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A hybrid FETI-DP method for non-smooth random partial
differential equations

Martin Eigel, Robert Gruhlke

Abstract

A domain decomposition approach exploiting the localization of random parameters in high-
dimensional random PDEs is presented. For high efficiency, surrogate models in multi-element
representations are computed locally when possible. This makes use of a stochastic Galerkin
FETI-DP formulation of the underlying problem with localized representations of involved input
random fields. The local parameter space associated to a subdomain is explored by a subdi-
vision into regions where the parametric surrogate accuracy can be trusted and where instead
Monte Carlo sampling has to be employed. A heuristic adaptive algorithm carries out a problem-
dependent hp refinement in a stochastic multi-element sense, enlarging the trusted surrogate
region in local parametric space as far as possible. This results in an efficient global parameter to
solution sampling scheme making use of local parametric smoothness exploration in the involved
surrogate construction. Adequately structured problems for this scheme occur naturally when
uncertainties are defined on sub-domains, e.g. in a multi-physics setting, or when the Karhunen-
Loéve expansion of a random field can be localized.

The efficiency of this hybrid technique is demonstrated with numerical benchmark problems
illustrating the identification of trusted (possibly higher order) surrogate regions and non-trusted
sampling regions.

1 Introduction

In Uncertainty Quantification (UQ), numerical methods typically are either based on pointwise sam-
pling, which is applicable to quite general problems but rather inefficient, or they rely on (an often ana-
lytic) smoothness of the parameter to solution map with the parameters determining the randomness.
However, in many science and engineering applications deviating from the common Darcy benchmark
setting with smooth Karhunen-Loéve random fields, higher smoothness cannot be assumed globally
in the parameter domain. This severely limits the use of techiques relying on sparsity or low-rank
approximability.

As a prototypical application example, which is for instance of great relevance in material science,
we have in mind a composite material with random non-periodic inclusions. This setting exhibits dis-
continuities in the parameter dependence, rendering it basically intractable to functional approxima-
tions with global basis functions in parameter space as commonly used in Stochastic Galerkin FEM,
Stochastic Collocation and other non-intrusive projection approaches.

While Monte Carlo sampling and its modern variants (e.g. Quasi and Multilevel Monte Carlo) provide a
widely applicable and robust approach, smoothness can only be used to a limited extend, resulting in
slow convergence in the number of samples. Nevertheless, for problems with low parameter regularity,
a sampling approach might seem the only option to pursue.
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M. Eigel, R. Gruhlke 2

A notion not frequently used for this kind of problems is a localization of randomness as e.g. by means
of a domain decomposition method, which is the basis for this work. In fact, the guiding principle is to
make the high-dimensional problem more accessible by considering smaller physical domains, leading
to a dependence on fewer relevant random variables locally. However, since the local representations
cannot be assumed independent from each other, a weak coupling condition has to be introduced. To
achieve this, we rely on the well-known theory of domain decomposition techniques and in particular
the class of FETI and FETI-DP methods, see e.g. [31, 30, 29]. These methods have also been
investigated for random problems e.g. in [44, 10, 24]. For more details and references we refer to
Section 4. To develop these approaches further, we introduce the concept of trust and no-trust regions
for a prescribed error tolerance [24] locally in which the highly efficient surrogate can be evaluated
(“trusted”) or where one has to fall back to standard pointwise sampling. Local surrogates can be
generated in parallel and depend only on local random coordinates. In order to get the largest gain
from the construction, trust regions are required to cover as large an area of each subdomain as
possible. For this, we introduce a local generalized multi-element discretization, for which a hp adaptive
refinement procedure based on error indicators is presented.

The proposed hybrid stochastic FETI-DP allows for fast global sampling on the basis of local smooth-
ness exploitation by appropriate surrogates.

The paper is structured as follows: The next section introduces the considered linear random model
problem and provides an overview of the perturbation and convergence theory in particular for the
case motivating this work, namely non-smooth coefficients. Section 3 examines the construction of
surrogate models, which are used locally in the method. Special attention is paid to generalized multi-
element polynomial chaos expansions and a partition of unity interpolation. The employed parametric
domain decomposition method is derived in Section 4, which leads to a parametric FETI-DP method
central to our approach. Eventually, Section 5 demonstrates the accuracy and adaptive refinement
behaviour of the hybrid sampling approach based on some benchmark problems.

2 Model problem and a-priori estimates

In this section we introduce the random linear elliptic model problem used henceforth for the derivation
of the proposed domain decomposition method. Of particular interest is the effect of approximation er-
rors of the coefficient. We examine conditions for stability results of the approximate solution especially
in the case of non-smooth coefficients. An application we have in mind is the numerical treatment of
stochastic composite materials. This type of problem is much more involved than the frequently con-
sidered case of random PDEs with smooth data as e.g. presented in [2, 3, 12, 15, 16], where the
dependence on the countable (possibly infinite) parameter vector is analytic. Such a very smooth
dependence allows for the derivation of best n-term approximations with optimal (exponential) con-
vergence rates and, while still very costly computationally, the implementation of numerical methods,
respectively.

For the reader mainly interested in the proposed hyprid sampling approach, we suggest to skim
through this section to understand the examined model problem and the structure of non-smooth
problems in the examples provided at the end.
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Hybrid FETI-DP 3

2.1 Concrete Random PDE Model

As model problem we consider a random linear partial differential equation. Given a probability space
(Ω,U ,P), a LIPSCHITZ domain D ⊂ Rd with d = 2, 3, and Dirchlet and Neumann boundary seg-
ments Γ0, Γ1 ⊂ ∂D with ∂D = Γ0 ∪ Γ1, Γ1 ∩ Γ0 = ∅ and |Γ0| > 0. Then, the stationary diffusion
model equation reads pointwise for ω ∈ Ω a.e.

− divA(x, ω)∇u(x, ω) = f(x, ω) in D,
nTA(x, ω)∇u(x, ω) = g(x, ω) on Γ1,

u(x, ω) = 0 on Γ0.
(1)

In the following we state natural pathwise and global assumptions in the setting of elliptic (pathwise)
second order PDEs. In the context of integrability we use small letters for physical integrability and big
letters for stochastic integrability.

(PA1) For a.e. x ∈ D, ω ∈ Ω, the d × d matrix A(x, ω) is symmetric and positive definite. Denote
by λmin/max(A(x, ω)) the smallest and largest eigenvalue of A(x, ω) and define

λmin(A(., ω)) := ess inf
x∈D

λmin(A(x, ω)),

λmax(A(., ω)) := ess sup
x∈D

λmax(A(x, ω)).

Then there exists c, c : Ω → R such that there hold pathwise uniform bounds a.e. in ω,

0 < c(ω) ≤ λmin(A(., ω)) ≤ λmax(A(., ω)) ≤ c(ω) <∞. (2)

(PA2) The random variable c(ω)−1 is an element of LR(Ω) for some R ∈ [1,∞].

(A1) There exists c > 0 such that 0 < c < c(ω)/c(ω) ≤ 1, a.e. in Ω.

(A2) Uniform bounds: 0 < C,C <∞ such that ess inf c(ω) ≥ C and ess sup c(ω) ≤ C .

(A3) As a standard assumption we have g ∈ LP (Ω;H
−1/2
00 (Γ1)) (cf. [43]) and f ∈ LP (Ω; (H1

Γ0
)∗)

for some P ∈ [1,∞].

Remark 2.1. Note that the uniform bound assumption (A2) is not necessary for pathwise existence
and uniqueness of a weak solution. However, it turns out to be useful for used interpolation arguments
and the p-condition with p 6= p(ω).

We define the pathwise bilinear form A for a coefficient B satisfying pathwise assumptions (PA1)–
(PA2),

A[B,ω](w, v) :=
∫
D

B(x, ω)∇w(x) · ∇v(x) dx, ∀w, v ∈ H1
Γ0
(D),

and the pathwise linear form

`[ω](v) :=

∫
D

f(x, ω)v(x) dx+

∫
ΓN

g(ω, x)v(x) ds, ∀v ∈ H1
Γ0
(D).

Then the pathwise weak formulation given B reads

Seek u(ω) ∈ H1
Γ0
(D) s.t. a[B,ω](u(ω), v) = `[ω](v), ∀v ∈ H1

Γ0
(D). (PB)

Lemma 2.2. [6] Under assumptions (PA1)–(PA2) and (A3) there exists a unique pathwise weak so-
lution u(ω) ∈ H1

Γ0
(D) of (PB) with B = A for P-almost all ω ∈ Ω with u ∈ LS(Ω;H1

Γ0
) with

1/S = 1/P + 1/R.
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2.2 Error estimate for coefficient approximate solutions

Let Â be some pertubation ofA in (1), e.g. introduced by some quadrature scheme in the discretization
process. Let u and û be (pointwise) weak solutions with respect to A and Â. Then we are interested
in the distance of u to û in the abstract sense of

u→ û if A→ Â (3)

where the type of convergence has to be determined.

2.2.1 Pathwise error estimates

Let u(ω) be the solution of (PB) with B = A and let û(ω) be the solution of (PB) with B = Â. De-
note by ĉ : Ω → R the lower bound random variable with respect to Â satisfying assumptions (PA1)–
(PA2). For simplicity, we shall assume that the right-hand side linear form can be evaluated exactly. A
standard observation is that

a[A, ω](u(ω), v(ω)) = a[Â, ω](û(ω), v(ω)). (4)

Inserting 0 = Â(x, ω)∇u(x)− Â(x, ω)∇u(x, ω) one obtains

a[Â, ω](u(ω)− û(ω), v(ω)) = a[A− Â, ω](u(ω), v(ω)). (5)

Now taking v = u − û and due to the assumptions on A the left-hand side can be estimated from
below by

ĉ(ω)‖u− û‖2H1
Γ0

≤
∣∣∣a[Â, ω](u(ω)− û(ω), u(ω)− û(ω))∣∣∣ . (6)

Let us assume that ∇u(ω) is in Lp(D) for some p ≥ 2. Then for q such that 1/p + 1/q = 1,
q = 2p/(2− p) ∈ [2,∞], we obtain pathwise∣∣∣a[A− Â, ω](u(ω), v(ω))∣∣∣ ≤ ‖A(., ω)− Â(., ω)‖Lq(D)‖∇u(ω)‖Lp(D)‖∇v(ω)‖L2(D). (7)

Combining (6) and (7) yields

‖u(ω)− û(ω)‖H1
Γ0

(D) ≤ ĉ(ω)−1‖A(., ω)− Â(., ω)‖Lq(D)‖∇u(ω)‖Lp(D). (8)

Based on this derivation we can refine the above statement to a decomposition of the physical domain
D with relaxed integrability requirements per subdomain of∇u.

Lemma 2.3. (local perturbation) Let D = ∪Ss=1D
s with piecewise disjoint Ds. For s = 1, . . . , S,

assume that [∇u]|Ds(ω) ∈ Lps(Ds) for ps ≥ 2 for a.e. ω ∈ Ω and let qs = 2ps/(ps − 2). Then,

‖u(ω)− û(ω)‖H1
Γ0

(D) ≤ ĉ(ω)−1

[
S∑
s=1

‖∇u(ω)‖Lps (Ds)‖A(ω)− Â(ω)‖Lqs (Ds)

]
. (9)

For ps ≡ 2, the perturbation result recovers the standard L∞ coefficient estimates. We are left with
the question of integrability of ∇u. Here, we state a pathwise p∗-condition motivated by [7] in our
random framework:
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Definition 2.4. (p∗-condition)
For an integrability constant p∗ = p∗(A, d,D) > 2 independed of ω, i.e. p∗ 6= p∗(ω) and for 2 ≤ p <
p∗ there is a conormal derivative trace space Xp(Γ1) := X(p, Γ1, Γ0). Furthermore for g(ω) ∈ Xp,
f(ω) ∈ W 1,p

Γ0
(D)∗ and u(ω) ∈ W 1,p

Γ0
(D) and a random variable Cp(ω) = Cp(d,A,D)(ω) it holds

‖∇u(ω)‖Lp(D) ≤ Cp(ω)
(
‖f(ω)‖W 1,p

Γ0
(D)∗ + ‖g(ω)‖Xp(Γ1).

)
(10)

Here Xp(Γ1) ⊂ W− 1
p
,p(Γ1) is a closed subspace with equality if Γ0 = ∅ respecting DIRICHLET data

in the spirit of LIONS-MAGENES space H−1/200 (Γ1) [45] obtained by interpolation [47] as the dual of

the space [W 1,p′

0 , Lp
′
]1/p,p with 1/p+ 1/p′ = 1 defined on the NEUMANN boundary.

We emphasize the most common setting with p = 2 and q =∞. In this HILBERTian case, C2(ω) =
c(ω)−1C(D) with c from Assumption (PA1) and constant C(D) only depends on D, i.e. it is deter-
mined by POINCARÉ and trace inequality constants.

For p > 2 the verification of this condition is somewhat more involved but fortunately still holds true.
In the case of a purely homogeneous Dirichlet boundary for the plain Laplacian with A = I , for any
Lipschitz domain it follows by [28] that there exist p∗ = p∗(d,D) > 3 (p∗ > 4 for d = 2) and a
constant K = K(p∗, D) such that for all 2 ≤ p ≤ p∗

‖∇u(ω)‖Lp(D) ≤ K‖f(ω)‖W 1,p
Γ0

(D)∗ . (11)

The result extends to A(ω) 6= I by a perturbation argument (see [35, 7]) and can in particular be
translated to our pathwise framework. In this context there exists a function p∗ : (0, 1) → (2, P )
defined by

p∗(t) := argmax{K−η(p) > 1− t : 2 < p < p∗} (12)

with η(p) := (1− 2/p)/(1− 2/p∗) ∈ (0, 1) monotonously increasing. With this construction, there
are random variables

p∗(ω) := p∗(c(ω)/c(ω)), Cp(ω) :=
1

c(ω)

Kη(p)

1−Kη(p)(1− c(ω)/c(ω))
, (13)

depending on the random variable bounds c, c ofA from (PA1). An important observation is that p∗(t)
is monotonously decreasing in t. With this construction in mind, let u(ω) be the pathwise solution of
(PB) with B = A satisfying Assumption (PA1). Then for P-a.a. ω in Ω and 2 ≤ p < p∗(c(ω)/c(ω))
pathwise it holds

‖∇u(ω)‖Lp(D) ≤ Cp(ω)‖f(ω)‖W 1,p
Γ0

(D)∗ . (14)

Hence, in order to satisfy the p∗-condition in Definition 2.4 the quotient c(ω)/c(ω) needs to be
bounded away from zero to have ess inf p∗(ω) > 0, which motivates our Assumption (A1). This
result is summarized in the following theorem.

Theorem 2.5. Assume |Γ1| = ∅. Let f(ω) ∈ W−1,p(D) and u(ω) ∈ W 1,p
0 (D) the corresponding

solution of (PB) with B = A satisfying (PA1), (PA2) and (A1) with 2 ≤ p < p∗ := p∗(c) for c > 0
from (A1). Then the p∗-condition holds true.

DOI 10.20347/WIAS.PREPRINT.2565 Berlin 2018
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Note that the uniform boundedness Assumption (A2) implies (A1). The case of mixed boundary con-
ditions and Lp estimates of solution gradients can be derived from results of [23]. W 1,p(D) estimates

for ROBIN boundary conditions can be obtained from [1] with boundary right hand side inW− 1
p
,p(∂D)

requirements.

We end the pathwise discussion of this section with an examination of the (p, q) relation. There are
two important cases:

1 q = ∞, thus p = 2: As in the standard uniform bound. In order to have pathwise û(ω) →
u(ω) ∈ H1

ΓD
(D), we need that Â(ω)→ A(ω) in L∞(D)d,d. From a practical point of view, i.e.

when Â is due to the chosen discretization, we require more regularity of A(., ω) with respect
to the physical coordinate x in order to bound the L∞ error.

� A(·, ω) ∈ Ck,α(D) yields an error ofO(hk) with an appropriate quadrature scheme.

� If A(., ω) is piecewise Ck,α and resolved in a discretization (e.g. adapted meshing) pro-
cess then the same is valid by the estimate above.

2 q < ∞, thus p > 2: This case is important if A(·, ω) lacks spatial regularity or cannot be re-
solved in a discretisation step by some Â such that the error in the L∞ norm staysO(1). In this
case the q = ∞, p = 2 estimate might become meaningless. However, the p∗-condition still
ensures convergence of the perturbed solution based on weaker approximation requirements
on the coefficient. At this point one may ask for the approximation in the weakest norm possible,
that is q = 2 such that

‖A(ω)− Â(ω)‖L2(D)d,d → 0 ⇒ ‖u(ω)− û(ω)‖H1
Γ0

(D) → 0. (15)

We note that this indeed is possible by an interpolation argument, assuming that A and Â
satisfy the uniform boundedness (PA1) and (A2). Then,

‖A(ω)− Â(ω)‖Lq(D)d,d ≤ C(q)‖A(ω)− Â(ω)‖1/q
L2(D)d,d

, (16)

with a constant C(q) = C(q, ‖A − Â‖L∞). Since Â(ω) and A(ω) are assumed to be in
L∞(D)d,d, we obtain by interpolation that

‖A(ω)− Â(ω)‖Lq(D)d,d ≤ C(q)‖A(ω)− Â(ω)‖1/q
L2(D)d,d

. (17)

As a consequence in order to have control of a pathwise good approximation û(ω) of u(ω),
it is sufficient to control the L2 approximation Â(., ω) of A(., ω). However, we note that by
the employed interpolation this estimate introduces a reduced convergence order by a factor
1/q. Hence, ideally one can strive for an Lq approximation to avoid a degeneration of the
convergence order.

2.2.2 Global error estimates

We now analyse the effect of distance measurement of Â to A to the whole solution û to u. More
specifically, we are interested in an estimate of the form

‖u− û‖1 ≤ h(‖A− Â‖2) (18)
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with continous h : R+ → R+ with h(0) = 0 and suiteable norms ‖.‖1 and ‖.‖2 such that u
‖·‖1−−→ û

if Â
‖·‖2−−→ A. We state the main result of this subsection.

Theorem 2.6. (A-priori Lq(D)-perturbation estimate)
Let P,Q,R1, R2 ∈ [1,∞], such that S := (1/P + 1/Q+ 1/R1 + 1/R2)

−1 ≥ 1 and let the
p∗-condition of Definition 2.4 hold. For 2 ≤ p < p∗ assume Cp(·) ∈ LR2(Ω) and let f ∈
LP (Ω;W 1,p

Γ0
(D)∗) and g ∈ LP (Ω;Xp

Γ1
). Let u(ω) and û(ω) be the unique solution from (PB),

with B = A and B = Â, respectively, satisfying assumptions (PA1)–(PA2) with R = R1. If A, Â ∈
LQ(Ω;Lq(D)) for q = 2p/(2− p) such that Â satisfies (PA1) with lower bound ĉ(·)−1 ∈ LR1(Ω),
then

‖u− û‖LS(Ω;H1
Γ0

(D)) ≤ C‖A− Â‖LQ(Ω;Lq(D)), (19)

with C = C(Cp, ĉ, f, g).

Proof. By (8) and the p∗-condition it holds pathwise that

‖u(ω)− û(ω)‖H1
Γ0
≤ ĉ(ω)−1‖A(ω)− Â(ω)‖Lq(D)‖∇u(ω)‖Lp(D)

≤ ĉ(ω)−1Cp(ω)‖A(ω)− Â(ω)‖Lq(D)

×
(
‖f(ω)‖W 1,p

Γ0
(D)∗ + ‖g(ω)‖Xp(Γ1)

)
.

The result then follows by multiple applications of the HÖLDER inequality. For example, choose α such
thatQ = αT and denote by α′ its conjugate exponent. Then, skipping the pathwise dependence, this
yields

‖u− û‖TLT (Ω,H1
Γ0

(D)) ≤
∥∥∥ĉ−1Cp‖A− Â‖Lq(D)

∥∥∥T
LTα′ (Ω)

×
∥∥∥(‖f‖W 1,p

Γ0
(D)∗ + ‖g‖Xp(Γ1))

∥∥∥T
LQ(Ω)

.

Further iterative application of HÖLDER estimates yield the desired result.

The a-priori perturbation estimation gives a qualitative statement of some closeness of the approx-
imated to the true solution if the approximation error of the involved coefficient A is controlled. We
point out that the important case of coefficients that are numerically approximated in LQ(Ω,L∞) is
included. However, note that in this case the need of a p∗-condition can be relaxed.

Corollary 2.7. (A-priori L∞(D)–perturbation estimate)
Let P,Q,R1, R2 ∈ [1,∞] such that S := (1/P + 1/Q+ 1/R1 + 1/R2)

−1 ≥ 1 and assume

f ∈ LP (Ω;H1
Γ0
(D)∗) and g ∈ LP (Ω;H

−1/2
00 (Γ1)). Let u(ω) and û(ω) be the unique solutions of

(PB) with B = A and B = Â satisfying assumptions (PA1) and (PA2) with R = R1 and R = R2,
respectively. Then, for A, Â ∈ LQ(Ω;L∞(D)) it holds

‖u− û‖LS(Ω;H1
Γ0

(D)) ≤ C‖A− Â‖LQ(Ω;L∞(D)). (20)

While the assumptions in Corollary 2.7 are rather mild, the important case of random fields A repre-
senting composite random materials with random inclusions (to be examined in the following example)
might nevertheless be excluded. If this type of materials is modeled pathwise by piecewise HÖLDER

continous or even smoother data then it fits in the setting of Theorem 2.6. We shall illustrate this line
of thought with a small example.

DOI 10.20347/WIAS.PREPRINT.2565 Berlin 2018
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Example 2.8. (Composite material)
Consider D = [−1, 1]d for d = 2, 3 and let r ∼ U [0, R] and R < R < 1 such that

α(x, ω) = α(x, r(ω)) = κ1χBr(ω)(0)(x) + κ2(1− χBr(ω)(0)(x))

with the EUCLIDian centered ball of radius r(ω) denoted by Br(ω)(0) and an indicator function χ,
see Figure 1. In mesh based discretization schemes with standard piecewise polynomial root based
quadrature, the spherical random interfaces and thus the jump of the coefficientA(x, ω) := α(x, ω)I
cannot be approximated pathwise in L∞(D). In particular, for any such finite quadrature scheme, by
the GIBBS phenomenon this error isO(1) w.r.t. the L∞ norm.

Figure 1: Left: Realization of composite material α; Right: Realizations of varying composite with
multiple separated inclusions.

Example 2.9. (Composite material approximation)
Given the tensor parameter domainΞ := [−1, 1]d+1 and a physical (reference) domain D̂ = [0, 1]d,

consider the mapping ϕ : Ξ → Kδ for some 0 < δ � 1 with

y := (y0, y1, . . . , yd) 7→ ϕ(y) = (r,p) = (r, p1, . . . , pd)

and Kδ = {(r,p) ∈ [0, R]×D | r < dist(p, ∂D)− δ} for 0 < R < R < 1. Then, define

D × Ξ 3 (x,y) 7→ α(x, ϕ(y)) = κ1χBr(p)(x)) + κ2(1− χBr(p)(x)) (21)

modeling a circular inclusion with varying position and radius where the inclusion has a positive dis-
tance δ from the boundary ∂D. In a numeric simulation we may approximate this setting e.g. by the
following approaches

� α̂MC is a pathwise projection of α(·,y) to the piecewise constants on an underlying mesh,

� α̂ might be a cluster approximation, that is a piecewise constant approximation with respect to
the parameter y,

� α̂ is implicitly approximated when surrogates in domain decomposition methods (like param-
eter dependend local Schur complements) are approximated continously by piecewise affine
functions.

These type approximations may not converge in LQ(Ξ;L∞(D)). With the above construction of α
and ϕ on a reference domain D̂ we can build a composite material with multiple varying inclusions
defined on non-overlapping subdomains as illustrated in Figure 1 right.

DOI 10.20347/WIAS.PREPRINT.2565 Berlin 2018
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Remark 2.10. The strong convergence assumption in LQ(Ω;Lq(D) and the requirements of the p∗

condition can be relaxed in the fully discretized setting. In fact, it only has to hold

U` ⊂ U := L2(Ω;H1
Γ0
(D)) ↪→ H := L2(Ω,L2(D)), (22)

with |U`| < ∞ on level ` ≥ 0. This holds true for example if a polynomial chaos expansion and a
conforming FE discretization are employed and ` denotes an (adaptive or uniform) refinement level.
Let

b[B](u, v) :=

∫
Ω

∫
D

B(x, ω)∇u(x, ω) · ∇v(x, ω)dxdP. (23)

In the discrete case, by STRANG’s Lemma, one needs an estimate of

|b[A](w`, v`)− b[Â](w`, v`)| = |〈A− Â,∇w` · ∇v`〉H |. (24)

Hence, for a fixed discretization level `, we have∇w` ·∇v` ∈ H and as a consequence it is sufficient
to have that Â converges weakly toA in theH topology to control the error in (24). In particular, if suf-
fices that Â→ A strongly inH instead of stronger convergence inL2(Ω;L∞(D)) orLQ(Ω;Lq(D),
when starting from the discrete setting.

3 Surrogate response

The construction of surrogate models for problems with high-dimensional input (parameters) becomes
essential when extensive sampling is computationally expensive in comparison to the construction of
adequate functional approximations. These may even be viable for non-smooth data since it can still
be possible to exploit local smoothness, which then would result in sufficiently accurate surrogates.

In the literature there is a vast amount of surrogate types, including generalized polynomial chaos
expansions (gPCE), e.g. [49, 18], its multi-element extension, e.g. [48], low-rank [25, 21] or sparse
grid techniques, e.g. [37, 22] or neural networks and references therein.

A central motivation for the proposed approach is the treatment of parametric composite materials.
With this in mind, our aim is to build (local) surrogates for (local) maps within a domain decomposition
framework presented in Section 4. For this, we focus on two surrogate types based on a parameter
space decompostion, namely the multi-element generalized polynomial chaos expansion and a parti-
tion of unity interpolation. In the case of low-rank structures, also hierarchical tensor representations
might become useful.

3.1 Surrogates for matrix valued functions

In preparation for the framework of localized descriptions of randomness in a domain decomposition
setup we discuss different surrogate models for random matrices of the form

ξr(ω) 7→M s(ξr(ω)), (25)

with some matrix valued image M(ξr(ω)) ∈ Rn,m, n,m ∈ N, for some indices r, s ∈ N. In our
application n and m depend on the number of interface degrees of freedom or subsets of these. The
choice of surrogate for the map (25) should be made dependend on the regularity of the involved map.
In particular, we have the following surrogates in mind that are based on L2 best approximations or
interpolations.
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1 hPCE surrogates: An orthonormal discrete subspace ofL2(Γr,B(Γr), µr) based on piecewise
orthonormal polynomials with respect to µr is chosen. Then, the coefficients in the hPCE
series are computed via projection, e.g. via a stochastic Galerkin method or (sparse) quadrature
schemes. In this approach one might consider several separate subsurrogates for each column
of M(·)i, 1 ≤ i ≤ m.

2 Hierarchical tensor surrogates: A possibly low number of samples of M s and a given under-
lying discrete tensor basis is provided. Then, a tensor reconstruction as in the (non-intrusive)
Variational Monte Carlo method [17] yields a L2-compressed low-rank representation.

3 PoU interpolation surrogates: Based on an adaptive mesh of Γk, a discrete partition of unity
basis with respect to the mesh is used. This can e.g. be obtained by a LAGRANGE basis with
respect to mesh nodes. Then, each basis coefficient is computed by a single sample. More
details are provided in Section 3.3.

4 Sparse grid interpolation surrogates are build by evaluating a realization of M s on each sparse
grid point.

Remark 3.1. In the case of low regularity of the map (25) and no knowledge of a basis for an ap-
proximation scheme with (quasi)-optimal convergence in the sense of `p-summability of coefficients
for some p ≥ 1 [4], we may be restricted to lower local parametric dimensions to obtain an affordable
and accurate surrogate. While out of the scope of this paper, a progressive learning of an approximate
basis as e.g. via a Neural Networks regression might become useful, given its training only involves
a manageable number of samples. Regression based on neural networks or hierachical tensor repre-
sentations will be discussed elsewhere.

3.2 Generalized Multi-Element Polynomial Chaos Expansion

The following presentation is motivation by the approximation of non-smooth functions, where standard
functional approaches may lack efficiency due to the GIBBS phenomenon.

We consider a probability measure µ on Γ ⊂ RM ′ and the space L2(Γ,B(Γ ), µ). For the envisaged
application, Γ is the image and µ will be the push-forward of P of an underlying parameter random
vector Γ , identified with some y = Γ (ω) ∈ Γ . Let I = N and assume that there exists a family of
orthonormal polynomials Ψ := {ψα}α∈I such that

span(Ψ)
d
↪−→ L2(Γ,B(Γ ), µ).

Note that if there exists c > 0 and a norm ‖ · ‖ on RM ′ such that∫
Γ

ec‖y‖dµ(y) <∞, (26)

then such a family does indeed exist [11].

Example 3.2. The condition (26) holds for any bounded domain Γ or for Γ = RM ′ and µ any
GAUSSIAN measure, including the non-independend case [40].

In the special case that µ exhibits a product structure, i.e. the independend case, the index set I can
be reshaped into a multi-index tensor structure. To distinguish this special case from general mea-
sures, we use bold faced symbols and write Ψ := Ψ (I) := {ψα}α∈I . The existence of a complete
orthornormal polynomial basis may is answered by solving the one dimensional HAMBURGER moment
problem [11].
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Remark 3.3. There exist probability measures such that no dense polynomial subset exists. A clas-
sical example is the log-normal case. For M ′ > 1 and a non-separable probability measure µ or a
non-tensorized domain Γ , such a family of polynomials might exist but is not necessarily unique [11].
For fixed α, the polynomial ψα inherits the product structure as

Ψα =
M ′∏
i=1

Ψαi .

We now consider a finite non-overlapping partition of Γ =
⋃
k∈J Γk with |J | <∞, Γk ∈ B(Γ ) and

0 < µ(Γk) ≤ 1. This gives rise to the decomposition

Y := L2(Γ,B(Γ ), µ) =
⊕
k∈J

Yk, Yk := {v ∈ L2(Γ,B(Γ ), µ) : supp(v) ⊂ Γk}.

Lemma 3.4. If Y can be spanned densely by orthonormal polynomials, then so can Yk.

Proof. Fix v ∈ Yk and ε > 0. Let χk denote the indicator function with respect to Γk, then ϕα,k :=
χkψα for α ∈ I is a polynomial in Yk. Let Ψk be an orthonormalized version ofΠk := {ϕα,k, α ∈ I}
with respect to the inner product in Yk. Since Ψ is dense in Y , there exists Iε ⊂ I, |Iε| <∞ and a
polynomial ψε =

∑
α∈Iε

cε,αψα ∈ spanΨ with

‖Ek0v − ψε‖L2(Γ,B(Γ ),µ) < ε.

Here, Ek0 : L2(Γk)→ L2(Γ ) denotes the zero extension operator. Consequently ‖v−χkψε‖Yk < ε,
where χkψε ∈ spanΨk.

Motivated by Lemma 3.4, we define an (weak) orthonormal polynomial set

Ψk := {ψα,k, α ∈ I, ψα,k is polynomial}, (ψα,k, ψα′,k)Yk = δα,α′ , (27)

which spans a dense subset in Yk. We note that in the independend case the decomposition of Γ has
to respect the tensor structure to obtain a product structure of the polynomial chaos.

Lemma 3.5. If Y has a dense orthonormal polynomial subset then
⊕

k∈J Ψk spans a dense subset
in Y with Ψk from (27).

Proof. The statement follows immediately since v ∈ Y can be written as v =
⊕

k∈J vk with vk =
χΓkv ∈ Yk and an application of Lemma 3.4.

As the partition of Γ can be interpreted as a possibly non-regular meshing, we abbreviate the con-
struction of polynomial chaos on several elements as gHPCE, motivated by hp-FEM in the standard
Lebesgue spaces L2(D, dλ). For more details on the existence of dense generalized polynomial
chaos we refer to [49, 18, 11].

We conclude this subsection with two instructive examples.

Example 3.6. (Construction of gHPCE) Consider the special case of Γ ⊂ R and denote by dµ
dy

= %
the Radon-Nikodým derivative of µ with respect to the Lebesgue measure. Let a0 = inf Γ < a1 <
. . . < a|J | := supΓ . Based on the local inner product

ak+1∫
ak

u(y)v(y)%(y)dy,
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orthornormal families can be obtained by a GRAM-SCHMIDT procedure. In the case of a uniform dis-
tribution, the multi-element Legendre chaos can be obtained by simple rescaling and translation of
standard Legendre chaos.

Example 3.7. If only samples of µ are known, an empirical gPC can be constructed with data driven
approaches using moment renconstruction [39].

3.2.1 Hierachical Tensor Trains and Tensor reconstruction

We assume that L2(Γ,B, µ) exhibits a product structure. Thus, the truncated gPC discretization ba-
sis functions can be written as a product of one dimensional piecewise polynomials. If the product
structure is not given, a change of the coordinate system as e.g. realized via the Rosenblatt/Nataf
transformation (approximated by transport maps [34] yields a reparametrization into a coordinate sys-
tem spanned by independend random variables. This is at the cost of introducing a non-linear trans-
formation map, which has to be resolved. Then, any function u ∈ L2(Γ,B, µ) can be approximated
by a tensor structured basis such that

u(ξr) ≈
∑
α,k

C[α,k]
∏
i,j

Ψαi,kj(ξ
r
i ). (28)

Here, the multiindex α = (α1, . . . , αI) is related to the polynomial degree and k = (k1, . . . , k|J |)
is related to a tensorized decomposition of Γ , indexing a full tensor C . An approximation of such a
tensor can be realized with hierarchical tensor formats, allowing for a compressed low-rank represen-
tation [21, 25, 5, 38], e.g. employing a tensor reconstruction or cross approximation algorithm.

3.3 Surrogates based on PoU-Interpolation

In the following, we consider the parametric matrix ξr(ω) 7→ M s(ξr(ω)). Let Γr := img ξr and
assume a nested set of discrete function spaces

U r
s,0 ⊂ U r

s,` ⊂ . . . ⊂ U r
s,L (29)

of level ` = 0, 1, . . . , L defined by

U r
s,` := {ϕ

s,`
k : Γr → R, k = 1, . . . , N i

` <∞} (30)

such that its elements form a partition of unity (PoU) on Γr, i.e.
∑N i

`
k=1 ϕ

s,`
k ≡ 1. To describe an

important class of this spaces, we consider a family of cell partitionsMr
` of level ` = 1, . . . , L of Γr

with tree structure: for each cell inMr
`+1 there is a unique father cell inMr

` . Furthermore, assume

that for each k = 1, . . . , N` the function ϕs,`k has support in one cell inMr
`+1 only, i.e.

∀k = 1, . . . , N`, ∃!T ∈Mr
` : suppϕ

s,`
k ⊂ T. (31)

Associate with each such function in U r
s,` a global degree of freedom and a unique associated element

in Γr denoted by global coordinate degree of freedom.
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We are now able to formulate an adaptive scheme to build up surrogates for the parametric matrix
ensemble.

Algorithm 1: Hybrid surrogate based on a Partition of Unity
input : ◦ sample routine S for parametric matrix Ms(ξr(ω))

◦ surrogate quality parameter tol > 0
◦ maximal level of refinement L

output: hybrid surrogate for ξr(ω) 7→Ms
i (ξ

r(ω)).
1 init Mr

0 , U
r
s,0

2 foreach ` = 0, . . . , L do
3 markings := {}
4 trust region / non trust region := ∅, ∅
5 foreach global coordinate d.o.f of Urs,` do
6 evaluate S and assign it to the corresponding global d.o.f.

7 foreach T ∈Mr
` do

8 judge local quality of current surrogate on T with tol
9 set T to be trusted / not trusted.

10 update trust region / non trust region with T
11 if T is not trusted then

mark T in (Mr
` , U

r
s,`) for refinement, i.e. add to markings

12 if markings = {} then break
13 else

Mr
`+1, U

r
s,`+1 := refine( Mr

` , U
r
s,`, markings)

14 create hybrid surrogate that evaluates on space Ur` for input lying within trust region and calls S for input lying in non
trust region.

The aim of the proposed Algorithm 1 is to balance the maximization the trust region while keeping the
creation process as cheap as possible.

Remark 3.8. The hybrid structure, i.e. letting the surrogate coincide with a sample on the non trust
region, allows to control the cost of creating the surrogate by L, which means overrefinement and thus
too many sampler calls.

Remark 3.9. Although the above representation is presented for matrices, the technique also extends
to matrices given only implicitly: If we are interested in building a surrogate for the inverse ofA(ξ(ω)),
due to the partition of unity approach for each global coordinate degree of freedom we store a LU
factorisation only. Then, the evaluation of the surrogate at a point p requires several forward-backward
substitutions associated to all basis functions evaluating to non-zero at p. In the case of local sup-
ports this is a rather small number. Note that here each LU decomposition may have its own sparsity
pattern determined by its pivotization and scaling. The extension of this approach to tensor formats is
discussed elsewhere.

4 Parametric Domain decomposition

Based on an abstract partial differential equation model with possible high-dimensional random input
decomposed w.r.t. to a physical partition, we present a domain decomposition method framework
that yields to local problems with lower parametric dimensionality. Based on a semi-discretisation we
introduce an accelerated sampling scheme in the spirit of [10] based on an adaptive construction of
surrogates of local parameteric interface operators.
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4.1 Abstract random domain decomposed model

Consider a partition ofD into mutual disjoint, non-empty connected LIPSCHITZ subdomainsDs ⊂ D,
s = 1, . . . , NSD < ∞. We are interested in random fields given in parameterized form and possibly
localized with respect to (Ds)s. Such local respresentations of random fields may for instance occur
in the following scenarios

� Localization to Ds via localized Karhunen-Loève expansions (e.g. [9]) in case of underlying
GAUSSian random fields, see Example 4.2.

� Subdomain-wise uncertainties, e.g. random composite materials.

Instead of an abstract random field a(x, ω) we consider a parametrization by a given stochastic co-
ordinate system, represented by some ξ : Ω → RM ′ , which means that M ′ ∈ N ∪ {∞}. Let
σ(ξ) ⊂ U be the sigma algebra generated by ξ and (Ω, σ(ξ),P) the considered space. Further-
more, assume a sub-enumeration of the M ′-dimensional random vector ξ into M ≤ NSD blocks
of mr-dimensional (sub) random vectors ξr : Ω → Rmr with 1 ≤ mr ≤ M ′ and components
ξri := (ξr)i, i = 1, . . . ,mr, r = 1, . . . ,M . We are then interested in a physical model described by
a linear partial differential equation with randomness modelled by ξ where at most one input random
sub-vector ξr acts on a subdomain Ds as illustrated in Figure 2. If the latter is the case we call the
tuple (r, s) an active index, which we collect in

Iactive := {(r, s) ∈ {1, . . . ,M} × {1, . . . NSD | (r, s) is active index}. (32)

D

ξ1

ξ2
ξ3

ξ3

Figure 2: Parametric random input given by M = 4 sub random vectors ξr, r = 1, . . . , 4 distributed
over different sub-structures.

The abstract equation reads

L(ξ(ω), x)u(ξ(ω), x) = f(x), in D, (33)

B(ξ(ω), x)u(ξ(ω), x) = g(x), on Γ, (34)

with L(ξ(ω), x) = L(ξr(ω), x) for x ∈ Ds for each (r, s) ∈ Iactive from (32) and L(ξ(ω), x) =
L(x) else. An analog structure holds for the boundary operator B. Here, we assume existence and
uniqueness of a solution u ∈ L2(Ω, σ(ξ),P)⊗V for some separable Hilbert space V , e.g. V = H1

ΓD

in the case of (1).

Note that the abstract model includes several important cases of random modeling:

� Direct modeling with independend random components, i.e. (ξs)s are mutually independend
random vectors and L is defined by material parameters that depend locally on ξr in a possible
non-linear manner.
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� The setting ξr ≡ ξ corresponds to global random contributions, which includes the non-
localized (standard) KLE case.

� The local coordinates ξr are obtained by a localized KLE. In the case that the underlying ran-
dom field is GAUSSian, ξ and ξr consist of mutually independend GAUSSian random variable
components, although now (ξr)r is not independend in general.

� The case of one localized uncertainty input M = 1 [8].

Remark 4.1. In order to balance the workload for parallel computations in the domain decomposition
schemes introduced by varying sizes of subdomains described below, one might decompose a large
subdomain, e.g.Ds, with operator dependence only on ξr, (r, s) ∈ Iactive intoDs = Ds′ ∪Ds′′ , thus
updating Iactive with (r, s′), (r, s′′) instead of (r, s). This might require involved system preconditioners
since the material coefficient on the interface Ds′ ∩Ds′′ might behave non-trivially.

Example 4.2. (localized Karhunen-Loève expansion)
Given the mean and covariance kernel, a random field might be given as

a(x, ω) = a(x,η(ω)) = a0(x) +
∞∑
i=1

√
λiai(x)ηi(ω), x ∈ D,

with centered, uncorrelated random variables ηi and eigenpairs (λi, ai) of the underlying covariance
operator with respect to the full domain D. When considering the eigenvalue problem on subdomains
Ds only, we obtain local representations in a new (larger) coordinate system ξ = (ξs)NSD

s=1 with sub-
coordinates ξs, i.e.

a(x, ω) = a(x, ξs(ω)) = a0(x) +
∞∑
j=1

√
λsja

s
jξ
s
j (ω), x ∈ Ds.

Assume that the global KLE is truncated after M terms, yielding the desired accuracy. In the case
that the local eigenvalues (λsj)j have a (much) lower magnitude, the local KLE can be truncated after
ms � M terms, i.e. a low dimensional local representation of the random field. Furthermore, there
exists a matrix As ∈ Rms,M such that (ηsj )

ms
j=1 = As(ξi)

M
i=1. In the case of GAUSSian random fields

one gets the nice property that (ηsj ) are independent GAUSSian random variables as well, enabling
local dense polynomial chaos approximations. Note that (ξs)s is not independend in general. This
framework was introduced in [9].

Remark 4.3. Contrary to example 4.2, in the case that ξi are independent non-GAUSSian random
variables, the distribution of (ηsj )

ms
j=1 can be arbitrarily complex since the involved linear map As in-

troduces a non-linear mapping of distributions due to ms < M . Hence, one cannot expect (ηj) to
be independent and the existence of a dense polyomial chaos in LQ(Ω, σ(η),P) is not ensured in
general, e.g. if img ηms ⊂ Rms is unbounded. Note that the image might be of lower topological
dimension, e.g. a submanifold only.

4.2 Parametric hybrid domain decomposition based on semi-discretisation

Domain decomposition generally refers to the splitting of a partial differential equation, or an approx-
imation thereof, into coupled problems on smaller subdomains, forming a partition of the original do-
main, see [46]. We present the framework on a semi-discrete formulation with regard to some suitable
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discrete subspace of V . Then the structure of the decomposed random model (33)-(34) results in a
random system of equations

A(ξ(ω))u(ξ(ω)) = F (ξ(ω)). (35)

The domain decomposition approach for random partial differential equations is applied in the context
of global and local Karhunen-Loève expansions in [44] and [10] with a combination of model reduc-
tion techniques [36] for the SCHUR complement or the FETI-DP method, respectively. We note that
the technique based on global random coordinates is based on a Stochastic FE formulation without
a sampling stage, which limits it to a small number of random coordinates due to the curse of dimen-
sionality. To alleviate this issue, the aim is to rely on local random coordinates only, e.g. based on
canonical tensor representations as in [26]. In what follows, we present both techniques, the SCHUR

complement and the FETI-DP method based on local adaptively constructed surrogates that enable
accelerated sampling. The general hybrid approach that we introduce is summarized in Algorithm 2.

Remark 4.4. If the local representation ofL(ξr(ω), x) is given by means of a gPCE with independent
(ξrk) then the involved local random operators may be represented in low-rank formats as in [14],
allowing for higher dimensional local input. This approach transfers to compressed structures of all
involved parametric suboperators, However, its discussion is out of the scope of this paper.

Algorithm 2: Abstract hybrid domain decomposition
input : ◦ number of total samples N

◦ local discrete physical spaces Vh,s
◦ surrogate cost bound C$ and desired accuracy tol

output: Sample based approximation of some Q.o.I.(u)
1 foreach active pair (r, s) subdomainDs in parallel do
2 if surrogate creation cost < C$ then
3 Ss(ξr) = createLocalSurrogates(Vh,s,semi-discrete PDE, tol)

4 else
5 Ss(ξr) = createLocalSampler(Vh,s,semi-discrete PDE,matrix free = true)

6 foreach sample ξk, k = 1, . . . ,N in parallel do
7 obtain local samples (ξrk)

M
r=1 from ξk

8 solve global interface problem(s) via parallel application of Ss(ξrk) for s = 1, . . . , NSD

9 solve full decoupled local problems in parallel for s = 1, . . . , NSD

10 add solution sample contribution to approximate Q.o.I.(u)

4.3 Parametric Schur complement method

As a first approach to non-overlapping domain decomposition methods, we consider the SCHUR com-
plement method, see e.g. [46, Ch. 4-5] for details. For simplicity, the presentation is based on the
elliptic linear equation (1) with the random dependence setting introduced in the beginning of this
section. Given a physical discretization space Vh ⊂ V := H1

Γ0
(D) spanned by a nodal LAGRANGE

basis on a matching triangle (tetrahedral for d = 3) mesh ofD, we consider a semi-discretization with
respect to the physical coordinate x. Let us denote by Π the (primal) interface

Π = ∪s 6=s′∂Ds ∩ ∂Ds′ ,

consisting of faces (d = 3), edges and vertices with respect to the underlying mesh. Identifying
the degrees of freedoms in Vh with topological entities, we can reorder those with regard to local
contributions indexed by the letter L, corresponding to topological entities in the inner of Ds and on
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Neumann parts Ds ∩ Γ1 and to interacting primal interface contributions, indexed with the letter Π ,
for convenience. This semi-discretization of (1) leads to a structure of (35) with

A(ξ(ω)) :=
(
ALL ALΠ
AΠL AΠΠ

)
(ξ(ω)),

u(ξ(ω)) :=

(
uL
uΠ

)
(ξ(ω)), F :=

(
fL
fΠ

)
.

Then, block GAUSSian elimination leads to an equivalent system to (35) given as

Ã(ξ(ω))u(ξ(ω)) = F̃ (ξ(ω)), (36)

where

Ã(ξ(ω)) :=
(
ALL ALΠ
0 SΠΠ

)
(ξ(ω)),

F̃ (ξ(ω)) :=

(
fL

f̃Π(ξ(ω))

)
,

f̃Π(ξ(ω)) := fΠ − AΠL(ξ(ω))ALL(ξ(ω))−1fL.

Let Rs be the rectangular restriction matrix which restricts the global degrees of freedom vector as-
sociated to Π to local degrees of freedom vectors associated to local interface entities on the mesh
on Ds only. Since the mesh has no hanging nodes, the entries of each Rs are in {0, 1}. For each
s = 1, . . . , NSD, consider local assembled matrices AsLL, A

s
LΠ , A

s
Π,L, A

s
ΠΠ , associated to local

physical discretization spaces on Ds. Note that for each active index (r, s), these matrices have a
parametric dependence on ξr. With the given ordering in (32) it follows that these matrices are given
by

ALL(ξ(ω)) = blockdiag(A1
LL, . . . , A

s
LL, . . . , A

NSD
LL ),

AΠL(ξ(ω)) = blockdiag(R1, . . . , RNSD)
[
A1
ΠL, . . . A

s
ΠL, . . . , A

NSD
ΠL

]
,

SΠΠ(ξ(ω)) =

NSD∑
s=1

RsS
s
ΠΠR

T
s , SsΠΠ = AsΠΠ − AsΠLAs

−1

LL A
s
LΠ ,

where each matrix with index s only depends on ξr(ω) if (r, s) ∈ Iactive and AΠL = ALΠ almost
everywhere in Ω. In particular, for each active index (r, s), we have

SsΠΠ(ξ
r(ω)) = AsΠΠ(ξ

r(ω))− AsΠL(ξr(ω))AsLL(ξr(ω))−1AsLΠ(ξr(ω)). (37)

In the deterministic setting, (36) is solved by first iteratively solving for uΠ and second solving (in
parallel) for interior contributions usL with uL = [u1L, . . . , u

NSD
L ]. The full matrix SΠΠ is never formed

explictly. Its action on a vector involves the application of the smaller matrices SsΠΠ . In the determinstic
case, the latter might be realized by a LU decomposition of AsLL and we build local surrogate models
ŜsΠΠ ≈ SsΠΠ . Depending on the regularity of the maps

ξr(ω) 7→ SsΠΠ(ξ
r(ω)) (38)

and the input dimension of ξr, this might be realized by interpolation (e.g. sparse grid, lagrange in-
terpolation) or (quasi)-best approximation techniques (tensor reconstruction, hPCE). We note that the
construction of the surrogate models may be expensive if the number of local degrees of freedom
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associated with Π ∩Ds or the random dimension of ξr grows or if a lack of regularity is present. In a
practical implementation, this cost factor has to be compared to the cost of a full sampling approach
with several back and forward solves of the involed LU decompositions in the iterative process of the
application of the SCHUR complement matrix. It is known that the condition number of a deterministic
SCHUR complement matrix grows like∞/(H〈), where H is the diameter of the subdomains and h
the maximal elementsize in the subdomains [46].

The proposed method is summarized in Algorithm 3.

Algorithm 3: Realization as parametric SCHUR complement method
input : ◦ sample yk := ξk(ω) = [ξ1k, . . . , ξ

M
k ](ω),

◦ local system surrogates for ξ(ω) 7→ SΠΠ(ξ(ω))
◦ local surrogates for preconditioner of (parametric) SΠΠ .

output: approximated realization of uk = u(ξk(ω)) or of subdomain parts usk = uk|Ds
.

1 Compute right-hand side realization F̃k = [fL, f̃Π,k] = F̃ (ξk(ω)) of (36) via system surrogates.

2 Iterativly solve SΠΠ,kuΠ,k = f̃Π,k via PCG. The application of operator SΠΠ,k and its preconditioner are based on
evaluation of local surrogates.

3 Solve block diagonal system ALL,kuL,k = fL −ALΠ,kuΠ,k in parallel.

4.4 Parametric FETI-DP

The Finite Element Tearing and Interconnecting Dual-Primal (FETI-DP) method is known to success-
fuly balance the requirement of a minimal communication by a coarse space by keeping good con-
vergence rates within the the preconditioned conjugate gradient solution scheme. It was introduced in
[19] and further developed in [46, 42, 41, 31, 30], see also the references therein for the purely deter-
ministic case. The main idea is to translate the original problem into a dual problem in which the local
iterates are not conforming (e.g. discontinous in the H1 framework), represented by most degrees of
freedom associated with the domain interfaces and only a small number is strongly enforced to be
conforming (e.g continuous) opposite to the SCHUR complement method, where all (primal) d.o.f.s
associated with the interface are globally constrained. This small number of constraints is associated
with primal d.o.f.s while building the (global) coarse communication space. To enforce conformity of
the method, the iteration solves for Lagrange multipliers λ , which construct the dual variables. In the
case of convergence, this enforces conformity of the non-primal interface degrees of freedom. For
further extensions of the coarse space design, e.g. including adaptivity, we refer to [29, 32].

For the sake of simplicity, we stay on the algebraic matrix level subject to the discretization of the
symmetric model problem (1). For interpretation in a HILBERTian framework, we refer to [33] and for a
formulation in intermediate approximation FE spaces to [46].

After choosing the set of interior, dual and primal degrees of freedom, marked by the subindices I,∆
and Π for a given physical discretization based on meshes on Ds that are aligned with each other on
the subdomain interfaces, the structure of the system (35) is given by

A(ξ(ω)) :=

ALL ALΠ J T
L

AΠL AΠΠ J T
Π

JL JΠ 0

 (ξ(ω)),

u(ξ(ω)) :=

uLuΠ
λ

 , b =

fLfΠ
0

 .

Here the subindex L = [I,∆] merges the subindices I and ∆ to local contributions. The jump
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operators JL = [J 1
L , . . . ,J

NSD
L ], with J s

L = [0, Js∆] and JΠ , consisting of values in {−1, 0, 1}, are
build such that the solution [uL, uΠ ] vector yields a conforming approximation if [JL,JΠ ][uL, uΠ ]T =
0. Introducing restriction operators Rs

Π similar to the SCHUR complement method, mapping local
primal degrees of freedom to global d.o.f.s associated with index Π , sub-assembling with respect to
the primal variables (thus eliminating the need of JΠ ) and application of GAUSSian block elimation
leads to an equivalent formulation that reads

Ã(ξ(ω))ũ(ξ(ω)) = b̃(ξ(ω)), (39)

where

Ã(ξ(ω)) :=

ALL ÃLΠ J T
L

0 S̃ΠΠ −S̃Πλ
0 0 F

 (ξ(ω)), (40)

ũ(ξ(ω)) :=

uLũΠ
λ

 , b̃(ξ(ω)) :=

 fL
b̃Π(ξ(ω))

b̃λ(ξ(ω))

 . (41)

Here, it holds that ũΠ =
∑NSD

s=1R
s
Πu

s
Π , with uΠ = [u1Π , . . . , u

NSD
Π ], stemming from a rearrangement

of global degrees of freedom. For s = 1, . . . , NSD, similar to the SCHUR complement method, we
introduce the locally assembled semi-discrete matricesAsLL, A

s
LΠ , A

s
Π,L, A

s
ΠΠ with dependence only

on ξr(ω) if (r, s) ∈ Iactive. We then have the relation

S̃ΠΠ(ξ(ω)) := ÃΠΠ − ÃΠLA−1LLÃLΠ =

NSD∑
s=1

Rs
Π

(
AsΠΠ − AsΠLAs

−1

LL A
s
LΠ

)
Rs
Π
T ,

S̃Πλ(ξ(ω)) := ÃΠLA
−1
LLJ

T
L =

NSD∑
s=1

Rs
ΠA

s
ΠLA

s−1

LL J s
L
T ,

with the random FETI-DP dual matrix F and right-hand side contributions such that

F (ξ(ω)) := JLA−1LLJ
T
L + S̃TΠλS̃

−1
ΠΠ S̃Πλ

b̃Π(ξ(ω)) :=

NSD∑
s=1

Rs
Π(f

s
Π − AsΠLAs

−1

LL f
s
L),

b̃λ(ξ(ω)) := JLA−1LLfL − JLA
−1
LLÃLΠ S̃

−1
ΠΠ

(
f̃Π − ÃΠLA−1LLfL

)
= JLA−1LLfL − S̃

T
ΠλS̃

−1
ΠΠ b̃Π .

Note that for a better readability we omitted the parametric dependence of matrices on the right-hand
sides of the above equations. Examining the occurring matrices, their dimensions and their random
dependence on local random vectors ξs(ω), we now discuss the construction of surrogate models.
In order to avoid multiple LU forward and backward substitutions within the iteration of the system
Fλ = b̃λ, we aim for a lower total cost of computing and storing the surrogates for a given total
number of samples. The parametric matrix F is build up from three contributions, which are discussed
separately:

1 With the random dependence AsLL = AsLL(ξ
r(ω)), (r, s) ∈ Iactive, recall that

JLA−1LLJ
T
L =

NSD∑
s=1

J s
LA

s−1

LL J s
L
T , J s

L = [0,J s
∆].
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The inverse of AsLL can be seen as a 2× 2 block matrix

As
−1

LL =

(
Bs
II Bs

I∆

Bs
∆I Bs

∆∆

)
. (42)

Due to the design of J s
L , only information of B∆∆ contributes. Consequently, we aim for a

surrogate of the mappings

ξr(ω) 7→ Bs
∆∆(ξ

r(ω)), ∀(r, s) ∈ Iactive. (43)

The surrogates of this mappings involve the largest coefficient matrices, depending only on the
local dual degrees of freedom.

2 We are now concerned with constructing surrogates to build S̃Πλ. Note that with the notation in
(42) we have

AsΠLA
s−1
LL J s

L
T =

(
AsΠI AsΠ∆

)(Bs
II Bs

I∆

Bs
∆I Bs

∆∆

)(
0
J s
∆
T

)
= (AsΠIB

s
I∆ + AsΠ∆B

s
∆∆)J s

∆
T .

Thus, we aim for surrogates of the mapping

ξs(ω) 7→ [AsΠIB
s
I∆ + AsΠ∆B

s
∆∆](ξ

r(ω)), ∀(r, s) ∈ Iactive. (44)

Coefficient matrices of the involved surrogates only depend on the number of local primal d.o.f.s
times local dual d.o.f.s and are thus rather small if the coarse space is small.

3 The SCHUR complement matrix S̃ΠΠ is treated as in the parametric SCHUR complement method
in Section 4.3 via surrogates of

ξr(ω) 7→ SsΠΠ(ξ
r(ω)), ∀(r, s) ∈ Iactive, (45)

whereas the coefficient matrix sizes only depend on local degrees of freedom associated to the
coarse space and hence are rather small compared to the classic coarse space in the SCHUR

complement method.

The right-hand side of the parametric system can also be computed via surrogates.

1 The local surrogates employed for the evaluation of b̃(ξ(ω)) are given by

ξr 7→ bsΠ(ξ
r(ω)) := f sΠ − AsΠL(ξr(ω))AsLL(ξr(ω))−1f sL, (46)

for all active indices (s, r).

2 The computation of b̃λ can be based on local surrogates

ξr(ω) 7→ Bs
∆I(ξ

r(ω))f sI +Bs
∆∆(ξ

r(ω))f s∆ (47)

for active indices (s, r) in addition to the surrogates for S̃Πλ, S̃ΠΠ and b̃.
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Note that all local surrogates can be computed in parallel and stored distributedly. The suggested
approach is summarized in Algorithm 4.

Algorithm 4: Realization in parametric FETI-DP
input : ◦ sample yk := ξk(ω) = [ξ1k, . . . , ξ

M
k ](ω),

◦ local based system surrogates for ξ(ω) 7→ [F, S̃ΠΠ , S̃Πλ](ξ(ω))
◦ local based surrogates for preconditioner of (parametric) F .

output: approximated realization of uk = u(ξk(ω)) or subdomain parts usk = uk|Ds
.

1 Compute rhs realisation b̃k = [fL, b̃Π,k, b̃λ,k] = b̃(ξk(ω)) (41) via surrogates (44)-(47).

2 Iteratively solve Fkλk = b̃λ,k via a preconditioned CG method. The application of the operator Fk and its preconditioner
are based on evaluating (43)-(45) and (53).

3 Solve SCHUR complement system S̃ΠΠ,kũΠ,k = b̃Π,k + S̃Πλ,kλk via (45).

4 Solve block diagonal system ALL,kuL,k = fL − ÃLΠ,kũΠ,k − J TL λk in parallel.

The advantage of deterministic FETI-DP lies in its potential to lead to a weakly scalable algorithm
that is enabled by a suitable choice of coarse space (associated with Π) and preconditioner P for the
submatrixF [46]. In the context of domain decomposition techniques, the term scalability is associated
with the iterative solution cost of the discrete system, which should not deteriorate when the number
of subdomains grows. Let H denote the diameter of the subdomain and h the maximal diameter of
the subdomain mesh cells. It can then be shown that

κ(P−1F ) ≤ C

(
1 + log

(
H

h

))2

, (48)

where κ denotes the condition number, see e.g. [46] and the references therein. The construction of
the scaled lumped and DIRICHLET preconditioner and its extension to the random case using surro-
gates is discussed in the next subsection 4.4.1.

4.4.1 Preconditioner

In what follows we introduce surrogates for two classic FETI-DP preconditioners, namely the lumped
and the Dirichlet preconditioner P−1lumped and P−1Dir . These are given pointwise by

P−1# (ξ(ω)) =

NSD∑
s=1

W sJ s
∆M

s
#J s

∆
TW s, # ∈ {lump, Dir}, (49)

with Mlump = As∆∆ and MDir = As∆∆ − As∆IAs
−1

II A
s
I∆. Here, M s

# = M s
#(ξ

r(ω)) for all (r, s) ∈
Iactive. The diagonal scaling weight mappings W s have a more involved parametric structure due to
the coupling of neighboured random dependencies shown in (50).

We fix a subdomain Ds and let Ds′ be any neighboring subdomain such that there exist dual d.o.f.s
∆s
i and ∆s′

j in the local spaces associated with local meshes on those subdomains that both account

for the same global dual deegree of freedom. We collect those Ds′ into Ds
∆, noting that Ds ∈ Ds

∆

per definition. Then, following [42], the diagonal scaling W s is defined as

(W s)ii = diag(As∆∆)ii

 ∑
s′:Ds′∈Ds∆

diag(As
′

∆∆)jj

−1 . (50)

With this construction, the diagonal scaling enables the preconditioner to take material heterogeneities
into account. An important observation is that if the assembled local dual matrices As∆∆ and their
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neighborhood counterparts As
′
∆∆ depend on ξr and ξr

′
, respectivly, then W s is a matrix valued func-

tion depending on ξr and ξr
′
, so that a direct surrogate construction may be not applicable due to the

sum of involved local parameter dimensions.

Since the underlying physical local meshes are fixed, we can work around this issue. For s′ such that
Ds′ ∈ Ds

∆, we introduce diagonal matrices W s
s′ with

(W s
s′)ii =

{
diag(As

′
∆∆)jj ∃j : ∆s′

j , ∆
s
i share common global dual d.o.f

0, else.
(51)

Then, we can compactly write

W s = diag(As∆∆)

 ∑
s′:Ds′∈Ds∆

W s
s′

−1 , (52)

where W s
s′ = W s

s′(ξ
r′) for all (r′, s′) ∈ Iactive. With this construction, we may generate surrogate of

the following maps, which depend only on local parameters,

ξr(ω) 7→


M s

#(ξ
r(ω)), # ∈ {lump, Dir}

diag(As∆∆(ξ
r(ω))),

W s
s′(ξ

r(ω)), Ds′ ∈ Ds
∆,

∀(r, s) ∈ Iactive, (53)

and define the application of the preconditioner based on these local surrogates.

Remark 4.5. If the aim of the computation involves the recovering of approximate sample solutions
over the whole domain, then AsLL needs to be inverted per sample separately, see Algorithm 4. In this
situation, for each s, AsLL is assembled sample-wise such that As∆∆ is accessible. Then, we propose
to only build a surrogate for ξr(ω) 7→ M s

Dir(ξ
r(ω)) for (r, s) ∈ Iactive as this map would introduce

several inversions of As
−1

II in the solution iteration scheme of a preconditioned conjugate gradient
method.

Remark 4.6. In summary, we presented a pointwise surrogate approach, which for each sample up to
surrogate precision enables weak-scalability based on the deterministic results. Alternatively, a fixed
preconditioner such as the mean E[P−1# ] can be considered as in [10] for the SCHUR complement
method.

4.4.2 Parametric FETI-DP for cluster sampling

In this subsection we consider cluster sampling (as a special case) that corresponds to a piecewise
constant approximation of the involved parametric assembled discretization in the spirit of zero order
gHPCE from subsection 3.2. While the discretization due to cost aspects is applicable to low local
parametric dimensions only, it turns out that the resulting surrogates have a very simple structure. In
this case, the surrogates are not needed to be build explicitly and the method involving its precon-
ditioner is a simple generalization of the classic deterministic FETI-DP in all its algorithmic details,
like the use of precomputed LU decompositions of the involved inverse matrix applications. We shall
describe the benefits illustrated with the random FETI-DP matrix F .

Let (r, s) be active and consider the zero order gHPCE for any involved local random matrix M s such
that

M s(ξr(ω)) ≈M s
0(ξ

r(ω)) :=
∑
j∈J

M s
j Ψ0,j(ξ

r(ω)). (54)
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A key observation follows if M s
j is invertible for all j ∈ J . By the push-forward µr = P#ξr and

identification yr = ξr(ω) and Γ r = ∪j∈JΓ r
j , it holds pointwise

M s(yr)−1 =
(
M s

j′Ψ0,j′(y
r)
)−1

, µr-a.e.,yr ∈ Γ r
j′ . (55)

As a consequence, e.g. the inverse of the SCHUR complement structure SsΠΠ(ξ
r(ω))−1 has an easy

form given as

SsΠΠ(ξ
r(ω)) =

∑
j∈J

SsΠΠjΨ0,j(ξ
r(ω)), (56)

where only one summand contributes to a realization of ξr. With that structure, one also gets for the
s-th summand Rs

ΠA
s
ΠLA

s−1

LL J s
L
T in the definition of S̃Πλ that

[AsΠLA
s−1

LL ](y
r) =

(∑
j∈J

AsΠLjΨ0,j(y
r)

)(∑
j′∈J

(
AsLLj′Ψ0,j′(y

r)
)−1)

(57)

=
∑
j∈J

AsΠLj

(
AsLLj

)−1
χΓ rj (y

r), (58)

with indicator function χΓ rj . Thus, for a global realization, the application of F relies on precomputed
factorizations of AsLLj and storage of all involved coefficient matrices for s = 1, . . . , NSD, and j ∈ J .
This indicates a limiting factor if |J | gets too large by the curve of dimensionality.

The piecewise constant approximation scheme in the stochastic space is suiteable for domain-wise
random fields ω 7→ a(x, ω) = a(x,X(ω)) parametrized by a discrete random variable X with finite
dimensional image {x1, . . . , x|J |}. Such fields might be represented as

a(x,X(ω)) = ϕ0(x) +
∑
j∈J

πj(X(ω))ϕj(x), (59)

with polynomials πj with πj(xi) = δij and functions ϕj in physical space. A special case of this is the
checkerboard material with π0(y) = y, π1(y) = 1− y, and ϕj ≡ j.

5 Numerical Experiments

We present some numerical validation of the proposed method for the partition of unity interpolation
approach of Section 3.3. The implementation of the hybrid domain decomposition method for random
domains was carried out as part of the open source ALEA library [13] with the deterministic FE
backend FEniCS [20] for the assembly of local matrices. The approximation spaces for random
coordinate space are realized with a custom implementation of hierachical tree based decompositions
of M -dimensional cells such as tensorized hyper quadrilaterals. Each such element then can be
refined anisotropically by bisection separately in each coordinate direction. Additionally, a cell is refined
into macro-elements (marked as gray in the figures below) and remaining hyper quadrilaterals if sub-
areas are not necessary for further refinement in the marking process.

Two experiments based on the model problem (1) are considered with homogeneous DIRICHLET

boundary conditions. In Section 5.1, we examine a smooth local parametric dependence with a chal-
lenge introduced by a non-linear coupling of random and physical coordinates. A random cookie prob-
lem as described in Example 2.9 representing non-smooth data is presented in Section 5.2.
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Figure 3: Adaptive surrogate construction based on macro-element anisotropic refinement procedure
for ξs 7→ Bs

DD(ξ
s) for an inner square Ds with tol = 10−4 and 100% trusted zone after 6 iterations.

The Figures 3-5 (respectively 9-11) serve to illustrate the adaptive surrogate generation. The figures
from top to buttom show: the partitioned parametric domain Γ s, employed polynomial degrees (4:
blue, 3: yellow, 2 orange), trust/no-trust zones and local errors.

5.1 Smooth problem with non-linear coupling

We considerD = [0, 1]2 and a partition ofD intoN ×N subsquaresDs withN = 3, x = (x1, x2).
Our model for a smooth random field with a coupling of physical and stochastic coordinates is given
as

a(x, ξ) = a(x, ξs(ω)) = 1.1 + sin(απ(x1ξ1(ω) + x2ξ2(ω))), x ∈ Ds, (60)

with ξs = (ξs1, ξ
s
2), α = 0.7 and independent ξsi ∼ U [−1, 1], for i = 1,M = 2, s = 1, . . . , NSD =

9 resulting in a total of 18 random dimensions. In Figures 3-5, we illustrate the adaptive partitioning
process of a local random image space [−1, 1]M based on Algorithm 1. In the experiment we utilize
a physical discretisation with p = 1 FE on uniform 30 × 30 triangulations of Ds, s = 1, . . . , NSD.
The non-linear coupling of random and physical coordinates introduces a layer of the involved matrix
valued random maps that differs for all s = 1, . . . , 9, also depending on the size of values taken in
x. We illustrate the different structures in Figure 6 by final meshes obtained by the adaptive scheme.
We point out that α = 2π, or on larger domains D and thus related larger range of x, the surrogate
construction becomes more involved and finer layers have to be resolved. In the numerical investiga-
tion, it is observed that given a tol > 0 for the local interface surrogates, the error between a sampled
solution based on surrogates denoted by ûkh and its analogue (Monte Carlo) sample solution denoted
by ukh is of higher order. The situation is illustrated in Figure 7 with a pointwise difference of order
O(10−6) and ‖ûkh − ukh‖H1

0 (D)/‖ukh‖ ∈ O(6× 10−5).
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Figure 4: Adaptive surrogate construction procedure for ξs 7→ SsΠλ(ξ
s) for an inner square Ds with

tol = 10−4 and 100% trusted zone after 5 iterations.

Figure 5: Adaptive surrogate construction procedure for ξs 7→ SsPP (ξ
s) for an inner square Ds with

tol = 10−4 and 100% trusted zone after 5 iterations.
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Figure 6: Final meshes on the surrogate random domain img ξs = [−1, 1]2 for s = 1, . . . , 9 with
tol = 10−4 and resulting 100% trusted region for the maps ξs 7→ Bs

DD(ξ
s) using macro-elements

(gray) and an anisotropic refinement. The polynomial degrees vary from 2 for very small to 4 for larger
elements.

Figure 7: From left to right: MC sample, surrogate based sample and difference of globally recon-
structed discrete solution for the problem in S 5.1 using a uniform 30× 30 triangular mesh on each of
the 3× 3 subdomains.
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Figure 8: Left: Surrogate based sample ûkh for the random cookie problem on 20 × 5 subdomains
using p = 1 FE on local uniform 40× 40 triangular meshes on Ds. Right: Pointwise difference to MC
sampled discrete solution ukh. Local surrogates build with tol = 10−2 leading to relativeH1

0 (D) errors
of ‖ûkh − ukh‖H1

0 (D)/‖ukh‖ ∈ O(9× 10−3).

5.2 Cookie problem, model problem for more general composite materials

We consider a rectangular domain D = [0,W ] × [0, H] with parameters H,W > 0 such that D
can be decomposed into squares Ds for s = 1, . . . , NSD = NHNW , where NH (respectively NW )
denotes the number of squares in their respective direction.

Remark 5.1. For the physical discretization a fixed uniform (local) triangular mesh is used implicitly
for each realization of the composite structure. In particular, given a realization of the composite, the
mesh does not resolve the jump in the coefficient, which in a deterministic setting is critical from an
accuracy point of view. Note that, to benefit from using such a fixed mesh, the FE basis functions
can be enriched by an element-wise basis function with a jump in the gradient of the discrete basis
function as described in [27]. With this, the presented technique exhibits a better approximation quality
with respect to the solution u. On each square domain Ds, the random field P-a.e. is described as

a(x, ω) = a(x, ξs(ω)) = χB(ξs(ω))(x) + 20(1− χB(ξs(ω))(x)), x ∈ Ds. (61)

Here, Bs(ξs(ω)) denotes a random ball modelled by a random radius r and a random x posi-
tion such that [r, x] = ϕs(ξs1(ω), ξ

s
2(ω)) with a map ϕs choosen such that B(ξs(ω)) is uniformly

bounded away from ∂Ds by a given distance as in Example 2.9. By a push-forward we may iden-
tify ys = ξs(ω) and interpret ys 7→ a(·,ys) as an element in L2([−1, 1]2;L∞(D)). We stress that
a /∈ C([−1, 1]2;L∞(D)) but a ∈ L∞([−1, 1]2;L∞(D)). The defined composite material coefficient
lacks regularity in the random as well as the physical coordinates. Note that the full random dimension
is M ′ = 2NHNW , e.g. with M = 200 for 20 × 5 squares as illustrated in Figure 8. Due to the
same structure of the domain-wise non-periodic material description for the homogeneous DIRICHLET

problem, it suffices to compute local surrogates for 9 subdomains only (4 associated to each corner
and edge, 1 inner domain. The adaptive procedure is illustrated for the inner domain case in Figures
9-11. We point out the remarkable refinement pattern towards the right domain side. The right in-
terface corresponds to the case of maximal radius of the random ball, the top and bottom interface
correspond to the maximal displacement of the ball. Due to the surrogate construction based on a
semi-discretization, given sufficiently fine physical meshes, the intersection of the random ball and the
support of the basis functions associated locally to the boundary shrinks. Thus, the dependence of
the non-smooth influence gets smaller. Furthermore, we observe a constant error for BDD in Figure
9 that accounts for the remaining support interaction and exhibits a noteable very slow decrease. This
interaction is further illustrated in Figure 12, when solving for a smaller tolerance tol = 10−3.
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Figure 9: Adaptive surrogate construction based on macro-element anisotropic refinement procedure
for ξs 7→ Bs

DD(ξ
s) for a inner square Ds with tol = 0.5 × 10−2. 99.41% trusted zone after 6

iterations.

Figure 10: Adaptive surrogate construction procedure for ξs 7→ SsΠλ(ξ
s) for a inner square Ds with

tol = 0.5× 10−2. 100% trusted zone after 5 iterations.
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Figure 11: Adaptive surrogate construction procedure for ξs 7→ SsPP (ξ
s) for a inner square Ds with

tol = 0.5× 10−2. 100% trusted zone after 5 iterations.

Remark 5.2. In the numerical experiments, building the surrogate ξs 7→ AsLL(ξ
s)−1 leads to massive

uniform refinements with an (arbitrarily) slow error decrease. However, the involved interface operators
are observed to exhibit rather smooth sub-areas in the parametric space with remaining small non-
trusted areas.
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