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A discussion of the reaction rate and the cell voltage of
an intercalation electrode during discharge

Manuel Landstorfer

Abstract

In this work we discuss the modeling procedure and validation of a non-porous inter-
calation half-cell during galvanostatic discharge. The modeling is based on continuum
thermodynamics with non-equilibrium processes in the active intercalation particle, the
electrolyte, and the common interface where the intercalation reaction Lit +e~ —= Li
occurs. This yields balance equations for the transport of charge and intercalated lithium
in the intercalation compound, a surface reaction rate at the interface, and transport
equations in the electrolyte for the concentration of lithium ions and the electrostatic
potential. An expression for the measured cell voltage E is then rigorously derived for
a half cell with metallic lithium as counter electrode. The model is then in detail in-
vestigated and discussed in terms of scalings of the non-equilibrium parameters, i.e. the
diffusion coefficients Dy and Dg of the active phase and the electrolyte, conductivity
o and og of both phases, and the exchange current density 60%, with numerical solu-

tions of the underlying PDE system. The current density ¢ as well as all non-equilibrium
parameters are scaled with respect to the 1-C current density i{ of the intercalation
electrode and the C-rate C}, of discharge. Further we derive an expression for the capac-
ity @ of the intercalation cell, which allows us to compute numerically the cell voltage E
as function of the capacity () and the C-rate Cj,. Within a hierarchy of approximations
of the non-equilibrium processes we provide computations of F(Q) for various values
of the diffusion coefficients, the conductivities and the exchange current density. For
the later we provide finally a discussion for possible concentration dependencies and
(surface) thermodynamic consistency.
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1 Introduction

Lithium ion batteries (LIBs) are vital today for many branches of modern society and especially
for electro-mobility. The german national platform electro-mobility aims one million electric
vehicles by 2020, as well as the U.S., while China targets about five million zero emission
cars. To achieve these goals, substantial knowledge on the effectively non-linear behavior of
LiBs is required in order to reduce cost, increase their efficiency, safety, durability and fur-
ther. The interpretation of experimental data requires a versatile and predictive mathematical
model of a LIB, which accounts for the many physicochemical processes occurring simultane-
ously during charge and discharge, e.g. Lit diffusion in the electrolyte, surface reactions at
the electrode/electrolyte interface, solid state diffusion in the active particles, and electrical
conductivity.

First academic steps to model the functional principle of LIBs with the purpose of simulating
their charge/discharge behavior were carried out by Newman et al. around 1993 [1]. This elec-
trochemical model became a central tool to interpret measured data of intercalation batteries.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 3

One of the central ingredients of the Newman model is the Butler—Volmer-type reaction rate
R for the intercalation reaction Li" + e~ == Li occurring at the interface ¥, ¢ between an
S

intercalation electrode (particle) €2, and the electrolyte Q2z. The actual functional dependency
of ]S% = Zs%(nE, e, Ny, ) on the different variables of the equation system, e.g. the electrolyte
concentration ng, the electrostatic potential ¢ in the electrolyte, the concentration n, of in-
tercalated ions, and the electrostatic potential ¢, of the active phase, is, however, rather stated
then derived. Especially the so called exchange current density and its functional relationship
to the cation concentration is doubtable.

From a non-equilibrium thermodynamics (NET) point of view, the functional dependency é% =
fsi(nE, e, Ny, pa) can be consistently derived and NET restricts this functional dependency in

a very specific manner. We discuss in this work the modeling procedure of a single transfer
reaction at the interface between an active intercalation phase and some electrolyte based
on the framework of NET for volumes and surfaces and draw some conclusions regarding
thermodynamic consistent models of the reaction rate. We account also for diffusion processes
in the adjacent active particle and the electrolyte, as well es electrical conductivity, and state
the corresponding balance equations. Then we consider galvanostatic discharge in half cell of
some cathode intercalation material, electrolyte, and a lithium reference electrode, which is
considered as ideally polarizable counter electrode.

We introduce the C;-current density, i.e. the current at which the electrode is completely
discharged during one hour, and scale all non-equilibrium parameters based on the C-rate
Cy,, i.e. multiples of the C; current density. It is then possible to derive a general relation
between the measured cell voltage F, the capacity (), and the C-rate ', based on the reaction
rate }S% = ];{(nE, ©e, M, Pa). Since, however, actually the concentrations at the interface ¥, g
of intercalated cations n, and electrolytic cations ng enter the surface reaction rate ]S% we
need to solve necessarily the diffusion equations in the adjacent phases. We discuss various
approximation regimes and parameter scalings of the non-equilibrium parameters which allows
us to compare numerical simulations of cell voltage £ = E(Q,C}) to some representative
experimental examples, especially of Li, (Ni; ;3Mn; 3C01/302(NMC). Fig. shows the measured
cell voltage E as function of the capacity (or status of charge) for various discharge rates of
thin of NMC half cell [2].
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Figure 1: Discharge curves (lower part) for various C-rates (Data of Fig 1.b from [2] , reprinted
with permission of The Electrochemical Society)

We show that a rather simple (but thermodynamically consistent) model of the surface reaction
rate é% or more precise of the exchange current density, is sufficient to understand and predict
the complex non-linear behavior of the cell voltage as function of the capacity () and the
C-Rate (. We provide also computations of £ = E(Q, C},) for the exchange current density
introduced by Newman et. al, draw some regarding thermodynamic consistency, and compare

computations based on this expression to the cell voltage based on our simple expression of
the current density.

2 Modeling

We consider an active intercalation particle €2, in contact with some electrolyte Q. The
interface ¥,y = Q) N (g captures the actual surface ¥, of the active particle as well as the
electrochemical double layer forming at the interface, i.e. ¥y g = Qi UX,UQZ. The domains
Qg and Q, are thus electro-neutral, and we refer to [3-5] for details on the derivation. The
electrolyte is on the right side in contact to some metallic counter electrode 2z, where at the

interface Xg ¢ captures also the double layer forming at the interface between the electrolyte
and the counter electrode ().
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Figure 2: Sketch of an active intercalation phase €2, in contact with some electrolyte .
The electrode-electrolyte interface ¥, & covers the space charge layer Q5" of the electrolyte
and Q% of the electrode as well as the actual electrode surface 3. Several processes occur
simultaneously, i.e. the intercalation reaction, electrolyte diffusion and solid state diffusion as
well es electrical conductivity.

We consider a 1D approximation, where the electrode-electrolyte interface ¥, ¢ is positioned
at * = x,g, the left boundary of €, is denoted by x = 0 and the right boundary of ) is
xr = xge, with dy = |z4g| and dg = |xgc — xpe|. The counter electrode is positioned at x = g
and spans to x = x¢.

For some quantity u(z,t), we denote with

(1)

ulf = u‘jF and uli =

T=XTAE x=xgcEC

the evaluation at the respective side of the interface ¥, ¢ and Xg ¢, respectively. If u is present
only on one phase, we drop the superscript *.

The active particle €2, is a mixture of electrons e~ , intercalated cations C and lattice ions
M™ | and the electrolyte a mixture of solvated cations C* | solvated anions A~ and solvent
molecules S . The respective species densities are denoted with n,(x,t),x € ;. We denote
with

O

/'La:% ) i:A7E7 a:EA7ECyES7A07Ae7AM7 (2)
o

the chemical potential of the constituents, which are derived from a free energy density [6), [7]

Y = by + g with ¢, = @Z)A(nAe,nAc,nAM) of the active particle and 1z = w(nES,nEA,nEC) of
the electrolyte phase.

For the surface X we have surface chemical potentials [4, 6] 8] 9]

oY
'lja B 87;La

5 O!:EA,EC,ES,AC,AC,AM, (3)

which are derived from some general surface free energy density 1.
S
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2.1 Material functions

For the electrolyte we consider exclusively the material model [9-11] of an incompressible liquid
electrolyte accounting for solvation effects, i.e.

fa = g8+ keT'In (yo) + 02 (p — p™) o =Eg,E4, Ec, (4)
with mole fraction
Ne
Yo = nEot ) (5)

molar concentration n,, and total molar concentration of the mixture (with respect to the
number of mixing particles [9])

n;CEOt = Ngg + Ng, + Mg (6)

Note that ng, denotes the number of free solvent molecules, whereas ng, and ng. are the
densities of the solvated ions. This is crucial for various aspects of the thermodynamic model,
and we refer to [9, [10, 12, [13] for details. Overall, the material model for the electrolyte
corresponds to an incompressible mixture with solvation effects. We assume further

R R

Vg Mg Ug Mg
= o and = = (7)
UES mES UES mES

whereby the incompressibility constraint [9-11] implies also a conservation of mass, i.e.

Svfne=1 & Y man,=p= m—gs = const.. (8)
v
(03 (e

Es

The molar volume of the solvent is related to the mole density ngs of the pure solvent as

vgs = (ngg) " - (9)

Note further that the partial molar volumes v? and the molar masses m,, of the cation and
anion are related to the solvation number xg and &, respectively.

We assume that partial molar volume of the ionic species is mainly determined by the solvation
shell, which seems reasonable for large solvents like DMC in comparison to the small ions like
Li* . We proceed thus with the assumption

Ve = KE * Ugg and Ve, = KRE * Upp- (10)

For the active particle, we consider an extension of a classical lattice mixture model [14-21]
which accounts for occupation numbers w, > 1 as well as a Redlich-Kister type enthalpy
term [22, 23] for the intercalation material Li, (Ni;/5Mny/3C01/3)O2 (NMC). We refer to [24]
for a detailed discussion and derivation based on a free energy 1*. The chemical potential of
intercalated lithium is derived as

1
Y 1-
fae = keT' (In <Ac> —wy - ln <%C> + - gA<yAC)> (11)
C

L5 L+ o e
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with
9(y) = (2y—1) + ;(Gy(l—y) —1) - ;(83;(1—.@) —1)(2y-1) (12)

and mole fraction

Ty

yAC - T: (13)
£

of intercalated cations in the active phase. The number density n,, of lattice sites is constant,
which corresponds to an incompressible lattice, and the enthalpy parameter v, < 2.5. Note
that 7, > 2.5 entails a phase separation [20] and requires an additional term ~,divVy,,, in the
chemical potential. However, we assume throughout this work that no phase separation occurs,
whereby in diffusional equilibrium of the intercalation phase the concentration is homogeneous.
An extension of this discussion towards phase separating materials will given in a subsequent
work.

For the electrons we consider [9, [25]

( ’ )% . and R — const (14)
= _— n — — .
Ha, 81/ 2my. A ,lSlAe gAe
and for the lattice ions

P = G + KT I (1= yac) + v (o — i) (15)
where vt = (nyf) ™! is the molar volume of the lattice ions, py the partial pressure and g%

the constant molar Gibbs energy. The material functions of the active intercalation electrode
essentially model an incompressible solid with a sub-lattice for the intercalated cations Ac.

The explicit surface chemical potentials

oY
,sta - 87;&

, & = Ex,Ec,Eg,Ac, Ay, (16)

are not required throughout this work since we will assume that the double layer is in equilibrium
and that the double layer capacity (and thus also adsorption), is negligible for the sake of this
work. However, we refer to [9] for the explicit functions of 1, and the surface free energy of

a surface lattice mixture with solvation effects.

2.2 Electroneutrality condition

The electroneutrality condition of €2, {2z and ()¢ can be obtained by an asymptotic expansion
of the balance equations in the electrochemical double layer at the respective surface .
We only briefly recapture the central conclusions and refer to [3H5, 9] [26] for details on the
modeling, validation and the asymptotics. Most importantly, we have that

B the double layer is in thermodynamic equilibrium, i.e. Vi, + €92,V = 0 in Q% and
QECL
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M. Landstorfer 8

B there exists a potential drop between the active particle surface 3 and the hyper-surface
EjﬁE outside of the respective space charge layers which is denoted by

Uz‘SCL =P—¢

s

,i=AE (17)

where |® is the electrostatic potential right outside the space charge layer in the elec-
trolyte or the active particle, respectively, and ¢ the (continuous) potential at the surface
S

ZE]. The whole potential drop across the double layer at 3, ¢ is denoted by

U =Us " = U = ¢liz — Plas (18)

B the chemical potential at the surface can be pulled back through the double layer, i.e.
o = pi — €0z U, i = AJE

B the condition j. = const. entails that the potential drop Uy is constant (with respect
S
to some applied voltage) and determined by

1

SCL __
UA —_—
€o

(. = ) - (19)

B and that for monovalent electrolytes the cation mole fraction (or number density) is
equal to the anion mole fraction, i.e.

Yec = Yno - (20)
B in the active phase the electroneutrality entails
na, = Ny, = const. (21)
whereby we abbreviate

g/i ‘= Ha, (nAM) (22)

which is basically the Fermi energy of the solid material.

2.3 Transport equations

In the electrolyte {2z we have two balance equations determining the concentration ng_ (x,t)
(or mole fraction yg.(x,t)) and the electrostatic potential ¢g(x,t) in the electrolyte [27H32],
ie.

3nEC

ot

t
= —0,Je, with Jee = —De ' TY - Oupee +“Jog (23)
0
O = —axJRq Wlth JE q = —SE . n]tft thaxyg — AEnEangE (24)

)

with (dimensionless) thermodynamic factor

o Yeo Ofleg Y tf
=2 "¢ — 14 2%kg—F—— =T ) 25
E kBT ayEc + '%E 1 _ 2yE‘,C E (yE) ( )

'Note that the continuity of ¢ across ¥ is an assumption.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 9

where
A~ mEc
Hee = HEc — — HEg = keT (ln (yEc) — Kgln (yEs)) (26)
mES
vt m
is the thermodynamic driving force for diffusion [I1]. Note that we assumed ¢ = —*¢ and
Eg Es
vg', = kg - vg, which yields the representation (26]). Note further that the total number density
ngt = ngg + ng. + ng, in the electrolyte writes as
1
ng' = ng, - = ng" (Ye) (27)

1 + 2</€E — 1)yE
which is determined from the incompressibility constraint
Upt gy + Vg ne, + vgng, =1 (28)

and the electrolyte concentration ng, in terms of g, as

R Yec

NeEe = Ygo " M

If we consider a simple Nernst—Planck-flux relation for the cation and anion fluxes [11], [33],
respectively, i.e.

Na Mmea
Ja = D'C\YIP]{/‘BiT(vMOC - mioqus + 602anav90E> = EA’ EC ) (30)

with constant diffusion coefficients DY for the anion and D} for the cation, we obtain (in
the electroneutral electrolyte)

NP NP NP
2DNP . DNF DYF

o — eV, tg, = ——=—C< 31
== DNF - D = = DEF L DI (31)
2
A = 2=(DEF + DY) S = eo( DAY — DIY) (32)
B

Note, however, for general Maxwell-Stefan type diffusion [29H32] 34] or cross-diffusion coefficients|7,
24}, [35] in the cation and anion fluxes lead to more complex representations of the transport
parameters (tg., Sg, Dg, Ag). In general, three of the transport parameters are independent,
and Sg, tg, and Ag are related to each other via

Sk

ke T
2t — 1) = — . 33
o (2tc — 1) A, (33)

Further, (tg., Sg, De, Ag) depend in general non-linearly on the electrolyte concentration ng,,.
However, it is sufficient for the sake of this work to assume constant values for the transport
parameters (tg., Sg, Dg, Ag), together with relation ((33)).

In the active particle €2, we have two balance equations determining the concentration n, . (x, t)
(or mole fraction y,.) and the electrostatic potential ,(z,t) in the active particle, i.e.

8nAC

5" = ~Oche with Jac = =Dy -1, T - Ooyac (34)
0= _azJA,q with JA,q - _O-AaISOA (35)
and (dimensionless) thermodynamic factor
tf Ya Op Ya tf
AT RT o + -0 YaYa a(Un) (36)

Note that in principle o, can be dependent on the amount of intercalated ions, i.e. oy = 04 (va).
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2.4 Reaction rate based on surface thermodynamics

We want to investigate the non-equilibrium thermodynamic modeling of the intercalation
reaction

Lit| +e7| =Li +re-S| . (37)

Surface thermodynamics dictates that the reaction rate é% of this process can in general be
written as [4, 5, [13] [36] 37]

a~ﬁ/\ —(1—a)~ﬁ)\ .
R:L-<e B s — e B s) with i\:MAC‘FKE'HEs_MEC_MAe? (38)

with o € [0, 1]. Note that a non-negative function L in (38)) ensures a non-negative entropy
S
production To.R due to reactions on the surface, i.e. ToR = /\ . R > 0.

The quantity )\ can be considered as surface affinity of the reaction (37). The surface reaction
rate R vamshes when the affinity vanishes, which is the actually the thermodynamic equilib-
rium condition of (37), i.e. A=0 & r,r=0.

Since the electrochemical double layer is in equilibrium, we can pull back the surface chemical
potentials 1, through the double layer to the respective points (in an asymptotic sense) outside

of the douls)le layer, whereby we obtain for the surface affinity

A= MAC‘;E + KE - MEg IE - MEC‘; +eoUpg — fa, ;E (39)
With the material models (4] and we can rewrite the surface affinity as
A= eo(Ups — Efs) + kT (fa(ynclae) — fe(bec|ae)) (40)
with
Bly = —(of + 9t~ glf ~ regll) (@)
and
fe(yee) :=1In (AyEOnE) ; (42)
(85 ()
Ja(yac) =1n (%) —wa - In (%) + 7 - 9a(Yac) (43)

with g, according to (12)). Note again that ¥, |ae denotes the evaluation of y, ., at the interface
Yae and that the surface affinity (40]) is dependent on the chemical potential (or the mole
fraction) evaluated at the interface.

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



A discussion of the reaction rate and cell voltage of an intercalation electrode 11

2.5 Cell Voltage

We consider the cell voltage in a half cell with metallic lithium as counter electrode, denoted
by C and position at = = xg¢ (see Fig. . The cell voltage in such a cell is

E = plo—o—¢liz + olie—¢le + e —@lac + Olee— @lic + Pliege = Plo=ac s (44)

.___[ybulk __7/DL __.77bulk DL __.77bulk
==Uy =Ujs =:Ug Uge =Ug

where Up*** is the potential drop in the bulk active particle due to the electron transport, U}
is the potential drop across the double layer at the interface between the active particle and
the electrolyte, and UP** the bulk potential drop due to cation electric current.

We assume that the counter electrode Q) is ideally polarizable [28], whereby the reaction

.+ N -Jr
Li ‘C—l—/ﬁE-S‘E = Li ’E (45)
at the the interface Y ¢ positioned at & = g is in thermodynamic equilibrium and UZ** =
Plorzee — Plo=ae = 0. The equilibrium condition of entails
Uss = ¢ls v ) ) 46
EC — <70|x:CCEc - gp‘x:l’Ec - ;0 /‘LCC - /’LEC‘EC + KE/’LES EC ( )
= %(Mco ~Gre — /‘GEQES) - ?OfE@Ec‘EC) (47)

where fic, = const. is the chemical potential of the metallic lithium.

For the surface affinity we obtain the compact typeface

A= eo(B+ UP™ — UP™ — Bye) + koT (fa — felae + felec) (48)

with
Eye = elo(licc - gfc + gﬁ) : (49)

and
felae = fe(yeclae) and  felee = fe(yec lec) - (50)

2.6 Current—Voltage relation

For the single intercalation reaction we have the following expression [4]

R
dt

i=—eoR+CY- (51)

for the current density ¢ flowing out of the electrode €2,, where CR" is the double layer capacity.

Note that the reaction rate is

B=L-g(;

s

1T /s\) with  g(z) = (e‘” - e_(l_o‘)"‘> . (52)

B
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Figure 3: Reaction rate function g(z) = e*® —e~( and its inverse ¢! for various values

of a.

Since g(x) is a strictly monotone function, we can introduce the inverse of g, i.e. g~!. For

o = % we have g(z) = 2sinh (%x) and g7} (y) = 29~ ( ) For values o # 0.5 the inverse

function g~ ! is only implicitly given, however, can easily be calculated numerically. Fig. displays
the functions g and g~ for various values of a. We call g(z) the reaction rate function and
g~ ! the inverse reaction rate function.

Note that in the Tafel approximation g( TA) & BlTi\ eq. yieldsﬂ

€0 DL DL dUDL €0 T 1
E S
T E OLC dt kT M () oL (53)

The term ¢ L can be considered as the exchange current density [28].

2.7 Onsager coefficient of the intercalation reaction

The Onsager coefficient é (or the exchange current density eoé) of the surface reaction ([37))

could in principle be a function of the surface chemical potentials (or surface concentrations),
i.e. L = L(pac, Hees Pess pa. ) oF L = L()) or the surface affinity, i.e. L = L(}), as long

as the condition é > 0 is ensured [4] [8, 26]. Note, however, that surface thermodynamics
dictates the dependency of ZS} on the surface chemical potentials 1, and not the bulk chemical
potentials fi4.

For a general relation ZSL = é(,uAc,uEO, peg) We can pull back the surface chemical potentials

{to through the double layer to obtain

é = é(:u-‘\c (yAc|AE>7 HEg (yEcu_E) - €0UL§CLa HEg (yEsu_E)) . (54)

Note that this necessarily restricts the functional dependency of L on the mole fractions y,|*£
S

at the interface ¥ x.

2Note again that UNL = USL — USL and that the space charge layer drop U is constant due to the
dUSCL _ dUx
= Tat -

material model ,uA = const. whereby
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A discussion of the reaction rate and cell voltage of an intercalation electrode 13

Consider, for example a model é = QE(yEC]XE), where the exchange current density is depen-

dent on the electrolyte concentration at the interface. This would be, however, thermodynam-
ically inconsistent since the general functional dependency of (54)) requires for the electrolyte
concentration at the interface

€0 SCL

L = Le(pisc (yeclis) — coUS™) = La(yeclfz - ¢ 7). (55)

Another commonly used model is a functional dependency of L on the concentration y, |
S
of intercalated ions at the interface, i.e. L = Ly(ya.|ae). Since the space charge layer in the
S S
active particle U is essentially constant (because i, is constant), we can indeed write
S

L = Ly(ptsc (ncle)) = La(unc ) (56)

We discuss this aspect as well as various models for L(:uAcqucnuEsnuAe ) in section |4.2

Meanwhile we assume L = const. and proceed the foIIowmg der|vat|on and the discussion
based on this assumptlon since it turns out to be very reasonable.

2.8 Discussion of the model parameters

At this stage, it is illustrative to discuss the explicit value of the parameters.

B For the electrode geometry we consider for ¥, ¢ a planar surface of area A and a thickness
dy = 10 [um] which yields V, = A - d, and x,z = 10 [um]. The electrolyte is considered
with a thickness of dg = 50 [um]. This corresponds to the cell dimensions of the cell
MX-6 in [2].

B Throughout this work we consider DMC as solvent with nE =11.91 {m"'} and assume

for the solvation number kg = 4. The reference electrolyte concentration is nff = 1 [md}
and average amount of electrolyte is ¢ and a parameter of the model.

B Average concentrations (or mole fractions) are abbreviated as

1
Yo = / Yo dV « =Ec,Eqa,Es (57)
Ve
for the electrolyte species and
_ 1
yAc = V yAC dv (58)
A JQ,

for the amount of intercalated ions in the active phase.

B For the active particle phase we consider Li(Ni;/3Mn;/3C0;/3)O2 (NMC) whereby

Ah
a"™MC = 1294 lm . ] and ;"M =318 [mAhg™] (59)
cm

which is simply computed from the density and stoichiometry of the bulk material[38].
As parameters for the chemical potential jy, we consider an occupation number of
wy = 10 and a Redlich—Kister interaction energy of v = 13 [24].
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B The differential capacity CE" has a prescribed value (actually C2 is a function of US,
but we proceed here with a constant approximation for the sake of simplicity[9] of about

F
DL _ | o
Ckg 00 LmJ (60)
B The electrode capacity @ is
Q= | & e dV =0 T, with Q) :=Vi ¢ (61)

Qa

This yields the non-dimensional capacity

Q

@ = yAc € (07 1) (62)

which is sometimes also called status of charge (SOC) or depth of discharge (DOD).

Note that during discharge of a complete battery the cathode is actually filled up with
lithium. In a half cell with metallic lithium as counter electrode, discharge thus actually
means filling up the intercalation electrode, here the NMC cathode material. Hence
Q/Q) — 0 corresponds to a fully charged cathode (i.e. no lithium in the intercalation
compound, 7, . — 0) while Q/QY — 1 corresponds to a fully discharged cathode (i.e.
the intercalation compound is completely filled with lithium, 7, . — 1).

B From the charge balance (35)) of the active particle we can deduce

o'y [ 1var with 0° — Vo (x,t = 0)dV 63
Q Q+/O (t)dt with Q /Qf’ oo (3,1 = 0) (63)

where [ is the current flowing into the intercalation electrode during discharge and
Q(t = 0) the initial charge state. For a galvanostatic discharge I > 0 we obtain thus

Q=Q"+1-t. (64)

B The C-Rate C}, [1] defines (implicitly) the current at which after h-hours the intercalation
cathode is completely filled during galvanostatic discharge. C'; is thus the rate at which
the battery is charged within one hour and commonly abbreviated just as C-rate C, i.e.

_ QX _AdA'q}x/

le =T =4 (65)
We can hence express the current I in multiples of the C-rate, i.e.
I=Ch- 1o (66)
which vyields
Q:Qo—i-]-t:QO—FOh-[C-t:QO-FCh'162[1:{]-t:QX(ygc-l-Oh[th]) (67)

The only parameter for the current density i = I /A is thus Cj,.
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A discussion of the reaction rate and cell voltage of an intercalation electrode 15

B For the time ¢ we consider the interval of one discharge cycle, i.e. t € [0, teng] with

tend = 10[2] (68)

We can thus introduce the non-dimensional time

t
=Che—=——€ (0,1 69
T h3600 [S] € [ ) ] ( )
whereby the capacity rewrites as
Q/QY = (Wi, +7) - (70)

B For the current density ¢ at the planar electrode we have thus

) I Cy-Ic ) . . d 'qV
i=5= hA =i¢.C, with i§ = ;[h]A' (71)

Discussion of the scaling Consider the non-dimensional voltage

— SCL 72
U kaT UE ( )
and abbreviate
H=-""Funs—fatf (73)
= kT ARE A E
which yields
~ Ch dU - C(h
U—-0c 7 (1-7) 7 (74)
with
= 7
“ d QXOE €0 ( 5)

The parameters d, = 0.01 [cm] and ¢, = 1294 [mA hcm™3] yield

1

Ah
d- g =0.01[cm] - 1204 [mAhcm~?] - W= 12.94 [Tmz ] (76)
and
ko T F C
o — 100 [ L] 0.0257 V] = 2.568 | L= (77)
€ cm? cm?
whereby
c; =5.51-107°%. (78)
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The double layer contribution in eq. is thus almost negligible whereby reduces to

i= —eols)g<kBlT§\) : (79)

We consider for the exchange current density the rescaling

~ ~dA'qV
L=L-if =L——2
605 N 1[h]

(80)

This is the crucial decomposition throughout this work and L the parameter of the surface

reaction rate R.
S

For the current density i = i{ - C}, and the inverse function g~! we obtain thus with eq. (48))
for the surface affinity A the general expression
S

ksT

kT
e (fA — felae + fE‘.|EC) +

C
E = EA,C . g—l <_£L> . U:ulk + Ué}ulk (81)

for the cell voltage F.

3 Discussion

If not stated otherwise, we abbreviate

Ure =Un and  yg, =Yg (82)

as well as the respective densities 1y, = ny,ng., = ng , fluxes Jy, = Jy,Jg, = Jg, and
chemical potential j1y., = pa in the following.

We seek to discuss the general relation (81]) of the cell voltage E' as function of the capacity

Q5 € (0,1) (83)

=Y
o 7t
during discharge of an intercalation electrode. Note that necessarily C), > 0 (discharge) and

L > 0 (Onsager constraint of ([38)), whereby g_l(—%%) < 0, which entails that any current
decreases the cell voltage £ during discharge.

We will discuss consecutively the following hierarchy of approximations:
BV 0: infinite slow discharge - the open circuit potential
BV 1: infinite fast diffusion and conductivity in the active particle and the electrolyte

BV 2: finite conductivity in the active particle, infinite diffusion in the active particle, infinite
fast diffusion and conductivity the electrolyte

BV 3: finite conductivity and diffusion in the active particle, infinite fast diffusion and conduc-
tivity the electrolyte

BV 4. finite conductivity and diffusion in the active particle, finite conductivity in the electrolyte,
infinite fast diffusion the electrolyte

BV 5: finite conductivity in the active particle and the electrolyte, finite solid state diffusion in
the intercalation electrode as well as finite diffusion in the electrolyte
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A discussion of the reaction rate and cell voltage of an intercalation electrode 17

3.1 BV 0: Open circuit potential

Liy(Nil/3Ml’11/3001/3)02 (NMC) vs. Li

4.6
4.4+

>

\4.2

S

«

238}

9]

5 36¢

o

2341

5

o

5 321

g 3

Osrgl * Data of Bruce

' + Data of Nitta

26L computed with wy = 10,y, = 13

0 01 02 03 04 05 06 07 08 09 1
Mole fraction y,

Figure 4: OCP of Li, (Nij ;3Mn; /3C0;,3)O2. Comparison between the material model and
experimental data of P. Bruce (Data of Fig. 3 in [39]) and N. Nitta et. al (Data of Fig. 4. in

[40]).

The open circuit potential (OCP) is obtained from ([81)) as
1

€o

E = —(pec — mlw)) (84)

for C, = 0 (infinite slow discharge), which entails also Up™* = U™ = 0 as well as yg|se =
Y |ec. Hence we have

E — EA,C -
€o

H@y) = EDQ/QY) - (85)

For Li, (Ni; ;3Mn; 3Co01 /3)O2[39] as intercalation electrode, the two parameters of the chemical
potential function p, are the occupation number w, = 10 and the interaction energy v, = 13
of the Redlich—Kister type enthalpy contribution. This yields an absolute ¢?-error of 0.064 / V
and a relative error of 1.860% vs. experimental data of P. Bruce et. al [39], and Fig. |4 shows
a comparison to two experimental data sets of measured OCP data.

3.2 BV 1: Infinite fast diffusion and conductivity in the active particle
and the electrolyte

Infinite conductivity within the active particle phase as well as within the electrolyte yields
U™ =0 and U™ =0. (86)
and infinite fast diffusion in the active particle and the electrolyte entails

ya(z,t) = const. w.r.t. x and yg(z,t) = const. w.r.t. x . (87)
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Hence yy|ue is directly related to the capacity via

Unle =70 = Q/QY (88)
whereby the cell voltage of BV 1 is
ksT ksT C ~
E=Byo— o fim) + =g (-2 ) = EVQIQY: G D). (89)

It is a simple algebraic relation between the measured cell voltage E, the C-rate Cj, the
capacity () and the (non-dimensional) exchange current density L.

In order to compare the cell voltage E computed in the approximation BV 1 with other
approximations, we abbreviate the voltage computed from as EM . Note that cell voltage
(89)) is actually independent of the electrolyte. L = 1 we obtain the voltage/capacity relation
given in Fig. 5 for a variation of C}, from 0 (open circuit potential) to C), = 100 (extremely
fast discharge).

BV1 L=1

BV 1. L =0.01

—CL=0 —CL=0
4.6 gh = ; 4.6 gh = ;
— Ch= —Ch =
44l Ch=5 44 Crh=5
Crp =10 Crp =10
42y Cr=25 42¢ Ch=25
o4l — Chn =50 o al — Ch =50
= — ) =100 = — ) = 100
Q38+ L 3.8+
3.6 %}3,6 L
g 8
;o 3.4 g 341
=32 =32}
O O
3L 3L
28| 281
26| 260

0 01 02 03 04 05 06 07 08 09 1
Capacity Q / QY

0O 01 02 03 04 05 06 07 08 09 1

Capacity Q / QY

Figure 5: Computed voltage E as function of the capacity Q/Q, according to eq. for
various values of L and C},.

Reaction overpotential We define the reaction overpotential as

ks T
pi = EO _ g _ T gl<—qh> (90)

which is actually independent of the status of charge or capacity. Measured voltage data
E = E(C},) would thus allow to determine L and the parameter « € (0, 1).

Fig. @ shows computations of the reaction overpotential 1t for various values of o and L as
function of C},.
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Figure 6: Reaction overpotential n't as function of the C-Rate C), with parameter variations
of @ and L.

3.3 BV 2: Contribution of finite active phase conductivity

Finite conductivity within active particle phase entails from eq. (35)

dy

U:ulk — R‘Xulk . Z Wlth Rkulk —
Op

(91)

Employing the scaling of the current density i, i.e. i = i{-C),, as well as the decomposition

€0 diqf €o (92)

kel — 1[h] keT

op=0" -5, with oY :=d, -

yields
keT Cj

bulk _
Uy = —.
€o O

(93)

The quantity o is the specific conductivity of the active particle phase at C-rate of one. For
the parameters given in section O'E computes as

oC ~ 4.9 l:ﬂ . (94)

The measured cell voltage is then

ks T

E =By -
€o

(hm)-o(-2) + 2) = B2 @/Qki 0L (99)

which is (yet again) a simple algebraic relation between F, the C-rate C},, and the capacity
Q/QY. E® is additionally parametrically dependent on the conductivity &,.

We define the active phase conductivity overpotential 77 as

kT Gy

ng .= EY - E@ o (96)

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



M. Landstorfer 20

3.4 BV 3: Contribution of the solid-state diffusion in the active par-
ticle phase

Reconsider that we have assumed yet y, = const. with respect to space in the intercalation
particle. In general, however, we have to solve a (here 1D) diffusion equation

on . . .
87; = —0,Ja Wwith 7j, = —DAnAazfA(yA) (97)
with
n - 1
. _ d i = ——1.
JA‘ L, =0 an «]A’AE eol (%8)

This yields at the interface ¥, g some solution

(1), = et (99)
which will also impact the cell voltage
ks T , _ C C
E=Eyo— -2 (falmhe(ti) - g7 (-5") + 21 (100)
€0 L O
E(3)(Q/Ql‘(;chazaa'A7DA) i (101)

In order to discuss this impact systematically, we apply the following scaling

t x
—(, 1 d E— 1 102
T C’h[h]e[o,] and ¢ dAe[O,} (102)
as well as
1%
~ 1.
Ny = Ya cg; and j, = E]A (103)
which leads to
Ch ayA ~
IR 9, 104
The dimensionless flux
~ 1. 11[h
Ja = f]A = _Ed[2]DAyAa£fA(yA) (105)

yields the dimensionless diffusion coefficient

= 11h]
and thus
- D,
Jn = —TAyA(?ng(yA) (107)
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At the interface ¥,z we have thus

~ Ch
]A‘E:1 = A (108)
Overall we may write
Ch Oya Ofa
—_— = 1
o o =kl o) (109)
with
Ofa B Ofa Gy
y“@ 6%‘620 =0 and yAiayAagyA‘ézl = E . (110)

Note that we can analytically compute yAg—ﬁ = T'(y,) from eq. (see also appendix |B.1
as

Ofa 1 25
I — gy, - =22 = + oy (1695 — 2207 + =) . 111
A yA ayA (1 _ yA)(wiAyA + (1 _ yA)) P)/A ( yA yA 3 yA) ( )

Since the problem ([109) is non-linear, a classical separation Ansatz y, = X () - T(7) is not
meaningful. We proceed thus with solving the problem (109) with (110 numerically with
MATLAB® and the pdepde () function. The syntax for pdepde () of the problem (109)) with

(110)) is given in appendix [B.2

Based on the numerical solution (£, 7) we compute then yA‘AE = a(&,7)|e=1 (73 Ch. Dy)

numerically for various values of C}, and D,. The (global) capacity is yet Q/Q) =7, = 7.

BV3 L=1D,=1 BV3 L=1D,=10

<}

~
[S)
~

o
o

o
o

—Ch=0
—C, =0.04
—Cr=1
—Cr=5
Cp =10
Cp =25
Ch =50
— Cp =100
— Cp =200

o o o
S~ o0

T
o o o
w o

w
Mole fraction y|ae

Mole fraction ya|ae

o

o
o
¥}

[=]

N
[=]
N

o

o

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Mole fraction 7, Mole fraction 7,

Figure 7: Concentration yA’AE = Ua|ae of intercalated ions at the interface X, as function the

status of discharge Q/QY for various values of C}, and D,.

We assumeihe same parameters as before, now additionally ﬂith two values of the diffusion
coefficient Dy, i.e. slow diffusion Dy = 1 and fast diffusion D, = 10, and compute yA‘AE as

function of the capacity Q/Q} (or time 7). Fig. [7| shows computations of |,z for various
discharge rates and diffusion coefficients in the active particle phase as function of the cell
capacity. The angle bisection in black corresponds to the open circuit potential situation, where
Ya|ae = 7,. For increasing discharge rates, the concentration y, |, at the interface X, g is larger
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than the average concentration 7, in ), since the evacuation of intercalated ions is delayed
by the finite diffusion. This effect becomes even stronger for smaller values of D,, i.e. slow
diffusion in the active particle.

BV3: L=1,D,=1 __( _, BV 3 L=1D,=10
4.6 — Cr =0.04

—Ch=0

— Cp =100
— Ch =200

Cell Voltage £/ V

6 0,‘1 0.‘2 0,‘3 O.‘4 015 016 0.‘7 0.‘8 0.9 1 6 0,‘1 0,‘2 0,‘3 O.‘4 0,‘5 0.‘6 0.‘7 O.‘8 019 1
Capacity Q / QY Capacity Q / QY
Figure 8: Cell voltage F for BV 3 as function of the status of discharge for various values of C},

and D, with numerical computation of ¢, (i) from the PDE ({109) with boundary conditions
(T10).

The cell voltage E is then computed a posteriori from based on the numerical solution
of Yalae. Fig. displays the cell voltage for various discharge rates as well as slow (EA =1) and
fast (D, = 10) diffusion in the intercalation phase. Finite diffusion in the active particle has an
enormous impact on the cell voltage and changes qualitatively the shape due to the non-linear
feedback. This effect is also found experimentally, see Fig. [I and extremely important since
it determines the maximum amount of charge that can be withdrawn from an intercalation
electrode.

Two important measures server to discuss the impact of the diffusion coefficient Dy,

B the cell voltage at 50% discharge, i.e. E v
Q=0.5-Q}

B and the capacity Q‘EiEoﬁ at the cut off voltage E°f, here with E°f = 2.6 /V.

Fig ﬁ shows numerical computations of E o d Q‘E—E"ff for various values of the C-

_osQV an
rate C, and diffusion coefficients D, in the range of 1073 — —102. For slow discharge rates,
ie. Cp < 1 a diffusion coefficient of D, = 0.1 is sufficient to achieve a voltage of 3/V at
50% discharge and capacity of 90% at the the cutoff voltage. However, for higher C-rates,
e.g. C, = 50, the impact of the solid state diffusion becomes enormous, requiring a diffusion
coefficient of Dy > 0.3 to discharge the electrode to 50%.
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Figure 9: Cell voltage and Capacity for various discharge rates and diffusion coefficients.

Overpotential 7°:  The overpotential due to finite diffusion in the active particle phase can
be defined as

which computes as
ks T R
n === (@) — fallalse)) - (113)
€o

Fig. 10| shows computations of P for slow and fast diffusion. The

BV3:D,=1 —Cr=0 BV3:D,=10 — =0

Ch =0.04 — =004
—Ch=1 3 —Ch=1
30 —Cy=5 —Ch=5
Cp =10 Cp =10
Ch =25 25 Ch=125
L 257 Ch =50 N Ch =50
= — G, =100 = — Gy =100
as ol — Ch =200 Q= 2+ — Cr =200
g S1s|
c c
2 2
o | o
o o
9] s 1
> >
e e
‘ 05|
J ———
: ‘ =
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Capacity Q / QY Capacity Q / QY

Figure 10: Overpotential 7’ as function of the status of discharge Q/Q} for slow (Dy = 1)
and fast (D, = 10) diffusion in the intercalation phase.
3.5 BV 4: Finite conductivity in the electrolyte

First note that an infinite fast diffusion in the electrolyte yet entails yz = Tz, whereby the
(coupled) transport equation system - of the electrolyte reduces to

1= —AEnEazgaE s (114)
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which yields
Ubulk _ _Rbulk -7 Wlth Rbulk dE (115)
E E AEnE
Employing the scaling of the current density 4, i.e. i = i{ C), yields
d dg o¢ kT
Ubulk - _ E . -C' C — 7}3 A B 116
E Agng T dy Agng e (116)
which motivates the decomposition
R R C .~ €o quA o
Agnlt = ol =06¢ . 55 with o =4, -if (117)

kT L[h] keT

Here nff is a constant reference electrolyte concentration, e.g. 1molL™!, and off = Agnf is

the corresponding reference conductivity. Hence

kT C ~ d nk
Upik — .l B2 with di==F and &= (= 118
F €y Ok W dy and & (ﬁE> ’ (118)
whereby the cell voltage is
ksT _ _ C C »C
. (fA(yAlAE(t;Z)) -9 1( h) + = fh +dek h) (119)
€o L OE
“(Q/QY;Ch, L,Gs, Dy, 05, d, ) . (120)

Hence, finite conductivity in the electrolyte linearly decreases the cell voltage and scales also
with the ratio of the electrode width to the electrolyte width, i.e. d. The quantity ¢& accounts
for concentration dependence of the electrolyte conductivity.

Correspondingly we define the electrolyte conductivity overpotential ni as

W Jor Cn

¢:=E® W =
T]E €o E 5]3

(121)

3.6 BV 5: Finite diffusion in the electrolyte phase

The final contribution to the surface reaction 5 is the space dependent electrolyte concen-

tration. We have yet assumed yz = const. with respect to space, however, in general the
(coupled) equation system ([23)) — (24] has to be solved.

Note that tg, = const. simplifies the (coupled) equation system - to

Ong

o =0 (De - n* T - D) (122)

1= _SE . ntEOt th(()xyE — AEnEaIgDE. (123)
Further, Jg = —Dg - n'* T'Y . 0,95 + Cz entails at the interface X, 5 the condition

1—-t
_ tot Ttf L=k
Dg - ng* I'Y - 0,yx e o i (124)
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We assume that the average electrolyte concentration ng is constant in time, i.e.

on L — 1
a—: =0 with 7g= & /EC ng, dx . (125)

which vyields at the right boundary x = zg¢ the condition
1= tECi

T=XTEC 60

D ng* Ty - Oy

(126)

The concept of an ideally polarizable counter-electrode ()¢, positioned at x = wgc, delivers (or
consumes) hence exactly the amount of ions in the electrolyte which flow in (or out) of 2 at
x = x,g, with keeping the reaction [45]in thermodynamic equilibrium. The initial value is

ye(e,t = 0) = ye(me) (127)

where T is the prescribed average electrolyte concentration.

We introduce the scalings

t x e (ET) ok
= — 1 = — 1 _E A\ . ghot 12

- d
Agnft = G- 0¥, i =ic - Ch, d= di (129)

A

with o' = dy i - %4 and i’ = %0 This yields for (122)
d% 1 Oye ~tot, Rtf . 1 Ong

ol Dy e pr — TR Oewe) with hei= g mo o (130)

The corresponding non-dimensional boundary conditions at £ = 0 reads

1 1 1-—¢
~tot, R1~tf Ec .
[0, =dg—— . 131
(O T Oeye)| = ey = 1 (131)
which introduces (implicitly) the scaling
14
~ gy dadg
Dg=Dg- | —5(1—tg.) —= 132
E E <€07’L§( Ec) 1 [h]) ( )
leaving
C C
~tot, Rtf __“h ~tot, R~tf _ “h
(@ Toeye)|,_, = o end @ E0cys)|_, = 5 (133)
The balance equation (122)) then reads
v o+ Ch Oy ~tot,R
d-q" by =he(ys) = = 0c(G""Ty - O 134
q -l De £(Ye) or e (Ce V) (134)
with
v _ % v R g 1
q =, = 2egny  and tg = 135
q q}( 5 0" E 9 (1 _ tEC) ( )
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Figure 11: Numerical computation of the cation interface concentrations nE’AE and nE‘EC in
the electrolyte for slow (Dg = 10) and fast (Dg = 100) diffusion and various C-rates C},.

Note that the 2 in ¢ accounts for the charge of cations and anions. The charge capacity ¢Y
of a ImolL™" electrolyte is

G = 2eoni ~ 53 [mA h cm_ﬂ (136)
whereby
45
~V
= = 0.042 . 137
q 1201 0.042553 (137)

The dimensionless transference number tz ~ 1 and d = 5. The PDE is solved with MATLAB's
pdepe function, and details are given in the appendix [A.3] We denote the numerical solution
of g with § and emphasize that the capacity is yet Q/Q} = 7. The numerical solutions
at the respective boundaries x = x,z and x = xgc are

+

yE’AE = Jele=o and  yg| = Jgle=1 . (138)

-
We discuss now briefly the concentration distribution in the electrolyte as function of the C-
rate C}, and the diffusion coefficient Dg based on numerical solutions of (122)) with boundary

conditions ((124]) and (126)).

Fig. displays computations of the electrolytic cation concentration at the interface ¥, ¢
of the intercalation electrode, i.e. ng|se, and at the interface ¢ of the counter electrode,
i.e. nglgc for slow electrolytic diffusion (Dg = 1, left) and fast diffusion (Dg = 10, right) for
various values of the C-rate.

After a short time the concentration yields a stationary state and Fig.[12]displays the stationary
concentration ng(z) in the electrolyte, again for slow and fast diffusion as well as for various
C-rates.

Note, however, that the concentration variation of vz has additionally an impact on the voltage
drop Ug. First reconsider that ([123)) rewrites as

dg (1 [™=nf kT
%__M@<%/ "¢Q¢+e (2 — 1) (falvehe) — feleleo)) . (139)

xpe  TE 0
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Figure 12: Numerical computation of the stationary cation distribution in the electrolyte for
slow (Dg = 10) and fast (Dg = 100) diffusion and various C-rates Cj,

since

e _ kT (2t —1) . (140)
Ag

€0

B 1 Tae R B
el = <dE /IEC nidx) = (141)

and insert the scaling Agnf = ¢ - 0§ which yields

We abbreviate

Up = —def - 5O BT o 1) (Felelue) — fe(elec)) (142)

€y OE €0

The overall cell voltage of BV 5 is then

kT . A
E=FE,¢— : (fA(gA|AE) -2 tc<fE(yE|AE) - fE(yE|EC)
0
S G\, G 55 Ch
N (U I U il 14
g ( L> Oa ot Og (143)
= E(5)(S7Ch;575A75A75-Ea5E’tEC’dv7ﬁE) : (144)

In order to show the impact of the electrolyte concentration variation on the cell voltage F,

assume for a moment UP** = Up™* = ( as well infinite fast diffusion in the active particle
phase €2,. This yields

kT

E = EA,C - (fA(yA) —2-tc (fE(QE|AE) - fE(gE|EC) - g_l <—Cl~_:h) ) (145)

and numerical computations of the cell voltage for slow and fast diffusion are shown in Fig.

13

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



M. Landstorfer 28

BV5:D:=10s=04 __( _, BV5:D: =100t =04 __ _,
46 — =004 46 —Cy =004
—Ch=1 —Ch=1
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Figure 13: Computed cell voltage according to ({145]) with numerical solutions shown in Fig.
of the interface concentrations §g|yz and gz |gc for various discharge rates.

Overpotential Due to the (stationary) concentration gradients in the electrolyte (c.f. Fig.
12)) we have a diffusional overpotential 72, which can be defined as

kBT T o~ 7 C A A
Ng = E® _gO = (d (C§ - Cg) Th -2 tC(fE(yE‘AE) - fE(yE|Ec>) (146)
€0 OE
ks T N N
~———2.to (fE(yE|AE) - fE(yE|Ec) (147)
€0

Fig. [L4| displays numerical computations of the overpotential 1L for slow and fast diffusion in
the electrolyte.

BV 5: Dy = 10,t5 = 0.4 Ch = 0.04 BV 5: Dg =100, = 0.4 Ch = 0.04
0.2 —Cp=1 0.2 —Cp=1
—Ch=5 C—5
Cr =10 Crp =10
Chp=25 Ch=25
Cp, =50 Cp =50
~ — Cp =100 o~ — Cp =100
~ — ), =200 ~ — Cr =200
S S
© @
0.1 0.1
c c
[ [
2 2
o o
e I
() [
> >
o o
0 0 (
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Capacity Q / QY Capacity Q / QY

Figure 14: Diffusional overpotential of the electrolyte for slow and fast diffusion computed
from numerical solutions of the interface concentrations 7 |,e| and g|EC and eq. ((146)).

The recursive definition of the various overpotentials allows us to write
E=EYg,) —n"—nl -0l —ng — g (148)

with one overpotential for each non-equilibrium process, measuring the deviation from the equi-
librium of the respective process. This decomposition is hence a useful tool to systematically
investigate the contribution of each process in broadly conceived experimental or numerical
studies of a cell batch with varying parameters.
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Internal resistance Note that we can also compute the internal resistance R™ of the
electrochemical cell via the implicit definition

E-E9=R.T. (149)

'C‘ - -t -
With I = % we obtain for the specific resistance

E—EO® A B+l + 0l +nf +ng)

R==f— =i o =Ry~ (r 1 +ry + g +7g) (150)
with
Ry = kZOT ;;7 (151)
and

_ C 1 Tafel 1
rff=—g 1<—h> Ch ~ 7 (152)

B active phase diffusional resistance

0 = (fa@) — fA(gA|AE))leh ; (153)
B active phase conduction resistance
" = ;A , (154)
B electrolyte diffusional resistance
ryg =2- tc(fE(QE’AE) - fE(QE’EC) . (;h ) (155)
B electrolyte conduction resistance
o — ;E | (156)

4 Conclusion

4.1 Validation

Equation (143) for the general relation for the cell voltage E in a simple, non-porous interca-
lation electrode. Note, however, that the scalings, discussion and parameter study of section
can be straight forward adapted to porous electrodes.
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Figure 15: Computed cell voltage E as function of the capacity Q/Q; with parameters of the
non-equilibrium processes according to ((157)).

We provide finally a validation study for NMC with the following set of the non-dimensional
parameters

L=1,Dy=1, 0,=100, Dg =100, &z = 500. (157)

Figure [I5| displays the numerical computation of the cell voltage. In comparison to experimen-
tal data for a cell of the same dimension (however, neglecting porosity), we obtain a good
qualitative and quantitative agreement to Fig[l]

This is especially remarkable since we assumed essentially for all non-equilibrium parameters
constant values, i.e. no concentration dependence of the diffusion coefficients D, and Dk,
the cation transference number g, and the conductivities. In particular we assumed that the
exchange current density 60% is also constant, yielding the reasonable results of the last section.
Note, however, that it is frequently assumed that the exchange current density is dependent
on cation concentration at the interface X, z. We discuss this aspect in the next section and
emphasize again that a consistent thermodynamic modeling as well as coupling through the
surface reaction rate yields the reasonable results of the last sections. The scaling of all non-
equilibrium parameters to the C-rate is quite illustrative for the sake of galvanostatic discharge
and especially for the systematic search of the parameters of a specific battery.

4.2 Discussion of the exchange current density

The preceding discussion of the cell voltage E was based on the model of the surface
reaction rate ]s% ie.

a-ﬁ)\ 7(1704)-ﬁ)\ .
]j:é-(e ve ’ > with A = fing + KE - les — HEe — Hae (158)

with L = const. In section 81| we showed that double layer charging effects are negligible under
S
galvanostatic conditions, whereby the measurable current density ¢ is directly related to eglj,
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i.e. i = roll. The surface affinity \ is related to the cell voltage £ via (49), i.e.

A =eo(E+ U™ — U™ — Eyo) + ke T (fA — fele + fE|EC) (159)

S

with

ye) =In | —F ] | 160
Jele) ((@ES(ZJED ) (o)

1
—~Ya 11—y
=In—2— | —wp-In|l—————— | +m- . 161
) = () e () a6

wa

Note that we have introduce the open circuit potential E® in section as

ANAR (162)
0

E(O) @A) - EA,C -

We can also evaluate the open circuit potential function E© with the interface concentration
Yalae, i.e.

ks T
EO(yse) = Eyc — ZifA(yAE) : (163)

0

Note that this is a crucially different to (162)) when finite diffusion in the active particle phase
is considered, see section . However, this allows us rewrite the surface affinity A as
S

A= eo(pn — g5 — EO(yalae)) — koT felae (164)
= eo(pn — Be — B (yalas)) = €o(fine — E© (yalse)) (165)
with
_ - k.T
Or=Che, Ce=0liz, Gei=0l:+ %Ofa(yEIAE) (166)
and
~ k.T
The ‘= Pa — PE = Ufé“ - %fE|AE . (167)
0
This yields

This is the general, thermodynamic consistent version of the Butler—Volmer-equation[4] [26].
The specific form ((168)) of the current density ¢ in terms of the surface overpotential [1] s,
the open circuit potential £(%(y,|,z), and the exchange current density eoéj is widely employed

in the literature [28, [41] and thus feasible to discuss various material models of L.
S

In [T}, 42] 43] as well as subsequent work we find

BV — BV (ea-k;%(nﬂm(yn) e R <nE<°><yA>>> (169)

with n = & — ®,, where @, is “is measured with a lithium reference electrode” [I, p.1527]
and @, the electrostatic potential in the active phase. For the exchange current density i5V
we find various models:
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B In [42] we find

i8V =k - (1 — yalae) "™ (yalae)®  with & = const. (170)
B In [42] we find
i =k (1= yalie)" ™ (yalae)*(1 = yelae) '~ (velse)”  with k= const. (171)
B In [35, 44] we find

BV =k (1 — yalag) Y (yalae) @ (yelae)®  with &k = const. (172)

This model for the Butler—Volmer-reaction rate became a standard in the literature of modeling
intercalation batteries [45H49] and is implemented in various software packaged to simulate
battery cycles (i.e. COMSOL®, Battery Design Studio[50], BEST [35, 44]) as well as a basis
for the interpretation of experimental data[51].

We compare the Butler—Volmer equation - ) to the surface reaction rate ((168]) and discuss
the thermodynamic consistency of the three models (170]) - (172)) for the exchange current
density. Latz et. al [62], Bazant [21], and Dreyer et. al[26] also point out the importance of
thermodynamic consistency of the Butler—Volmer-equation to achieve some overall predictive
model since it couples the different thermodynamic bulk models.

First of all we mention again that the Butler—Volmer-equation ([168]) is derived from surface
thermodynamics (see section [2.4)) and that the exchange current density egL is the Onsager

coefficient of the surface reaction [2.7] This yields some necessary constraints on L in terms of

the functional dependency on the concentrations (or mole fractions) evaluated at the interface
Ya, which are discussed in [2.7]

By comparison of eq. ({168)) and ({169) we obtain

kT
Py =l and Py = p|fp + 7; fe(Yelue) (173)
0

which somehow For a metallic lithium counter electrode, where the reaction
Lit| +re- S| = Li%| (174)
C E E

is in thermodynamic equilibrium we have (45) entails

1 ke T
Pliare = Pl ptoc = 037, = weggl) = =2 felvee ) (175)

which somehow justifies the interpretation of ®, as the potential “is measured with a lithium
reference electrode” [I, p.1527]. However, from a thermodynamic point of view this re-
definition of the potential is not necessary and could lead to inconsistencies when not applied
in all balance equations (e.g. of the electrolyte transport) and boundary conditions of the
intercalation battery model.

For the exchange current density eqL we showed in section that if L is dependent on the
S S
concentrations at the interface X, ¢, the dependency is for the electrolyte species is necessarily

USCL
L= Le(psc(vec i) — coUS™) = La(ueclie - e 7). (176)
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and for the intercalated ions in the active phase

Zs; = ZS—JA (MAC (yAc|AE)) = éA(yAc’AE) g (177)
or overall
~ ___€0 grscL
L= é’(yEcHE ce Rl 2 ’yAC’AE> ‘ (178)

with UPL = |,z — ¢|sz. Comparing these constraints with the models of the exchange current
densities - clearly shows that the dependency of i5Y on the mole fraction g, |}z (or
concentration ng_|sz) of the electrolyte concentration is not compatible with a reaction rate
based on non-equilibrium surface thermodynamics. The concentration dependence is already
embedded in the term f&(ye.|az) of the surface affinity /5\ (164). A dependency of the exchange
current density on y, e is in principle compatible with surface thermodynamics. All three
models propose

i0" o (1= yale) "™ (yalaz)® (179)
which in terms of the surface Onsager coefficient would be

Ly=L-(1—yale)" " (valie)* and L =const.>0. (180)
In order to discuss the validity, predictability and finally the necessity (or non-necessity) of
a concentration dependent surface Onsager coefficient é’A (or exchange current density), we
pursue the same strategy and scalings as in section , however, now with the model .
We compute the cell voltage E as function of the capacity Q/Q} and the C-rate C}, in the
hierarchy of approximations BV 1 — BV 5 and compare it to the computations based on the
constant Onsager coefficient.

Eq. reduces with negligible double layer contributions to

. —Q « 1
i =—coL- (1= yale)" = (ynlae) g(ﬁé‘) : (181)
B
We consider again the scaling
col — I-iC — [ (182)
! 1h]
which yields the cell voltage
c
E=FEyc— ol (fA - fE|AE + fE|EC) - 971 - Tlh - Ufum + Ux}:mlk .
€o (1 — yalae) = (yaae)
(183)

Consider the approximation of infinite conductivity in both phases as well as infinite fast
diffusion in the electrolyte, i.e. the approximation BV 3. Fig. shows computations of cell
voltage with constant exchange current density as well as concentration dependent exchange
current density, for slow (D, = 1) and fast (D,10) diffusion in the active particle phase.

The impact of the model ((180]) for the Onsager coefficient (or the exchange current density)
on the cell voltage is surprisingly small. Quite similar to the assumed concentration indepen-
dence of the diffusion coefficients D, and Dg we can conclude that é’ = const. is a rather

DOI 10.20347/WIAS.PREPRINT.2563 Berlin 2018



M. Landstorfer 34
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Figure 16: Comparison of the compute cell voltage for the exchange current density according
to eq. ((180) (—) and a constant surface Onsager coefficient L = const. for various C-rates and
S

slow diffusion (left) as well as fast diffusion (right).

good approximation for the overall modeling procedure. However, well defined and reproduce
experimental data sets to compute absolute and relative model errors are rare throughout the
literature and the deviations in [16] within the experimental variability. We conclude hence that
the model is in principle thermodynamically consistent, when embedded rigorously as
stated in section 2] however, a constant exchange current density produces also very reasonable
results and is thus the first choice.

4.3 Summary

In this work we discuss the cell voltage F of a non-porous intercalation half-cell during gal-
vanostatic discharge with a continuum model for the active intercalation phase, the adjacent
electrolyte, and boundary conditions coupling the phases. Based on non-equilibrium surface
thermodynamics a reaction rate for the intercalation reaction Li"™ + e~ == Li is stated
and the measured cell voltage F subsequently derived. We emphasize some necessary restric-
tions on the exchange current density of the surface reaction rate in terms of concentration
dependence to ensure surface thermodynamic consistency.

For the detailed investigation of the non-equilibrium processes, scalings of all non-equilibrium

parameters, i.e. the diffusion coefficients D, and Dg of the active phase and the electrolyte,

conductivity o, and og of both phases, and the exchange current density ey L of the intercala-
S

tion reaction, with respect to the 1-C current density i{" are introduced. The current density
i, entering the model via the boundary conditions, is then expressed as multiple of i{, i.e.
1 = CY}, - i, where C}, is the C-rate. Further we derive an expression for the capacity () of the
intercalation cell, which allows us to compute numerically the cell voltage E as function of
the capacity () for various C-rates C},. Within a hierarchy of approximations, e.g. open circuit
potential, infinite conductivity, infinite fast diffusion, and so forth, we provide simﬂlatigns of
E = E(Cy,Q) for various values of the (non-dimensional) parameters (4, &g, Dy, D, L),
scaled with respect to the material constant i{’. This provides an overall view of the pro-
cesses and scalings within a lithium ion half cell which is validated at experimental data of
Lix<Nil/3Mn1/3C01/3OZ(NMC).
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Appendices

A Electrolyte

A.1 Mole fractions

We consider complete dissociation of the electrolyte and can thus express the mole fractions
Yo in terms of ng, i.e.

ng

C'
o = 2 = — (184
< n n + (2 _ EA’U:_S Ec,))nE
VE , VB~ )
ve. — JEs g — (185)
Eg — — = o Ton ;
s n ngs + (2 _ (v AU:S c,))nE

and yg, = Y. according to the electroneutrality condition. Note we assume

Vg, = Vg, = gl (186)
whereby
NEq ng
= n 7155 +2<1—/€E)TLE
nk — 2ken
Yoy = 8 = — B8 T EE_ (188)
n ng, + 2(1 — /<;E>nE
We can also express y,, as function of of ng, i.e.
Ng ng
= = 189
Yee gt nf — 2kgng (189)
A.2 Thermodynamic factor
o Yeo Ofleg Ye tf
= =1+2kg—>—— =T . 190
E kBT ayEC av:y 1 - 2yEC E (yE) ( )
Further
NEe = Ygo " M v Ve = NEgc (yE) (191)

— s 1+ 2(/11-: - 1)?JE
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whereby
8nE R 1 + 2(/42}3 — 1)yE — yEQ(’%E — ]_) R 1
2R = 192
Oyg s (1 + Z(HE - 1)91-:)2 e (1 + 2("0E - 1)?JE>2 ( )
and thus
1 On nk 1
hE(yE) = — E = _Es =: . (193)

Sl oye nft (14 2(ke — 1ye)’

Finally we have also

~tot,R Ny NEg
, _ — . 194
¢ () nf 14 2(kg — 1)ye (194)

A.3 PDEPE syntax for the electrolyte phase

We want to solve numerically the problem

~ o ~ C 0 o
d- 3" T = ha(ye) 72 = Oc(s(ye)TH () - Deve) (195)
De or
with boundary conditions
C ~ C
~tot, RTtf _ “h ~tot, Rtf _ “h
(& T oeye)|_, = 5 wnd @ IEOeye)|_, = B (196)
and
nk 1
h = _Es 197
=WE) = L (15 20 — Dge? (197)
T(yg) = 1 + 2kp—b— 1
) = 14 2me % (198)
R
1
&/Eot,R _ nES (199)

B ni]]-:%1 + 2(/fE - 1)yE

Note that it is ever convenient for the numerical computation of yz € (0,0.5) to introduce
the variable

1 2y
— —l =1 2 2
u an<1—2yE> (2yg) (200)
which vyields
1 e 1
— — . = —{) . 2 1
YE 9 11 eau 2?/(“) (201)

The parameter a can be adjusted for numerical computations.

Correspondingly, we obtain

he(ye) = he(53(u) (202)
¥ () = TE(59(w) (203)
B ye) = (i) (204)
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and
1. . I, .
O-yg = §auy cO0u, Opyg = iﬁuy - Ou (205)
with
oae™(1+e") —ae"e" e
WY = = =gy 2
0 Yy (]_ + eau )2 (1(1 + eau )2 9 (U) ( 06)
This yields
Gy 11 ou wr 1. 1.1
P She(0(W)59.(w 57 = O (E G (G8(w) 59u(w) - Oeu) (207)
with boundary conditions
tot,R, L . tf L. 1 _ Ch
(& GIITE i) 50w - deu)|_, = 5 (208)
tot,R, L . tf 1. 1 _ Ch
(" QI GiW)F0u(w) - deu),_, = 5 (200)
and
pi=d-q iz (210)
The initial value is
and transfers as
u(z,t =0) = a(2ye(ne)). (212)
PDEPE takes the form
c(u)0-u ~+ O¢(f(u, Ocu)) =0 (213)
with boundary conditions
pl(u|z:ml) + q - f(uv aﬁu)’x:xl =0 and pr(u|r:x,,-) + qr - f(ua afu)lx:zr = 0. (214‘)
We have hence
_ C 1. 1
c=p- EZhE(Q?J(U))QQu(U) (215)
~tot,R 1 ~ tf 1 ~ 1
= Cg <§y(u)>FE (§y(u))§gu(u) - Ogu (216)
and
Ch Ch
_ =k = — 217
n=5 n=% (217)
q=-1 g =—1 (218)
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B Active particle

B.1 Thermodynamic factor

We consider for the chemical potential in the active particle phase

pa = kgT <|n (ULZM) —w-lIn (1_%) + M- 9A<?JA)> (219)

1"‘1;7:%% 1+ 1;7:“%
with
9y) = Cy—1) + 2 (6y(1—y) — 1) — % (8y(1—y) — 1) (2y—1) (220)
2 3
Hence
a,LLA 1 1
= — + Y- 0yg 221
O (=gt (=) T O (221)
with
25
9,9 =16 - y* — 22y, + R (222)
The thermodynamic factor I'ff is then
Ofa 1 25
=g, - =22 = + v (16 -2 — 2202 + —y,) . 223
A yA 8yA (1 _ yA)(wiAyA + (1 - yA)) ’YA ( yA yA 3 yA) ( )
B.2 PDEPE notation
We seek to solve ((109)), i.e.
Ch, Oya O fa
D, o7 f(yAayA Ua) (224)
with boundary conditions ((110))
0 fa B 0 fa Gy
yAaTJAa&yA‘g:O =0 and yAaiyAafyA)EZI = E . (225)
and
dfa Ofa 1 , 25
L L + v (16 -2 — 2202 + —y,) . (226
yAayA A Ya ayA (1 _ yA)(wiAyA + (1 _ yA)) Y ( Yy Yn 3 yA) ( )

Note that it is ever convenient for the numerical computation of y, € (0,1) to introduce the
variable

u-ln( L ) (227)
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which yields
e'lL
= 228
Ya 1+ en (228)
We have hence
8TyA = 8uyA . ELu (229)
and
with
e’ (1+e*)—e"e" et
Oulya = = =: 231
PDEPE takes the form
c(u)0-u + O¢(f(u, Ocu)) =0 (232)
with boundary conditions
Pi(tloma) + - flu,0g0)| =0 and p(uloms,) + o - (0 0gu) e, = 0. (233)
We have hence
Ch
C = =—0gul\u 234
5.9 (u) (234)
f=T{@n(w))gu(w) - deu (235)
and
Ch
P Pr =5 (236)
a=1 ¢ =-—1 (237)

Note that we introduce the stop-event y,|e < 1 — 10719 for the time-integration of pdepe.
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