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A discussion of the reaction rate and the cell voltage of
an intercalation electrode during discharge

Manuel Landstorfer

Abstract
In this work we discuss the modeling procedure and validation of a non-porous inter-

calation half-cell during galvanostatic discharge. The modeling is based on continuum
thermodynamics with non-equilibrium processes in the active intercalation particle, the
electrolyte, and the common interface where the intercalation reaction Li+ +e− −−⇀↽−− Li
occurs. This yields balance equations for the transport of charge and intercalated lithium
in the intercalation compound, a surface reaction rate at the interface, and transport
equations in the electrolyte for the concentration of lithium ions and the electrostatic
potential. An expression for the measured cell voltage E is then rigorously derived for
a half cell with metallic lithium as counter electrode. The model is then in detail in-
vestigated and discussed in terms of scalings of the non-equilibrium parameters, i.e. the
diffusion coefficients DA and DE of the active phase and the electrolyte, conductivity
σA and σE of both phases, and the exchange current density e0L

s
, with numerical solu-

tions of the underlying PDE system. The current density i as well as all non-equilibrium
parameters are scaled with respect to the 1-C current density iCA of the intercalation
electrode and the C-rate Ch of discharge. Further we derive an expression for the capac-
ity Q of the intercalation cell, which allows us to compute numerically the cell voltage E
as function of the capacity Q and the C-rate Ch. Within a hierarchy of approximations
of the non-equilibrium processes we provide computations of E(Q) for various values
of the diffusion coefficients, the conductivities and the exchange current density. For
the later we provide finally a discussion for possible concentration dependencies and
(surface) thermodynamic consistency.
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1 Introduction

Lithium ion batteries (LIBs) are vital today for many branches of modern society and especially
for electro-mobility. The german national platform electro-mobility aims one million electric
vehicles by 2020, as well as the U.S., while China targets about five million zero emission
cars. To achieve these goals, substantial knowledge on the effectively non-linear behavior of
LiBs is required in order to reduce cost, increase their efficiency, safety, durability and fur-
ther. The interpretation of experimental data requires a versatile and predictive mathematical
model of a LIB, which accounts for the many physicochemical processes occurring simultane-
ously during charge and discharge, e.g. Li+ diffusion in the electrolyte, surface reactions at
the electrode/electrolyte interface, solid state diffusion in the active particles, and electrical
conductivity.
First academic steps to model the functional principle of LIBs with the purpose of simulating
their charge/discharge behavior were carried out by Newman et al. around 1993 [1]. This elec-
trochemical model became a central tool to interpret measured data of intercalation batteries.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 3

One of the central ingredients of the Newman model is the Butler–Volmer-type reaction rate
R
s
for the intercalation reaction Li+ + e− −−⇀↽−− Li occurring at the interface ΣA,E between an

intercalation electrode (particle) ΩA and the electrolyte ΩE. The actual functional dependency
of R

s
= R

s
(nE, ϕE, nA, ϕA) on the different variables of the equation system, e.g. the electrolyte

concentration nE, the electrostatic potential ϕE in the electrolyte, the concentration nA of in-
tercalated ions, and the electrostatic potential ϕA of the active phase, is, however, rather stated
then derived. Especially the so called exchange current density and its functional relationship
to the cation concentration is doubtable.
From a non-equilibrium thermodynamics (NET) point of view, the functional dependency R

s
=

R
s
(nE, ϕE, nA, ϕA) can be consistently derived and NET restricts this functional dependency in

a very specific manner. We discuss in this work the modeling procedure of a single transfer
reaction at the interface between an active intercalation phase and some electrolyte based
on the framework of NET for volumes and surfaces and draw some conclusions regarding
thermodynamic consistent models of the reaction rate. We account also for diffusion processes
in the adjacent active particle and the electrolyte, as well es electrical conductivity, and state
the corresponding balance equations. Then we consider galvanostatic discharge in half cell of
some cathode intercalation material, electrolyte, and a lithium reference electrode, which is
considered as ideally polarizable counter electrode.
We introduce the C1-current density, i.e. the current at which the electrode is completely
discharged during one hour, and scale all non-equilibrium parameters based on the C-rate
Ch, i.e. multiples of the C1 current density. It is then possible to derive a general relation
between the measured cell voltage E, the capacity Q, and the C-rate Ch based on the reaction
rate R

s
= R

s
(nE, ϕE, nA, ϕA). Since, however, actually the concentrations at the interface ΣA,E

of intercalated cations nA and electrolytic cations nE enter the surface reaction rate R
s
, we

need to solve necessarily the diffusion equations in the adjacent phases. We discuss various
approximation regimes and parameter scalings of the non-equilibrium parameters which allows
us to compare numerical simulations of cell voltage E = E(Q,Ch) to some representative
experimental examples, especially of Lix(Ni1/3Mn1/3Co1/3O2(NMC). Fig. shows the measured
cell voltage E as function of the capacity (or status of charge) for various discharge rates of
thin of NMC half cell [2].
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Coin cell fabrication.— The coin cell assembly was prepared in
standard 2325 coin cell hardware. First, the NMC cathode was placed
in the center of the outer shell of the coin cell assembly. Two layers
of Celgard 2400 polypropylene separator were placed on top of the
cathode. A few drops of the 1 M LiPF6 in EC:DEC (1:1) electrolyte
were then added to soak the separators and the cathode. A lithium
metal disk of 1.75 cm diam. was used as the counter electrode, which
is larger than the cathode to prevent lithium deposition when charging
at high rates. The counter electrode was spread on a stainless steel
spacer and placed on top of the separators. A Belleville spring was
placed on top of the spacer, and then capped with the second shell
of the coin cell assembly isolated by a plastic grommet around its
outer edge. The cell was then crimped closed with a custom-built hy-
draulic crimping machine manufactured by National Research Coun-
cil of Canada. All procedures were performed in an argon-filled glove
box.

Coin cell testing.— Experiments were conducted in a thermoelec-
tric chamber connected to a MPG2 battery cycler. The potential was
recorded every 5 mV or at least every 10 seconds. The potential range
was set to be 0 to 5 V corresponding to a resolution of 0.1 mV.
The potentials reported in this paper are that of the positive elec-
trode with respect to the lithium electrode. In the literature,4, 22 NMC
electrodes are charged over 4.6 V to test the maximum attainable
capacity of the material. Commercially, the charge limit for NMC
batteries is 4.2 to 4.3 V. Studies in our Laboratory and the manu-
facturer recommendations suggest that the NMC electrodes should
not be charged over 4.3 V in order to minimize electrolyte oxidation.
At first, the cell was formed at a slow rate (about C/25, based on a
capacity of 150 mAh/g) for one charge-discharge cycle between 2.5
and 4.3 V and followed by five cycles of charge and discharge at
C/5, which was based on the capacity obtained from the first C/25
formation cycle. After the formation cycles, the capacity of the cell
reached a stable value (ca. 155 mAh/g at C/5) which was recorded
for use in the subsequent experiments. All the C-rates in this paper
are defined by using the capacity of 155 mAh/g. The utilization of
electrode is defined by the full capacity obtained at a rate of C/25
(160 mAh/g).

For the experiment with various discharge rates, the cell was first
charged at C/5 to 4.3 V followed by a potential hold until the current
was smaller than C/25. The cell was then rested for 30 minutes,
allowing the electrode to equilibrate, after which it was discharged at
the rates of interest. For the experiment with various charge rates, the
cell was first discharged at C/5 to 2.5 V, rested for 30 minutes, and then
discharged again at C/25 to 2.5 V, after which the cell was charged at
the rates of interest. The extra steps of holding the cell at the charge-end
potential (4.3 V) before every discharge and of discharging the cell at
C/25 before further charging were to ensure that the electrode attained
a uniform state of charge. The rate experiments were conducted on two
separate electrodes of the same composition to ensure the results were
consistent. An additional C/25 charge-discharge cycle was performed
on each cell after the rate experiments to check that the rechargeable
capacities did not fade with cycling.

The experiment for assessing the diffusion coefficient of lithium
in the NMC particle was conducted by discharging the electrode at
a rate of 30C for 10 seconds from a fully charged state followed
by an open circuit relaxation for two hours. The sequence of a
10-second discharge followed by a two-hour open circuit relaxation
was repeated until the cell potential dropped to the cutoff potential
of 2.5 V. The state of charge (SOC) is defined by the applied current
multiplied by the time of charge divided by the maximum capacity
of the cell. The maximum capacity was obtained through a separate
experiment involving a low-rate (C/25) discharge from a fully charged
state without current interruptions. Similarly, a periodic open circuit
experiment was conducted with a 30C charge to assess the diffusion
coefficient from the fully discharged state. The charge and discharge
at the 30C rate minimizes the influence of reaction kinetics, which is
more important at lower rates.

Results and Discussion

Rate capability of thin NMC electrode.— The charge and discharge
curves measured at various rates on the thin NMC electrodes are given
in Figure 1. As described in the Experimental section, each discharge
curve was generated after the electrode was fully charged at a slow
rate; each charge curve was generated, on a separate experiment,
after the electrode was fully discharged at a slow rate. Charge and
discharge curves are plotted together in Figure 1 in order to com-
pare the differences. The electrodes of thickness 6 µm and 11 µm
were made from NMC with particle diameters 3 µm (MX-3) and 6
µm (MX-6), respectively. The weight of active material in each elec-
trode is ca. 0.6194 mg and 0.9754 mg, giving an electrode loading of
0.49 mg/cm2 and 0.77 mg/cm2, respectively.

The electrodes were charged and discharged at rates up to 500C.
Figure 1 shows some results from the charge and discharge experi-
ments. The rate capability shown in Figure 1 far exceeds those previ-
ously reported in the literature. As discharge rate increases, deviations
from the low-rate potential are observed due to potential drops related
to ohmic, kinetic, and transport losses in the battery electrode. The
deviation is more obvious on the MX-6 electrode compared to the
MX-3 electrode at the same C-rate. This is because the corresponding
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Figure 1. Experimental charge and discharge curves on thin NMC electrodes
at various rates. The thicknesses of MX-3 (a) and MX-6 (b) electrodes are
6 µm and 11 µm, respectively. The 1C rate is 0.076 mA/cm2 for the MX-3
electrode and 0.12 mA/cm2 for the MX-6 electrode. The charge and discharge
data were obtained from separate experiments. See Experimental section for
details.

Figure 1: Discharge curves (lower part) for various C-rates (Data of Fig 1.b from [2] , reprinted
with permission of The Electrochemical Society)

We show that a rather simple (but thermodynamically consistent) model of the surface reaction
rate R

s
, or more precise of the exchange current density, is sufficient to understand and predict

the complex non-linear behavior of the cell voltage as function of the capacity Q and the
C-Rate Ch. We provide also computations of E = E(Q,Ch) for the exchange current density
introduced by Newman et. al, draw some regarding thermodynamic consistency, and compare
computations based on this expression to the cell voltage based on our simple expression of
the current density.

2 Modeling

We consider an active intercalation particle ΩA in contact with some electrolyte ΩE. The
interface ΣA,E = ΩA ∩ ΩE captures the actual surface ΣA of the active particle as well as the
electrochemical double layer forming at the interface, i.e. ΣA,E = ΩSCL

A ∪ΣA∪ΩSCL
E . The domains

ΩE and ΩA are thus electro-neutral, and we refer to [3–5] for details on the derivation. The
electrolyte is on the right side in contact to some metallic counter electrode ΩR, where at the
interface ΣE,C captures also the double layer forming at the interface between the electrolyte
and the counter electrode ΩC.
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Figure 2: Sketch of an active intercalation phase ΩA in contact with some electrolyte ΩE.
The electrode-electrolyte interface ΣA,E covers the space charge layer ΩSCL

E of the electrolyte
and ΩSCL

A of the electrode as well as the actual electrode surface Σ. Several processes occur
simultaneously, i.e. the intercalation reaction, electrolyte diffusion and solid state diffusion as
well es electrical conductivity.

We consider a 1D approximation, where the electrode-electrolyte interface ΣA,E is positioned
at x = xAE, the left boundary of ΩA is denoted by x = 0 and the right boundary of ΩE is
x = xEC, with dA = |xAE| and dE = |xEC− xAE|. The counter electrode is positioned at x = xEC
and spans to x = xC.
For some quantity u(x, t), we denote with

u|±AE = u
∣∣∣
∓
x=xAE

and u|±EC = u
∣∣∣
∓
x=xECEC

(1)

the evaluation at the respective side of the interface ΣA,E and ΣE,C, respectively. If u is present
only on one phase, we drop the superscript ±.
The active particle ΩA is a mixture of electrons e− , intercalated cations C and lattice ions
M+ , and the electrolyte a mixture of solvated cations C+ , solvated anions A− and solvent
molecules S . The respective species densities are denoted with nα(x, t),x ∈ Ωi. We denote
with

µα = ∂ψ

∂nα
, i = A, E, α = EA, EC , ES, AC , Ae, AM , (2)

the chemical potential of the constituents, which are derived from a free energy density [6, 7]
ψ = ψA +ψE with ψA = ψ̂A(nAe , nAC

, nAM
) of the active particle and ψE = ψ̂(nES

, nEA
, nEC

) of
the electrolyte phase.
For the surface Σ we have surface chemical potentials [4, 6, 8, 9]

µ
s
α =

∂ψ
s

∂n
s
α

, α = EA, EC , ES, AC , Ae, AM , (3)

which are derived from some general surface free energy density ψ
s
.
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2.1 Material functions

For the electrolyte we consider exclusively the material model [9–11] of an incompressible liquid
electrolyte accounting for solvation effects, i.e.

µα = gRα + kBT ln (yα) + vRα (p− pR) α = ES, EA, EC , (4)

with mole fraction

yα = nα
ntotE

, (5)

molar concentration nα, and total molar concentration of the mixture (with respect to the
number of mixing particles [9])

ntotE = nES
+ nEA

+ nEC
. (6)

Note that nES
denotes the number of free solvent molecules, whereas nEA

and nEC
are the

densities of the solvated ions. This is crucial for various aspects of the thermodynamic model,
and we refer to [9, 10, 12, 13] for details. Overall, the material model for the electrolyte
corresponds to an incompressible mixture with solvation effects. We assume further

vREC

vRES

= mEC

mES

and
vREA

vRES

= mEA

mES

(7)

whereby the incompressibility constraint [9–11] implies also a conservation of mass, i.e.
∑

α

vRαnα = 1 ⇔
∑

α

mαnα = ρ = mES

vRES

= const.. (8)

The molar volume of the solvent is related to the mole density nRES
of the pure solvent as

vRES
= (nRES

)−1 . (9)

Note further that the partial molar volumes vRα and the molar masses mα of the cation and
anion are related to the solvation number κE and κAC

, respectively.
We assume that partial molar volume of the ionic species is mainly determined by the solvation
shell, which seems reasonable for large solvents like DMC in comparison to the small ions like
Li+ . We proceed thus with the assumption

vEC
= κE · vES

and vEA
= κE · vAC

. (10)

For the active particle, we consider an extension of a classical lattice mixture model [14–21]
which accounts for occupation numbers ωA > 1 as well as a Redlich–Kister type enthalpy
term [22, 23] for the intercalation material Liy(Ni1/3Mn1/3Co1/3)O2 (NMC). We refer to [24]
for a detailed discussion and derivation based on a free energy ψA. The chemical potential of
intercalated lithium is derived as

µAC
= kBT

(
ln
( 1

ωA
yAC

1+ 1−ωA
ωA

yAC

)
− ωA · ln

(
1− yAC

1 + 1−ωA
ωA

yAC

)
+ γA · gA(yAC

)
)

(11)
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with

g(y) = (2y−1) + 1
2
(
6y(1−y)− 1

)
− 1

3
(
8y(1−y)− 1

)
(2y−1) (12)

and mole fraction

yAC
= nAC

nA`

(13)

of intercalated cations in the active phase. The number density nA`
of lattice sites is constant,

which corresponds to an incompressible lattice, and the enthalpy parameter γA < 2.5. Note
that γA > 2.5 entails a phase separation [20] and requires an additional term γAdiv∇yAC

in the
chemical potential. However, we assume throughout this work that no phase separation occurs,
whereby in diffusional equilibrium of the intercalation phase the concentration is homogeneous.
An extension of this discussion towards phase separating materials will given in a subsequent
work.
For the electrons we consider [9, 25]

µAe =
( 3

8π
) 2

3 h2

2mAe

n
2
3
Ae

and µ
s

Ae = g
s

R
Ae

= const. (14)

and for the lattice ions

µAM
= gRAM

+ kBT ln (1− yAC
) + vRM (pM − pRM ), (15)

where vRM = (nRM )−1 is the molar volume of the lattice ions, pM the partial pressure and gRAM

the constant molar Gibbs energy. The material functions of the active intercalation electrode
essentially model an incompressible solid with a sub-lattice for the intercalated cations AC .
The explicit surface chemical potentials

µ
s
α =

∂ψ
s

∂n
s
α

, α = EA, EC , ES, AC , AM , (16)

are not required throughout this work since we will assume that the double layer is in equilibrium
and that the double layer capacity (and thus also adsorption), is negligible for the sake of this
work. However, we refer to [9] for the explicit functions of µ

s
α and the surface free energy of

a surface lattice mixture with solvation effects.

2.2 Electroneutrality condition

The electroneutrality condition of ΩA, ΩE and ΩC can be obtained by an asymptotic expansion
of the balance equations in the electrochemical double layer at the respective surface Σ.
We only briefly recapture the central conclusions and refer to [3–5, 9, 26] for details on the
modeling, validation and the asymptotics. Most importantly, we have that

� the double layer is in thermodynamic equilibrium, i.e. ∇µα + e0zα∇ϕ = 0 in ΩSCL
A and

ΩSCL
E

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018
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� there exists a potential drop between the active particle surface Σ and the hyper-surface
Σ±A,E outside of the respective space charge layers which is denoted by

USCL
i = ϕ

s
− ϕ

∣∣∣
i
, i = A, E (17)

where ϕ|i is the electrostatic potential right outside the space charge layer in the elec-
trolyte or the active particle, respectively, and ϕ

s
the (continuous) potential at the surface

Σ1. The whole potential drop across the double layer at ΣA,E is denoted by

UDL
AE = USCL

E − USCL
A = ϕ|+AE − ϕ|−AE (18)

� the chemical potential at the surface can be pulled back through the double layer, i.e.
µ
s
α = µiα − e0zαU

SCL
i , i = A, E

� the condition µ
s
e = const. entails that the potential drop USCL

A is constant (with respect
to some applied voltage) and determined by

USCL
A = 1

e0
(µ
s

Ae − µAe

∣∣∣
AE

) . (19)

� and that for monovalent electrolytes the cation mole fraction (or number density) is
equal to the anion mole fraction, i.e.

yEC
= yAC

. (20)

� in the active phase the electroneutrality entails

nAe = nAM
= const. (21)

whereby we abbreviate

gRAe
:= µAe(nAM

) (22)

which is basically the Fermi energy of the solid material.

2.3 Transport equations

In the electrolyte ΩE we have two balance equations determining the concentration nEC
(x, t)

(or mole fraction yEC
(x, t)) and the electrostatic potential ϕE(x, t) in the electrolyte [27–32],

i.e.
∂nEC

∂t
= −∂xJEC

with JEC
= −DE · ntotE Γtf

E · ∂xyEC
+ tEC

e0
JE,q (23)

0 = −∂xJE,q with JE,q = −SE · ntotE Γtf∂xyE − ΛEnE∂xϕE (24)

with (dimensionless) thermodynamic factor

Γtf
E = yEC

kBT

∂µ̂EC

∂yEC

= 1 + 2κE
yE

1− 2yEC

= Γtf
E (yE). (25)

1Note that the continuity of ϕ across Σ is an assumption.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 9

where
µ̂EC

= µEC
− mEC

mES

µES
= kBT (ln (yEC

)− κEln (yES
)) (26)

is the thermodynamic driving force for diffusion [11]. Note that we assumed vR
EC

vR
ES

= mEC

mES
and

vREC
= κE ·vRES

which yields the representation (26). Note further that the total number density
ntotE = nES

+ nEC
+ nEA

in the electrolyte writes as

ntotE = nRES
· 1

1 + 2(κE − 1)yE
= ntotE (yE) (27)

which is determined from the incompressibility constraint (8)
vRES

nES
+ vREA

nEA
+ vREC

nREC
= 1 (28)

and the electrolyte concentration nEC
in terms of yEC

as

nEC
= yEC

· n = nRES

yEC

1 + 2(κE − 1)yE
= nEC

(yE). (29)

If we consider a simple Nernst–Planck-flux relation for the cation and anion fluxes [11, 33],
respectively, i.e.

Jα = DNP
α

nα
kBT

(∇µα −
mα

m0
∇µES

+ e0zαnα∇ϕE) α = EA, EC , (30)

with constant diffusion coefficients DNP
EA

for the anion and DNP
EC

for the cation, we obtain (in
the electroneutral electrolyte)

DE =
2DNP

EC
·DNP

EA

DNP
EA

+DNP
EC

tEC
=

DNP
EC

DNP
EA

+DNP
EC

(31)

ΛE = e2
0

kBT
(DNP

EA
+DNP

EC
) S = e0(DNP

EC
−DNP

EA
) (32)

Note, however, for general Maxwell-Stefan type diffusion [29–32, 34] or cross-diffusion coefficients[7,
24, 35] in the cation and anion fluxes lead to more complex representations of the transport
parameters (tEC

, SE, DE,ΛE). In general, three of the transport parameters are independent,
and SE, tEC

and ΛE are related to each other via
kBT

e0
(2tC − 1) = SE

ΛE
. (33)

Further, (tEC
, SE, DE,ΛE) depend in general non-linearly on the electrolyte concentration nEC

.
However, it is sufficient for the sake of this work to assume constant values for the transport
parameters (tEC

, SE, DE,ΛE), together with relation (33).
In the active particle ΩA we have two balance equations determining the concentration nAC

(x, t)
(or mole fraction yAC

) and the electrostatic potential ϕA(x, t) in the active particle, i.e.
∂nAC

∂t
= −∂xJAC

with JAC
= −DA · nA`

Γtf
A · ∂xyAC

(34)

0 = −∂xJA,q with JA,q = −σA∂xϕA (35)
and (dimensionless) thermodynamic factor

Γtf
A = yA

kBT

∂µA

∂yA
= 1 + yA

1− yA
− 2γAyA = Γtf

A (yA) . (36)

Note that in principle σA can be dependent on the amount of intercalated ions, i.e. σA = σA(yA).
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2.4 Reaction rate based on surface thermodynamics

We want to investigate the non-equilibrium thermodynamic modeling of the intercalation
reaction

Li+
∣∣∣
E

+ e−
∣∣∣
A

 Li

∣∣∣
A

+ κE · S
∣∣∣
E
. (37)

Surface thermodynamics dictates that the reaction rate R
s
of this process can in general be

written as [4, 5, 13, 36, 37]

R
s

= L
s
·
(
eα·

1
kBT

λ
s − e−(1−α)· 1

kBT
λ
s

)
with λ

s
= µ

s
AC

+ κE · µ
s

ES
− µ

s
EC
− µ

s
Ae , (38)

with α ∈ [0, 1]. Note that a non-negative function L
s
in (38) ensures a non-negative entropy

production r
s
σ,R due to reactions on the surface, i.e. r

s
σ,R = λ

s
·R
s
> 0.

The quantity λ
s
can be considered as surface affinity of the reaction (37). The surface reaction

rate R
s
vanishes when the affinity vanishes, which is the actually the thermodynamic equilib-

rium condition of (37), i.e. λ
s

= 0 ⇔ rσ,R = 0.

Since the electrochemical double layer is in equilibrium, we can pull back the surface chemical
potentials µ

s
α through the double layer to the respective points (in an asymptotic sense) outside

of the double layer, whereby we obtain for the surface affinity

λ
s

= µAC

∣∣∣
−
AE

+ κE · µES

∣∣∣
+

AE
− µEC

∣∣∣
+

AE
+ e0U

DL
A,E − µAe

∣∣∣
−
AE
. (39)

With the material models (4) and (11) we can rewrite the surface affinity as

λ
s

= e0(UDL
A,E − ET

A,E) + kBT
(
fA(yAC

|AE)− fE(yEC
|AE)

)
(40)

with

ET
A,E := 1

e0
(gREC

+ gRAe
− gRAC

− κEg
R
ES

) (41)

and

fE(yEC
) := ln


 yEC(

ŷES
(yEC

)
)κE


 , (42)

fA(yAC
) := ln

( 1
ωA
yAC

1+ 1−ωA
ωA

yAC

)
− ωA · ln

(
1− yAC

1 + 1−ωA
ωA

yAC

)
+ γA · gA(yAC

) (43)

with gA according to (12). Note again that yAC
|AE denotes the evaluation of yAC

at the interface
ΣA,E and that the surface affinity (40) is dependent on the chemical potential (or the mole
fraction) evaluated at the interface.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 11

2.5 Cell Voltage

We consider the cell voltage in a half cell with metallic lithium as counter electrode, denoted
by C and position at x = xEC (see Fig. 2. The cell voltage in such a cell is

E = ϕ|x=0−ϕ|+AE︸ ︷︷ ︸
:=−Ubulk

A

+ϕ|+AE−ϕ|−AE︸ ︷︷ ︸
=UDL

AE

+ϕ|+AE−ϕ|−EC︸ ︷︷ ︸
=:Ubulk

E

+ϕ|−EC−ϕ|+EC︸ ︷︷ ︸
UDL

EC

+ϕ|+x=xEC−ϕ|x=xC︸ ︷︷ ︸
=:Ubulk

C

, (44)

where Ubulk
A is the potential drop in the bulk active particle due to the electron transport, UDL

A,E
is the potential drop across the double layer at the interface between the active particle and
the electrolyte, and Ubulk

E the bulk potential drop due to cation electric current.
We assume that the counter electrode ΩC is ideally polarizable [28], whereby the reaction

Li+
∣∣∣
C

+ κE · S
∣∣∣
E

 Li+

∣∣∣
E

(45)

at the the interface ΣE,C positioned at x = xEC is in thermodynamic equilibrium and Ubulk
C =

ϕ|−x=xEC − ϕ|x=xC = 0. The equilibrium condition of (45) entails

UDL
EC = ϕ|−x=xEC − ϕ|+x=xEC = 1

e0

(
µCC
− µEC

∣∣∣
−
EC

+ κEµES

∣∣∣
−
EC

)
(46)

= 1
e0

(µCC
− gRAC

− κEg
R
ES

)− kBT

e0
fE(yEC

∣∣∣
EC

) (47)

where µCC
= const. is the chemical potential of the metallic lithium.

For the surface affinity (40) we obtain the compact typeface

λ
s

= e0(E + Ubulk
A − Ubulk

E − EA,C) + kBT
(
fA − fE|AE + fE|EC

)
(48)

with

EA,C = 1
e0

(µCC
− gRAC

+ gRAe
) . (49)

and

fE|AE = fE(yEC
|AE) and fE|EC = fE(yEC

|EC) . (50)

2.6 Current–Voltage relation

For the single intercalation reaction we have the following expression [4]

i = −e0R
s

+ CDL
E ·

dUSCL
E

dt
(51)

for the current density i flowing out of the electrode ΩA, where CDL
E is the double layer capacity.

Note that the reaction rate is

R
s

= L
s
· g( 1

kBT
λ
s
) with g(x) =

(
eα·x − e−(1−α)·x

)
. (52)
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Figure 3: Reaction rate function g(x) = eα·x − e−(1−α)·x and its inverse g−1 for various values
of α.

Since g(x) is a strictly monotone function, we can introduce the inverse of g, i.e. g−1. For
α = 1

2 we have g(x) = 2sinh
(

1
2x
)
and g−1(y) = 2g−1

(
1
2x
)
. For values α 6= 0.5 the inverse

function g−1 is only implicitly given, however, can easily be calculated numerically. Fig. displays
the functions g and g−1 for various values of α. We call g(x) the reaction rate function and
g−1 the inverse reaction rate function.
Note that in the Tafel approximation g( 1

kBT
λ
s
) ≈ 1

kBT
λ
s
eq. (51) yields2

e0

kBT
UDL

E −
1
e0L

s

CDL
E ·

dUDL
E

dt
= e0

kBT
ET

A,E −
(
fA − fE

)
− 1
e0L

s

i (53)

The term e0L
s
can be considered as the exchange current density [28].

2.7 Onsager coefficient of the intercalation reaction

The Onsager coefficient L
s
(or the exchange current density e0L

s
) of the surface reaction (37)

could in principle be a function of the surface chemical potentials (or surface concentrations),
i.e. L

s
= L

s
(µ
s

AC
, µ
s

EC
, µES

, µ
s

Ae ) or L
s

= L
s
(λ
s
) or the surface affinity, i.e. L

s
= L

s
(λ
s
), as long

as the condition L
s
> 0 is ensured [4, 8, 26]. Note, however, that surface thermodynamics

dictates the dependency of L
s
on the surface chemical potentials µ

s
α and not the bulk chemical

potentials µα.
For a general relation L

s
= L

s
(µ
s

AC
, µ
s

EC
, µES

) we can pull back the surface chemical potentials
µ
s
α through the double layer to obtain

L
s

= L
s

(
µAC

(yAC
|AE), µEC

(yEC
|+AE)− e0U

SCL
E , µES

(yES
|+AE)

)
. (54)

Note that this necessarily restricts the functional dependency of L
s
on the mole fractions yα|A,E

at the interface ΣA,E.
2Note again that UDL

AE = USCL
E − USCL

A and that the space charge layer drop USCL
A is constant due to the

material model µ
s

Ae = const. whereby dUSCL
E
dt = dUDL

AE
dt .

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



A discussion of the reaction rate and cell voltage of an intercalation electrode 13

Consider, for example a model L
s

= L
s

E(yEC
|+AE), where the exchange current density is depen-

dent on the electrolyte concentration at the interface. This would be, however, thermodynam-
ically inconsistent since the general functional dependency of (54) requires for the electrolyte
concentration at the interface

L
s

= L
s

E(µEC
(yEC
|+AE)− e0U

SCL
E ) = L̂

s
E(yEC

|+AE · e
− e0

kBT
USCL

E ) . (55)

Another commonly used model is a functional dependency of L
s
on the concentration yAC

|AE

of intercalated ions at the interface, i.e. L
s

= L
s

A(yAC
|AE). Since the space charge layer in the

active particle USCL
A is essentially constant (because µ

s
Ae is constant), we can indeed write

L
s

= L
s

A

(
µAC

(yAC
|AE)

)
= L̂

s
A(yAC

|AE) . (56)

We discuss this aspect as well as various models for L
s
(µ
s

AC
, µ
s

EC
, µES

, µ
s

Ae ) in section 4.2.
Meanwhile we assume L

s
= const. and proceed the following derivation and the discussion

based on this assumption since it turns out to be very reasonable.

2.8 Discussion of the model parameters

At this stage, it is illustrative to discuss the explicit value of the parameters.

� For the electrode geometry we consider for ΣA,E a planar surface of area A and a thickness
dA = 10 [µm] which yields VA = A · dA and xAE = 10 [µm]. The electrolyte is considered
with a thickness of dE = 50 [µm]. This corresponds to the cell dimensions of the cell
MX-6 in [2].

� Throughout this work we consider DMC as solvent with nRES
= 11.91

[
mol
L

]
and assume

for the solvation number κE = 4. The reference electrolyte concentration is nRE = 1
[
mol
L

]

and average amount of electrolyte is nE and a parameter of the model.

� Average concentrations (or mole fractions) are abbreviated as

yα = 1
VE

ˆ
ΩE

yα dV α = EC , EA, ES (57)

for the electrolyte species and

yAC
= 1
VA

ˆ
ΩA

yAC
dV (58)

for the amount of intercalated ions in the active phase.

� For the active particle phase we consider Li(Ni1/3Mn1/3Co1/3)O2 (NMC) whereby

qV,NMC
A = 1294

[
mAh
cm3

]
and qV,NMC

A = 318
[
mAh g−1

]
(59)

which is simply computed from the density and stoichiometry of the bulk material[38].
As parameters for the chemical potential µAC

we consider an occupation number of
ωA = 10 and a Redlich–Kister interaction energy of γ = 13 [24].
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� The differential capacity CDL
E has a prescribed value (actually CDL

E is a function of USCL
E ,

but we proceed here with a constant approximation for the sake of simplicity[9] of about

CDL
E = 100

[
µF
cm2

]
(60)

� The electrode capacity Q is

Q =
ˆ

ΩA

qVA · yAC
dV = QV

A · yAC
with QV

A := VA · qVA (61)

This yields the non-dimensional capacity

Q

QV
A

= yAC
∈ (0, 1) (62)

which is sometimes also called status of charge (SOC) or depth of discharge (DOD).
Note that during discharge of a complete battery the cathode is actually filled up with
lithium. In a half cell with metallic lithium as counter electrode, discharge thus actually
means filling up the intercalation electrode, here the NMC cathode material. Hence
Q/QV

A → 0 corresponds to a fully charged cathode (i.e. no lithium in the intercalation
compound, yAC

→ 0) while Q/QV
A → 1 corresponds to a fully discharged cathode (i.e.

the intercalation compound is completely filled with lithium, yAC
→ 1).

� From the charge balance (35) of the active particle we can deduce

Q = Q0 +
ˆ t

0
I(t′)dt with Q0 =

ˆ
ΩA

qVA · yAC
(x, t = 0) dV (63)

where I is the current flowing into the intercalation electrode during discharge and
Q(t = 0) the initial charge state. For a galvanostatic discharge I > 0 we obtain thus

Q = Q0 + I · t . (64)

� The C-Rate Ch [1] defines (implicitly) the current at which after h-hours the intercalation
cathode is completely filled during galvanostatic discharge. C1 is thus the rate at which
the battery is charged within one hour and commonly abbreviated just as C-rate C, i.e.

IC = QV
A

1 [h] = A
dA · qVA
1 [h] . (65)

We can hence express the current I in multiples of the C-rate, i.e.

I = Ch · IC (66)

which yields

Q = Q0 + I · t = Q0 + Ch · IC · t = Q0 + Ch ·
QV

A

1 [h] · t = QV
A (y0

AC
+ Ch

t

[h] ) (67)

The only parameter for the current density i = I/A is thus Ch.
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� For the time t we consider the interval of one discharge cycle, i.e. t ∈ [0, tend] with

tend = 1 [h]
Ch

(68)

We can thus introduce the non-dimensional time

τ = Ch
t

3600 [s] ∈ [0, 1] (69)

whereby the capacity rewrites as

Q/QV
A = (y0

AC
+ τ) . (70)

� For the current density i at the planar electrode we have thus

i = I

A
= Ch · IC

A
= iCA · Ch with iCA := dA · qVA

1 [h] . (71)

Discussion of the scaling Consider the non-dimensional voltage

Ũ = e0

kBT
USCL

E (72)

and abbreviate

H̃ = e0

kBT
EA,R,E − fA + fE (73)

which yields

Ũ − c1 ·
Ch

L̃
· dŨ
dτ

= H̃(1− τ)− Ch

L̃
(74)

with

c1 := 1
d · qVA

CDL
E
kBT

e0
(75)

The parameters dA = 0.01 [cm] and qVA = 1294 [mAh cm−3] yield

d · qVA = 0.01 [cm] · 1294
[
mAh cm−3

]
· 1

[h] = 12.94
[
mAh
cm2

]
(76)

and

CDL
E
kBT

e0
= 100

[
µF
cm2

]
· 0.0257 [V] = 2.568

[
µC
cm2

]
(77)

whereby

c1 = 5.51 · 10−8. (78)
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The double layer contribution in eq. (51) is thus almost negligible whereby (51) reduces to

i = −e0L
s
g
( 1
kBT

λ
s

)
. (79)

We consider for the exchange current density the rescaling

e0L
s

= L̃ · iCA = L̃
dA · qVA
1 [h] . (80)

This is the crucial decomposition throughout this work and L̃ the parameter of the surface
reaction rate R

s
.

For the current density i = iCA · Ch and the inverse function g−1 we obtain thus with eq. (48)
for the surface affinity λ

s
the general expression

E = EA,C −
kBT

e0

(
fA − fE|AE + fE|EC

)
+ kBT

e0
g−1

(
−Ch
L̃

)
− Ubulk

A + Ubulk
E (81)

for the cell voltage E.

3 Discussion

If not stated otherwise, we abbreviate

yAC
= yA and yEC

= yE (82)

as well as the respective densities nAC
= nA, nEC

= nE , fluxes JAC
= JA,JEC

= JE, and
chemical potential µAC

= µA in the following.
We seek to discuss the general relation (81) of the cell voltage E as function of the capacity

Q

QV
A

= yA ∈ (0, 1) (83)

during discharge of an intercalation electrode. Note that necessarily Ch > 0 (discharge) and
L̃ > 0 (Onsager constraint of (38)), whereby g−1

(
−1

2
Ch

L̃

)
< 0, which entails that any current

decreases the cell voltage E during discharge.
We will discuss consecutively the following hierarchy of approximations:

BV 0: infinite slow discharge - the open circuit potential

BV 1: infinite fast diffusion and conductivity in the active particle and the electrolyte

BV 2: finite conductivity in the active particle, infinite diffusion in the active particle, infinite
fast diffusion and conductivity the electrolyte

BV 3: finite conductivity and diffusion in the active particle, infinite fast diffusion and conduc-
tivity the electrolyte

BV 4: finite conductivity and diffusion in the active particle, finite conductivity in the electrolyte,
infinite fast diffusion the electrolyte

BV 5: finite conductivity in the active particle and the electrolyte, finite solid state diffusion in
the intercalation electrode as well as finite diffusion in the electrolyte
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3.1 BV 0: Open circuit potential

computed with ωA = 10, γA = 13
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Figure 4: OCP of Liy(Ni1/3Mn1/3Co1/3)O2. Comparison between the material model (11) and
experimental data of P. Bruce (Data of Fig. 3 in [39]) and N. Nitta et. al (Data of Fig. 4.e in
[40]).

The open circuit potential (OCP) is obtained from (81) as

E = 1
e0

(
µCC
− µA(yA)

)
(84)

for Ch = 0 (infinite slow discharge), which entails also Ubulk
A = Ubulk

E = 0 as well as yE|AE =
yE|EC. Hence we have

E = EA,C −
kBT

e0
fA(yA) = E(0)(Q/QV

A ) . (85)

For Liy(Ni1/3Mn1/3Co1/3)O2[39] as intercalation electrode, the two parameters of the chemical
potential function µA are the occupation number ωA = 10 and the interaction energy γA = 13
of the Redlich–Kister type enthalpy contribution. This yields an absolute `2-error of 0.064 /V
and a relative error of 1.860% vs. experimental data of P. Bruce et. al [39], and Fig. 4 shows
a comparison to two experimental data sets of measured OCP data.

3.2 BV 1: Infinite fast diffusion and conductivity in the active particle
and the electrolyte

Infinite conductivity within the active particle phase as well as within the electrolyte yields

Ubulk
A = 0 and Ubulk

E = 0 . (86)

and infinite fast diffusion in the active particle and the electrolyte entails

yA(x, t) = const. w.r.t. x and yE(x, t) = const. w.r.t. x . (87)
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Hence yA|AE is directly related to the capacity via

yA|AE = yA = Q/QV
A (88)

whereby the cell voltage of BV 1 is

E = EA,C −
kBT

e0
fA(yA) + kBT

e0
g−1

(
−Ch
L̃

)
=: E(1)(Q/QV

A ;Ch, L̃). (89)

It is a simple algebraic relation between the measured cell voltage E, the C-rate Ch, the
capacity Q and the (non-dimensional) exchange current density L̃.
In order to compare the cell voltage E computed in the approximation BV 1 with other
approximations, we abbreviate the voltage computed from (89) as E(1). Note that cell voltage
(89) is actually independent of the electrolyte. L̃ = 1 we obtain the voltage/capacity relation
given in Fig. 5 for a variation of Ch from 0 (open circuit potential) to Ch = 100 (extremely
fast discharge).
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BV 1: L̃ = 0.01
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Figure 5: Computed voltage E as function of the capacity Q/QA according to eq. (89) for
various values of L̃ and Ch.

Reaction overpotential We define the reaction overpotential as

ηR = E(0) − E(1) = −kBT

e0
g−1

(
−Ch
L̃

)
(90)

which is actually independent of the status of charge or capacity. Measured voltage data
Ě = Ě(Ch) would thus allow to determine L̃ and the parameter α ∈ (0, 1).
Fig. 6 shows computations of the reaction overpotential ηR for various values of α and L̃ as
function of Ch.
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BV 1: L̃ = 1
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Figure 6: Reaction overpotential ηR as function of the C-Rate Ch with parameter variations
of α and L̃.

3.3 BV 2: Contribution of finite active phase conductivity

Finite conductivity within active particle phase entails from eq. (35)

Ubulk
A = Rbulk

A · i with Rbulk
A = dA

σA
. (91)

Employing the scaling (71) of the current density i, i.e. i = iCA ·Ch, as well as the decomposition

σA = σCA · σ̃A with σCA := dA · iCA ·
e0

kBT
= d2

Aq
V
A

1 [h] ·
e0

kBT
(92)

yields

Ubulk
A = kBT

e0

Ch
σ̃A
. (93)

The quantity σCA is the specific conductivity of the active particle phase at C-rate of one. For
the parameters given in section 2.8 σCA computes as

σCA ≈ 4.9
[
mS
cm

]
. (94)

The measured cell voltage is then

E = EA,C −
kBT

e0

(
fA(yA)− g−1

(
−Ch
L̃

)
+ Ch
σ̃A

)
=: E(2)(Q/QV

A ;Ch, L̃, σ̃A) (95)

which is (yet again) a simple algebraic relation between E, the C-rate Ch, and the capacity
Q/QV

A . E(2) is additionally parametrically dependent on the conductivity σ̃A.
We define the active phase conductivity overpotential ησA as

ησA := E(1) − E(2) = kBT

e0

Ch
σ̃A

. (96)
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3.4 BV 3: Contribution of the solid-state diffusion in the active par-
ticle phase

Reconsider that we have assumed yet yA = const. with respect to space in the intercalation
particle. In general, however, we have to solve a (here 1D) diffusion equation

∂nA

∂t
= −∂xjA with jA = −DAnA∂xfA(yA) (97)

with

jA

∣∣∣
+

x=0
= 0 and jA

∣∣∣
−
AE

= − 1
e0
i . (98)

This yields at the interface ΣA,E some solution

yA(x, t)
∣∣∣
x=xAE

= yA|AE(t; i) (99)

which will also impact the cell voltage

E = EA,C −
kBT

e0

(
fA(yA|AE(t; i))− g−1

(
−Ch
L̃

)
+ Ch
σ̃A

)
(100)

E(3)(Q/QV
A ;Ch, L̃, σ̃A, D̃A) . (101)

In order to discuss this impact systematically, we apply the following scaling

τ = Ch
t

[h] ∈ [0, 1] and ξ = x

dA
∈ [0, 1] (102)

as well as

nA = yA ·
qVA
e0

and j̃A = 1
L
s

jA (103)

which leads to

Ch

L̃

∂yA

∂t
= −∂ξ j̃A. (104)

The dimensionless flux

j̃A = 1
L̃
jA = − 1

L̃

1 [h]
d2 DAyA∂ξfA(yA) (105)

yields the dimensionless diffusion coefficient

D̃A = 1 [h]
d2 DA (106)

and thus

j̃A = −D̃A

L̃
yA∂ξfA(yA) (107)
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At the interface ΣA,E we have thus

j̃A

∣∣∣
ξ=1

= −Ch
L̃

. (108)

Overall we may write

Ch

D̃A

∂yA

∂τ
= ∂ξ(yA

∂fA

∂yA
∂ξyA) (109)

with

yA
∂fA

∂yA
∂ξyA

∣∣∣
ξ=0

= 0 and yA
∂fA

∂yA
∂ξyA

∣∣∣
ξ=1

= Ch

D̃A
. (110)

Note that we can analytically compute yA
∂fA
∂yA

= Γtf
A (yA) from eq. (11) (see also appendix B.1)

as

Γtf
A = yA ·

∂fA

∂yA
= 1

(1− yA)( 1
ωA
yA + (1− yA)) + γA · (16 · y3

A − 22y2
A + 25

3 yA) . (111)

Since the problem (109) is non-linear, a classical separation Ansatz yA = X(ξ) · T (τ) is not
meaningful. We proceed thus with solving the problem (109) with (110) numerically with
MATLAB c© and the pdepde() function. The syntax for pdepde() of the problem (109) with
(110) is given in appendix B.2.

Based on the numerical solution ŷA(ξ, τ) we compute then yA

∣∣∣
AE

= ŷA(ξ, τ)|ξ=1(τ ;Ch, D̃A)
numerically for various values of Ch and D̃A. The (global) capacity is yet Q/QV

A = yA = τ .
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BV 3: L̃ = 1, D̃A = 10
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Figure 7: Concentration yA

∣∣∣
AE

= ŷA|AE of intercalated ions at the interface ΣA,E as function the
status of discharge Q/QV

A for various values of Ch and D̃A.

We assume the same parameters as before, now additionally with two values of the diffusion
coefficient D̃A, i.e. slow diffusion D̃A = 1 and fast diffusion D̃A = 10, and compute yA

∣∣∣
AE

as
function of the capacity Q/QV

A (or time τ). Fig. 7 shows computations of yA|AE for various
discharge rates and diffusion coefficients in the active particle phase as function of the cell
capacity. The angle bisection in black corresponds to the open circuit potential situation, where
yA|AE = yA. For increasing discharge rates, the concentration yA|AE at the interface ΣA,E is larger
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than the average concentration yA in ΩA since the evacuation of intercalated ions is delayed
by the finite diffusion. This effect becomes even stronger for smaller values of D̃A, i.e. slow
diffusion in the active particle.

BV 3: L̃ = 1, D̃A = 1
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BV 3: L̃ = 1, D̃A = 10
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Figure 8: Cell voltage E for BV 3 as function of the status of discharge for various values of Ch
and D̃A with numerical computation of ŷA,0(i) from the PDE (109) with boundary conditions
(110).

The cell voltage E is then computed a posteriori from (100) based on the numerical solution
of yA|AE. Fig. 8 displays the cell voltage for various discharge rates as well as slow (D̃A = 1) and
fast (D̃A = 10) diffusion in the intercalation phase. Finite diffusion in the active particle has an
enormous impact on the cell voltage and changes qualitatively the shape due to the non-linear
feedback. This effect is also found experimentally, see Fig. 1, and extremely important since
it determines the maximum amount of charge that can be withdrawn from an intercalation
electrode.
Two important measures server to discuss the impact of the diffusion coefficient D̃A,

� the cell voltage at 50% discharge, i.e. E
∣∣∣
Q=0.5·QV

A
,

� and the capacity Q
∣∣∣
E=Eoff at the cut off voltage Eoff, here with Eoff = 2.6 /V .

Fig 9 shows numerical computations of E
∣∣∣
Q=0.5·QV

A
and Q

∣∣∣
E=Eoff for various values of the C-

rate Ch and diffusion coefficients D̃A in the range of 10−3 − −102. For slow discharge rates,
i.e. Ch < 1 a diffusion coefficient of D̃A = 0.1 is sufficient to achieve a voltage of 3 /V at
50% discharge and capacity of 90% at the the cutoff voltage. However, for higher C-rates,
e.g. Ch = 50, the impact of the solid state diffusion becomes enormous, requiring a diffusion
coefficient of D̃A > 0.3 to discharge the electrode to 50%.
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(a) Cell voltage at 50% state of discharge.
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(b) Capacity at the cutoff voltage Eoff = 2.6 /V

Figure 9: Cell voltage and Capacity for various discharge rates and diffusion coefficients.

Overpotential ηDA : The overpotential due to finite diffusion in the active particle phase can
be defined as

ηDA := E(2) − E(3) (112)

which computes as

ηDA = −kBT

e0

(
fA(yA)− fA(ŷA|AE)

)
. (113)

Fig. 10 shows computations of ηDA for slow and fast diffusion. The
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BV 3 : D̃A = 10
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Figure 10: Overpotential ηDA as function of the status of discharge Q/QV
A for slow (D̃A = 1)

and fast (D̃A = 10) diffusion in the intercalation phase.

3.5 BV 4: Finite conductivity in the electrolyte

First note that an infinite fast diffusion in the electrolyte yet entails yE = yE, whereby the
(coupled) transport equation system (23) – (24) of the electrolyte reduces to

i = −ΛEnE∂xϕE , (114)
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which yields

Ubulk
E = −Rbulk

E · i with Rbulk
E = dE

ΛEnE
. (115)

Employing the scaling (71) of the current density i, i.e. i = iCA Ch yields

Ubulk
E = − dE

ΛEnE
· iCA Ch = dE

dA

σCA
ΛEnE

kBT

e0
Ch , (116)

which motivates the decomposition

ΛEn
R
E = σRE = σCA · σ̃E with σCA = dA · iCA ·

e0

kBT
= d2

Aq
V
A

1 [h] ·
e0

kBT
. (117)

Here nRE is a constant reference electrolyte concentration, e.g. 1mol L−1, and σRE = ΛEn
R
E is

the corresponding reference conductivity. Hence

Ubulk
E = −d̃ · c̃RE ·

kBT

e0

Ch
σ̃E

with d̃ := dE

dA
and c̃RE :=

(nRE
nE

)
, (118)

whereby the cell voltage is

E = EA,C −
kBT

e0

(
fA(yA|AE(t; i))− g−1

(
−Ch
L̃

)
+ Ch
σ̃A

+ d̃ c̃RE
Ch
σ̃E

)
(119)

= E(4)(Q/QV
A ;Ch, L̃, σ̃A, D̃A, σ̃E, d̃, c̃

R
E ) . (120)

Hence, finite conductivity in the electrolyte linearly decreases the cell voltage and scales also
with the ratio of the electrode width to the electrolyte width, i.e. d̃. The quantity c̃RE accounts
for concentration dependence of the electrolyte conductivity.
Correspondingly we define the electrolyte conductivity overpotential ηΛ

E as

ησE := E(3) − E(4) = kBT

e0
d̃ c̃RE

Ch
σ̃E

. (121)

3.6 BV 5: Finite diffusion in the electrolyte phase

The final contribution to the surface reaction R
s
is the space dependent electrolyte concen-

tration. We have yet assumed yE = const. with respect to space, however, in general the
(coupled) equation system (23) – (24) has to be solved.
Note that tEC

= const. simplifies the (coupled) equation system (23) – (24) to

∂nE

∂t
= ∂x

(
DE · ntotE Γtf

E · ∂xyE

)
(122)

i = −SE · ntotE Γtf∂xyE − ΛEnE∂xϕE. (123)

Further, JE = −DE · ntotE Γtf
E · ∂xyE + tEC

e0
i entails at the interface ΣA,E the condition

−DE · ntotE Γtf
E · ∂xyE

∣∣∣
AE

= 1− tEC

e0
i (124)
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We assume that the average electrolyte concentration nE is constant in time, i.e.

∂nE

∂t
= 0 with nE = 1

dE

ˆ xAE

xEC

nE, dx . (125)

which yields at the right boundary x = xEC the condition

DE · ntotE Γtf
E · ∂xyE

∣∣∣
x=xEC

= 1− tEC

e0
i . (126)

The concept of an ideally polarizable counter-electrode ΩC, positioned at x = xEC, delivers (or
consumes) hence exactly the amount of ions in the electrolyte which flow in (or out) of ΩE at
x = xAE, with keeping the reaction 45 in thermodynamic equilibrium. The initial value is

yE(x, t = 0) = yE(nE) (127)

where nE is the prescribed average electrolyte concentration.

We introduce the scalings

τ = Ch
t

[h] ∈ [0, 1] , ξ = x

dE
∈ [0, 1] , ntotE (ξ, τ)

nRE
=: c̃tot,RE (ξ, τ) (128)

ΛEn
R
E = σ̃E · σCA , i = iC · Ch, d̃ = dE

dA
(129)

with σCA = dA · iCA · e0
kBT

and iCA = dA·qV
A

1[h] . This yields for (122)

Ch
d2

E

1 [h] ·
1
DE
· hE ·

∂yE

∂τ
= ∂ξ(c̃tot,RE Γtf

E · ∂ξyE) with hE := 1
nRE

∂nE

∂yE
. (130)

The corresponding non-dimensional boundary conditions at ξ = 0 reads

(c̃tot,RE Γtf
E ∂ξyE)

∣∣∣
ξ=0

= dE
1
nRE

1
DE

1− tEC

e0
· i (131)

which introduces (implicitly) the scaling

DE = D̃E ·
(
qVA
e0nRE

(1− tEC
) · dAdE

1 [h]

)
(132)

leaving

(c̃tot,RE Γtf
E ∂ξyE)

∣∣∣
ξ=0

= Ch

D̃E
and (c̃tot,RE Γtf

E ∂ξyE)
∣∣∣
ξ=1

= Ch

D̃E
. (133)

The balance equation (122) then reads

d̃ · q̃V · t̃E
Ch

D̃E
hE(yE)∂yE

∂τ
= ∂ξ(c̃tot,RE Γtf

E · ∂ξyE) (134)

with

q̃V := qVE
qVA

, qVE = 2e0n
R
E and t̃E = 1

2 · (1− tEC
) . (135)
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BV 5: D̃E = 10, (−)nE|AE, (−−)nE|EC
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BV 5: D̃E = 100, (−)nE|AE, (−−)nE|EC
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Figure 11: Numerical computation of the cation interface concentrations nE

∣∣∣AE and nE

∣∣∣EC in
the electrolyte for slow (D̃E = 10) and fast (D̃E = 100) diffusion and various C-rates Ch.

Note that the 2 in qVE accounts for the charge of cations and anions. The charge capacity qVE
of a 1mol L−1 electrolyte is

qVE = 2e0n
R
E ≈ 53

[
mAh cm−3

]
(136)

whereby

q̃V = 45
1294 = 0.042553 . (137)

The dimensionless transference number t̃E ≈ 1 and d̃ = 5. The PDE is solved with MATLAB’s
pdepe function, and details are given in the appendix A.3. We denote the numerical solution
of yE with ŷE and emphasize that the capacity is yet Q/QV

A = τ . The numerical solutions ŷE
at the respective boundaries x = xAE and x = xEC are

yE

∣∣∣
+

AE
= ŷE|ξ=0 and yE

∣∣∣
−
EC

= ŷE|ξ=1 . (138)

We discuss now briefly the concentration distribution in the electrolyte as function of the C-
rate Ch and the diffusion coefficient D̃E based on numerical solutions of (122) with boundary
conditions (124) and (126).
Fig. 11 displays computations of the electrolytic cation concentration at the interface ΣA,E
of the intercalation electrode, i.e. nE|AE, and at the interface ΣE,C of the counter electrode,
i.e. nE|EC for slow electrolytic diffusion (D̃E = 1, left) and fast diffusion (D̃E = 10, right) for
various values of the C-rate.
After a short time the concentration yields a stationary state and Fig. 12 displays the stationary
concentration nE(x) in the electrolyte, again for slow and fast diffusion as well as for various
C-rates.
Note, however, that the concentration variation of yE has additionally an impact on the voltage
drop UE. First reconsider that (123) rewrites as

UE = − dE

ΛEnRE

(
1
dE

ˆ xAE

xEC

nRE
nE
dx

)
· i+ kBT

e0
(2tC − 1)

(
fE(yE|AE)− fE(yE|EC)

)
. (139)
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BV 5: D̃E = 10
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BV 5: D̃E = 100
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Figure 12: Numerical computation of the stationary cation distribution in the electrolyte for
slow (D̃E = 10) and fast (D̃E = 100) diffusion and various C-rates Ch

since

SE

ΛE
= kBT

e0
(2tC − 1) . (140)

We abbreviate

cRE :=
(

1
dE

ˆ xAE

xEC

nRE
nE
dx

)
= cRE (141)

and insert the scaling ΛEn
R
E = σ̃E · σCA which yields

UE = −d̃cRE ·
kBT

e0

Ch
σ̃E

+ kBT

e0
(2tC − 1)

(
fE(yE|AE)− fE(yE|EC)

)
. (142)

The overall cell voltage of BV 5 is then

E = EA,C −
kBT

e0


fA(ŷA|AE)− 2 · tC

(
fE(ŷE|AE)− fE(ŷE|EC

)

− g−1
(
−Ch
L̃

)
+ Ch
σ̃A

+ d̃ cRE
Ch
σ̃E


 (143)

= E(5)(s, Ch; L̃, σ̃A, D̃A, σ̃E, D̃E, tEC
, d̃, nE) . (144)

In order to show the impact of the electrolyte concentration variation on the cell voltage E,
assume for a moment Ubulk

E = Ubulk
A = 0 as well infinite fast diffusion in the active particle

phase ΩA. This yields

E = EA,C −
kBT

e0


fA(yA)− 2 · tC

(
fE(ŷE|AE)− fE(ŷE|EC)− g−1

(
−Ch
L̃

)
 (145)

and numerical computations of the cell voltage for slow and fast diffusion are shown in Fig.
13.
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BV 5 : D̃E = 10, tE = 0.4
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BV 5 : D̃E = 100, tE = 0.4
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Figure 13: Computed cell voltage according to (145) with numerical solutions shown in Fig.
11 of the interface concentrations ŷE|AE and ŷE|EC for various discharge rates.

Overpotential Due to the (stationary) concentration gradients in the electrolyte (c.f. Fig.
12) we have a diffusional overpotential ηD

E, which can be defined as

ησE := E(4) − E(5) = kBT

e0

(
d̃ (c̃RE − cRE ) Ch

σ̃E
− 2 · tC

(
fE(ŷE|AE)− fE(ŷE|EC

))
(146)

≈ −kBT

e0
2 · tC

(
fE(ŷE|AE)− fE(ŷE|EC

)
(147)

Fig. 14 displays numerical computations of the overpotential ηDE for slow and fast diffusion in
the electrolyte.
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Figure 14: Diffusional overpotential of the electrolyte for slow and fast diffusion computed
from numerical solutions of the interface concentrations ŷE|AE| and ŷE|EC and eq. (146).

The recursive definition of the various overpotentials allows us to write

E = E(0)(yA)− ηR − ηDA − ησA − ηDE − ησE (148)

with one overpotential for each non-equilibrium process, measuring the deviation from the equi-
librium of the respective process. This decomposition is hence a useful tool to systematically
investigate the contribution of each process in broadly conceived experimental or numerical
studies of a cell batch with varying parameters.
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Internal resistance Note that we can also compute the internal resistance Rint of the
electrochemical cell via the implicit definition

E − E(0) = R · I . (149)

With I = iCA ·Ch

A
we obtain for the specific resistance

R = E − E(0)

I
= −A

iCA

(ηR + ηDA + ησA + ηDE + ησA )
Ch

= RA · (rR + rDA + rΣ
A + rDE + rσE ) (150)

with

RA = kBT

e0

A

iCA
(151)

and

� intercalation reaction resistance

rR = −g−1
(
−Ch
L̃

) 1
Ch

Tafel≈ 1
L̃
, (152)

� active phase diffusional resistance

rDA =
(
fA(yA)− fA(ŷA|AE)

) 1
Ch

, (153)

� active phase conduction resistance

rσA = 1
σ̃A

, (154)

� electrolyte diffusional resistance

rDE = 2 · tC
(
fE(ŷE|AE)− fE(ŷE|EC

)
· 1
Ch

, (155)

� electrolyte conduction resistance

rσE = 1
σ̃E

. (156)

4 Conclusion

4.1 Validation

Equation (143) for the general relation for the cell voltage E in a simple, non-porous interca-
lation electrode. Note, however, that the scalings, discussion and parameter study of section
3 can be straight forward adapted to porous electrodes.
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Figure 15: Computed cell voltage E as function of the capacity Q/QV
A with parameters of the

non-equilibrium processes according to (157).

We provide finally a validation study for NMC with the following set of the non-dimensional
parameters

L̃ = 1 , D̃A = 1 , σA = 100 , D̃E = 100 , σ̃E = 500. (157)

Figure 15 displays the numerical computation of the cell voltage. In comparison to experimen-
tal data for a cell of the same dimension (however, neglecting porosity), we obtain a good
qualitative and quantitative agreement to Fig 1.
This is especially remarkable since we assumed essentially for all non-equilibrium parameters
constant values, i.e. no concentration dependence of the diffusion coefficients DA and DE,
the cation transference number tE, and the conductivities. In particular we assumed that the
exchange current density e0L

s
is also constant, yielding the reasonable results of the last section.

Note, however, that it is frequently assumed that the exchange current density is dependent
on cation concentration at the interface ΣA,E. We discuss this aspect in the next section and
emphasize again that a consistent thermodynamic modeling as well as coupling through the
surface reaction rate yields the reasonable results of the last sections. The scaling of all non-
equilibrium parameters to the C-rate is quite illustrative for the sake of galvanostatic discharge
and especially for the systematic search of the parameters of a specific battery.

4.2 Discussion of the exchange current density

The preceding discussion of the cell voltage E was based on the model (38) of the surface
reaction rate R

s
, i.e.

R
s

= L
s
·
(
eα·

1
kBT

λ
s − e−(1−α)· 1

kBT
λ
s

)
with λ

s
= µ

s
AC

+ κE · µ
s

ES
− µ

s
EC
− µ

s
Ae , (158)

with L
s

= const. In section 81 we showed that double layer charging effects are negligible under
galvanostatic conditions, whereby the measurable current density i is directly related to e0R

s
,
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i.e. i = r0R
s
. The surface affinity λ

s
is related to the cell voltage E via (48), i.e.

λ
s

= e0(E + Ubulk
A − Ubulk

E − EA,C) + kBT
(
fA − fE|AE + fE|EC

)
(159)

with

fE(yE) := ln

 yE(

ŷES
(yE)

)κE


 , (160)

fA(yA) := ln
( 1

ωA
yA

1+ 1−ωA
ωA

yA

)
− ωA · ln

(
1− yA

1 + 1−ωA
ωA

yA

)
+ γA · gA(yA) . (161)

Note that we have introduce the open circuit potential E(0) in section 3.1 as

E(0)(yA) = EA,C −
kBT

e0
fA(yA) . (162)

We can also evaluate the open circuit potential function E(0) with the interface concentration
yA|AE, i.e.

E(0)(yAE) = EA,C −
kBT

e0
fA(yAE) . (163)

Note that this is a crucially different to (162) when finite diffusion in the active particle phase
is considered, see section 3.2. However, this allows us rewrite the surface affinity λ

s
as

λ
s

= e0(ϕA − ϕE − E(0)(yA|AE))− kBT fE|AE (164)

= e0(ϕA − ϕ̃E − E(0)(yA|AE)) = e0(η̃AE − E(0)(yA|AE)) (165)

with

ϕA = ϕ|−AE , ϕE = ϕ|+AE , ϕ̃E := ϕ|+AE + kBT

E0
fE(yE|AE) (166)

and

ηAE := ϕA − ϕ̃E = UDL
AE −

kBT

e0
fE|AE . (167)

This yields

i = e0L
s
·
(
eα·

e0
kBT

(
η̃AE−E(0)(yA|AE)

)
− e−(1−α) e0

kBT

(
η̃AE−E(0)(yA|AE)

) )
. (168)

This is the general, thermodynamic consistent version of the Butler–Volmer-equation[4, 26].
The specific form (168) of the current density i in terms of the surface overpotential [1] ηAE,
the open circuit potential E(0)(yA|AE), and the exchange current density e0L

s
is widely employed

in the literature [28, 41] and thus feasible to discuss various material models of L
s
.

In [1, 42, 43] as well as subsequent work we find

iBV = iBV0 ·
(
eα·

e0
kBT

(η−E(0)(yA)) − e−(1−α)· e0
kBT

(η−E(0)(yA))
)

(169)

with η = Φ1 − Φ2, where Φ2 is “is measured with a lithium reference electrode” [1, p.1527]
and Φ1 the electrostatic potential in the active phase. For the exchange current density iBV0
we find various models:
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� In [42] we find

iBV0 = k · (1− yA|AE)(1−α)(yA|AE)α with k = const. (170)

� In [42] we find

iBV0 = k · (1− yA|AE)(1−α)(yA|AE)α(1− yE|AE)(1−α)(yE|AE)α with k = const. (171)

� In [35, 44] we find

iBV0 = k · (1− yA|AE)(1−α)(yA|AE)(α)(yE|AE)α with k = const. (172)

This model for the Butler–Volmer-reaction rate became a standard in the literature of modeling
intercalation batteries [45–49] and is implemented in various software packaged to simulate
battery cycles (i.e. COMSOL c©, Battery Design Studio[50], BEST [35, 44]) as well as a basis
for the interpretation of experimental data[51].
We compare the Butler–Volmer equation (169) to the surface reaction rate (168) and discuss
the thermodynamic consistency of the three models (170) - (172) for the exchange current
density. Latz et. al [52], Bazant [21], and Dreyer et. al [26] also point out the importance of
thermodynamic consistency of the Butler–Volmer-equation to achieve some overall predictive
model since it couples the different thermodynamic bulk models.
First of all we mention again that the Butler–Volmer-equation (168) is derived from surface
thermodynamics (see section 2.4) and that the exchange current density e0L

s
is the Onsager

coefficient of the surface reaction 2.7. This yields some necessary constraints on L
s
in terms of

the functional dependency on the concentrations (or mole fractions) evaluated at the interface
ΣA,E, which are discussed in 2.7.
By comparison of eq. (168) and (169) we obtain

Φ1 = ϕ|−AE and Φ2 = ϕ|+AE + kBT

E0
fE(yE|AE) , (173)

which somehow For a metallic lithium counter electrode, where the reaction

Li+
∣∣∣
C

+ κE · S
∣∣∣
E

 Li+

∣∣∣
E

(174)

is in thermodynamic equilibrium we have (45) entails

ϕ|−x=xEC = ϕ|+x=xEC

1
e0

(µCC
− gRAC

− κEg
R
ES

)− kBT

e0
fE(yEC

∣∣∣
EC

) (175)

which somehow justifies the interpretation of Φ2 as the potential “is measured with a lithium
reference electrode” [1, p.1527]. However, from a thermodynamic point of view this re-
definition of the potential is not necessary and could lead to inconsistencies when not applied
in all balance equations (e.g. of the electrolyte transport) and boundary conditions of the
intercalation battery model.
For the exchange current density e0L

s
we showed in section 2.7 that if L

s
is dependent on the

concentrations at the interface ΣA,E, the dependency is for the electrolyte species is necessarily

L
s

= L
s

E

(
µEC

(yEC
|+AE)− e0U

SCL
E

)
= L̂

s
E

(
yEC
|+AE · e

− e0
kBT

USCL
E
)
. (176)
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and for the intercalated ions in the active phase

L
s

= L
s

A

(
µAC

(yAC
|AE)

)
= L̂

s
A(yAC

|AE) , (177)

or overall

L
s

= L̂
s

(
yEC
|+AE · e

− e0
kBT

USCL
E , yAC

|AE

)
. (178)

with UDL
AE = ϕ|−AE−ϕ|+AE. Comparing these constraints with the models of the exchange current

densities (170) – (170) clearly shows that the dependency of iBV0 on the mole fraction yEC
|+AE (or

concentration nEC
|+AE) of the electrolyte concentration is not compatible with a reaction rate

based on non-equilibrium surface thermodynamics. The concentration dependence is already
embedded in the term fE(yEC

|AE) of the surface affinity λ
s
(164). A dependency of the exchange

current density on yA|AE is in principle compatible with surface thermodynamics. All three
models propose

iBV0 ∝ (1− yA|AE)(1−α)(yA|AE)α (179)

which in terms of the surface Onsager coefficient would be

L
s

A = L
s
· (1− yA|AE)(1−α)(yA|AE)α and L

s
= const. > 0 . (180)

In order to discuss the validity, predictability and finally the necessity (or non-necessity) of
a concentration dependent surface Onsager coefficient L

s
A (or exchange current density), we

pursue the same strategy and scalings as in section 3, however, now with the model (180).
We compute the cell voltage E as function of the capacity Q/QV

A and the C-rate Ch in the
hierarchy of approximations BV 1 – BV 5 and compare it to the computations based on the
constant Onsager coefficient.
Eq. (51) reduces with negligible double layer contributions to

i = −e0L
s
· (1− yA|AE)(1−α)(yA|AE)α · g

( 1
kBT

λ
s

)
. (181)

We consider again the scaling

e0L
s

= L̃ · iCA = L̃
dA · qVA
1 [h] . (182)

which yields the cell voltage

E = EA,C −
kBT

e0

(
fA − fE|AE + fE|EC

)
− g−1


−

Ch

L̃

(1− yA|AE)(1−α)(yA|AE)α


− Ubulk

A + Ubulk
E .

(183)

Consider the approximation of infinite conductivity in both phases as well as infinite fast
diffusion in the electrolyte, i.e. the approximation BV 3. Fig. 16 shows computations of cell
voltage with constant exchange current density as well as concentration dependent exchange
current density, for slow (D̃A = 1) and fast (D̃A10) diffusion in the active particle phase.
The impact of the model (180) for the Onsager coefficient (or the exchange current density)
on the cell voltage is surprisingly small. Quite similar to the assumed concentration indepen-
dence of the diffusion coefficients DA and DE we can conclude that L

s
= const. is a rather
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(-): L
s

= const. (−−)L
s
∝ (yA|AE)0.5(1− yA|AE)0.5, D̃A = 1

Ch = 200
Ch = 100
Ch = 50
Ch = 25
Ch = 10
Ch = 5
Ch = 1
Ch = 0.04
Ch = 0

Capacity Q / QV
A

C
el
l
V
ol
ta
ge

E
/

V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

(-): L
s

= const. (−−)L
s
∝ (yA|AE)0.5(1− yA|AE)0.5, D̃A = 10

Ch = 200
Ch = 100
Ch = 50
Ch = 25
Ch = 10
Ch = 5
Ch = 1
Ch = 0.04
Ch = 0

Capacity Q / QV
A

C
el
l
V
ol
ta
ge

E
/

V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Figure 16: Comparison of the compute cell voltage for the exchange current density according
to eq. (180) (–) and a constant surface Onsager coefficient L

s
= const. for various C-rates and

slow diffusion (left) as well as fast diffusion (right).

good approximation for the overall modeling procedure. However, well defined and reproduce
experimental data sets to compute absolute and relative model errors are rare throughout the
literature and the deviations in 16 within the experimental variability. We conclude hence that
the model (180) is in principle thermodynamically consistent, when embedded rigorously as
stated in section 2, however, a constant exchange current density produces also very reasonable
results and is thus the first choice.

4.3 Summary

In this work we discuss the cell voltage E of a non-porous intercalation half-cell during gal-
vanostatic discharge with a continuum model for the active intercalation phase, the adjacent
electrolyte, and boundary conditions coupling the phases. Based on non-equilibrium surface
thermodynamics a reaction rate for the intercalation reaction Li+ + e− −−⇀↽−− Li is stated
and the measured cell voltage E subsequently derived. We emphasize some necessary restric-
tions on the exchange current density of the surface reaction rate in terms of concentration
dependence to ensure surface thermodynamic consistency.
For the detailed investigation of the non-equilibrium processes, scalings of all non-equilibrium
parameters, i.e. the diffusion coefficients DA and DE of the active phase and the electrolyte,
conductivity σA and σE of both phases, and the exchange current density e0L

s
of the intercala-

tion reaction, with respect to the 1-C current density iCA are introduced. The current density
i, entering the model via the boundary conditions, is then expressed as multiple of iCA , i.e.
i = Ch · i, where Ch is the C-rate. Further we derive an expression for the capacity Q of the
intercalation cell, which allows us to compute numerically the cell voltage E as function of
the capacity Q for various C-rates Ch. Within a hierarchy of approximations, e.g. open circuit
potential, infinite conductivity, infinite fast diffusion, and so forth, we provide simulations of
E = E(Ch, Q) for various values of the (non-dimensional) parameters (σ̃A, σ̃E, D̃A, D̃E, L̃),
scaled with respect to the material constant iCA . This provides an overall view of the pro-
cesses and scalings within a lithium ion half cell which is validated at experimental data of
Lix(Ni1/3Mn1/3Co1/3O2(NMC).
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Appendices

A Electrolyte

A.1 Mole fractions

We consider complete dissociation of the electrolyte and can thus express the mole fractions
yα in terms of nE, i.e.

yEC
= nEC

n
= nE

nRES
+
(
2− (vEA

+vEC
)

vES

)
nE

(184)

yES
= nES

n
=

nRES
− (vEA

+vEC
)

vES
nE

nRES
+
(
2− (vEA

+vEC
)

vES

)
nE

, (185)

and yEA
= yEC

according to the electroneutrality condition. Note we assume

vREA
= vREC

= κEv
R
ES

(186)

whereby

yEC
= nEC

n
= nE

nRES
+ 2

(
1− κE

)
nE

(187)

yES
= nES

n
=

nRES
− 2κEnE

nRES
+ 2

(
1− κE

)
nE

. (188)

We can also express yα as function of of nE, i.e.

yEC
= nE

ntotE
= nE

nRES
− 2κEnE

(189)

A.2 Thermodynamic factor

Γtf
E = yEC

kBT

∂µ̂EC

∂yEC

= 1 + 2κE
yE

1− 2yEC

= Γtf
E (yE). (190)

Further

nEC
= yEC

· n = nRES

yEC

1 + 2(κE − 1)yE
= nEC

(yE). (191)
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whereby
∂nE

∂yE
= nRES

1 + 2(κE − 1)yE − yE2(κE − 1)
(1 + 2(κE − 1)yE)2 = nRES

1
(1 + 2(κE − 1)yE)2 (192)

and thus

hE(yE) = 1
nRE

∂nE

∂yE
=
nRES

nRE

1
(1 + 2(κE − 1)yE)2 =: . (193)

Finally we have also

c̃tot,RE (yE) = ntotE

nRE
=
nRES

nRE
· 1

1 + 2(κE − 1)yE
(194)

A.3 PDEPE syntax for the electrolyte phase

We want to solve numerically the problem

d̃ · q̃V · t̃E
Ch

D̃E
hE(yE)∂yE

∂τ
= ∂ξ(stotE (yE)Γtf

E (yE) · ∂ξyE) (195)

with boundary conditions

(c̃tot,RE Γtf
E ∂ξyE)

∣∣∣
ξ=0

= Ch

D̃E
and (̃c̃tot,RE Γtf

E ∂ξyE)
∣∣∣
ξ=1

= Ch

D̃E
(196)

and

hE(yE) =
nRES

nRE

1
(1 + 2(κE − 1)yE)2 (197)

Γtf
E (yE) = 1 + 2κE

yE

1− 2yEC

(198)

c̃tot,RE =
nRES

nRE

1
1 + 2(κE − 1)yE

(199)

Note that it is ever convenient for the numerical computation of yE ∈ (0, 0.5) to introduce
the variable

u = 1
a
ln
(

2yE

1− 2yE

)
= û(2yE) (200)

which yields

yE = 1
2 ·

eau
1 + eau = 1

2 ŷ(u) . (201)

The parameter a can be adjusted for numerical computations.
Correspondingly, we obtain

hE(yE) = hE(1
2 ŷ(u)) (202)

Γtf
E (yE) = Γtf

E (1
2 ŷ(u)) (203)

c̃tot,RE (yE) = c̃tot,RE (1
2 ŷ(u)) (204)

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



A discussion of the reaction rate and cell voltage of an intercalation electrode 39

and

∂τyE = 1
2∂uŷ · ∂τu , ∂xyE = 1

2∂uŷ · ∂xu (205)

with

∂uŷ = aeau (1 + eu )− aeu eu
(1 + eau )2 = a

eau
(1 + eau )2 =: gu(u) (206)

This yields

p̃ · Ch
D̃E

hE(1
2 ŷ(u))1

2gu(u)∂u
∂τ

= ∂ξ
(
c̃tot,RE (1

2 ŷ(u))Γtf
E (1

2 ŷ(u))1
2gu(u) · ∂ξu

)
(207)

with boundary conditions
(
c̃tot,RE (1

2 ŷ(u))Γtf
E (1

2 ŷ(u))1
2gu(u) · ∂ξu

)∣∣∣
ξ=0

= Ch

D̃E
(208)

(
c̃tot,RE (1

2 ŷ(u))Γtf
E (1

2 ŷ(u))1
2gu(u) · ∂ξu

)∣∣∣
ξ=1

= Ch

D̃E
(209)

and

p̃ := d̃ · q̃V · t̃E (210)

The initial value is

yE(x, t = 0) = yE(nE) (211)

and transfers as

u(x, t = 0) = û(2yE(nE)). (212)

PDEPE takes the form

c(u)∂τu+ ∂ξ(f(u, ∂ξu)) = 0 (213)

with boundary conditions

pl(u|x=xl
) + ql · f(u, ∂ξu)

∣∣∣
x=xl

= 0 and pr(u|x=xr) + qr · f(u, ∂ξu)|x=xr = 0. (214)

We have hence

c = p̃ · Ch
D̃E

hE(1
2 ŷ(u))1

2gu(u) (215)

f = c̃tot,RE (1
2 ŷ(u))Γtf

E (1
2 ŷ(u))1

2gu(u) · ∂ξu (216)

and

pl = Ch

D̃E
pr = Ch

D̃E
(217)

ql = −1 qr = −1 (218)
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B Active particle

B.1 Thermodynamic factor

We consider for the chemical potential in the active particle phase

µA = kBT

(
ln
( 1

ωA
yA

1+ 1−ωA
ωA

yA

)
− ω · ln

(
1− yA

1 + 1−ωA
ωA

yA

)
+ γA · gA(yA)

)
(219)

with

g(y) = (2y−1) + 1
2
(
6y(1−y)− 1

)
− 1

3
(
8y(1−y)− 1

)
(2y−1) (220)

Hence

∂µA

∂yA
= 1
yA

1
(1− yA)( 1

ωA
yA + (1− yA)) + γA · ∂yg (221)

with

∂yg = 16 · y2 − 22yA + 25
3 . (222)

The thermodynamic factor Γtf
A is then

Γtf
A = yA ·

∂fA

∂yA
= 1

(1− yA)( 1
ωA
yA + (1− yA)) + γA · (16 · y3

A − 22y2
A + 25

3 yA) . (223)

B.2 PDEPE notation

We seek to solve (109), i.e.

Ch

D̃A

∂yA

∂τ
= ∂ξ(yA

∂fA

∂yA
∂ξyA) (224)

with boundary conditions (110)

yA
∂fA

∂yA
∂ξyA

∣∣∣
ξ=0

= 0 and yA
∂fA

∂yA
∂ξyA

∣∣∣
ξ=1

= Ch

D̃A
. (225)

and

yA
∂fA

∂yA
= Γtf

A = yA ·
∂fA

∂yA
= 1

(1− yA)( 1
ωA
yA + (1− yA)) + γA · (16 · y3

A − 22y2
A + 25

3 yA) . (226)

Note that it is ever convenient for the numerical computation of yA ∈ (0, 1) to introduce the
variable

u = ln
(

yA

1− yA

)
(227)
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which yields

yA = eu
1 + eu (228)

We have hence

∂τyA = ∂uyA · ∂τu (229)

and

∂xyA = ∂uyA · ∂xu (230)

with

∂uyA = eu (1 + eu )− eu eu
(1 + eu )2 = eu

(1 + eu )2 =: g(u) (231)

PDEPE takes the form

c(u)∂τu+ ∂ξ(f(u, ∂ξu)) = 0 (232)

with boundary conditions

pl(u|x=xl
) + ql · f(u, ∂ξu)

∣∣∣
x=xl

= 0 and pr(u|x=xr) + qr · f(u, ∂ξu)|x=xr = 0. (233)

We have hence

c = Ch

D̃E
gu(u) (234)

f = Γtf
A (ŷA(u))gu(u) · ∂ξu (235)

and

pl = 0 pr = Ch

D̃E
(236)

ql = 1 qr = −1 (237)

Note that we introduce the stop-event yA|AE < 1− 10−10 for the time-integration of pdepe.
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