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An adaptive stochastic Galerkin tensor train discretization for
randomly perturbed domains

Martin Eigel, Manuel Marschall, Michael Multerer

ABSTRACT. A linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin
framework. The perturbation of the domain’s boundary is described by a vector valued random field
depending on a countable number of random variables in an affine way. The corresponding Karhunen-
Loève expansion is approximated by the pivoted Cholesky decomposition based on a prescribed co-
variance function. The examined high-dimensional Galerkin system follows from the domain mapping
approach, transferring the randomness from the domain to the diffusion coefficient and the forcing.
In order to make this computationally feasible, the representation makes use of the modern tensor
train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is pre-
sented, which allows for the problem-dependent iterative refinement of all discretization parameters and
the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical
benchmark problems.

1. INTRODUCTION

Uncertainties in the data for mathematical models are found naturally when dealing with real-world
applications in science and engineering. Being able to quantify such uncertainties can greatly improve
the relevance and reliability of computer simulations and moreover provide valuable insights into sta-
tistical properties of quantities of interest (QoI). This is one of the main motivations for the thriving field
of Uncertainty Quantification (UQ).

In the application considered in this work, the computational domain is assumed as randomly per-
turbed. This e.g. can be an appropriate model to incorporate production tolerances into simulations
and extract statistical information about how such uncertainties get transported through the assumed
model. Random domain problems have been examined before, see for instance [2, 16, 25]. Often,
sampling approaches are used to evaluate QoI as e.g. has been investigated with a multilevel quadra-
ture for the the domain mapping method in [16]. As an alternative, we propose to employ a stochastic
Galerkin FEM (SGFEM) to obtain a functional representation of the stochastic solution on the ref-
erence domain, which can then be used to evaluate statistical quantities. For the discretization, a
Legendre polynomial chaos basis and first order FE are chosen. The expansion of the perturbation
vector field in a (finite) countable sequence of random variables gives rise to a high-dimensional cou-
pled algebraic system, which easily becomes intractable to numerical methods or results in very slow
convergence. A way to overcome this problem is to utilize model order reduction techniques. In this
work, we make use of the modern tensor train (TT) format [21], which provides an efficient hierarchical
tensor representation and is able to exploit low-rank properties of the problem at hand. Another impor-
tant technique to reduce computational complexity is the use of an adaptive discretization. In our case,
this is based on a reliable a posteriori error estimator, afforded by the quasi-orthogonal approximation
obtained by the SGFEM. With the described error estimator, an iterative adaptive selection of optimal
discretization parameters (steering mesh refinement, anisotropic polynomial chaos and tensor ranks)
is possible.

For the Karhunen-Loéve expansion of the random vector field, we employ the pivoted Cholesky de-
composition derived in [14, 15]. The random coefficient and right-hand side due to the integral trans-
formation are tackled with a tensor reconstruction method. All evaluations are carried out in the TT
format, which in particular allows for the efficient computation of the error estimator as part of the
adaptive algorithm.
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The paper is structured as follows: The next section introduces the setting and the required assump-
tions of the random linear model problem. In particular, a description of the perturbation vector field
and the variable transformation is given, converting the random domain problem to a random coef-
ficient problem. Section 4 defines the Galerkin finite element discretization of the random coefficient
problem in Legendre chaos polynomials. Moreover, the framework for residual based a posteriori error
estimation is described. The tensor train format used for the efficient computation of the problem is
introduced in Section 5. Section 6 lays out the refinement strategy for the Galerkin method, which is
based on the evaluation of a reliable a posteriori error estimate in the tensor representation and an
appropriate adaptive algorithm. Numerical examples are discussed in Section 7.

2. DIFFUSION PROBLEMS ON RANDOM DOMAINS

In this section, we formulate the stationary diffusion problem on random domains as introduced in [16].
Let (Ω,A,P) denote a complete and separable probability space with σ-algebra A and probability
measure P. Here, complete means that A contains all P-null sets. Moreover, for a given Banach
space X , we introduce the Lebesgue-Bochner space LpP(Ω;X ), 1 ≤ p ≤ ∞, which consists of all
equivalence classes of strongly measurable functions v : Ω→ X with bounded norm

‖v‖LpP(Ω;X ) :=


(∫

Ω

‖v(·, ω)‖pX dP(ω)

)1/p

, p <∞

ess sup
ω∈Ω

‖v(·, ω)‖X , p =∞.

We remark that if p = 2 and X is a separable Hilbert space then the Lebesgue-Bochner space
LpP(Ω;X ) is isomorphic to the tensor product space X ⊗ Y with Y = L2

P(Ω). For a comprehensive
exposition of Lebesgue-Bochner spaces, we refer to [17].

In this article, we are interested in computing quantities of interest of the solution to the elliptic diffusion
problem

(1)
− div

(
∇u(ω)

)
= f in D(ω),

u(ω) = 0 on ∂D(ω),

for P-almost every ω ∈ Ω. We remark that it is also possible to consider non-trivial diffusion coeffi-
cients or boundary data, see e.g. [10] for the treatment of non-homogenous Dirichlet data and [20] for
random diffusion coefficients. However, we emphasize that, in order to derive regularity results that
allow for the data sparse approximation of quantities of interest, the data have to be analytic functions,
cf. [16].

In order to guarantee the well posedness of (50), we assume that all data, i.e. the diffusion coefficient
a and the loading f are defined with respect to the hold-all domain

D :=
⋃
ω∈Ω

D(ω).

In order to model the random domain, we employ the concept of random vector fields. To that end,
we assume that there exists a reference domain Dref ⊂ Rd for d = 2, 3 with Lipschitz continuous
boundary ∂Dref and of a random vector field

V : Dref × Ω→ Rd

such that D(ω) = V (Dref , ω). In addition, we require that V is a uniform C1-diffeomorphism, i.e.
there exists a constant Cuni > 1 such that

(2) ‖V (ω)‖C1(Dref ;Rd), ‖V
−1(ω)‖C1(Dref ;Rd) ≤ Cuni for P-a.e. ω ∈ Ω.
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In particular, since V ∈ L∞
(
Ω;C1(Dref)

)
⊂ L2

(
Ω;C1(Dref)

)
, the random vector field V exhibits

a Karhunen-Loève expansion of the form

(3) V (x̂, ω) = E[V ](x̂) +
∞∑
k=1

V k(x̂)Yk(ω).

Herein, the expectation is given in terms of the Bochner integral

E[V ](x̂) :=

∫
Ω

V (x̂, ω) dP(ω).

Note that, here and in the following, we denote material coordinates by uppercase characters, i.e.
x̂ ∈ Dref , in contrast to spatial coordinates x ∈ D(ω). In particular, there holds x = V (x̂, ω) for
some x̂ ∈ Dref . The anisotropy which is induced by the spatial contributions {V k}k, describing the
fluctuations around the nominal value E[V ](x̂), is encoded by

(4) γk := ‖V k‖W 1,∞(Dref ;Rd).

In our model, we shall also make the following common assumptions.

Assumption 2.1.

(i) The random variables {Yk}k take values in Γ1 := [−1, 1].
(ii) The random variables {Yk}k are independent and identically distributed.
(iii) The sequence {γk}k is at least in `1(N).

In view of this assumption, the Karhunen-Loève expansion (3) can always be computed if the expec-
tation E[V ] and the matrix-valued covariance function

Cov[V ](x̂, x̂′) :=

∫
Ω

(
V (x̂, ω)− E[V ](x̂)

)(
V (x̂′, ω)− E[V ](x̂′)

)
dP(ω)

are known. To that end, the spectral decomposition of the integral operator associated to the covari-
ance function has to be computed. The spectral decomposition can efficiently be computed by means
of the pivoted Cholesky decomposition, if the covariance function is sufficiently smooth, cf. [14,15].

By an appropriate reparametrization, we can always guarantee that

E[V ](x̂) = x̂.

Moreover, if we identify the random variables by their image y ∈ Γ := [−1, 1]N, we optain the
representation

(5) V (x̂,y) = x̂+
∞∑
k=1

V k(x̂)yk.

The Jacobian of V with respect to the spatial variable x is accordingly given by

J(x̂,y) = I +
∞∑
k=1

V ′k(x̂)yk.

Introducing the parametric domains D(y) := V(Dref ,y), i.e.

x = V (x̂,y),

we may now introduce the model problem transported to the reference domain which reads

(6)
− divx̂

(
A(y)∇x̂û(y)

)
= f̂(y) in Dref ,

û(y) = 0 on ∂Dref .

Herein, we have

(7) A(x̂,y) := (JᵀJ)−1(x̂,y) detJ(x̂,y), f̂(x̂,y) := (f ◦ V )(x̂,y) detJ(x̂,y)
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and

û(x̂,y) := (u ◦ V )(x̂,y).

Remark 2.2. The uniformity condition (2) implies that the functional determinant detJ(x̂,y) in (7) is
either uniformly positive or negative, see [16] for the details. We shall assume without loss of generality
detJ(x̂,y) > 0 and hence | detJ(x̂,y)| = detJ(x̂,y), i.e. we my just drop the modulus. More
precisely, due to (2), we can bound the determinant according to

0 <
1

Cd
uni

≤ detJ(x̂,y) ≤ Cd
uni <∞

for every x̂ ∈ Dref and almost every y ∈ Γ. In addition, all singular values of J−1(x̂,y) are bounded
from below by C−1

uni and from above by Cuni. From this, we obtain the bound

(8) 0 <
1

Cd+2
uni

≤ ‖A(x̂,y)‖2 ≤ Cd+2
uni <∞

for every x̂ ∈ Dref and almost every y ∈ Γ. Hence, the transported model problem stays uniformly
elliptic.

We conclude this section by summarizing the regularity results forA, f̂ , û, cp. (6), with respect to the
parameter y ∈ Γ from [16]. For this, denote by F the set of finitely supported multi-indices

F := {µ ∈ N∞0 ; |suppµ| <∞} where suppµ := {m ∈ N ; µm 6= 0}.

Theorem 2.3. Let the right hand side f from (50) satisfy ‖∂αx f‖L∞(D) ≤ cα!ρ−|α| for some constants
cf , ρ > 0. Then, it holds for every α ∈ F that∥∥∂αyA∥∥L∞(Dref ;Rd×d)

≤ C|α|!c|α|γα,∥∥∂αy f̂∥∥L∞(Dref)
≤ C|α|!c|α|γα,∥∥∂αy û∥∥H1(Dref)
≤ C|α|!c|α|γα,

for some constants c, C , which depend on cf , ρ, Cuni, d,Dref , ‖γ‖`1 but are independent of the se-
quence α.

3. FIELD DISCRETISATION

Let Th denote a suitable triangulation of Dref ⊂ Rd with mesh width h > 0. We introduce the finite
element spaces

S1
h :=

{
v ∈ C(Dref) : v|T ∈ Π1 for all T ∈ Th

}
and

S0
h :=

{
v : Dref → R : v|T ∈ Π0 for all T ∈ Th

}
,

where Π1 denotes the space of linear polynomials, while Π0 is the space of constant polynomials.

In [20], it has been shown how the random vector field (5) can efficiently be represented by means of
finite elements. This results in a representation

V h(x̂,y) = x̂+
M∑
m=1

ykV m,h(x̂) = x̂+
M∑
m=1

ym

d∑
i=1

n∑
k=1

ci,k,mϕk(x̂)ei,
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where e1, . . . , ed denotes the canonical basis of Rd, ϕ1, . . . ϕn is a basis for S1
h and ci,k,m ∈ R are

the coefficients in the basis representation of vm,h. Consequently, we obtain

Jh(x̂,y) = I +
M∑
m=1

ykv
′
m,h(x̂) = I +

M∑
m=1

yk

d∑
i=1

n∑
k=1

ci,k,mei
(
∇ϕk(x̂)

)ᵀ
.

More explicitly, the Jacobians v′m,h(x̂) are given according to

V ′m,h(x̂) =
n∑
k=1

c1,k,m∂1ϕk(x̂) · · · c1,k,m∂dϕk(x̂)
...

. . .
...

cd,k,m∂1ϕk(x̂) · · · cd,k,m∂dϕk(x̂)


Since ∂iϕk(x̂), i = 1, . . . , d, k = 1, . . . , n are piecewise constant functions from S0

h, we can
represent v′m,h also in an element based fashion according to

V ′m,h =
∑
T∈Th

c̃T,m,1,1 · · · c̃T,m,1,d
...

. . .
...

c̃T,m,d,1 · · · c̃T,m,d,d

χT (x̂) =:
∑
T∈Th

CT,mχT (x̂),

where χT donotes the characteristic function of T ∈ Th and c̃T,m,i,j ∈ R are the corresponding
coefficients. Hence, we end up with a piecewise constant representation of V ′h, which reads

Jh(x̂,y) = I +
∑
T∈Th

( M∑
m=1

CT,mym

)
χT (x̂).

From this representation, it is straightforward to calculate detJh(x̂,y) for a given y ∈ Γ, also in an
element based fashion. Having V h(x̂,y), Jh(x̂,y), detJh(x̂,y) at our disposal, it is then easy to
evaluateA(x̂,y) and f̂(x̂,y), as well.

4. ADAPTIVE GALERKIN DISCRETISATION

In this section we describe the Galerkin discretization of the considered random PDE (6) in a finite
dimensional subspace VN ⊂ V = X ⊗ Y = H1

0 (Dref) ⊗ L2
π(Γ). The basis of VN is given as

tensor product of a first order Lagrange FE basis on a mesh representing Dref and Legendre chaos
polynomials orthonormal with respect to the joint probability density π associated with y in terms of
Legendre polynomial chaos and finite elements (FE). Moreover, the residual based a posteriori error
estimator of [3,4] is recalled for the problem at hand.

For efficient computations of the Galerkin projection and the error estimator, the resulting system
with inhomogeneous coefficient and right-hand side (7) is represented in the tensor train format as
presented in Section 5.

4.1. Parametric and deterministic discretization. To determine a multivariate polynomial basis of
Y , we first define the full tensor index set of order M ∈ N by

Λ := {(µ1, . . . , µM , 0, . . .) ∈ F : µm = 0, . . . , dm − 1, m = 1, . . . ,M}
' Λ1 × . . .× ΛM × {0} . . . ⊂ F ,

with complete index sets of size dm given by

Λm := {0, . . . , dm − 1}, m = 1, . . . ,M.

For any such subset Λ ⊂ F , we define supp Λ :=
⋃
µ∈Λ suppµ ⊂ N. Let (Pn)∞n=0 denote a basis

of L2(R, [−1, 1]) orthonormal with respect to the Lebesgue measure consisting of Legendre polyno-
mials Pn of degree n ∈ N0 on R. By tensorization of the univariate polynomials, an orthogonal basis

DOI 10.20347/WIAS.PREPRINT.2566 Berlin 2018



M. Eigel, M. Marschall, M. Multerer 6

of L2(Γ, [−1, 1]N) is obtained, see [23]. For any multi-index µ ∈ F , the tensor product polynomial
Pµ :=

⊗∞
m=1 Pµm in y ∈ Γ is expressed as the finite product

Pµ(y) =
∞∏
m=1

Pµm(ym) =
∏

m∈suppµ

Pµm(ym).

A discrete subspace of X is given by the conforming finite element space X (T ) := span{ϕi}Ni=1 ⊂
X of degree one on some simplicial regular mesh T of domain Dref with the set of faces S (i.e.,
edges for d = 2) and basis functions ϕi. Furthermore, we denote the piecewise constants on T by
{ψi}N0

i=1. In order to circumvent complications due to an inexact approximation of boundary values, we
assume that Dref is a polygon. We denote by P1(T ) the space of piecewise polynomials of degree
one on the triangulation T . The assumed first order FE discretization with Lagrange elements then
satisfies X (T ) ⊂ P1(T ) ∩ C(T ). For any element T ∈ T and face F ∈ S , we set the entity sizes
hT := diamT and hF := diamF . Let nF denote the exterior unit normal on any face F . The jump
of some χ ∈ H1(Dref ;Rd) on F = T1 ∩ T2 in normal direction [[χ]]F is then defined by

(9) [[χ]]F := χ|T1 · nF − χ|T2 · nF .
By ωT and ωF we denote the element and facet patches defined by the union of all elements which
share at least a vertex with T or F , respectively. Consequently, the Clément interpolation operator
I : X → Xp(T ) satisfies, respectively for T ∈ T and F ∈ S ,

‖v − Iv‖L2(T ) ≤ cT hT |v|X ,ωT , ‖v − Iv‖L2(F ) ≤ cSh
1/2
F |v|X ,ωF ,(10)

where the seminorms | · |X ,ωT and | · |X ,ωF are the restrictions of ‖ · ‖X to ωT and ωF , respectively.

The fully discrete approximation space subject to some mesh T and active set Λ with |Λ| < ∞ is
given by

(11) VN := VN(Λ; T , p) :=

{
vN(x, y) =

∑
µ∈Λ

vN,µ(x)Pµ(y) ; vN,µ ∈ Xp(T )

}
,

and it holds VN(Λ; T ) ⊂ V . We define a tensor product interpolation operator I : L2(Γ, π;X ) →
VN(Λ; T , p) for v =

∑
µ∈F vµPµ ∈ L2(Γ, π;X ) by setting

(12) Iv :=
∑
µ∈Λ

(Ivµ)Hµ.

For v ∈ V(Λ) and all T ∈ T , F ∈ S , it holds

‖(id−I)v‖L2(Γ,π;L2(T )) ≤ cT hT |v|V,ωT ,(13)

‖v − Iv‖L2(Γ,π;L2(F )) ≤ cSh
1/2
F |v|V,ωF ,(14)

where

|v|2V,ωT :=

∫
Γ

|v(y)|2X ,ωT dπ(y), |v|2V,ωF :=

∫
Γ

|v(y)|2X ,ωF dπ(y).

4.2. Variational formulation. Using the transformation in (7), the weak formulation of the model prob-
lem (6) reads: find u ∈ V , such that for all v ∈ V there holds

(15)

∫
Γ

∫
Dref

A(x̂,y)∇x̂u(x̂,y) · ∇x̂v(x̂,y) dx̂dπ(y) =

∫
Γ

∫
Dref

f(x̂,y)v(x̂,y) dx̂dπ(y).

Employing the finite dimensional spaces of the previous section lead to the discrete weak problem:
find u ∈ VN , such that for all i, i′ = 1, . . . , N and α, α′ ∈ Λ:

L(i, α, i′, α′) = F (i, α).

DOI 10.20347/WIAS.PREPRINT.2566 Berlin 2018
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Here, we define the discrete linear operator

(16) L(i, α, i′, α′) :=

∫
Γ

∫
Dref

A(x̂,y)∇x̂ϕi(x̂)Pα(y)∇x̂ϕi′(x̂)Pα′(y) dx̂dπ(y)

and the discrete right-hand side

F(i, α) :=

∫
Γ

∫
Dref

f(x̂,y)ϕiPαdπ dx̂.

4.3. Residual based a posteriori error estimates. In the following, we recall the residual based a
posteriori error estimator derived in [3,4], adopted for the problem at hand. An efficient reformulation in
the tensor train format is postponed to Section 5. The basis for the estimator is the residualR(wN) ∈
L2
π(Γ;X ∗) = V∗ with respect to some wN ∈ VN and the solution u ∈ V of (6) given by

R(wN) := A(u− wN) = f −A(wN).

It has an L2
π(Γ)-convergent expansion in (Pν)ν∈F given by

R(wN) =
∑
ν∈F

rν(wN)Pν ,

with coefficients rν ∈ X ∗ characterized by

〈rν , v〉 =

∫
Dref

fνv −
∑

(µ,κ)∈Υν

Aµ∇wN,κ · ∇v dx̂ ∀v ∈ X .

Here, fν and Aν denote the coefficients in the Legendre chaos expansion of f =
∑

µ∈F fµPµ and
A =

∑
κ∈F AκPκ and Υν := {(µ, κ) :

∫
Γ
Pν(y)Pµ(y)Pκ(y) dπ(y) 6= 0} is the ν-relevant triple

product tuple set.

We recall a central theorem from [3], which enables the derivation of an error bound based on an
approximation wN of the Galerkin projection uN of the solution u in the energy norm.

Theorem 4.1. Let VN ⊂ V be a closed subspace and wN ∈ VN , and let uN ∈ VN denote the A
Galerkin projection of u ∈ V onto VN . Then, for some c, cI > 0, it holds

‖u− wN‖2
A ≤

1

c

(
sup
v∈V

|〈R(wN), (id−I)v|
‖v‖V

+ cI‖uN − wN‖A
)2

+ ‖uN − wN‖2
A.

Remark 4.2. We henceforth assume that the data f andA are exactly expanded in a finite set ∆ with
Λ ⊂ ∆ ⊂ F , i.e. there is no significant contribution from the neglected modes F \∆. The residual
can then be split into approximation and truncation contributions

R(wN) = RΛ(wN) +R∆\Λ(wN),

where RΞ denotes the restriction of the expansion to the set Ξ ⊂ F . Computable upper bounds for
the two residual terms and the algebraic error ‖uN − wN‖A are recalled in the following.

For any discrete wN ∈ VN , we define the following error estimators in analogy to the presentation
in [3,4] and [5]:

� A deterministic residual estimator forRΛ steering the adaptivity of the mesh T is given by

(17) η(wN)2 :=
∑
T∈T

ηT (wN)2 +
∑
S∈S

ηS(wN)2,

DOI 10.20347/WIAS.PREPRINT.2566 Berlin 2018
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with volume and facet contributions, for any T ∈ T and S ∈ S ,

ηT (wN) := ‖
∑
µ∈Λ

(fµ − divAµ∇wN,µ)Pµ‖L2(Γ,π;L2(T )),(18)

ηS(wN) := ‖
∑
µ∈Λ

[[Aµ∇wN,µ]]Pµ‖L2(Γ,π;L2(S)).(19)

� The stochastic truncation error estimator stems from the splitting of the residual (4.2), while
considering the inactive part overF \Λ. It is possible to construct the estimator, as in the deter-
ministic case, for every element of the triangulation and consider different mesh discretisations
for every stochastic multi-index. Since we want to focus on a closed formulation and avoid tech-
nical details, the stochastic estimator is formulated on the whole domain Dref . For more insight,
we introduce a collection of suitable tensor sets, which indicate the error portion of every active
stochastic dimension m = 1, . . . ,M (in fact, we could even consider m > M ),

∆m := {µ ∈ F | µj = 0, . . . , dj − 1, j = 1, . . . ,M,(20)

j 6= m,µm = dm, µk = 0, k > M}.(21)

Then, for every wN ∈ VN , the stochastic tail estimator on ∆m is given by

(22) ζm(wN)2 := ‖
∑
µ∈∆m

(fµ − div(Aµ∇x̂wN,µ))Pµ‖2
L2(Γ,π;L2(Dref)

.

The collection of sets {∆n}Mn=1 is beneficial in the adaptive refinement procedure but it does
not cover the whole stochastic contributions of the residual. For this, we need to compute the
global stochastic tail estimator

(23) ζ(wN)2 :=
∑
µ∈F\Λ

ζµ(wN)2,

which is an infinite sum that becomes finite due to orthogonality of the employed polynomials.
� The algebraic error, i.e. the distance of wN from the VN best approximation uN , in particular

due to a finite termination of an iterative solver, can be bounded by

(24) ‖uN − wN‖ ≤ ι(wN),

where
ι(wN) := ‖(LW − F )H−1/2‖F .

Here, W ∈ RN,d1,...,dM denotes the coefficient tensor of wN ∈ VN and L is the discrete
operator from (16). Note that the rank-1 operatorH is a base change operator to orthonormalize
the physical basis functions, i.e.,

(25) H := H0 ⊗ I ⊗ · · · ⊗ I, H0(i, i′) =

∫
Dref

∇x̂ϕi(x̂)∇x̂ϕi′(x̂)dx̂.

The combination of these estimators in the context of Theorem 4.1 yields an overall bound Θ for the
energy error similar to the references [3,4,7] and [5]

Corollary 4.3. For any wN ∈ VN , the solution u ∈ V of the model problem (50) and the Galerkin
approximation uN ∈ VN in (15), there exists constants cη, cζ , cι > 0 such that it holds

‖wN − u‖2
A ≤ Θ :=

(
cηη(wN) + cζζ(wN) + cιι(wN)

)2
+ ι(wN)2.(26)

Remark 4.4. Observing the residual in (4.3) it becomes clear that the derived error estimators suffer
from the “curse of dimensionality” and are hence not computable for larger problems. However, the
hierarchical low-rank tensor representation introduced in the next section alleviates this substantial
obstacle and makes possible the adaptive algorithms described in Section 6.
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5. TENSOR TRAINS

The inherent tensor structure of the involved Bochner function space V = X
⊗M

m=1 Ym and the cor-
responding finite dimensional analogue VN enables the use of tensor formats which aim at breaking
the curse of dimensionality.

A typical representative v ∈ VN can be written as

(27) v(x̂,y) =
N∑
i=1

∑
µ∈Λ

V (i, µ)ϕi(x̂)Pµ(y),

where V ∈ RN,d1,...,dM is a high dimensional tensor containing for example the projection coefficients

V (i, µ) = Eπ
[ ∫

Dref

v(x̂, ·)ϕi(x̂)dxPµ(·)
]
.

Here, setting d = max{d1, . . . , dM}, the complexity of V is O(NdM) and grows exponentially with
the number of dimensions M ∈ N in the stochastic approximation space. To avoid this issue, we
impose a low-rank assumption on the involved object and introduce the tensor train (TT) format as
follows.

A tensor V ∈ RN,d1,...,dM is called in tensor train format if every entry can be represented as the
result of a matrix-vector multiplication:

(28) V (i, µ1, . . . , µM) =

r0∑
k0=1

· · ·
rM−1∑

kM−1=1

V0(i, k0)
M∏
m=1

Vm(km−1, µm, km).

To ease notation, one defines rM = 1. If the vector r = (r0, . . . , rM) is minimal in some sense, we
call r the TT-rank and (28) is the TT -decomposition of V . One observes, the complexity of V can now
be estimated linearly in the number of dimensionsO(dM max r2). In [19,22] it was shown that many
functions in real wold applications admits a low-rank representation.

Given the full tensor description V at hand, one can compute the tensor train representation by a
hierarchical singular value decomposition (HSVD) [11]. Usually, this is unfeasible due to the high di-
mensionality of V or since it is known only implicitly. In that case, the utilization of high-dimensional
interpolation or regression algorithm is advisible [12,21].

We rely on the TT-reconstruction approach and us it for the representation of the transformed coeffi-
cient function and the right-hand-side (7).

5.1. Galerkin discretisation in tensor train format. In the following we assume a tensor representa-
tions of the right-hand side and the coefficient function at hand. More precisely, we denote the low-rank
approximations of (7) by

(29) fTT(x̂,y) =
∑
µ∈Λf

N0∑
i=1

F (i, µ)ψi(x̂)Pµ(y),

where F admits a TT representation of rank rf and Λf is a tensor multi-index set with local dimension
cap df = (df1 , . . . , d

f
M). Analogously, every component of the symmetric matrix coefficient

(30) A(x̂,y) =

[
a0,0(x̂,y) a0,1(x̂,y)
a1,0(x̂,y) a1,1(x̂,y)

]
is approximated by aTT

i,j , i, j ∈ {0, 1} as in (29) with TT-ranks ri,j . Here, the order three component

tensors of the approximated matrix entryATT|i,j = aTT
i,j are denoted by {ami,j}Mm=0.
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Remark 5.1. Since, for the coefficient, the TT reconstruction is carried out for every matrix entry
in (30), the local dimensions di,j = (di,j1 , . . . , d

i,j
M ) and tensor ranks can vary among those four tensor

trains. Here, we assume that every approximation has the same local dimensions and the tensor multi-
index set covering those indices is denoted by Ξ ⊂ F , possibly different from the solution active set Λ.
As stated in [5], it is beneficial to chose Ξ such that for all µ ∈ Λ also 2µ = (2µ1, . . . , 2µM) ∈ Ξ. Due
to the orthogonality structure of the polynomial basis, this feature guarantees a well-posed discrete
problem and enables quasi-optimal convergence rates.

Remark 5.2. Usually, one defines the tensor multi-index set of the coefficient for a possibly larger
expansion with L > M modes. This gives the possibility to define a residual based error estimator,
which provides an indication for the incorporation of additional dimensions in Λ. Since we focus on
fixed finite dimensional noise in this article, we do not consider this more general setting. For more
details, we refer to [3,5,7].

On VN , the Galerkin operator resulting from the transformed weak problem in tensor train format is
given as the sum of four TT operators such that for all i, i′ = 1, . . . , N and α, α′ ∈ Λ

(31) L(i, α, i′, α′) = (L1 + L2 + L3 + L4) (i, α, i′, α′),

each corresponding to one addend of the resulting matrix-vector product in (16).

We illustrate the explicit construction of the TT operator for the term L1. By denoting ∇ig the i-th
component of the gradient of a function g, one obtains for the first low-rank approximated bilinear form
addend

(32) L1(i, α, i′, α′) ≈
∫

Γ

∫
Dref

aTT
0,0 (x̂,y)∇1ϕi(x̂)∇1ϕi′(x̂)Pα(y)Pα′(y)dπ(y)dx̂.

Using the multi-linear structure of aTT
0,0 , one can decompose the operator addend as

(33) L1(i, α, i′, α′) ≈
r0,00 ,...,r0,0M−1∑
k0,...,kM−1

L1
0(i, i′, k0)

M∏
m=1

L1
m(km−1, α, α

′, km),

where the first component tensor L1
0 depends on the physical discretization only, i.e.,

(34) L1
0(i, i′, k0) =

N0∑
`=1

a0
0,0(`, k0)

∫
Dref

〈∇1ϕi(x̂), ψ`(x̂)∇1ϕi′(x̂)〉dx̂.

The remaining tensor operator parts decompose into one dimensional integrals over an orthogonal
polynomial triple product of the form

(35) L1
m(km−1, α, α

′, km) =

d0,0m −1∑
µm=0

am0,0(km−1µm, km)

∫
[−1,1]

PµmPαPα′ dπ,

which is known explicitly thanks to the recursion formula for orthogonal polynomials [1,8].

Remark 5.3. Due to the sum of TT operators in (31), the result can be represented by a tensor with
TT-rank 4 max{ri,j | i, j ∈ {0, 1}}.

By employing the tensor train approximation of fTT ≈ f and ai,j ≈ aTT
i,j we replace the original

system of equations that need to be solved for U ∈ RN×d1×...×dM

(36) LU = F
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with a constrained minimization problem on the low-rank manifoldMr containing all tensor trains of
dimensionality represented by Λ and fixed rank r

(37) WTT = argminV ∈Mr
‖LTTV − F TT‖F .

Here, we take LTT and F TT as the tensor train approximations of L and F , respectively and ‖·‖F
as the Frobenius norm.

To solve (37), we chose a preconditioned alternating least square (ALS) algorithm as described in [7,
18].

This eventually results in an approximation of the true Galerkin solution of (15)

(38) wN := w(Λ, T , r, τ) =
∑
µ∈Λ

N∑
i=1

WTT(i, µ)ϕiPµ.

6. ADAPTIVE ALGORITHM

The error estimator presented in Section 6.1 gives rise to an adaptive algorithm, which refines the
spatial discretization, the stochastic polynomial set and the representation format iteratively based on
local error estimators and indicators. This enables the assessment of the development of the actual
(unknown) error. The inherently high computational complexity of the error estimators can be over-
come by means of the tensor train formalism. In what follows, we examine the efficient computation
of the individual error estimator components in the TT format and describe an adaptive algorithm. For
more details and a more general framework, we refer to the presentations in [3,4,5].

6.1. Efficient computation of error estimators. We illustrate the efficient computation on the ex-
ample of the deterministic error estimator. For each element T ∈ T of the triangulation, the error
estimator is given by (18), which suffers from the curse of dimensionality, due to the sum over Λ. Em-
ploying the low-rank approximation ATT ≈ A, fTT ≈ f and wN renders the computation feasible.
To make this more explicit, we compute the norm

(39) ηT (wN)2 = ‖fTT − div(ATT∇x̂wN)‖L2(Γ,π;L2(T ))

by equating the individual terms of the inner product

ηT (wN)2 = ‖fTT‖L2(Γ,π;L2(T ))−2〈fTT, div(ATT∇x̂wN)〉L2(Γ,π;L2(T ))(40)

+ ‖div(ATT∇x̂wN)‖L2(Γ,π;L2(T )).(41)

The first term is a simple inner product of a functional tensor train, reduces to a simple summation
over the tensor components due to the orthonormality of the polynomial basis, i.e.,

(42) ‖fTT‖L2(Γ,π;L2(T )) =
∑
µ∈Λ

N0∑
i′=1

N0∑
i=1

F (i, µ)F (i′, µ)

∫
T

ψiψi′dx̂,

whereas the high dimensional sum can be evaluated for every tensor dimension in parallel using, for
all i, i′ = 1, . . . , N0, that

∑
µ∈Λ

F (i, µ)F (i′, µ) =

rf0∑
k0=1

. . .

rfM−1∑
kM−1=1

rf0∑
k′0=1

. . .

rfM−1∑
k′M−1=1

F0(i, k0)F0(i, k′0)(43)

M∏
m=1

dm∑
µm=1

Fm(km−1, µm, km)Fm(k′m−1, µm, k
′
m).(44)
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Note that the iterated sum over the tensor ranks has to be interpreted as matrix-vector multiplications.
Hence, the formula above can be evaluated highly efficiently. In fact, if the employed TT format utilizes
a component orthogonalization and fTT is left-orthogonal, the product can be neglected and one only
has to sum over k0 and k′0.

For the remaining terms in (40), one has to find a suitable representation ofATT∇x̂wN . Since taking
the gradient is a linear operation, one can calculate a tensor representation of ATTwN explicitly,
involving multiplied ranks and doubled polynomial degrees. For a detailed construction, consider [5,
Section 5]. The matrix-vector multiplication due to entry-wise TT representation of ATT does not
impose any further difficulties but a slight increase in complexity since one needs to cope with a sum
of invidiual portions.

Finally, the mixed and volume terms are computed in the same fashion, using the same arguments,
as in (43).

6.2. Fully adaptive algorithm. Given an initial configuration consisting of a regular mesh T , a fi-
nite tensor multi-index set Λ ⊂ F , a (possibly random) start tensor WTT with TT-rank r and solver
parameter τ , covering for example a termination threshold, rounding parameter, iteration limit or pre-
cision arguments, we now present the adaptive refinement process. The procedure is summarized in
Algorithm 1.

Initially on every level, we decided to obtain the data approximation by a tensor reconstruction. The
procedure is e.g. described in [6] and referred to as

(45) fTT, ATT ← Reconstruct[Ξ, T , Ns],

where the multi-index set Ξ can be chosen arbitrarily, but it is advisable to apply remark 5.1. The
number of samples Ns is used as a placeholder as well, since one is not limited to the use of random
samples. Instead, it is beneficial to use sparse grids or adaptive quadrature rules. The numerical
comparison is subject to further research and out of scope of this article. In what follows we assume
that the approximations are sufficiently accurate.

The process of obtaining a numerical approximation wN ∈ VN is denoted by

(46) wN ← Solve[Λ, T , τ,WTT].

The used preconditioned ALS algorithm is only exemplary to obtain wN . Alternative alternating meth-
ods or Riemannian algorithms are feasible as well.

One subsequently needs to compute the estimators. To obtain the overall estimator Θ(η, ζ, ι), one
has to evaluate the individual components by the following methods

(ηT )T∈T , η ← Estimatex[wN , f
TT,ATT,Λ, T , p]

(ζm)m∈N, ζ ← Estimatey[wN , f
TT,ATT,Λ]

ι← EstimateLS[wN , f
TT,ATT].

A comparison of the global estimator values η, ζ and ι results in the refinement decision.

6.2.1. deterministic refinement. In case of a dominant deterministic error estimator η, one employs a
Dörfler marking strategy on the mesh T for a ratio constant θη. In abuse of notation, we use (ηT )T∈T
as the local error estimator on every triangle, where the jump components of (ηS)S∈F are distributed
among their nearby elements. The method, consisting of the marking process and the conforming
refinement of the marked triangles is covered by

(47) T ← Refinex[(ηT )T∈T , η, T , θη].
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6.2.2. stochastic refinement. In case of the stochastic error estimator ζ exceeding the others, we
apply a Dörfler marking on the set of local estimators (ζm)m∈N until the prescribed ratio 0 < θζ < 1
is reached. Note that in the finite dimensional noise case, we have ζm = 0 for m > M . Afterwards,
the marked dimensions in Λ are increased dm ← dm + 1 by the method

(48) Λ← Refiney[(ζm)m∈N, ζ,Λ, θζ ].

Remark 6.1. As stated in Section 4.3 the global estimator ζ is not the sum of the individual estimators
(ζm)m∈N, since the coupling structure is more involved. Hence, we use ζsum :=

∑
m∈N ζm in the

marking procedure. Due to the regularity of the solution (Theorem 2.3), for Λ large enough, one has
ζsum ≈ ζ .

6.2.3. algebraic refinement. In the end, if ι has the largest contribution to the error, we “refine the
solver”. For simplicity, we fix most of the solver parameter such as the number of alternating iteration
or the termination value to low values that can be seen as overcautious. Nevertheless, in the low-rank
tensor framework, the model class is restricted by the TT-rank r. Hence, we then allow r ← r + 1
and add a random rank 1 tensor onto the solution tensor WTT. We summarize this methodology in

(49) WTT, τ ← RefineLS[WTT, τ ].

6.2.4. adaptive stochastic Galerkin method. One global iteration of this algorithm refines either the
deterministic mesh T , the stochastic polynomial index-set Λ or the tensor rank r. Repetition until the
defined estimator Θ(η, ζ, ι) in Corollary 4.3 falls below a desired accuracy ε > 0, yields the adaptively
constructed low-rank approximation wN ∈ VN .

Algorithm 1: Reconstruction based adaptive stochastic Galerkin method

input : Initial guess wN with solution coefficient WTT;
solver accuracy τ ;
mesh T with degrees p;
index set Λ;
Sample size for reconstruction Ns;
Dörfler marking parameter θη and θζ ;
desired accuracy ε.

output: New solution wN with new solution coefficient W+;
new mesh T +, or new index set Λ+, or new tolerance τ+.

repeat
fTT,ATT ← Reconstruct[Ξ, T , Ns]
wN ← Solve[Λ, T , τ,WTT]
(ηT )T∈T , η ← Estimatex[wN , f

TT,ATT,Λ, T , p]
(ζm)m∈N, ζ ← Estimatey[wN , f

TT,ATT,Λ]
ι ← EstimateLS[wN , f

TT,ATT]

switch max{η, ζ, ι} do
case η do T ← Refinex[(ηT )T∈T , η, T , θη];
case ζ do Λ ← Refiney[(ζm)m∈N, ζ,Λ, θζ ];
case ι do WTT, τ ← RefineLS[WTT, τ ];

until Θ(η, ζ, ι) < ε;
return w+

N = wN ; T + = T ; Λ+ = Λ; τ+ = τ
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FIGURE 1. Comparison of different truncation values and their implication on the num-
ber of KL modes for the employed reference domains.

7. NUMERICAL EXAMPLES

This section is concerned with the demonstration of the performance of the adaptive algorithm de-
picted in the preceding section.

We consider the model problem with a constant right-hand side

(50)
− div

(
∇u(ω)

)
= 1 in D(ω),

u(ω) = 0 on ∂D(ω)

on two different reference domains in R2, namely the unit-circle and the L-shape. The Karhunen-Loève
expansion stems from a Gaussian covariance kernel

(51) Cov[V ](x̂, x̂′) =
1

1000

[
5 exp(−2‖x̂− x̂′‖2

2) exp(−0.1‖2x̂− x̂′‖2
2)

exp(−0.1‖x̂− 2x̂′‖2
2) 5 exp(−0.5‖x̂− x̂′‖2

2)

]
.

The random variables in the Karhunen-Loève expansion are assumed to be independent and uniformly
distributed on [−

√
3,
√

3], i.e. they have normalized variance. Moreover, the mean is given by the
identity, i.e. E[V ](x̂) = x̂.

The computed spectral decomposition is truncated at a given threshold ε̂, which takes different values
in the computational examples. In Table 7 we summarize how the choice of the truncation parameter
influences the number of involved stochastic dimensions.

Our main focus is on the correct approximation of the solution mean

(52) E [u(x̂, ·)] =

∫
Γ

u(x̂,y)dπ(y)

by means of the adaptive low-rank Galerkin approximation. Therefore, all experiments involve the com-
putation of a reference mean, based on Monte Carlo sampling. To that end, we employ the anisotropic
sparse grid quadrature with Gauss-Legendre points1, as described in [13]. The mean is then calcu-
lated on a fine reference mesh, resulting from uniform refinement of the last, adaptively computed,
mesh, having at least 105 degrees of freedom. The number of quadrature points is choosen such
that at least 1000 nodes are involved. We denote this object as Eref [u], where u ∈ V is a obtained
sampling-wise.

Remark 7.1. In the low-rank tensor train format, the mean of a function, given in orthonormal poly-
nomials, is computed highly efficiently, since the set of employed polynomials is orthonormal w.r.t. the
constant function. Since, the corresponding coefficient is already incorporated in the representation,
computing the mean boils down to a simple tensor evaluation. More precisely, given u ∈ VN we

1The implementation can be found online: https://github.com/muchip/SPQR

DOI 10.20347/WIAS.PREPRINT.2566 Berlin 2018



Adaptive random domain TT SGFEM 15

FIGURE 2. Adaptively refined mesh according to deterministic error estimator with
mesh refinement ratio θη = 0.2 and KL truncation tolerance ε̂ = 0.1.

compute

(53) E[u(x̂, ·)] =
N∑
i=1

∑
µ∈Λ

U(i, µ)ϕi(x̂)E[Pµ(·)] =
N∑
i=1

UTT(i,0)ϕi(x̂)

and evaluating the tensor train UTT at the multi-index 0 = (0, . . . , 0) consists of M -matrix-vector
multiplications.

The considered quantity of interest is the error of the mean to the reference. Therefore, for any TT
approximation wN ∈ VN we compute, using remark 7.1

(54) ‖e‖ := ‖Eref [u]− E[wN ]‖H1
0 (Dref)‖Eref [u]‖−1

H1
0 (Dref)

.

Regarding the tensor reconstruction algorithm, we utilize the open-source library xerus [24]. Every
approximated tensor is constructed on a set of 1000 random samples y ∈ Γ and polynomial degrees
that are determined by the solution approximation. To be more precise, having a solution tensor UTT

of dimensionality RN,d1,...,dM , we employ the same stochastic dimensionality d1, . . . , dM for the rhs
fTT and twice the amount 2d1, . . . , 2dM for every coefficient matrix entry. In Section 3 is stated,
that the coefficient and rhs are computed on pice-wise constant finite element functions, hence the
deterministic dimension is here equal to N0, instead of N , as for the solution. For the solution of the
partial differential equation we make use of the PDE library FEniCS [9].

7.1. Example 1. The first considered example is the random domain problem, where we consider
the reference domain to be the unit-circle. We use this problem as a reference, since the adaptive
refinement yields similar results to uniform mesh refinement. Some occurring mesh refinements are
given in 7.1.

For illustration purposes, we include the computational mean of the solution on the unit-disc, together
with realisations of the transformed reference domain in Figure 4 and Figure 3.

Numerical test involving the adaptive refinement of the mesh are given in Figure 5. The initial config-
uration is set to 54 cells and fixed polynomial degree in the stochastic space of d1 = . . . = dM = 1
and tensor rank r = 1, We observe that the considered relative mean error behaves just as the
estimator commands.

7.2. Example 2. The second example is the L-shape [−1, 1]2 \{[0, 1]× [−1, 0]}. The corner singu-
larity is a typical example where adaptive refinement yields better approximation rates w.r.t. degrees
of freedom, in contrast to uniform refinement.

Starting with an initial configuration of 24 cells and fixed polynomial degree in the stochastic space of
d1 = . . . = dM = 1 and tensor rank r = 1, the described adaptive Galerkin algorithm, using the
deterministic error estimator yields an adaptively refined mesh, displayed in Figure 7.2.
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FIGURE 3. We show sample realisations of the transformed unit-disc with tolerance
ε̂ = 0.5 (top-row) and ε̂ = 0.1 (bottom-row).

FIGURE 4. Computational mean of the unit-circle problem for tolerance ε̂ = 0.1.
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FIGURE 5. Deterministic estimator and error of the mean approximation with respect
to a reference mean on the unit-circle. The tolerance is set to ε̂ = 0.5 (left) and
ε̂ = 0.1 (right). The error follows the estimator.

For illustration, we highlight the approximated mean and a collection of realisations of the transformed
reference domain in Figure 9 and Figure 8.

Finally, numerical comparison of the mean, as described in (54) is given in Figure 7.
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