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Reconstruction of quasi-local numerical effective models from
low-resolution measurements

Alfonso Caiazzo, Roland Maier, Daniel Peterseim

Abstract

We consider the inverse problem of reconstructing an effective model for a prototypical diffu-
sion process in strongly heterogeneous media based on low-resolution measurements. We rely
on recent quasi-local numerical effective models that, in contrast to conventional homogenized
models, are provably reliable beyond periodicity assumptions and scale separation. The goal of
this work is to show that the identification of the matrix representation of these effective models is
possible. Algorithmic aspects of the inversion procedure and its performance are illustrated in a
series of numerical experiments.

1 Introduction

Recent medical imaging protocols based on Magnetic Resonance Imaging (MRI) play a key role in
non-invasive modern diagnostics. As an example, in Magnetic Resonance Elastography (MRE), dis-
placement fields acquired via phase-constrast MRI are used, in combination with a mechanical tissue
model, to recover information about the elastic behavior of the tissue [32, 39, 21]. However, the resolu-
tion of data, which is practically limited by examination time and by the properties of the MRI scanner,
only allows for the reconstruction of tissue models on an effective scale (e.g., order of millimeters),
which is typically much coarser than the characteristic length scales of the microstructures (e.g., vas-
culature) of living tissue.

This difficulty calls for mathematical models that describe the effective behavior of physical processes
on the scale of data resolution while also incorporating microscopic information. Such models are
the key to bridge the discrepancy between microstructural quantities and the effective behavior in
the desired reconstruction process and are typically referred to as homogenized (or effective) mod-
els. Classical homogenization methods are based on analytical homogenization theory and rely on
strong assumptions such as (local) periodicity or a clear separation of scales which cannot always
be assumed for general microstructures, especially in the presence of pathological changes. In these
cases, certain numerical homogenization methods provide an alternative. State-of-the-art techniques
such as Localized Orthogonal Decomposition (LOD) provide effective models that provably cope with
arbitrary rough coefficients in a large class of model problems including diffusion problems [27, 18],
elasticity [19, 2] and wave propagation [14, 1, 37, 41, 13, 26], without requiring periodicity or scale
separation. These methods are therefore natural candidates for the reconstruction of effective models
on the macroscopic scale of data resolution in the very general setting.

As far as linear elliptic problems are concerned, there are various other numerical homogenization
approaches such as the Generalized Finite Element Methods (GFEM) [3], AL bases [16], Rough Poly-
harmonic Splines (RPS) [35], the Generalized Multiscale Finite Element Method (GMsFEM) [11], Gam-
blets [33], CEM-GMsFEM [6], and their variants with similar properties as LOD. All these methods are
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A. Caiazzo, R. Maier, D. Peterseim 2

based on a coarse mesh with a characteristic mesh parameter (typically the effective scale), or corre-
sponding concepts in the setting of mesh-free methods, and compute special problem-adapted basis
functions with optimal approximation properties. These methods are of Galerkin-type and thus char-
acterized by discrete bases. To achieve optimal accuracy, a moderate price in terms of an overhead
in the computational complexity has to be paid compared to a standard finite element method (fixed
order) on the same mesh. The overhead is either in the number of functions per mesh entity (GFEM,
GMsFEM), e.g., elements or nodes, or in the support of the basis functions (LOD, RPS, Gamblets,
AL bases). In both cases, the result is an increased communication between the degrees of freedom
which in turn leads to a slightly denser sparsity pattern of the corresponding system matrices. We will
refer to these methods as quasi-local to differentiate from standard finite element methods that only
have local communication between neighboring degrees of freedom. The quasi-locality also distin-
guishes the above numerical homogenization methods from classical numerical multiscale methods
based on homogenization theory such as the Multiscale Finite Element Method (MsFEM) [22], the
Two-Scale Finite Element Method [28], or the Heterogeneous Multiscale Method (HMM) [10, 9] that
share the communication pattern of classical finite element methods.

We conclude that reliable effective models for PDEs with general microstructures are based on a
controlled deviation from locality. Similar observations have been made in connection with the pollution
effect in high-frequency time-harmonic wave propapation [4] which cannot be avoided unless the mesh
size is coupled to, e.g., the polynomial degree [30, 31, 29] or the support of the basis functions [37]
in a logarithmic way. Promising results using non-local models have also been achieved in the field
of peridynamics [40, 25, 8]. All these findings motivate the use of quasi-local models in the context of
inversion processes on the effective scale.

Although the quasi-local effective models described above are purely discrete and lack a PDE rep-
resentation in general, they are well-understood. Hence, this paper follows the pragmatic approach
of reconstructing quasi-local effective models (i.e., their matrix representation) given low-resolution
measurements based on inhomogeneous boundary data in a medium with microstructures. The goal
of this paper is to promote this idea along with some algorithmic aspects and numerical experiments
that serve as a proof of concept. To demonstrate the feasibility and the potential of the approach, we
consider a stationary linear elliptic multiscale diffusion model problem. For this PDE, we consider a
worst-case scenario without any structural a priori knowledge on the underlying diffusion coefficient.
In particular, we do not assume that the heterogeneous coefficient can be parameterized by a few
unknown parameters that could easily be identified.

We start with introducing the microscopic forward problem and derive the effective model, represented
by the effective stiffness matrix, by adapting existing theory from numerical homogenization (Sec-
tion 2). This is mainly to emphasize that an effective model indeed exists in the setting of very general
coefficients. In the actual inversion process, we tackle the reconstruction of an effective quasi-local
model from given measurements. To this end, we prescribe the quasi-locality of the system matrices
and rephrase the inverse problem as a non-linear least squares problem for which we discuss iterative
minimization techniques such as the gradient descent or the Gauß-Newton method (Section 3). In a
series of numerical experiments (Section 4), we show that quasi-local effective models can indeed be
reconstructed. In particular, we consider the case where we are given measurements for all possible
(coarse) boundary conditions, and also the setting where solutions are only known for a few boundary
conditions. The aim of the experiments is to show that allowing the model to deviate from true locality,
in the sense of classical effective PDE models, improves the inversion process and, thus, justifies the
previous discussion.
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Reconstruction of effective models from low-resolution data 3

2 Microscopic Forward Problem and Effective Approximation be-
yond Homogenization

2.1 Problem setting

We consider the prototypical second-order linear elliptic diffusion problem

− divA∇u = f in Ω,

u = u0 on ∂Ω,
(2.1)

where Ω ⊂ Rd, d ∈ {1, 2, 3} is a polyhedral domain and the diffusion coefficient A encodes the
microstructure of the medium. We do not make any structural assumptions on the coefficient such as
periodicity or scale separation. Admissible coefficients are elements of the following set,

A :=

{
A ∈ L∞(Ω; Rd×dsym) : ∃ 0 < α ≤ β <∞ :

∀ξ ∈ Rd, a.a. x ∈ Ω : α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2

}
,

which only requires minimal assumptions.

Since solutions to problem (2.1) do not necessarily exist in the classical sense, we are interested in
the weak solution of (2.1) in the Sobolev space V := H1(Ω) which is characterized by the following
variational formulation. Given A ∈ A, u0 ∈ X := H1/2(∂Ω), and f ∈ L2(Ω), we seek u ∈ V such
that

a(u, v) = (f, v) for all v ∈ V 0 := H1
0 (Ω),

tru = u0 on ∂Ω,
(2.2)

where a(w, v) :=
∫

Ω
A∇w · ∇v dx and (w, v) := (w, v)L2(Ω) denotes the L2 inner product. Note

that instead of (2.1), we could as well consider a general second-order linear PDE in divergence form
with additional lower-order terms. Such a generalization is straight-forward but is omitted for simplicity.

In practice, it is favorable to rewrite problem (2.2) as a problem with homogeneous Dirichlet boundary
conditions in V 0. Let Eb : X → V be a linear extension operator, which also defines the restriction
operator R : V → V 0 by R := 1 − Eb tr. Then, we can decompose u = Ru + (1 − R)u =
Ru+ Ebu0 and problem (2.2) reduces to finding Ru ∈ V 0 such that

a(Ru, v) = (f, v)− a(Ebu0, v) (2.3)

for all v ∈ V 0.

2.2 Effective model via Localized Orthogonal Decomposition

Let us now introduce a coarse target scale H (e.g., the resolution of the data available for the inverse
problem). We adopt the notation from numerical homogenization where a capitalH is used to indicate
that the scale is indeed a coarse one. In typical applicationsH will be much larger than the microscopic
scale, i.e., the scale at which the diffusion coefficient varies. To represent the solution on the scale H ,
we discretize (2.3) by using the multiscale technique introduced in [27] known as Localized Orthogonal
Decomposition (LOD).

Let TH be a mesh of orthotopes with characteristic mesh size H and denote as Q1(TH) the corre-
sponding space of piecewise bilinear functions. In order to introduce the LOD, we define the discrete
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spaces VH := Q1(TH) ∩ V , V 0
H := VH ∩ V 0, and XH := trVH with dimensions m = dimVH ,

m0 = dimV 0
H , and n = dimXH , respectively. The choice of these finite element spaces is not

unique and other standard finite element spaces could be used. Since the standard space VH is not
suitable for the approximation of u if H is larger than the spatial scale of the microstructure, we enrich
the coarse model with microscopic information about the problem via corrections of classical finite
element functions. The construction of these corrections is based on a projective quasi-interpolation
operator IH : V 0 → V 0

H with standard approximation and stability properties, i.e., for an element
T ∈ TH with diameter HT , it holds that

‖H−1
T (v − IHv)‖L2(T ) + ‖∇IHv‖L2(T ) ≤ C‖∇v‖L2(N(T )) (2.4)

for all v ∈ V 0, where the constant C is independent of H , and

N(ω) :=
⋃{

T ∈ TH : T ∩ ω 6= ∅
}

defines the neighborhood of ω ⊂ Ω. Note that for shape-regular meshes the above estimate also
holds globally. For a particular choice of IH , see [12, 15, 24].

Based on IH , we define, for any element T ∈ TH and any function vH ∈ V 0
H , the element correction

CTvH ∈ W := KerIH by

a(CTvH , w) =

∫
T

A∇vH · ∇w =: aT (vH , w) (2.5)

for all w ∈ W , and the full correction C : V 0
H → W by

C :=
∑
T∈TH

CT .

By construction, it holds that
a((1− C)vH , w) = 0 (2.6)

for all vH ∈ V 0
H and w ∈ W . The corrections CTvH have, in general, global support. However, as

shown in [20, 36] (based on [27]) they decay exponentially fast (see also the one-dimensional sketch
in Figure 2.1). Therefore, we use localized element corrections CT,`vH which are obtained by solving
(2.5) on local patches with ` layers, i.e.,

a(CT,`vH , w) = aT (vH , w) (2.7)

for all w ∈ W with w|Ω\N`(T ) = 0. The `-neighborhood N` is defined as

N`(ω) = N(N`−1(ω)), ` ≥ 1, N0(ω) :=
⋃{

T ∈ TH : ω ⊂ T
}

for ω ⊂ Ω. As above, we define the full correction C` : V 0
H → W by

C` :=
∑
T∈TH

CT,`.

As shown in [20], we get, for any vH ∈ V 0
H ,

‖∇(C − C`)vH‖L2(Ω) ≤ e−c`‖∇vH‖L2(Ω). (2.8)
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Reconstruction of effective models from low-resolution data 5

Hat function Λ Correction of hat function CΛ

Corrected hat function (1− C)Λ |(1− C)Λ| in logarithmic scale

Figure 2.1: Illustration of a one-dimensional hat function and its correction for the coefficient A(x) = (2 +
sin(28πx))−1.
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The constant c only depends on the contrast β/α, although this dependence seems pessimistic in
many cases of practical relevance [38, 17]. For vH ∈ VH , we set CvH := CRvH and C`vH :=
C`RvH .

Given a discretized extension operator Eb
H : XH → VH that fulfills Eb|XH

= Eb
H and the corre-

sponding restriction operator RH : VH → V 0
H defined by RH := 1 − Eb

H tr, the discretized version
of (2.3) reads: find uH = RHuH + Eb

Hu
0
H ∈ VH such that

a((1− C`)RHuH , (1− C`)vH) = (fH , vH)− a(Eb
Hu

0
H , (1− C`)vH) (2.9)

for all vH ∈ V 0
H . In (2.9), fH := ΠHf is the L2 projection of f onto VH , and u0

H a finite element ap-
proximation of u0. In the context of inverse problems, it is reasonable to consider that u0 is defined as
the first order finite element approximation of coarse experimental boundary data which approximate
the real data up to order H in the H1/2 norm. Thus, in the following we will assume that u0 = u0

H .

2.3 Error estimates

The following theorem shows that the approximation error of the presented approach scales optimally
with H and that it is independent of the variations of the diffusion coefficient.

Theorem 2.1 (Error of the forward effective model) Let u ∈ V be the solution of (2.2) and uH ∈
VH the solution of (2.9), for given boundary data u0 ∈ XH , a right-hand side f ∈ L2(Ω), as well as
an oversampling parameter `.

For g ∈ L2(Ω), let û(g) ∈ V denote the solution of (2.2) with right-hand side g and boundary
condition u0 = 0, and let us introduce the worst-case best-approximation error

wcba(A, TH) := sup
g∈L2(Ω)\{0}

inf
vH∈V 0

H

‖Rû(g)− vH‖L2(Ω)

‖g‖L2(Ω)

.

It holds
‖u− uH‖L2(Ω) .

(
H2 + e−c` + wcba(A, TH)

) (
‖f‖L2(Ω) + ‖u0‖X

)
.

Proof of Theorem 2.1. We split the error u− uH = (u− ūH) + (ūH − ũH) + (ũH − uH) with the
solutions ūH and ũH of the auxiliary problems

a(RH ūH , (1− C)vH) = (f, vH)− a(Eb
Hu

0, (1− C)vH)

and
a(RH ũH , (1− C`)vH) = (fH , vH)− a(Eb

Hu
0, (1− C`)vH).

To bound eH := uH − ũH , we observe that

a((1− C`)eH , (1− C`)vH) = −a(C`RH ũH , (1− C`)vH) = a(C`RH ũH , (C` − C)vH), (2.10)

by the orthogonality property (2.5). Testing with vH = eH in (2.10) and using (2.8), it follows that

‖A1/2∇(1− C`)eH‖2
L2(Ω) = a((1− C`)eH , (1− C`)eH)

= a(C`RH ũH , (C` − C)eH)

. e−c`‖∇C`RH ũH‖L2(Ω)‖A1/2∇(1− C`)eH‖2
L2(Ω)
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Reconstruction of effective models from low-resolution data 7

Coefficient A L2 errors of FEM ( ) and LOD ( )

Figure 2.2: Left: An example of a fine scale coefficient. Right: Comparison of the finite element method and the
LOD on Ω = [0, 1]2 for f = 1, u0 = 0, and ` = 2 for the solution of the diffusion problem corresponding to
the depicted scalar coefficient. The dashed line indicates linear convergence.

and thus

‖eH‖L2(Ω) . ‖A1/2∇(1− C`)eH‖L2(Ω) . e−c`
(
‖f‖L2(Ω) + ‖u0‖X

)
(2.11)

using eH = IH(1− C`)eH and (2.4). As a next step, we bound ēH := ũH − ūH . We note that

a(ēH , (1− C)vH) = a(RH ũH + Eb
Hu

0, (C − C`)vH)

for any vH ∈ V 0
H . With vH = ēH and similar arguments as above, we obtain

‖ēH‖L2(Ω) . ‖A1/2∇(1− C)ēH‖L2(Ω) . e−c`
(
‖f‖L2(Ω) + ‖u0‖X

)
. (2.12)

The error u − ūH can be estimated using [15, Proposition 1] which also holds for inhomogeneous
Dirichlet boundary conditions, i.e.,

‖u− ūH‖L2(Ω) .
(
H2 + wcba(A, TH)

) (
‖f‖L2(Ω) + ‖u0‖X

)
. (2.13)

The triangle inequality, (2.11), (2.12), and (2.13) yield the desired estimate. To illustrate the advan-
tage of the LOD, Figure 2.2 shows the error between the numerical solution on a fine scale and the
numerical solutions using the LOD and a classical finite element approximation on a coarse scale, re-
spectively. The finite element method suffers from pre-asymptotic effects when the micro scale is not
resolved, while the LOD produces a finite element function with much better approximation properties.

We emphasize that, choosing ` large enough (i.e., ` & | logH|), it holds e−c` . H or even e−c` .
H2. As discussed in [15], the worst-case best-approximation error is at least O(H), and it scales
possibly even better with H for certain pre-asymptotic regimes. In this work, we are mainly interested
in solving the inverse problem and do not focus on optimizing the error estimates derived above.

To prepare the setting for the inverse problem, we define the solution operator

LA : XH × L2(Ω)→ V,

(u0, f) 7→ u, where u solves (2.2)
(2.14)
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and its discretized version

Leff
A,` : XH × L2(Ω)→ VH ,

(u0, f) 7→ uH , where uH solves (2.9).
(2.15)

The operator LA (and similarly also Leff
A,`) can be written as

LA(u0, f) = LA(u0, 0) + LA(0, f) (2.16)

with the linear operators LA(·, 0) : XH → V and LA(0, ·) : L2(Ω)→ V . For simplicity, we assume
in the following that f is a fixed function. The generalization to the case where f is also part of the input
data is conceptually straightforward but slightly more involved. The decomposition (2.16) motivates the
distance function between operators defined by

distf (A,B) :=
(
‖A(·, 0)−B(·, 0)‖2

L(XH ;V ) + ‖A(0, f)−B(0, f)‖2
V

)1/2
(2.17)

for all A, B : XH × L2(Ω)→ V .

Remark 2.2 If we consider the case where f = 0, coefficients that only differ by a multiplicative
constant produce the same solution operator. In view of the inverse problem in the next section, one
should fix an additional parameter in this case, e.g., the mean value of A.

Using Theorem 2.1, we obtain the following result.

Corollary 2.3 (Error of the effective forward operator) Let ` & | logH|. It holds that

distf (LA,L
eff
A,`) . H.

2.4 Reformulation of the effective model in terms of the effective stiffness
matrix

As a next step, we discuss an alternative representation of the operator Leff
A,` using the stiffness matrix

corresponding to the discrete formulation (2.9). Given a coefficient A ∈ A, the corresponding LOD
stiffness matrix SH(A, `) is defined by

SH(A, `)[i, j] := a((1− C`)Λzj , (1− C`)Λzi), for i, j ∈ {1, . . . ,m}, (2.18)

where i 7→ zi is a fixed ordering of the m nodes in TH and Λz denotes the classical finite element
hat function associated with the node z ∈ TH . The typical sparsity of such a matrix is depicted in
Figure 2.3.

The set of LOD stiffness matrices with oversampling parameter ` based on admissible coefficients is
given by

S(`, TH) :=
{
SH(A, `) ∈ Rm×msym : A ∈ A

}
. (2.19)

For any matrix SH ∈ S(`, TH), we define the operator

Leff
SH

: XH × L2(Ω)→ VH ,

(u0, f) 7→ uH , where uH solves{
SH,0RHuH = RHMHfH −RHSHE

b
Hu

0,

uH = u0 on ∂Ω,

(2.20)

DOI 10.20347/WIAS.PREPRINT.2577 Berlin 2019



Reconstruction of effective models from low-resolution data 9

FE matrix LOD matrix, ` = 1

LOD matrix, ` = 2 LOD matrix, ` = 3

Figure 2.3: Sparsity pattern of a classical finite element stiffness matrix and LOD stiffness matrices for different
values of ` on a Cartesian grid with lexicographic ordering in two dimensions.
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with the classical finite element mass matrix MH and the restriction SH,0 = RHSHRH
T of SH to the

inner nodes of TH . Recall that fH = ΠHf . For better readability, we use the notation vH (or BH ) for
both the vector vH ∈ Rm (or the matrix BH ∈ Rm

0×m) and the corresponding function vH ∈ VH (or
the mapping BH : VH → V 0

H ). In this setting, we can prove the following lemma.

Lemma 2.4 (Alternative representation of the effective forward operator) LetSH(A, `) ∈ S(`, TH)
be the LOD stiffness matrix corresponding to (2.9). Assume that Eb fulfills C`Eb

Hv
0 = C`Eb|XH

v0 =
0 for any v0 ∈ XH . It holds

Leff
SH(A,`)(u

0, f) = Leff
A,`(u

0, f) (2.21)

for all u0 ∈ XH , f ∈ L2(Ω).

Remark 2.5 Possible choices for the extension operator Eb that fulfill the assumptions of Lemma 2.4
are those that extend functions in XH to functions in VH that are only supported on one layer of
elements away from the boundary.

Proof of Lemma 2.4. Write uH =
∑m

j=1 ujΛzj and observe that (2.9) is equivalent to∑
j : zj 6⊂∂Ω

uj a((1− C`)RHΛzj , (1− C`)Λzi) = (fH ,Λzi)− a(Eb
Hu

0, (1− C`)Λzi) (2.22)

for all i ∈ {k : zk 6⊂ ∂Ω}. Inserting fH =
∑m

j=1 fjΛzi , using the fact that

a(Eb
Hu

0
H , (1− C`)vH) = a((1− C`)Eb

Hu
0
H , (1− C`)vH)

for any vH ∈ V 0
H , and the definition (2.18), equation (2.22) can be written as

SH,0(A, `)RHuH = RHMHfH −RHSH(A, `)Eb
Hu

0,

which shows (2.21). Lemma 2.4 and Theorem 2.3 show that the operators LA(·, f) and Leff
SH(A,`)(·, f)

are close as operators from XH to V if ` is chosen large enough. We will use this property in the next
section to motivate the inverse problem.

3 Inverse Problem: Reconstruction of the Effective Model

3.1 Problem setting

Let us assume that the diffusion coefficient A is unknown and that structural assumptions such as
periodicity, quasi-periodicity, and given parameterization by few degrees of freedom are not satisfied a
priori. In an ideal setting, information about solutions to problem (2.2) in the form of a solution operator

L̃ := LA(·, f) : X → V

would be given. In practical applications, however, boundary data and information about the corre-
sponding solutions are only available on some (coarse) scale, possibly much larger than the (micro)
scale on which the diffusion coefficient and the corresponding solutions vary. In this case, a classical
formulation of the inverse problem, for a fixed right-hand side f , consists in recoveringA in (2.2) given
the mapping

L̃eff := Leff
A (·, f) : XH → VH

DOI 10.20347/WIAS.PREPRINT.2577 Berlin 2019



Reconstruction of effective models from low-resolution data 11

which comprises coarse measurements of solutions to (2.2).

If the unknown coefficient includes fine scale features, a direct approach of recovering A by full (fine
scale) simulations is computationally unfeasible. Inspired by the ideas presented in Section 2, we
present in this section an alternative approach to recover information about the (macroscopic) effec-
tive model taking into account the presence of a micro scale diffusion coefficient. Rather than recon-
structing the diffusion coefficient itself, we tackle the reconstruction of an effective stiffness matrix that
is able to reproduce the given data related to solutions to (2.2). We recall that such an approach is
reasonable since the mapping L̃eff can not only be characterized by the corresponding coefficient
but also by the effective stiffness matrix. Therefore, the alternative formulation of the inverse problem
reads:

given L̃eff : XH → VH , find the corresponding stiffness matrix S̃H .

Remark 3.1 The process of finding a (sparse) matrix S̃H that is able to describe the behavior of a
(dense) solution operator L̃eff could also be seen as a technique for data compression.

Remark 3.2 Note that in the case f = 0, the classical Calderon problem [5] might be considered,
where a so-called Dirichlet-to-Neumann mapping is given, instead of the operator LA. However, this
problem requires information on the coefficient at the boundary, and the derivation of the method
presented below needs to be adjusted accordingly.

3.2 The minimization problem

Ideally, the inverse problem would be formulated as a minimization problem for the functional

J̃H(SH) =
1

2

(
distf (L̃

eff ,Leff
SH

)
)2

(3.1)

in the set S(`, TH) of LOD stiffness matrices based on admissible coefficients.

Since we are not able to characterize the set S(`, TH) in a way that would be suitable for optimization,
we instead seek a minimizer in the linear space

M(`, TH) :=
{
SH ∈ Rm×msym : ∀ 0 ≤ i ≤ j ≤ m : zi /∈ N`(zj)⇒ SH [i, j] = 0

}
(3.2)

of matrices that have a non-zero entry at position [i, j] if the corresponding nodes zi and zj belong
to the `-neighborhood of each other. In other words, we enlarge the set of possible minimizers to
all the matrices with a sparsity pattern that mimics the sparsity of LOD stiffness matrices (see also
Figure 2.3). We emphasize that at this point the sole criterion in the inversion process is the sparsity
pattern. From now on, we are searching for effective models with increased communication between
the degrees of freedom without requiring any knowledge on LOD or other numerical homogenization
methods.

Remark 3.3 Observe that, by construction of the correctors C` in (2.7), it holdsS(`, TH) ⊂M(`, TH).
Note as well that stiffness and mass matrices arising from classical finite element methods belong to
the spaceM(0, TH). Classical homogenization approaches such as the MsFEM without oversam-
pling, the Two-Scale Finite Element Method, or the HMM also lead to stiffness matrices inM(0, TH).
Matrices arising from the MsFEM with oversampling are included inM(1, TH).
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Remark 3.4 It is worth noting that the set of matrices with the considered sparsity pattern includes
matrices that occur in isogeometric analysis [23, 7]. Moreover, the setM(`, TH) also includes higher-
order finite element matrices with polynomial degree p ≈ ` on meshes that are coarser by roughly a
factor of p and matrices from peridynamics with horizon δ ≈ H`.

The minimization problem inM(`, TH) reads

find S̃∗H = arg min
SH∈M(`,TH)

J̃H(SH). (3.3)

Using the previously introduced matrices, the operator Leff
SH

: XH → VH can be written as a matrix
of size m× n, i.e.,

Leff
SH

= Leff
SH

(·, f) =
(
1−RH

TS−1
H,0RHSH

)
Eb
H +RH

TS−1
H,0RHMHFH ,

with FH := [fH , fH , . . . , fH ] ∈ Rm×n and the identity matrix 1 ∈ Rm×m. The operator L̃eff may
also be interpreted as a matrix, so that the distance between the operators can be measured in general
matrix norms. This is especially useful since a splitting of the form (2.16) is generally not known for
L̃eff .

Let µ := dimM(`, TH). Instead of (3.3), based on the matrix representation introduced above we
consider a minimization problem for the functional JH : Rµ → R defined by

JH(SH) =
1

2

∥∥L̃eff
∥∥−2

Rm×n

∥∥L̃eff − Leff
SH

∥∥2

Rm×n . (3.4)

At this stage, the choice of the norm in Rm×n in (3.4) is arbitrary. The results that we will show in
Section 4 have been obtained using the Frobenius norm, which seems to be a natural candidate.

3.3 Iterative minimization

In order to find a minimizer of (3.4), we can now apply standard minimization techniques such as the
Newton method or the gradient descent method. Here, we adopt a Gauß-Newton method which, in
our numerical computations, showed faster convergence in terms of number of iterations.

In order to compute the descent direction, the most important step concerns the computation of the
gradient of JH with respect to the relevant entries {si}µi=1 of SH (i.e., the diagonal and the non-zero
entries above the diagonal, due to symmetry). Using the chain rule, we obtain

∂

∂si
JH(SH) = −

∥∥L̃eff
∥∥−2

Rm×n

(
L̃eff − Leff

SH

)
:
∂Leff

SH

∂si
, (3.5)

For the Gauß-Newton method, only the derivatives of Leff
SH

are needed, i.e.,

∂Leff
SH

∂si
= −RH

T

(
∂S−1

H,0

∂si

)
RH(SHE

b
H −MHFH)−RH

TS−1
H,0RH

(
∂SH
∂si

)
Eb
H

= RH
TS−1

H,0

(
∂SH,0
∂si

)
S−1
H,0RH(SHE

b
H −MHFH)−RH

TS−1
H,0RH

(
∂SH
∂si

)
Eb
H .

Here, the double dot product is defined by M : M̃ = trace(MM̃). The derivatives ∂SH

∂si
and ∂SH,0

∂si
are relatively easy to compute, as they are defined as global matrices that only contain at most two
entries equal to 1.
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For ease of notation, let us interpret Leff
SH

and SH as vectors in Rmn and Rm
2
, respectively. The

Gauß-Newton method to minimize the functional JH is then defined by the following steps.

� Let an initial matrix S0
H ∈M(`, TH) be given.

� For k = 0, 1, . . . (until a certain stopping criterion is satisfied), solve

Hkpk =
[
DLeff

Sk
H

]T [
L̃eff − Leff

Sk
H

]
(3.6)

where D denotes the derivative with respect to the relevant entries of SH and

Hk =
[
DLeff

Sk
H

]T [
DLeff

Sk
H

]
.

� Set Pk ∈M(`, TH) as the matrix whose relevant entries are given by pk and define

Sk+1
H = SkH + δkPk (3.7)

with appropriately chosen step size δk, for example using backtracking line search based on
the Armijo-Goldstein condition.

Due to the ill-posedness of the inverse problem, the matrix Hk might be singular. A possible approach
to overcome this issue consists in replacing (3.6) with

(Hk + η1) pk =
[
DLeff

Sk
H

]T [
L̃eff − Leff

Sk
H

]
(3.8)

with a given parameter η > 0.

Another possible strategy consists in adding a regularization term to the functional to be minimized,
i.e., in replacing (3.4) by

JH(SH) =
1

2

∥∥L̃eff
∥∥−2

Rm×n

∥∥L̃eff − Leff
SH

∥∥2

Rm×n +
γ

2

∥∥Sreg − SH
∥∥2

Rm×m (3.9)

where γ > 0 is a given regularization parameter and Sreg is a regularization (or stabilization) matrix.
Additionally, the computations of the gradient in (3.5) need to be adapted accordingly. In the presence
of multiple minimizers, this regularization enforces the solution to be close (depending on the parame-
ter γ) to the matrix Sreg. For example, if the aim of the inverse problem is to find defects in an otherwise
homogeneous medium, a suitable choice for Sreg could be a standard finite element stiffness matrix for
a constant diffusion coefficient. In our practical computations, the regularization approach described
in (3.8) generally led to better results.

We emphasize that the presented inversion process does not need to resolve any fine scales in order
to obtain an effective numerical model. The information extracted by this procedure (i.e., the stiffness
matrix S̃H ) may be used to simulate other problems subject to the same (unknown) diffusion coeffi-
cient. Furthermore, the information gathered can be seen as an intermediate step towards recovering
information concerning the original coefficient itself. This additional recovery step will be studied in a
future work.
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4 Numerical Experiments

In this section, we present some numerical experiments that illustrate the capability of the proposed
method. The inverse problem is based on synthetic data, i.e., the coarse measurements used to feed
the inversion algorithm are obtained from finite element functions in Vh, defined on a mesh with mesh
size h =

√
2 · 2−9 that resolve the fine scale features of the diffusion coefficient. Furthermore, the

data are perturbed by random noise with intensity up to 5%.

4.1 Example 1: full boundary data

In the first experiment, we assume to have full information on the operator (matrix) L̃eff , i.e., we assume
that measurements in Ω on the coarse scale H =

√
2 · 2−5 for a complete basis of XH are available.

The scalar coefficientA for which the effective behavior should be recovered is constant on a mesh Tε
with ε =

√
2 ·2−7 and the value on each element is independently obtained as a uniformly distributed

random number between 1 and 50, i.e., for any T ∈ Tε we have A|T ∼ U(1, 50) (see Figure 4.1,
left). We set f = 1 and start the inverse iteration with the finite element stiffness matrix S0

H based on
the constant coefficient with value 1. The values of the functional JH in the first 20 iterations of the

Figure 4.1: Left: Diffusion coefficient in Example 1. Right: Values of JH in the first 20 iterations of
the inversion algorithm, using sparsity patterns based on local matrices ((×, dotted) and quasi-local
matrices with ` = 1 ( ), ` = 2 (+) ` = 3 ( ).

inversion algorithm are given in Figure 4.1 (right). In particular, we compare the performance of a local
approach based on matrices with the sparsity pattern of the standard finite element method (such as,
e.g., the HMM or the Two-Scale Finite Element Method) with the proposed quasi-local method based
on matrices inM(`, TH) for ` ∈ {1, 2, 3}. One clearly sees that the quasi-local inversion leads to
better results in terms of decrease and value of the error functional JH . In particular, with the local
approach the functional seems to reach a stagnation relatively quickly, while the results significantly
improve with the quasi-local approach when increasing the value of `.

A necessary validation step, in order to further investigate the different methods, consists in solving a
diffusion problem using the stiffness matrices reconstructed with the different approaches (local and
quasi-local), and comparing the resulting numerical solutions with the finite element functions from
which the measurements were taken to feed the inversion algorithm. The outcome of this assessment
is shown in Figure 4.2, focusing on the cross sections at x2 = 0.5 (left) and at x1 = 0.5 (right) of
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Figure 4.2: Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based
on local stiffness matrices ( , dotted) and quasi-local ones with ` = 1 ( ), ` = 2 ( ), ` = 3 ( )
for Example 1 obtained from full boundary data. The corresponding fine FE function ( , dashed) is
depicted as a reference. Left: Cross section at x2 = 0.5. Right: Cross section at x1 = 0.5.

Figure 4.3: Cross sections of reconstructed functions with random boundary condition u0 ∈ XH

based on local stiffness matrices ( , dotted) and quasi-local ones with ` = 1 ( ), ` = 2 ( ), ` = 3
( ) for Example 1 obtained from full boundary data. The corresponding fine FE function ( , dashed)
is depicted as reference. Left: Cross section at x2 = 0.5. Right: Cross section at x1 = 0.5.

the numerical approximations corresponding to the boundary condition u0(x1, x2) = x1. Figure 4.3
depicts the same cross sections when a random boundary condition u0 ∈ XH is considered.

Besides the accuracy of the numerical approximations computed based on the recovered stiffness
matrices, it is also important to assess the robustness of the reconstructed effective model, i.e., to
investigate to which extent the coarsened information about the diffusion coefficient encoded in the
stiffness matrix can be used to simulate other scenarios.

For this purpose, we employ the reconstructed stiffness matrices to simulate a diffusion problem with
two different right-hand sides, i.e.,

g1(x1, x2) = 20 (1{x1<0.5} x1 + 1{x1≥0.5} (1− x1))(1{x2<0.5} x2 + 1{x2≥0.5} (1− x2))

and

g2(x1, x2) = 10 1{x1≥0.5},
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Figure 4.4: Cross sections at x2 = 0.5 of reconstructed functions with homogeneous Dirichlet boundary
conditions based on local stiffness matrices ( , dotted) and quasi-local ones with ` = 1 ( ), ` = 2 ( ), ` = 3
( ). The corresponding fine FE functions ( , dashed) are given as a reference but were not part of the input
data. Left: Right-hand side g1. Right: Right-hand side g2.

and compare the numerical results with the corresponding fine-scale solution using the diffusion co-
efficient depicted in Figure 4.1 (left). In both cases, homogeneous Dirichlet boundary conditions are
imposed on the outer boundaries.

Representative cross sections of the numerical approximations obtained based on the reconstructed
stiffness matrices, compared to the corresponding fine-scale solutions, are shown in Figure 4.4. The
numerical results indicate that robustness can be assured only with the quasi-local inversion. More-
over, as in the previous experiments, the quality of the results improves if ` is increased.

4.2 Example 2: incomplete boundary data

Next, we consider a more realistic case where the operator L̃eff is only partially known. In practice,
this means that coarse measurements in Ω are available only for q distinct boundary conditions inXH

(q < dimXH ). In this setting, the aim is to find an effective model that not only fits the given data,
but that is also able to reproduce the coarse behavior for other boundary conditions not considered as
input data.

The scalar coefficient A whose corresponding stiffness matrix should be recovered is shown in Fig-
ure 4.5 (left). We set H =

√
2 · 2−5, f = 1, q = 40, and the initial matrix S0

H is defined as the finite
element stiffness matrix based on an independent and identically distributed random coefficient on the
coarse scale H with values between 0.1 and 10.

We adapt the randomized approach recently described in [34] in the context of deep learning. Namely,
in each iteration step, we randomly choose half of the available data to compute the new search
direction, whereas we use all available data for the line search and for the evaluation of the functional
JH . The values of the error functional JH in the first 20 iterations of the inversion algorithm are shown
in Figure 4.5 (right). One can observe that classical local stiffness matrices and even the quasi-local
approach with ` = 1 cannot significantly improve the results obtained with the initial guess, while
quasi-local matrices with ` ≥ 2 are able to reduce the values of the functional up to a certain degree.

As in the previous subsection, we validate the outcome of the inversion algorithm by solving a dif-
fusion problem using the reconstructed stiffness matrices and comparing the numerical results with
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Figure 4.5: Left: Diffusion coefficient in Example 2. Right: Values of JH in the first 20 iterations of
the inversion algorithm based on local matrices (×, dotted) and quasi-local matrices with ` = 1 ( ),
` = 2 (+) ` = 3 ( ).

the corresponding fine finite element solutions. The cross sections at x2 = 0.5 and x1 = 0.5 of the
numerical approximations using the different stiffness matrices are shown in Figure 4.6, for the case
with boundary condition u0(x1, x2) = x1. We emphasize that, in this setting, neither the reference
finite element function (black dotted line in Figure 4.6) nor a coarse measurement from it were part of
the input data.

For a further comparison, we also present in Figure 4.7 the same cross sections of the numerical
solutions obtained from the stiffness matrices using a full-data approach, i.e., when all available data
(40 measurements) are used in every step to compute the new search direction. The reconstructed
matrices behave similarly to the ones obtained with the randomized approach, but we omit a detailed
comparison of the two approaches. However, it is worth mentioning that the randomized strategy is
generally more robust in the case of incomplete boundary data, and additionally requires less compu-
tational effort.

4.3 Discussion

The presented inversion results demonstrate that the reconstruction of the stiffness matrix assuming
a sparsity pattern of classical finite elements does not allow to capture microscopic features of the
problem, while the reconstruction based on a quasi-local approach, especially with ` ≥ 2, is able to
mimic the effective behavior.

Furthermore, the quasi-local approach appears to be robust with respect to different right hand sides, a
property which allows to employ the reconstructed effective model for the simulation of other scenarios,
assuming that the microscopic properties remain unchanged.

Our experiments also indicate that a bound of the form ` & | logH| seems to be necessary and that `
needs to be increased for smaller values of H to obtain improvements in the first place. In that sense,
our findings also deviate from the numerical results in [16] which indicate that truly local numerical
homogenization might always be possible.
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Figure 4.6: Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based
on local stiffness matrices ( , dotted) and quasi-local ones with ` = 1 ( ), ` = 2 ( ), ` = 3 ( ) for
Example 2 obtained from incomplete boundary data and the randomized approach. The corresponding
fine FE function ( , dashed) is depicted as a reference but was not part of the input data. Left: Cross
section at x2 = 0.5. Right: Cross section at x1 = 0.5.

Figure 4.7: Cross sections of reconstructed functions with boundary condition u0(x1, x2) = x1 based
on local stiffness matrices ( , dashed) and quasi-local ones with ` = 1 ( ), ` = 2 ( ), ` = 3 ( ) for
Example 2 obtained from incomplete boundary data and the full-data approach. The corresponding
fine FE function ( , dashed) is depicted as a reference but was not part of the input data. Left: Cross
section at x2 = 0.5. Right: Cross section at x1 = 0.5.
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5 Conclusion

We proposed a strategy to reconstruct the effective behavior of solutions of a multiscale diffusion
model with a diffusion coefficient varying on a fine scale. The approach only uses information (mea-
surements of the solutions) on a coarse scale level and is motivated by the effective models obtained
by numerical homogenization. The method has a quasi-local nature in the sense that the reconstructed
system matrices have a slightly denser sparsity pattern than standard finite element matrices, and this
allows to recover characteristic fine scale features of the solutions without requiring numerical compu-
tations on the fine scale. The method has been numerically validated on a prototypical model problem,
considering a stationary linear elliptic diffusion problem with inhomogeneous boundary conditions. In
this setting, the numerical experiments indicate that the method is advantageous compared to ap-
proaches based on classical local models such as the finite element method or multiscale techniques
such as the Heterogeneous Multiscale Method. Further, even the case of incomplete boundary data
can be handled and ideas from learning-type methods may be adopted.

Future work will include the study of possible extensions in order to reconstruct, besides the behavior
of the solution on the coarse scale, also the actual microscopic coefficients which defines the effective
model on the discrete level. Additionally, we will also consider improvements of the method to even
better handle the case of incomplete boundary data. For this purpose, more involved combinations
with learning-type methods will be studied.
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