Ws(0, T ) and by the same reasoning as
above, we find LΦ′(ψ)(h) ∈ L2(0, T ;H), giving (L2). The property (L3) will be shown below.

Let us return now to the QVI (84).

Lemma 7.3. A solution u of (84) exists with all the stated properties. Furthermore, the assumptions
on u in Assumption 5.1 also hold.

Proof. We aim to apply Theorem 3.8. Indeed, taking the function 0 as a subsolution (by the com-
parison principle), we showed above that Φ(ψ) ∈ C0([0, T ];V ) for any ψ ∈ L2(0, T ;H) which
ensures (24) and (26). We also proved in the same lemma the validity of (O1a) and (O2a) as well as
the increasing-in-time properties (23), (25) for Φ, hence there is a u ∈ Ws(0, T ) solving the above
QVI and Assumption 5.1 is met.

Lemma 7.4. The local hypotheses comprising Assumptions 5.8 and 5.10 hold.

Proof. Let h ∈ L2(0, T ;V ) and η := Φ′(u)(h) so that

η′ +Bη = g′(u)h,

η(0) = 0.

� From the standard energy estimate

1

2
‖η(r)‖2

H + CB
a

∫ r

0

‖η‖2
V ≤

∫ r

0

(g′(u)h, η)H ≤ ‖g′‖∞ ‖η‖L∞(0,r;H) ‖η‖L1(0,r;H) ,

we find

1

2
‖η‖2

L∞(0,T ;H) + CB
a ‖η‖

2
L2(0,T ;V ) ≤ ‖g

′‖∞ ‖η‖L∞(0,T ;H) ‖η‖L1(0,T ;H) ,

which leads to

‖Φ′(u)(h)‖2
L2(0,T ;V ) ≤

T ‖g′‖2
∞

2CB
a

‖h‖2
L2(0,T ;H) , (85)

i.e., (L4a) after using the continuity of the embedding V ↪→ H .

� The second estimate above also leads to(
1

2
− ε
)
‖η‖2

L∞(0,T ;H) + CB
a ‖η‖

2
L2(0,T ;V ) ≤ ‖g

′‖2
∞Cε ‖h‖

2
L1(0,T ;H)

≤ ‖g′‖2
∞CεT ‖h‖

2
L2(0,T ;H) ,

whence (L6a):

‖Φ′(u)(h)‖L∞(0,T ;H) ≤ ‖g
′‖∞

√
TCε

1/2− ε
‖h‖L2(0,T ;H) . (86)

� For (L5a), we simply use the equation itself and (85):

‖∂tΦ′(u)(h)‖L2(0,T ;V ∗) ≤ ‖g
′‖∞ ‖h‖L2(0,T ;V ∗) + CB

b ‖Φ′(u)(h)‖L2(0,T ;V )

≤ ‖g′‖∞

(
1 + CB

b

√
T

2CB
a

)
‖h‖L2(0,T ;H) . (87)

Therefore, if T and/or ‖g′‖∞ is sufficiently small, assumption (L7a) holds.
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� The estimate (85) yields the first property in (L3) whilst (85) and (87) yield the second property.

� Regarding the completely continuity requirements of Assumption 5.10, let us take hn ⇀ h in
L2(0, T ;V ) and define wn := Φ′(u)(hn) = Φ0(g′(u)(hn)) and w := Φ′(u)(h) = Φ0(g′(u)h).
We see that

w′n +Bwn = g′(u)hn and w′ +Bw = g′(u)h,

which immediately implies

Ca ‖wn − w‖2
L2(0,T ;V ) ≤

∫ T

0

(g′(u)hn − g′(u)h,wn − w)H ,

on which using the boundedness of g′ and the strong convergence hn → h in L2(0, T ;H), we
get that wn → w in L2(0, T ;V ), giving (L8).

� We also have that LΦ′(u)(hn) = (∂t+A)Φ0(g′(u)hn) = (∂t+A)wn = (∂t+B)wn+Awn−
Bwn, which implies that

‖LΦ′(u)(hn)− LΦ′(u)(h)‖L2(0,T ;H) = ‖g′(u)hn − g′(u)h+ (A−B)(wn − w)‖L2(0,T ;H)

≤ ‖g′(u)(hn − h)‖L2(0,T ;H) + ‖A(wn − w)‖L2(0,T ;H)

+ ‖B(wn − w)‖L2(0,T ;H) . (88)

The first term on the right-hand side converges to zero because g′ is bounded. For the third term,
we note the following standard estimate for linear parabolic PDEs (using the differentiability of B):

‖wn − w‖Ws(0,T ) ≤ C ‖g′(u)(hn − h)‖L2(0,T ;H)

whence

‖Bwn −Bw‖L2(0,T ;H) ≤ ‖g
′(u)(hn − h)‖L2(0,T ;H) + ‖w′n − w′‖L2(0,T ;H)

≤ C ‖g′(u)(hn − h)‖L2(0,T ;H) .

Regarding the second term of (88), we manipulate using the equivalence of norms as following:

‖A(wn − w)‖L2(0,T ;H) ≤ C1 ‖wn − w‖L2(0,T ;W )

≤ C2

(
‖wn − w‖L2(0,T ;H) + ‖B(wn − w)‖L2(0,T ;H)

)
and we apply again the estimate from the previous step on the right-hand side and this eventually
leads to (L9).

� The bounds (85), (86) and (87) imply (L10), (L11), (L12) and the smallness condition (L13) holds
again if T or ‖g′‖∞ is sufficiently small.

Having met all the requirements, we may apply Theorem 5.15 to infer that the solution mapping taking
f 7→ u in (84) is directionally differentiable in the stated sense and the associated derivative solves
the QVI

α− Φ0(g′(u)(α)) ∈ CK0(Φ(u)− u) ∩ [u′ + Au− f ]⊥ :∫ T

0

〈w′ + Aα− d, α− w〉 ≤ 1

2
‖w(0)‖2

H

∀w : w − Φ0(g′(u)(α)) ∈ clW (T rad
K0

(Φ(u)− u) ∩ [u′ + Au− f ]⊥).
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