
1 Introduction

In this paper, we present the optimal control of a system of two coupled nonlinear partial

di�erential equations. This system describes the dynamics of �rst order martensitic phase

transitions occurring in a thin rod of a shape memory alloy (SMA) which is �xed on one

side and pushed and pulled on the other side in the course of time by an elongation m. This

so{called deformation{driven experiment, and related ones, are performed by I.M�uller and

his co{workers [8,9], for instance.

We have chosen the Landau{Ginzburg model developed by Falk to describe this exper-

iment. A large number of papers is dealing with the general derivation of this model [e.g.

2,5,6,7,14]; we omit the details, here. For details concerning the application of the model

to this experiment, the determination of physical parameters and numerical simulations, we

refer the reader to [3,4].

Summarizing, we have the following system (
 := (0; l), 
T := 
 � (0; T )):

� utt � (
 (� � �1)ux � � u
3
x + � u

5
x)x + � uxxxx = 0; in 
T ; (1.1a)

ce �t � � �xx � 
 � ux uxt = g(x; t); in 
T ; (1.1b)

u(0; t) = uxx(0; t) = uxx(l; t) = 0; u(l; t) = m(t); 8t 2 [0; T ]; (1.1c)

�x(0; t) = 0; �� �x(l; t) = �� (�(l; t)� ��(t)); 8t 2 [0; T ]; (1.1d)

u(x; 0) = u0(x); ut(x; 0) = u1(x); 8x 2 
; (1.1e)

�(x; 0) = �0(x); 8x 2 
: (1.1f)

The equations (1.1a) and (1.1b) represent the balance laws of momentum and energy,

respectively. The physical meanings of the involved quantities are: � { constant mass density,

u { displacement in the direction of the rod, � { absolute temperature, ux { strain in the

direction of the rod, ce { speci�c heat, � { positive constant heat conductivity, g { density

of heat sources or sinks, l { length of the rod (which is normalized to unity: l := 1), �� {

positive constant heat exchange coe�cient, �� { temperature of the surrounding medium.

The couple stress leads to the Ginzburg{term � � uxxxx, the linearized strain is " = ux, and

�, �, 
, and � are material constants to be determined for each specimen. The boundary

condition for u at x = 1 re
ects the pulling and pushing of the rod in the course of time
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by a prescribed elongation m. The other boundary condition for the momentum balance

has been taken in analogy to [16]. The boundary condition for the energy balance models

a heat exchange with the surrounding temperature at x = 1 using Newton's law. For the

mathematical analysis, as well as for the numerical approximation, the system is transformed

by ~u(x; t) := u(x; t)� x �m(t). Then we deal with homogeneous boundary conditions. An

additional term � � x � �m(t) appears only on the left hand side of the momentum balance.

Furthermore, we normalize all physical constants to 1, except for �1 which is set to 0, and

we set F (") := � "4

4
+ "

6

6. We obtain the following system:

~utt + x �m(t)�
�

~� (~ux +m(t)) + F
0(~ux +m(t))

�
x

+ ~uxxxx = 0; in 
T ; (1.2a)

~�t � ~� (~ux +m(t)) (~ux +m(t))t � ~�xx = g(x; t); in 
T ; (1.2b)

~u(0; t) = ~u(1; t) = 0 = ~uxx(0; t) = ~uxx(1; t); 8t 2 [0; T ]; (1.2c)

~�x(0; t) = 0; �~�x(1; t) = ~�(1; t)� ��(t); 8t 2 [0; T ]; (1.2d)

~u(x; 0) = u(x; 0)� xm(0) = u0(x);

~ut(x; 0) = ut(x; 0)� x _m(0) = u1(x); ~�(x; 0) = �0(x); 8x 2 
: (1.2e)

Here, we have assumed that m(0) = 0 = _m(0). We impose the following compatibility

conditions (For simplicity, the tilde is omitted from now on.).

(H1) u0(0) = u0(1) = 0; u1(0) = u1(1) = 0; (1.3a)

u
00
0(0) = u

00
0(1) = 0; u

00
1(0) = u

00
1(1) = 0; (1.3b)

u
0000
0 (0) = 0; u

0000
0 (1) = � �m(0)� (�0(1) � ��(0))u00(1); (1.3c)

�
0
0(0) = 0; ��00(1) = �0(1)� ��(0): (1.3d)

Some control problems concerning applications of or experiments on SMA, respectively,

have been studied in recent years: dynamical shape control problems of a thin rod in [11], the

optimal control of phase transitions in a load{driven experiment in [1,2], and these control

problems with state constraints in [12,13]. We will make use of some of these results to

deal with the actual case of the optimal control of phase transitions in a deformation{driven

experiment. We will consider a weak formulation of the system (1.2) which is introduced in

(3.5). The aim is to achieve, possibly isothermically, a prescribed distribution of the phases.

Therefore, it is natural to consider a cost functional involving the order parameter " = ux

and � (or rather, the stress � = 
(� � �1)ux � �u
3
x + �u

5
x), as well as the natural control
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variables m, ��, and g:

J(u; �;m; g; ��) =

Z T

0

Z



�1(ux(x; t); �(x; t)) dxdt +

Z T

0

�
�2(

:::
m (t)) + �4(��(t))

�
dt

+
Z T

0

Z



�3(g(x; t)) dxdt ; (1.4)

where �1, �3 2 C2(IR2), �2, �4 2 C1(IR), and �2, �3 and �4 are convex in their arguments.

For instance, one could investigate the case when

J(u; �;m; g; ��) = �1

�
k� � � k2L2(
T )

+ k � � � k2L2(
T )

�

+�2k
:::
m k2L2(0;T ) + �3k g k2L2(
T )

+ �4k �� k2L2(0;T ); (1.5)

where �i, i = 1; : : : ; 4, are non{negative constants, and where � and � denote the desired

stress and temperature distribution during the evolution of the process, respectively.

The following problem is considered.

(CP) Minimize J(u; �;m; g; ��), subject to (3.5) and (m; g; ��) 2 Uad.

Here, Uad denotes the set of admissible controls which is assumed to be a non{empty,

bounded, convex and closed subset of

M := Mm �Mg �M�� ; (1.6)

where

Mm :=
n
m 2 H3(0; T )

��� m(0) = 0; _m(0) = 0
o
;

Mg :=
n
g 2 L2(0; T ;L2(
))

��� g(x; t) � 0 on 
T

o
;

M�� :=
n
�� 2 H1(0; T )

��� ��(t) > 0 on [0; T ]
o
: (1.7)

The existence of at least one solution to (CP) can be proved in the same way as theorem

3.1 in [15] (see [3]).

In Section 2 the existence of a local classical solution to the system (1.2) is shown. We

prove global existence of a classical and, under weaker assumptions on the data, of a weak

solution, respectively, as well as the corresponding uniqueness in Section 3. Section 4 �nally

presents the di�erentiability of the observation operator and the necessary conditions of

optimality.

2 Local existence

In this section, we sketch the proof of the existence for a local classical solution. We de�ne

the following spaces.
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X1;� := L
2(0; � ;H5(
)) \H2(0; � ;H1(
)); X2;� := H

4;2(
�); and (2.1)

X� := X1;� � X2;� : (2.2)

In the sequel, k:k denotes the norm of L2(
). Let

K� :=
n

(u; �) 2 X�

���
u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
;

u(0; t) = u(1; t) = 0 = uxx(0; t) = uxx(1; t); 8t 2 [0; � ];

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); 8t 2 [0; � ];

max
0�t��

�
kut(t)k2 + kuxx(t)k2 + kux(t)k2L1(
)

�
�M1;

max
0�t��

k�(t)k2 +
Z �

0
k�x(t)k2 dt �M2;

max
0�t��

�
kuxt(t)k2 + kuxxx(t)k2 + kuxx(t)k2L1(
)

�
�M3;

max
0�t��

�
k�x(t)k2 + �

2(1; t)
�

+

Z �

0
k�t(t)k2 dt �M4;

max
0�t��

k�(t)k2L1(
) �M5;

max
0�t��

�
kutt(t)k2 + kuxxt(t)k2 + kuxt(t)k2L1(
)

�
�M6;

max
0�t��

�
k�xx(t)k2 + k�x(t)k2L1(
)

�
+

Z �

0

�
k�xt(t)k2 + �

2
t (1; t)

�
dt �M7;

max
0�t��

�
kuxxxx(t)k2 + k�t(t)k2 + kuxxx(t)k2L1(
)

�

+
Z �

0
k�t(t)k2L1(
) dt �M8;Z �

0

�
kuxtt(t)k2 + kuxxxt(t)k2

�
dt �M9;

max
0�t��

�
k�xt(t)k2 + �

2
t (1; t)

�
+
Z �

0

�
k�tt(t)k2 + k�xxt(t)k2

�
dt �M10;

max
0�t��

�
k�xxx(t)k2 + k�t(t)k2L1(
) + k�xx(t)k2L1(
)

�

+

Z �

0

�
kuxxxxx(t)k2 + k�xxxx(t)k2

�
dt �M11

o
; (2.3)

where Mi, i = 1; : : : ; 11, denote positive constants which have to be constructed.

Let � 2 (0; T ] . We consider the operator

T : K� � X� ! X� ; (û; �̂) 7! T [û; �̂] = (u; �); (2.4)

where (u; �) solves the linear initial{boundary value problem

utt + uxxxx = f1; in 
� ; (2.5a)
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�t � �xx = f2; in 
� ; (2.5b)

u(0; t) = u(1; t) = 0 = uxx(0; t) = uxx(1; t); 8t 2 [0; � ]; (2.5c)

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); 8t 2 [0; � ]; (2.5d)

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
: (2.5e)

The right hand side is given by

f1 := �x �m(t) +
�
�̂ (ûx +m(t)) + F

0(ûx +m(t))
�
x
; (2.6)

f2 := g(x; t) + �̂ (ûx +m(t)) (ûx +m(t))t: (2.7)

The proof of the following result can be found in [3].

Lemma 2.1 Let � > 0, and suppose that u0 2 H
5(
); u1 2 H

4(
); �0 2 H
3(
);m 2

H
4(0; � ); g 2 L

2(0; � ;H2(
)) \ H
1(0; � ;H1(
)); �� 2 H

2(0; � ), and that the compatibility

conditions (H1) are satis�ed. Therefore,

f1 2 H2;1(
� ) \H1(0; � ;H1(
)) and f2 2 H2;1(
�): (2.8)

Then the linear problem (2.5) has a unique solution (u; �) satisfying

u 2 L2(0; � ;H5(
)) \H2(0; � ;H1(
)); � 2 H4;2(
� ): (2.9)

Next, we show the existence of a local solution to the system (1.2).

Theorem 2.1 Let the compatibility conditions (H1) be satis�ed, u0 2 H5(
); u1 2 H4(
); �0

2 H
3(
);m 2 H

4(0; T ); g 2 L
2(0; T ;H2(
)) \ H1(0; T ;H1(
)), and �� 2 H

2(0; T ). Then

there exists some � > 0, depending only on u0; u1; �0;m; g; ��, and T , such that the system

(1.2) has a solution (u; �) on 
� satisfying

u 2 L2(0; � ;H5(
)) \H2(0; � ;H1(
)); � 2 H4;2(
� ): (2.10)

Proof. In order to prove this theorem we apply Tikhonov's �xed point theorem which

can be found, for example, as Corollary 9.7 in Chapter 9 in [17]. It claims: If X is a re
exive

and separable Banach space, M a nonempty, closed, bounded, and convex subset of X, and

T a weakly sequentially continuous operator on M with

T : M � X !M; (2.11)

then T has a �xed point in M .

To apply the �xed point theorem to our problem, we have to show that
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(I) the operator T maps K� into itself,

(II) the operator T is weakly sequentially continuous on K� , that is

if f(ûn; �̂n)g � K� and (ûn; �̂n) ! (û; �̂) weakly in X� ;

then T [ûn; �̂n] ! T [û; �̂] weakly in X� : (2.12)

We start showing (I). This takes 8 steps of which we will only show the �rst two. Again, for

further details we refer the reader to [3].

In order to show that the operator T maps K� into itself for su�ciently small � > 0,

suitable constants Mi, i = 1; : : : ; 11, are constructed. We de�ne

� := max
j�j�

p
M1+ max

0�t��
jm(t)j

�
j�j+ jF (�)j+ jF 0(�)j+ jF 00(�)j+ jF 000(�)j + jF 0000(�)j

�
; (2.13)

where � 2 (0; T ) is arbitrary and t 2 (0; � ]. With Ci; Ĉi; i 2 IN, positive constants are

denoted, the former depending only on u0; u1; �0;m; g; ��, and T . We will make use of the

fact that for functions v 2 L2(0; � ;H1(
)) \ C([0; � ];L2(
)) it holds

kv(t)k2L1(
) � Ĉ1

�
kvx(t)k2 + kv(t)k2

�
; a.e. in (0; � ); (2.14)

and Z �

0
kv(s)k2L1(
) ds � Ĉ3

p
�

�
max
0�t��

kv(t)k2 +

Z �

0
kvx(s)k2 ds

�
; (2.15)

where the inequalities of Young, H�older and Nirenberg have been used.

Step 1. Multiplying (2.5a) by ut and integrating over 
t, we arrive at

1

2

�
kut(t)k2 + kuxx(t)k2

�
� C1 +

Z t

0

Z


f1 ut dxds � C1 + max

0�s�t
kut(s)k

Z t

0
kf1(s)kds : (2.16)

H�older's inequality gives

Z t

0
kf1(s)kds

�
Z t

0

�
k � x �m(s)k+ k�̂x (ûx +m(s))k+ k�̂ ûxxk+ kF 00(ûx +m(s)) ûxxk

�
ds

� C2

�p
t+ �

Z t

0
k�̂x(s)kds + �

Z t

0
kûxx(s)kds +

Z t

0
k�̂(s)kL1(
) � kûxx(s)kds

�

� C3

p
t

�
1 + �

q
M2 + �

q
M1 +

q
M1

� Z t

0
k�̂(s)k2L1(
) ds

� 1

2

�
: (2.17)

Then, (2.15) leads to

Z t

0
kf1(s)kds � C4

p
t

�
1 + �

q
M2 + �

q
M1 +

q
M1M2

�
: (2.18)
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Now, from Schwarz's inequality and the boundary conditions, we infer that

kux(t)kL1(
) � kuxx(t)k: (2.19)

Taking the maximum over t 2 [0; � ] on both sides of (2.16), Young's inequality yields

max
0�t��

�
kut(t)k2 + kuxx(t)k2 + kux(t)k2L1(
)

�
� C5

�
1 + �

�
�
2
M2 + �

2
M1 +M1M2

��
: (2.20)

Step 2. Testing (2.5b) with �, one obtains, again by the help of Young's inequality,

1

2
k�(t)k2 +

Z t

0
k�x(s)k2 ds +

1

2

Z t

0
�
2(1; s) ds � C6 +

1

2

Z t

0
�
2
�(s) ds +

Z t

0

Z


f2 � dxds : (2.21)

It holdsZ t

0

Z


j g � jdxds �

Z t

0
kg(s)k � k�(s)kds � C7

p
t max
0�s�t

k�(s)k � 1

10
max
0�s�t

k�(s)k2 + C8 t:

(2.22)

Furthermore,
���
Z t

0

Z


� �̂ (ûx +m(s)) _m(s) dxds

��� � C9�

Z t

0
k�(s)k � k�̂(s)kds

� C10�

q
tM2 max

0�s�t
k�(s)k � 1

10
max
0�s�t

k�(s)k2 + C11�
2
M2 t; (2.23)

and, using partial integration, we have for the other term of f2���
Z t

0

Z


� �̂ (ûx +m(s)) ûxt dxds

��� �
���
Z t

0

Z


� �̂ ûxx ût dxds

��� (2.24)

+
���
Z t

0

Z


�x �̂ (ûx +m(s)) ût dxds

��� +
���
Z t

0

Z


� �̂x (ûx +m(s)) ût dxds

��� =: I1 + I2 + I3:

By virtue of (2.15) and owing to the inequalities of H�older and Young, one has

jI1j �
Z t

0
k�(s)kL1(
) � k�̂(s)kL1(
) � kûxx(s)k � kût(s)kds

�M1

� Z t

0
k�(s)k2L1(
) ds

� 1

2 �
� Z t

0
k�̂(s)k2L1(
) ds

� 1

2

�M1C12

q
tM2

�
max
0�s�t

k�(s)k+
� Z t

0
k�x(s)k2 ds

� 1

2

�

� 1

10
max
0�s�t

k�(s)k2 +
1

4

Z t

0
k�x(s)k2 ds + C13M

2
1M2 t; (2.25)

jI2j �
1

4

Z t

0
k�x(s)k2 ds + C14�

2

Z t

0
k�̂(s)k2L1(
) � kût(s)k2 ds

� 1

4

Z t

0
k�x(s)k2 ds + C15�

2
M1M2

p
t; (2.26)

jI3j � �

Z t

0
k�(s)kL1(
) � k�̂x(s)k � kût(s)kds

� �

q
M1M2

� Z t

0
k�(s)k2L1(
) ds

� 1

2

� C16

q
M1M2 � t

1

4

�
max
0�s�t

k�(s)k+
� Z t

0
k�x(s)k2 ds

� 1

2

�

� 1

10
max
0�s�t

k�(s)k2 +
1

4

Z t

0
k�x(s)k2 ds + C17 �

2
M1M2

p
t: (2.27)
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Taking the maximum over t 2 [0; � ], we arrive at

max
0�t��

k�(t)k2 +
Z �

0
k�x(s)k2 ds +

Z �

0
�
2(1; s) ds

� C18

�
1 +

p
�

�
1 + �

2
M2 +M

2
1M2 + �

2
M1M2

��
: (2.28)

Now, we de�ne:

M1 := 2 � C5; M2 := 2 � C18: (2.29)

In this way � is �xed, and we deduce from (2.20) and (2.28) that there exists a �1 > 0 with

max
0�t��1

�
kut(t)k2 + kuxx(t)k2 + kux(t)k2L1(
)

�
�M1; (2.30)

max
0�t��1

k�(t)k2 +

Z �

0
k�x(s)k2 ds +

Z �

0
�
2(1; s) ds �M2: (2.31)

Continuing in a similar manner, it can be demonstrated that there exist some su�ciently

small � > 0 such that T maps K� into itself with the values for the Mi given in (2.3).

We now show (II). The proof for the energy balance being analogous, we only work it out

for the momentum balance.

Let (ûn; �̂n) 2 K� ; n 2 IN, with (ûn; �̂n) ! (û; �̂), weakly in X� . We have to show that

(un; �n) := T [ûn; �̂n] ! T [û; �̂] =: (u; �); weakly in X� : (2.32)

Since f�̂ng converges weakly in H4;2(
� ) to �̂, f�̂n;xg converges weakly in H2;1(
�) to �̂x, too;

and since the embedding H2;1(
�) ,! C(
�) is compact, f�̂n;xg converges uniformly on 
�

to �̂x. Furthermore, Proposition 2.3, Chapter 4 in [10], states H4;2(
� ) ,! H
1(0; � ;H2(
))

in the sense of a continuous embedding. Thus, for any sequence fûng � H
4;2(
�), we have

fûn;xxg � H
2;1(
� ) which therefore converges weakly in H

2;1(
� ) to ûxx. As shown above,

it follows that fûn;xxg converges uniformly on 
� to ûxx. So, we �nd that

f1;n(x; t) := �x �m(t) + �̂n ûn;xx + �̂n;x (ûn;x +m(t)) + F
00(ûn;x +m(t)) ûn;xx (2.33)

converges uniformly on 
� to f1. Since (un; �n) 2 K� , fung is bounded in X1;� , there exists

a weakly convergent subsequence fu~ng in X1;� . Thus, there is a ~u 2 X1;� such that fu~n;ttg
and fu~n;xxxxg converge weakly in L2(0; � ;H1(
)) to ~utt and ~uxxxx, respectively. Then, for all

� 2 L2(0; � ;L2(
)), it holds

Z �

0

Z



~utt �dxdt +
Z �

0

Z



~uxxxx �dxdt = lim
~n!1

Z �

0

Z


(u~n;tt + u~n;xxxx)�dxdt

= lim
~n!1

Z �

0

Z



�
� x �m(t) + �̂~n û~n;xx + �̂~n;x (û~n;x +m(t)) + F

00(û~n;x +m(t)) û~n;xx
�
�dxdt

=
Z �

0

Z



�
� x �m(t) + �̂ ûxx + �̂x (ûx +m(t)) + F

00(ûx +m(t)) ûxx
�
�dxdt : (2.34)
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Thus,

~utt + ~uxxxx = �x �m(t) + �̂ ûxx + �̂x (ûx +m(t)) + F
00(ûx +m(t)) ûxx; a.e. in 
� : (2.35)

Uniform convergence yields

~u(0; t) = ~uxx(0; t) = 0 = ~u(1; t) = ~uxx(1; t); 0 � t � �; and ~u(x; 0) = u0(x); x 2 
:

Owing to the compact embedding H1(0; � ;H1(
)) ,! C(
�), we infer u~n;t ! ~ut, uniformly

on 
� , i.e. ~ut(x; 0) = u1(x); x 2 
. We have ~u = u because of the uniqueness of the

linear problem (2.1). Since the limit does not depend on the choice of the subsequence, the

whole sequence fung converges weakly in X1;� to u. The operator T is weakly sequentially

continuous. 2

Remark 2.1 A consequence of the proof is that

uxtt 2 L1(0; � ;L2(
)) and uxxxxx 2 L1(0; � ;L2(
)); (2.36)

whence the H�older continuity of the functions utt, uxxxx, uxxt, �t, and �xx on 
T can be

shown in the same way as in [18].

3 Global existence

3.1 Classical solution

In this subsection, we prove the existence of a global classical solution. The following as-

sumptions are needed.

(H2) m 2 H4
loc(0;1); g 2 L2

loc(0;1;H2(
)) \H1
loc(0;1;H1(
));

g(x; t) � 0 on 
� [0;1); �� 2 H2
loc(0;1); ��(t) > 0 on [0;1): (3.1)

(H3) u0 2 H5
E(
) := fu 2 H5(
)

��� u(0) = u
00(0) = u(1) = u

00(1) = 0g;

u1 2 H4
E(
) := fu 2 H4(
)

��� u(0) = u
00(0) = u(1) = u

00(1) = 0g;
�0 2 H3(
); �0(x) > 0 on 
: (3.2)

We de�ne

~X1;T := X1;T \W 2;1(0; T ;H1(
)) \W 1;1(0; T ;H3(
)) \ L1(0; T ;H5(
)); (3.3)

and

~XT := ~X1;T �X2;T : (3.4)

There holds
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Theorem 3.1 Suppose that (H1){(H3) are satis�ed. Then the system (1.2) has a classical

solution (u; �) on 
�[0;1) with �(x; t) > 0 on 
�[0;1). Furthermore, we have (u; �) 2 ~XT

for any T > 0.

Proof. Since the proof is almost identical with the proof of theorem 2.1 in [16], except for

the �rst a priori estimate, we omit it here. It has already been mentioned in [19] that the

proof of global existence for the system describing load{driven experiments can be carried

over to other boundary conditions. The �rst a priori estimate is identical with the �rst one

given in the proof of the next theorem for a weak solution, so we refer to it. 2

3.2 Weak solution

In order to deal with less assumptions for the initial, boundary and compatibility conditions,

we investigate a weak formulation. The following weak formulation of the system (1.2) is

considered.
Z T

0
< utt(s); �(s) >H�1�H1

0

ds +
Z T

0

Z


x �m(s)�dxds +

Z T

0

Z



�
� (ux +m(s))

+F (ux +m(s))
�
�x dxds �

Z T

0

Z


uxxx �x dxds = 0; 8� 2 L2(0; T ;H1

0 (
)); (3.5a)

�t � � (ux +m(t)) (uxt + _m(t))� �xx = g; a.e. in 
T ; (3.5b)

u(0; t) = u(1; t) = 0; 8t 2 [0; T ]; uxx(0; t) = uxx(1; t) = 0; a.e. in (0; T );

�x(0; t) = 0; ��x(1; t) = �(1; t)� ��(t); a.e. in (0; T );

u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); 8x 2 
: (3.5c)

Instead of (H1) through (H3), we impose the following assumptions:

(H4) m 2 H3(0; T ); g 2 L2(0; T ;L2(
)); g(x; t) � 0 on 
� [0; T ];

�� 2 H1(0; T ); ��(t) > 0 on [0; T ]: (3.6)

(H5) u0 2 H3
E(
) := fu 2 H3(
)

��� u(0) = u
00(0) = u(1) = u

00(1) = 0g;
u1 2 H1

0 (
); �0 2 H1(
); �0(x) > 0 on 
: (3.7)

There holds

Theorem 3.2 Suppose that (H4) and (H5) are satis�ed. Then the system (3.5) has a solu-

tion (u; �) on 
 � [0; T ] satisfying

u 2 X3;T := W
2;1(0; T ;H�1(
)) \W 1;1(0; T ;H1(
)) \ L1(0; T ;H3

E(
)) and

� 2 X4;T := H
2;1(
T ) \ L1(0; T ;H1(
)); (3.8)

for any T > 0.
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Proof. In order to invoke the existence of a solution, we introduce sequences of smooth

approximations of the initial and boundary data, respectively. Let fun0g, fun1g, f�n0g, fmng,
fgng, and f�n�g satisfy the assumptions of theorem 3.1 and

u
n
0 * u0 in H

3
E(
); u

n
1 * u1 in H

1
0 (
); �

n
0 * �0 in H

1(
);

m
n
*m in H

3(0; T ); g
n
* g in L

2(0; T ;L2(
)); and

�
n
� * �� in H

1(0; T ); n!1; for some T > 0: (3.9)

Such sequences can be constructed in formulating appropriate boundary value problems so

that they comply with the compatibility conditions (1.3). The corresponding solutions are

denoted by f(un; �n)g. We infer from the maximum principle for parabolic equations that

�
n(x; t) > 0 on 
T . Taking the initial and boundary data given in (3.9), we will derive a

priori estimates that do not depend on n.

The necessary a priori estimates will be given in the following four lemmas. In the sequel,

the index `n' is omitted for simplicity if no confusion will arise. Furthermore, Ci, C�;i, Ĉi,

i 2 IN, and C, respectively, denote positive constants which may depend on T , but not on

n.

Lemma 3.1 It holds

sup
t2(0;T )

�
k�(t)kL1(
) + kut(t)k2 + kuxx(t)k2 + kux(t) +m(t)k6L6(
) + kux(t)k2L1(
)

�
� C: (3.10)

Proof. We proceed in two steps. First, testing (1.2a) with u yields

�
Z t

0

Z


u
2
t dxds +

Z


ut u

���t
0
dx +

Z t

0

Z


x �m(s)udxds +

Z t

0

Z


u
2
xx dxds

+

Z t

0

Z


ux

�
� (ux +m(s)) + F

0(ux +m(s))
�

dxds = 0; (3.11)

and thereforeZ t

0

Z



�
� u

2
x + u

2
xx + F

0(ux +m(s)) (ux +m(s))
�

dxds �
Z t

0

Z



�
jF 0(ux +m(s))m(s) j

+ j � uxm(s) j+ jx �m(s)u j+ u
2
t

�
dxds �

Z


ut u

���t
0

dx : (3.12)

Since u(0; t) = 0 = u(1; t), we conclude from (2.19) that kux(t)k2 � kuxx(t)k2. Thus,

F
0(ux +m(s)) (ux +m(s)) � C1(ux +m(s))6 �C2; (3.13)���F 0(ux + m(s))m(s)

��� � kmkH1(0;t) (C3jux +m(s)j6 + C4);Z t

0

Z


j � uxm(s) jdxds � 1

2

Z t

0

Z


� u

2
x dxds + C5kmk2H1(0;t)

Z t

0

Z


� dxds ; (3.14)

Z t

0

Z


jx �m(s)u jdxds � 1

2
kmk2H2(0;t) +

1

2

Z t

0

Z


u
2 dxds

� 1

2
kmk2H2(0;t) +

1

2

Z t

0
kux(s)k2 ds

� 1

2
kmk2H2(0;t) +

1

2

Z t

0
kuxx(s)k2 ds ; (3.15)
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and

�
Z


ut u

���t
0

dx � 1

2
(ku0k2 + ku1k2) + �1

Z


u
2
t (t) dx + C1;�

Z


u
2(t) dx

� 1

2
(ku0k2 + ku1k2) + �1

Z


u
2
t (t) dx + C1;� t

Z t

0

Z


u
2
t (x; s) dxds ; (3.16)

where we have made use of the inequalities of Young, Poincar�e and H�older. Altogether, we

end up with

1

2

Z t

0

Z


(� u2x + u

2
xx) dxds � C6

�
1 +

Z t

0

Z


u
2
t dxds + kmkH1(0;t)

Z t

0

Z


(ux +m(s))6 dxds

+kmk2H1(0;t)

Z t

0

Z


� dxds + kmkH1(0;t) + kmk2H2(0;t)

+ku0k2 + ku1k2
�

+ �1

Z


u
2
t (t) dx : (3.17)

Similarly, one has
Z t

0

Z


j � ux _m(s) jdxds � 1

2

Z t

0

Z


� u

2
x dxds + C7kmk2H2(0;t)

Z t

0

Z


� dxds ; (3.18)

and thereforeZ t

0

Z


j � ux _m(s) jdxds � C8

�
1 +

Z t

0

Z


u
2
t dxds + kmkH1(0;t)

Z t

0

Z



(ux +m(s))6 dxds

+kmk2H2(0;t)

Z t

0

Z


� dxds + kmk2H2(0;t)

+ku0k2 + ku1k2
�

+ �1

Z


u
2
t (t) dx : (3.19)

Secondly, we test (1.2a) with ut and add equation (1.2b) which has been integrated over

time and space. Partial integration yields

1

2
kut(t)k2 +

Z t

0

Z


x �m(s)ut dxds +

Z t

0

Z


uxt � (ux +m(s)) dxds

+
Z t

0

Z


F
0(ux +m(s))uxt dxds +

Z t

0

Z


uxx uxxt dxds +

Z t

0

Z


�t dxds

�
Z t

0

Z


� (ux +m(s))uxt dxds �

Z t

0

Z


� (ux +m(s)) _m(s) dxds �

Z t

0

Z


�xx dxds

�
Z t

0

Z


j g jdxds +

1

2
ku1k2: (3.20)

The third and the seventh term on the left hand side cancel. Involving the boundary condi-

tions for �, we �nd

1

2
kut(t)k2 +

Z t

0

Z


x �m(s)ut dxds +

Z t

0

Z


F
0(ux +m(s))uxt dxds +

1

2
kuxx(t)k2

+

Z


�(x; t) dx �

Z t

0

Z


� (ux +m(s)) _m(s) dxds +

Z t

0
�(1; s) ds

=:
1

2
kut(t)k2 + I1 + I2 +

1

2
kuxx(t)k2 +

Z


�(x; t) dx � (I3 + I4) +

Z t

0
�(1; s) ds

� 1

2
ku0k2H2(0;t) +

Z


�(x; 0) dx +

Z t

0
��(s) ds : (3.21)

12



Recall that � remains positive for all times. To deal with I3, we use (3.19). Furthermore,

one has

jI1j � 1

2

Z t

0

Z


x
2 �m2(s) dxds +

1

2

Z t

0

Z


u
2
t dxds � C9kmk2H2(0;t) +

1

2

Z t

0

Z


u
2
t dxds ;

jI4j � C10kmk2H2(0;t)

Z t

0

Z


� dxds : (3.22)

Partial integration and Young's inequality lead to

I2 =

Z t

0

@

@s

Z


F (ux +m(s)) dxds �

Z t

0

Z


F
0(ux +m(s)) _m(s) dxds

�
Z


F (ux +m(t)) dx � C11(ku0k6L6(
) + jm(0)j6)� C12

�
Z t

0

Z


jF 0(ux +m(s)) j � j _m(s) jdxds

� C13

Z



(ux +m(t))6 dx � C11ku0k6L6(
) � C14

�C15kmkH2(0;t)

� Z t

0

Z



(ux +m(s))6 dxds � 1
�
: (3.23)

We deduce that

1

2

�
kut(t)k2 + kuxx(t)k2

�
+ C13

Z


(ux +m(t))6 dx +

Z


�(x; t) dx +

Z t

0
�(1; s) ds

� C16

�
1 +

Z t

0

Z


u
2
t dxds + kmkH2(0;t)

Z t

0

Z


(ux +m(s))6 dxds + kmk2H2(0;t)

Z t

0

Z


� dxds

+ku0k2H2(0;t) + ku0k6L6(
) + ku1k2 + k�0k2

+kgk2L2(
t)
+ kmk2H2(0;t) + kmkH2(0;t) + k��k2L2(0;t)

�
+

Z t

0

Z


j � ux _m(s) jdxds : (3.24)

Invoking the �rst step (3.19), one concludes

1

2

�
kut(t)k2 + kuxx(t)k2

�
+ C13

Z


(ux +m(t))6 dx +

Z


�(x; t) dx +

Z t

0
�(1; s) ds

� C17

�
1 +

Z t

0

Z


u
2
t dxds + kmkH2(0;t)

Z t

0

Z


(ux +m(s))6 dxds + kmk2H2(0;t)

Z t

0

Z


� dxds

+ku0k2H2(0;t) + ku0k6L6(
) + ku1k2 + k�0k2

+kgk2L2(
t)
+ kmk2H2(0;t) + k��k2L2(0;t)

�
+ �1kut(t)k2: (3.25)

Recall that the norms on the right hand side are bounded. Now, with suitably chosen �1,

we apply Gronwall's lemma and take the supremum over [0; T ]. We arrive at

sup
t2(0;T )

�
k�(t)kL1(
) + kut(t)k2 + kuxx(t)k2 + kux +m(t)k6L6(
)

�
� C18: (3.26)

Invoking (2.19) completes the proof. 2
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Lemma 3.2 It holds

sup
t2(0;T )

k�(t)k2 +
Z T

0

�
k�x(t)k2 + �

2(1; t) + k�(t)k2L1(
)

�
dt � C: (3.27)

Proof. We remark that, in contrast to the foregoing lemma, the bounds for the norms of

the initial and boundary data, respectively, are immediately included into the constants Ci.

Furthermore, the proofs of this lemma and the following one are almost identical with the

proofs of lemma 2.5 and 2.6 of [16], respectively. We will give the proof to this lemma in

order to show that it works for our purposes as well, but the next proof then will be omitted.

Testing (1.2b) with �, one obtains

1

2
k�(t)k2 +

Z t

0
k�x(s)k2 ds +

1

2

Z t

0
�
2(1; s) ds �

Z t

0

Z


�
2 (ux +m(s))uxt dxds

�
Z t

0

Z


�
2(ux +m(s)) _m(s) dxds � C1 +

Z t

0
k�(s)k2 ds : (3.28)

It is

���
Z t

0

Z


�
2 (ux +m(t))uxt dxds

��� =
���
Z t

0

Z



�
�
2 (ux +m(s))ut

�
x

dxds

�
Z t

0

Z



2 � �x (ux +m(s))ut dxds �
Z t

0

Z


�
2
uxx ut dxds

��� =: I1 + I2: (3.29)

The �rst term on the right hand side vanishes due to the boundary conditions. With (3.10),

it holds

���I1
��� � �1

Z t

0

Z


�
2
x dxds + C1;�

Z t

0

Z


�
2
u
2
t (ux +m(s))2 dxds

� �1

Z t

0

Z


�
2
x dxds + C2C1;�

Z t

0
k�(s)k2L1(
) ds : (3.30)

Nirenberg's inequality yields

k�(t)kL1(
) � Ĉ1k�x(t)k
2

3 � k�(t)k
1

3

L1(
)
+ Ĉ2k�(t)kL1(
); (3.31)

and Young's inequality gives

k�(t)k2L1(
) �
�
Ĉ3k�x(t)k

2

3 + Ĉ4

�2
� 2 Ĉ2

3 k�x(t)k
4

3 + 2 Ĉ2
4

� �2 Ĉ5k�x(t)k2 + C2;�: (3.32)

Altogether, we have for I1

jI1j � �1

Z t

0

Z


�
2
x dxds + C1;�

Z t

0

�
�2C3k�x(s)k2 + C2;�C2

�
ds

�
�
�1 + (C1;�C3 �2)

� Z t

0

Z


�
2
x dxds + C1;�C2;� C4: (3.33)
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Analogously, the second integral can be estimated by

jI2j � C5

Z t

0
k�(s)k2L1(
) � kuxx(s)k � kut(s)kds

� C6

Z t

0
k�(s)k2L1(
) ds � C7 �2

Z t

0

Z


�
2
x dxds + C2;�C8: (3.34)

Furthermore,

Z t

0

Z


j �2 (ux +m(s)) _m(s)) jdxds � C9

Z t

0

Z


�
2 dxds : (3.35)

We arrive at

1

2
k�(t)k2 +

�
1 � �1 � C1;�C3 �2 � C7 �2

� Z t

0

Z


�
2
x dxds +

1

2

Z t

0
�
2(1; s) ds

� C1 + C10

Z t

0

Z


�
2 ds + C1;� C2;�C4 + C2;�C8: (3.36)

Again, applying Gronwall's lemma, choosing �1 and �2 appropriately, and taking the supre-

mum on both sides, we arrive at the statement (3.27) except for the last estimate. Due to

(3.32), also Z T

0
k�(t)k2L1(
) dt � C (3.37)

holds. 2

Lemma 3.3 It holds

sup
t2(0;T )

�
kuxt(t)k2+kuxxx(t)k2+k�x(t)k2+�2(1; t)

�
+
Z T

0

�
k�t(t)k2+k�xx(t)k2

�
dt � C: (3.38)

Proof. See [16], lemma 2.6. 2

Lemma 3.4 It holds

sup
t2(0;T )

kutt(t)k2H�1(
) � C: (3.39)

Proof. From equation (3.5a), we have

< utt(t); �(t) >H�1�H1

0

=
Z


x �m(t)�dx +

Z



�
� (ux +m(t))

+F (ux +m(t))
�
�x dx �

Z


uxxx �x dx = 0; 8� 2 L2(0; T ;H1

0 (
)): (3.40)

Therefore, taking into account the estimates of the foregoing lemmas,

< utt(t); �(t) >H�1�H1

0

� C � k�kH1

0
(
); 8� 2 L2(0; T ;H1

0(
)) a.e. in (0; T ); (3.41)

and

kutt(t)kH�1(
) � C a.e. in (0; T ); (3.42)
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whence the assertion follows. 2

Now, from lemma 3.1 to 3.4 it follows that, possibly for a subsequence which is again

denoted by f(un; �n)g, there exist functions (u; �) satisfying

u
n ! u; weakly{star in X3;T ; �

n ! �; weakly{star in X4;T : (3.43)

We will show that these convergences are su�cient to arrive at the weak solution (3.5).

Since the embedding H2;1(
T ) ,! C(
T ) is compact, f�ng converges uniformly to � on


T . In addition, funxg � W
1;1(0; T ;L2(
)) \ L1(0; T ;H2(
)) � H

2;1(
T ), and therefore

the same argument applies to funxg. Thus, 8� 2 L2(0; T ;H1
0(
)),

lim
n!1

Z T

0

Z



�
(untt � utt)�� (unxxx � uxxx)�x

+(�n (unx +m
n)� � (ux +m))�x + (F (unx +m

n)� F (ux +m))�x
�

dxdt

= lim
n!1

Z T

0

Z



�
(�n � �) (unx +m

n)�x + � (unx +m
n � ux �m)�x

�
dxdt = 0; (3.44)

since F is a continuous function and fmng converges uniformly to m. Similarly, as funxtg �
L
1(0; T ;L2(
)) and _mn ! _m uniformly,

lim
n!1

Z T

0

Z



�
(�nt � �t)�� (�nxx � �xx)�

�(�n (unx +m
n) (unxt + _mn)� � (ux +m) (uxt + _m))�

�
dxdt

= lim
n!1

Z T

0

Z



�
(�n � �) (unx +m

n) (unxt + _mn) + � (unx +m
n � ux �m) (unxt + _mn)

+� (ux +m) (unxt + _mn � uxt � _m)
�
� dxdt = 0: (3.45)

Due to the regularity of the solutions f(un; �n)g, no problem arises concerning the boundary

data. The theorem is completely proved. 2

3.3 Uniqueness

We have uniqueness of the global classical and of the weak solution, respectively. The proof

of uniqueness for the weak solution is almost identical with the proofs of theorem 2.3 in [15]

and of theorem 2.2 in [1], respectively. These papers deal with the problem of load{driven

experiments for which existence has been shown in [16], as mentioned above. So, we only

state the result of the obtained stability result, implying uniqueness, and omit the proof. In

the next section, on the control problem, we will make use of this stability result.

Lemma 3.5 Let the assumptions of theorem 3.2 be satis�ed. We denote by u(i); �(i), i = 1; 2,

weak solutions to the problem (1.2) in the sense of theorem 3.2, respectively, and by m(i)
; g

(i)
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and �
(i)

� the corresponding boundary data, and set u := u
(1) � u

(2)
; � := �

(1) � �
(2)
;m :=

m
(1)�m

(2)
; g := g

(1) � g
(2) and �� := �

(1)
� � �

(2)
� . Then it holds

sup
t2(0;T )

�
kut(t)k2 + kuxx(t)k2 + k�(t)k2 + kux(t)k2L1(
)

�

+

Z T

0

�
k�x(t)k2 + �

2(1; t) + k�(t)k2L1(
)

�
dt +

sup
t2(0;T )

�
kuxt(t)k2 + kuxxx(t)k2 + k�x(t)k2 + �

2(1; t) + kut(t)k2L1(
)

+kuxx(t)k2L1(
) + kutt(t)k2H�1(
) + k�(t)k2L1(
)

�
+

Z T

0

�
k�t(t)k2 + k�xx(t)k2

�
dt

� C �
�
kmk2H3(0;T ) + kgk2L2(
T )

+ k��k2H1(0;T )

�
: (3.46)

Uniqueness for the global classical solution can be shown in the same way as in the proof

of lemma 3.5. In fact, one has to derive the same estimates for u and � as for the global

existence which has been shown in [3]. So, this proof is omitted, too.

4 The control problem

4.1 Di�erentiability of the observation operator

In order to derive the necessary conditions of optimality, we have to show the Fr�echet di�er-

entiability of the observation operator S. The operator maps each (m; g; ��) in the control

set to the corresponding unique solution (u; �) of (3.5). The control space is de�ned as

Z = H
3(0; T )� L

2(0; T ;L2(
))�H
1(0; T ); (4.1)

therefore M � Z. For (m; g; ��) 2 Uad we de�ne

K
�(m; g; ��) :=

n
(h; k; l) 2 Z

��� (m� �h; g � �k; �� � �l) 2 Uad

8 � 2 [0; �]; � > 0
o
: (4.2)

There holds:

Theorem 4.1 Let the assumptions of theorem 3.2 be satis�ed and (m; g; ��) 2 Uad. Then S

has a directional derivative

(�; ) = D(h;k;l)S(m; g; ��) (4.3)

at (m; g; ��) in the direction (h; k; l) for all (h; k; l) 2 K+(m; g; ��). Moreover, with (u; �) =

S(m; g; ��) and " = ux + m(t), (�; ) 2 X3;T �X4;T solves the linear initial boundary value

problem

17



Z T

0
< �tt(s); �(s) >H�1�H1

0

ds �
Z T

0

Z


�xxx �x dxds = �

Z T

0

Z


x �h(s) � dxds (4.4a)

�
Z T

0

Z



�
" + (� + F

00(")) (�x + h(s))
�
�x dxds ; 8� 2 L2(0; T ;H1

0(
)); (4.4b)

 t �  xx = k + � "t (�x + h(t)) + " "t  + � " (�xt + _h(t)); a.e. in 
T ; (4.4c)

�(x; 0) = �t(x; 0) = 0 =  (x; 0); 8x 2 
; (4.4d)

�(0; t) = �(1; t) = 0; 8t 2 [0; T ]; �xx(0; t) = �xx(1; t) = 0; a.e. in (0; T );

 x(0; t) = 0; � x(1; t) =  (1; t)� l(t); a.e. in (0; T ): (4.4e)

A corresponding result holds for the directional derivative D(�h;�k;�l)S(m; g; ��) of S at

(m; g; ��) in the direction (�h;�k;�l) if (h; k; l) 2 K�(m; g; ��).

Proof. It follows from the standard theory of linear partial di�erential equations that (4.4)

has a unique solution (�; ) 2 X3;T �X4;T . Now, let (h; k; l) 2 K+(m; g; ��) and � > 0 such

that (m+ �h; g + �k; �� + �l) 2 Uad, whenever 0 � � � �. We de�ne

(u�; ��) := S(m+ �h; g + �k; �� + �l); "
� := u

�
x +m(t) + �h(t);

p
� := u

� � u� ��; q
� := �

� � � � � : (4.5)

To prove the theorem we have to show that

k(p�; q�)kX3;T�X4;T
= o(�) as � ! 0 + : (4.6)

For this purpose we need some preparation. Setting

G("; �) := � "+ F
0("); (4.7)

we obtain the following system which is solved by (p�; q�):

Z T

0
< p

�
tt(s); '(s) >H�1�H1

0

ds �
Z t

0

Z


p
�
xxx 'x dxds = �

Z t

0

Z



�
G("�; ��)�G("; �)

�� (G"("; �) (�x + h(t)) +G�("; �) )
�
'x dxds ; 8' 2 L2(0; T ;H1

0(
)); (4.8a)

q
�
t � q

�
xx = �

�
"
�
"
�
t � � " "t � �

�
� "t (�x + h(t)) + " "t  

+� " (�xt + _h(t))
�
; a.e. in 
T ; (4.8b)

p
�(x; 0) = p

�
t (x; 0) = 0 = q

�(x; 0); x 2 
; (4.8c)

p
�(0; t) = p

�(1; t) = 0; 8t 2 [0; T ]; p
�
xx(0; t) = p

�
xx(1; t) = 0; a.e. in (0; T );

q
�
x(0; t) = 0; �q�x(1; t) = q

�(1; t); a.e. in (0; T ): (4.8d)
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Taylor's theorem leads to

G("�; ��) = G("; �) +G"("; �) ("� � ") +G�("; �) (�� � �)

+G1("
�
; ") ("� � ")2 + ("� � ") (�� � �); (4.9)

with G1("
�
; ") =

�
10"3 � 3" + (10"2 � 1)("� � ") + 5"("� � ")2 + ("� � ")3

�
. Since "� � " =

p
�
x + �(�x + h(t)) and �

� � � = q
� + � , we have

A :=
@

@x

�
G("�; ��)�G("; �)� � (G"("; �) (�x + h(t)) +G�("; �) )

�

=
@

@x

�
G"("; �) p

�
x +G�("; �) q

� +G1("
�
; ") ("� � ")2 + ("� � ") (�� � �)

�

=:
@

@x

~A = G"("; �) p
�
xx +G�("; �) q

�
x +G"�("; �) �x p

�
x

+G"�("; �) "x q
� +G""("; �) "x p

�
x +G1("

�
; ") 2 ("� � ")("�x � "x) (4.10)

+("�x � "x) (�� � �) + ("� � ") (��x � �x) +
�
G1;"�("�; ") "�x +G1;"("

�
; ") "x

�
("� � ")2:

Taylor's theorem for the right hand side of equation (4.8b) yields

B := " "t q
� + � "t p

�
x + � " p

�
xt +

�
(�� � �) "t ("� � ")

+(�� � �) " ("�t � "t) + � ("� � ") ("�t � "t)
�
: (4.11)

We now prove assertion (4.6). We divide the proof into three lemmas. In the following,

Ci; i 2 IN, denote suitably chosen constants.

Lemma 4.1 It holds

sup
t2(0;T )

�
kp�(t)k2 + kp�t (t)k2 + kp�xx(t)k2 + kq�(t)k2 + kp�x(t)k2L1(
)

�

+
Z T

0

�
kq�x(t)k2 + q

�(1; t)2
�

dt = O(�4): (4.12)

Proof. Testing (4.8a) with p�t , partial integration, H�older's and Young's inequalities and the

corresponding stability result (see lemma 3.5) lead to

1

2

�
kp�t (t)k2 + kp�xx(t)k2

�
=

Z t

0

Z


Ap

�
t dxds

� C1

Z t

0

�
kp�t (s)k2 + kp�x(s)k2 + kp�xx(s)k2 + kq�(s)k2 + �1kq�x(s)k2

�
ds

+C2

Z t

0

Z



�
j"� � "j4 + j"�x � "xj4 + j�� � �j4

�
dxds

+

Z t

0

Z


("� � ") (��x � �x) p

�
t dxds

� C3

Z t

0

�
kp�t (s)k2 + kp�x(s)k2 + kp�xx(s)k2 + kq�(s)k2 + �1kq�x(s)k2

�
ds

+C2

Z t

0

Z



�
j"� � "j4 + j"�x � "xj4 + j�� � �j4

�
dxds + C4�

4

� C3

Z t

0

�
kp�t (s)k2 + kp�x(s)k2 + kp�xx(s)k2 + kq�(s)k2 + �1kq�x(s)k2

�
ds + C5�

4
: (4.13)
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Next, we test (4.8b) with q�. Again, partial integration and Young's inequality give

1

2
kq�(t)k2 +

Z t

0
kq�x(s)k2 ds �

Z t

0
q
�
x(s) q�(s)

���1
0

ds

�
Z t

0

Z


q
�
�
� " p

�
xt + q

�
" "t + � "t p

�
x

�
dxds

+
1

6

Z t

0
kq�(s)k2 ds + C6

Z t

0

Z



�
j"� � "j4 + j�� � �j4

�
dxds

+
Z t

0

Z



�
(�� � �) " ("�t � "t) + � ("� � ") ("�t � "t)

�
q
� dxds : (4.14)

With the help of our stability result we have that the last terms are bounded by C7�
4 +

1
3

R t
0 kq�(s)k2 ds . Moreover,

���
Z t

0

Z


q
�
�
q
�
" "t + � "t p

�
x

�
dxds

��� � C8

Z t

0

�
kq�(s)k2 + �2kq�x(s)k2

�
ds

+�3C9 sup
t2(0;T )

kp�xx(t)k2; (4.15)

where we have made use of (2.14) and (2.19) for p�(t). The �rst term on the right hand side

of (4.14) yields

Z t

0

Z


q
�
� " p

�
xt dxds =

Z t

0

Z



d

dx

�
q
�
� " p

�
t

�
dxds

�
Z t

0

Z



�
q
�
x � " p

�
t + q

�
�x " p

�
t + q

�
� "x p

�
t

�
dxds : (4.16)

The �rst term on the right hand side vanishes due to the boundary conditions. Again,

invoking (2.14), H�older's and Young's inequalities, we have

1

2

�
kq�(t)k2 +

Z t

0
kq�x(s)k2 ds

�
+
Z t

0
q
�(1; s)2 ds � C7�

4 (4.17)

+C10

Z t

0

�
kp�t (s)k2 + kq�(s)k2 + (�2 + �4 + �5) kq�x(s)k2

�
ds + �3C9 sup

t2(0;T )
kp�xx(t)k2:

Altogether, we conclude from (4.13) and (4.17):

kp�t (t)k2 + kp�xx(t)k2 + kq�(t)k2 +
Z t

0

�
kq�x(s)k2 + q

�(1; s)2
�

ds

� C11�
4 + C12

Z t

0

�
kp�t (s)k2 + kp�x(s)k2 + kp�xx(s)k2 + kq�(s)k2

+(�1 + �2 + �4 + �5) kq�x(s)k2
�

ds + �3C9 sup
t2(0;T )

kp�xx(t)k2: (4.18)

Taking into account Poincar�e's inequality, i.e. kp�(t)k � kp�x(t)k, (2.19) for p�(t), chosing �i,

i = 1; : : : ; 5, suitably, applying Gronwall's lemma, and taking the supremum on both sides,

the assertion is proved. 2
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Lemma 4.2 It holds

sup
t2(0;T )

�
kp�xt(t)k2 + kp�xxx(t)k2 + kq�x(t)k2 + q

�(1; t)2 + kp�t (t)k2L1(
) + kp�xx(t)k2L1(
)

+kq�(t)k2L1(
)

�
+
Z T

0

�
kq�t (t)k2 + kq�xx(t)k2

�
dt = O(�4): (4.19)

Proof. Testing (4.8b) with q�t , partial integration yields

Z t

0
kq�t (s)k2 ds +

Z t

0

Z


q
�
xt q

�
x dxds �

Z t

0
q
�
x q

�
t

���1
0

ds � �1

Z t

0
kq�t (s)k2 ds + C1�

4
; (4.20)

where we proceeded as in the foregoing lemma. Considering the initial and boundary con-

ditions, we obtain

(1� �1)
Z t

0
kq�t (s)k2 ds +

1

2
kq�x(t)k2 +

1

2
q
�(1; t)2 � C1�

4
: (4.21)

Next, we test (4.8a) with �p�xxt. Using the initial and boundary conditions, we arrive at

1

2

�
kp�xt(t)k2 + kp�xxx(t)k2

�
= �

Z t

0

Z


Ap

�
xxt dxds

= �
Z t

0

Z



~At p
�
xxx dxds +

Z



~Ap�xxx(t) dx : (4.22)

The �rst integral can be estimated by

���
Z t

0

Z



�
G"("; �) p

�
xt +G�("; �) q

�
t +G"�("; �) �t p

�
x +G"�("; �) "t q

� +G""("; �) "t p
�
x

+G1("
�
; ") 2 ("� � ") ("�t � "t) + ("�t � "t) (�� � �)

+("� � ") (��t � �t) +
�
G1;"�("�; ") "�t +G1;"("

�
; ") "t

�
("� � ")2

�
p
�
xxx dxds

���
� C2

Z t

0

�
kp�xt(s)k2 + kp�x(s)k2 + kp�xxx(s)k2 + kq�(s)k2 + �2kq�t (s)k2

�
ds + C3�

4

� C4

Z t

0

�
kp�xt(s)k2 + kp�xxx(s)k2 + �2kq�t (s)k2

�
ds + C5�

4
; (4.23)

where we have made use of the foregoing lemma and the stability result. Also, that is why

the second integral is bounded by

�3kp�xxx(t)k2 + C6

�
kp�x(t)k2 + kq�(t)k2

�
+ C7

Z



�
j"� � "j4 + j�� � �j4

�
dx

� �3kp�xxx(t)k2 + C8�
4
: (4.24)

Both inequalities lead to

1

2
kp�xt(t)k2 + (

1

2
� �3)kp�xxx(t)k2 + (

1

2
� �1 � �2)

Z t

0
kq�t (s)k2 ds +

1

2
kq�x(t)k2 +

1

2
q
�(1; t)2

� C9�
4 + C4

Z t

0

�
kp�xt(s)k2 + kp�xxx(s)k2

�
ds : (4.25)
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Now, a suitable choice of �i, i = 1; 2; 3, Gronwall's lemma and taking the supremum on

both sides, invoking (2.14) and lemma 4.1 as usual, the lemma is proved except for the termR T
0 kq�xx(t)k2 dt . Looking into equations (4.8b) and (4.11), respectively, one easily sees that

it is also bounded by O(�4). 2

Lemma 4.3 It holds

sup
t2(0;T )

kp�tt(t)k2H�1(
) � O(�4): (4.26)

Proof. This works analogously to lemma 3.4. With the help of equations (4.8a), (4.10) and

the foregoing lemma, one �nds

sup
t2(0;T )

kp�tt(t)kH�1(
) � O(�2) a.e. in (0; T ); (4.27)

whence the assertions follows. 2

Thus, theorem 4.1 is completely proved. 2

Remark 4.1 The result of theorem 4.1 is much stronger than the corresponding result of

theorem 2.3 in [1]. In fact, here we have shown the di�erentiability of S as mapping into the

solution space X3;T �X4;T , while in [1] only the di�erentiability into the Banach space

B = W
1;1(0; T ;L2(
)) \ L1(0; T ;

�
H1 (
) \H2(
))

� L
2(0; T ;H1(
)) \ L1(0; T ;L2(
)) (4.28)

has been proved. Since X4;T is continuously imbedded in C(
T ), this means that also

pointwise constraints on the temperature � could be included in the control problem. This

was not possible in [12] and [13] where only pointwise constraints on the displacement u

and the strain ", respectively, could be admitted. Note that pointwise constraints for � are

very realistic for the particular experimental setup discussed here, where � is kept close to a

prescribed (constant) temperature �.

4.2 Necessary conditions of optimality

We introduce the adjoint system. Let (p; q) be the adjoint variables to (u�; ��) 2 X3;T�X4;T ,

we have

Z T

0

Z


�t pt dxdt +

Z


�(t) pt(t) dx �

Z T

0

Z


�xx pxx dxdt = �

Z T

t

Z


�
@

@x

�
(��

+F 00("�)) px + qt �
�
"
� + q �

�
t "

� +D1�1(u
�
x; �

�)
�

dxds ; in 
T ; (4.29a)

8� 2 H1(0; T ;L2(
)) \ L2(0; T ;
�
H1 (
) \H2(
)); 0 � t � T;
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qt + qxx � px "
� + q "

�
"
�
t = D2�1(u

�
x; �

�); a.e. in 
T ; (4.29b)

p(x; T ) = pt(x; T ) = 0 = q(x; T ); for x 2 
; (4.29c)

p(0; t) = p(1; t) = 0 = pxx(0; t) = pxx(1; t);

qx(0; t) = 0 = qx(1; t) + q(1; t); for 0 � t � T; "
� = u

�
x +m

�(t): (4.29d)

The following theorem can be proved as theorem 3.1 in [1].

Theorem 4.2 Suppose that (u�; ��) 2 X3;T � X4;T and �1 2 C
2(IR2). Then there ex-

ists a pair (p�; q�) such that p� 2 H
1(0; T ;L2(
)) \ L1(0; T ;

�
H1 (
) \ H2(
)) and q

� 2
H

1(0; T ;H1(
)) \ L2(0; T ;H3(
)), which solve the adjoint system (4.29).

The following theorem is the main result of this section.

Theorem 4.3 Let (u�; ��;m�
; g
�
; �
�
�) denote any solution of the control problem (CP). Then

there exist functions (p�; q�) as in theorem 4.2 which solve the following variational inequality:

Z T

0

Z



n
�h(t) p� x� _h(t) q� �� "� + h(t)

�
p
�
x (�� + F

00("�))� q
�
�
�
"
�
t

� o
dxdt

+

Z T

0

n
�0
2(

:::
m
�

(t))h(t)
o

dt +

Z T

0

Z



n
�0
3(g

�)� q
�
o
k dxdt

+
Z T

0

n
�0
4(�

�
�(t))� q

�(1; t)
o
l(t) dt � 0; (4.30)

8(h; k; l) 2 K+(m�
; g
�
; �
�
�). For (h; k; l) 2 K�(m�

; g
�
; �
�
�) we obtain the reverse inequality.

Proof. Let (u�; ��;m�
; g
�
; �
�
�) solve (CP). Then, for su�ciently small � > 0, one has

J(u�; ��;m�
; g

�
; �

�
�) � J(u�; ��;m�

; g
�
; �
�
�); 8(h; k; l) 2 K+(m�

; g
�
; �
�
�): (4.31)

Theorem 4.1 then yields

(u�; ��) = (u�; ��) + �(��;  �) + o(�); (4.32)

where (��;  �) solves (4.4). Taking the limit �! 0+, invoking (1.4) and (4.31), one arrives

at

Z T

0

Z



�
D1�1(u

�
x; �

�)��x +D2�1(u
�
x; �

�) �
�

dxdt

+
Z T

0
�0
2(

:::
m
�

(t))h(t) dt +
Z T

0

Z



�0
3(g

�) k dxdt

+

Z T

0
�0
4(�

�
�(t)) l(t) dt � 0; 8(h; k; l) 2 K+(m�

; g
�
; �
�
�): (4.33)
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Denoting by (p�; q�) the adjoint variables, we have

Z T

0
< �

�
tt; p

�
>H�1�H1

0

dt �
Z T

0

Z


�
�
xxx p

�
x dxdt +

Z T

0

Z


x �h(t) p� dxdt �

Z T

0

Z


p
� @

@x

�
"
�
 
�

+ (�� + F
00("�)) (��x + h(t))

�
dxdt +

Z T

0

Z


q
�
�
 
�
t �  

�
xx � k �

�
�
�
"
�
t (��x + h(t))

+ "
�
"
�
t  

� + �
�
"
� (��xt + _h(t))

��
dxdt = 0; "

�
x = u

�
x +m

�(t): (4.34)

Partial integration leads to

�
Z T

0

Z


�
�
t p

�
t dxdt �

Z


�
�
t (t) p

�
t (t) dx +

Z T

0

Z


�
�
xx pxx dxdt +

Z T

0

Z



�
p
�
x (��

+ F
00("�)) (��x + h(t)) + p

�
x �h(t) + p

�
x "

�
 
� +  

�(�q�t � q
�
xx)� q

�
k � q

�
�
�
"
�
t (��x + h(t))

� q
�
"
�
"
�
t  

� + (q� �� "�)x �
�
t � q

�
�
�
"
� _h(t)

�
dxdt �

Z T

0
q
�(1; t) l(t) dt = 0: (4.35)

It follows

�
Z T

0

Z


�
�
t p

�
t dxdt �

Z


�
�
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and therefore
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With theorem 4.2, we obtain
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Invoking equation (4.33) yields
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Hence, the variational inequality (4.30) follows. 2
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