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A Redlich–Kister type free energy model for
Li-intercalation compounds with variable lattice

occupation numbers
Manuel Landstorfer

Abstract

One of the central quantities of a lithium ion intercalation compound is the open
circuit potential, the voltage a battery material delivers in thermodynamic equilibrium.
This voltage is related to the chemical potential of lithium in the insertion material
and in general a non-linear function of the mole fraction of intercalated lithium. Ex-
perimental data shows further that it is specific for various materials. The open circuit
voltage is a central ingredient for mathematical models of whole battery cells, which
are used to investigate and simulate the charge and discharge behavior and to interpret
experimental data on non-equilibrium processes. However, since no overall predictive
theoretical method presently exists for the open circuit voltage, it is commonly fitted to
experimental data. Simple polynomial fitting approaches are widely used, but they lack
any thermodynamic interpretation. More recently systematically and thermodynamically
motivated approaches are used to model the open circuit potential. We provide here an
explicit free energy density which accounts for variable occupation numbers of Li on the
intercalation lattice as well as Redlich–Kister-type enthalpy contributions. The derived
chemical potential is validated by experimental data of Liy(Ni1/3Mn1/3Co1/3)O2 and
we show that only two parameters are sufficient to obtain an overall agreement of the
non-linear open circuit potential within the experimental error.
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1 Introduction

In this study we want to derive and discuss a free energy density function ψ for lithium ion
intercalation compounds like the high energy density material Liy(Niz1Mnz2Coz3)O2, (y ∈
(0, 1), z1 + z2 + z3 = 1) [1]. The chemical potential µ of intercalated lithium in such materials
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unstable than LCO because Ni3+ is more readily reduced than Co3+

[60]. Partial substitution of Ni with Co was found to be an effective

way to reduce cationic disorder [61]. Insufficient thermal stability

at high state-of-charge (SOC) can be improved via Mg doping [62],

and adding a small amount of Al can improve both thermal

stability and electrochemical performance [63].

As a result, the LiNi0.8Co0.15Al0.05O2 (NCA) cathode has found

relatively widespread commercial use, for example, in Panasonic

batteries for Tesla EVs. NCA has high usable discharge capacity

(!200 mAh g"1) and long storage calendar life compared to con-

ventional Co-based oxide cathode. However it was reported that

capacity fade may be severe at elevated temperature (40–708C) due

to solid electrolyte interface (SEI) growth and micro-crack growth

at grain boundaries [64,65].

LiMnO2 (LMO) can also be promising because Mn is much

cheaper and less toxic compare to Co or Ni. Anhydrous and

stoichiometric layered LMO was prepared almost two decades

ago [66], improving on a previous aqueous methods which in-

duced impurities, different stoichiometries, poor crystallinity, and

undesirable structure change during cycling [67]. However, the

cycling performance of LMO was still not satisfactory (i) because

the layered structure has a tendency to change into spinel struc-

ture during Li ion extraction [67] and (ii) because Mn leaches out of

LMO during cycling [31]. Mn dissolution occurs when Mn3+ ions

undergo a disproportionation reaction to form Mn2+ and Mn4+,

and this process is observed for all cathodes containing Mn. Mn2+

is thought to be soluble in the electrolyte, and destabilize the

anode SEI. Indeed, Mn concentration in the electrolyte and anode

SEI has been observed to increase with aging for Mn containing

cathodes [68–71]. Also, the anode impedance is seen to increase

with Mn dissolution on carbon anodes [70], but not LTO [72]

(which has a negligible SEI). Stabilization of LMO via cationic

doping was conducted both experimentally and theoretically

[73,74], but even so, the poor cycle stability of LMO (especially

at elevated temperatures) has hindered widespread commerciali-

zation.

Continuous research efforts on developing cathode material less

expensive than LCO resulted in the formulation of the

Li(Ni0.5Mn0.5)O2 (NMO) cathode. NMO could be an attractive

material because it can maintain similar energy density to LCO,

while reducing cost by using lower cost transition metals. The

presence of Ni allows higher Li extraction capacity to be achieved.

However, cation mixing can cause low Li diffusivity and may result

in unappealing rate capability [75]. Recent ab initio computational

modeling predicted that low valence transition metal cations

(Ni2+) provides high-rate pathways and low strain, which are

the crucial factors to achieve high rate capability in layered cath-

odes. NMO recently synthesized by ion exchange method showed

a very low concentration of defects in NMO and capacity as high as

!180 mAh g"1 even at a very high rate of 6 C [76].

Adding Co into Li(Ni0.5Mn0.5)O2 was found to be effective way

to enhance the structure stability further [77]. LiNixCoyMnzO2

(NCM, aka NMC) has similar or higher achievable specific capacity

than LCO and similar operating voltage while having lower cost

since the Co content is reduced. LiNi0.33Co0.33Mn0.33O2 is the

common form of NMC and is widely used in the battery market.

Some of the recent efforts, such as formation of macroporous

NMC, showed reversible specific capacity as high as 234 mAh g"1

1 and good cycle stability even at 508C [78]. Li2MnO3 stabilized

LiMO2 (where M = Mn, Ni, Co) can also achieve high capacity

(>200 mAh g"1) under high voltage operation (4.5–3.0 V) [79].

Li2MnO3 is activated at >4.5 V, releasing Li2O [80] on the initial

cycle which provides extra Li+. The remaining Li2MnO3 can also

facilitate Li diffusion and also act as a Li reservoir. This material

group is called a lithium-rich layered oxide compound due to its

extra Li ion compared to the common layered structure. More

recently, novel cathode material with average composition of

LiNi0.68Co0.18Mn0.18O2, in which each particle consists of bulk

material surrounded by a concentration-gradient outer layer was

reported [81]. The bulk material is a nickel-rich layered oxide

(LiNi0.8Co0.1Mn0.1O2) for higher energy/power density (higher

Ni content allows for higher Li extraction without structure dete-

rioration), while the outer layer is Mn and Co substituted NMC

(LiNi0.46Co0.23Mn0.31O2) for better cycle life and safety. It is pro-

posed that the stability of this material could originate from stable

Mn4+ in the surface layer, hence the gas evolution due to reaction

between Ni ion and electrolyte is delayed.
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FIGURE 4

Crystal structures and discharge profiles of representative intercalation
cathodes: structure of (a) layered (LiCoO2), (b) spinel (LiMn2O4), (c) olivine
(LiFePO4), and (d) tavorite (LiFeSO4F) (reproduced with permission
Copyright (2014) Royal Society of Chemistry.) and (e) typical discharge
profiles of intercalation cathodes [27–33].
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(a) OCP during discharge for various intercala-
tion compounds (Fig. 4.e) of [5], reprinted with
permission of Elsevier).

ticipated that no carbon would remain after 24 h at 950 °C
and this was confirmed by CHN analysis.

The morphology of the material was examined using scan-
ning electron microscopy (SEM), see Figure 2. The images
indicate a disordered macroporous morphology composed of
individual particles of narrow size distribution, in the range
0.5–1.0 lm, fused together to form agglomerates within which

the macropores range in size from around 1 to 5 lm. Exten-
sive investigation of the material indicated that this morphol-
ogy extends throughout the compound. The use of a solution-
based method provides good mixing of the constituent ions at
the atomic scale, while the presence of resorcinol, which trans-
forms to volatile products on heating, results in the formation
of the observed macroporous structure. Resorcinol-formalde-
hyde gels have been used previously in the processing of a
variety of materials, including the formation of carbon-based
composites.[31–34] Electrode construction involved lightly
grinding the active material, then mixing with binder and car-
bon (described in the Experimental section). Brunauer–Em-
mett–Teller (BET) surface-area measurements of the as-pre-
pared active material, as well as after grinding and dispersion
in N-methyl-pyrrolidinone (NMP), yielded values of 6.2 and
3.6 m2 g–1, respectively, indicating that the electrode prepara-
tion did not significantly alter the surface area of the material.
Confirmation that the macroporous morphology was retained
after electrode construction was provided by examining the
cast electrodes using SEM after cycling, see Figure 2.

Charge/discharge curves obtained from cells containing
macroporous Li(Ni1/3Co1/3Mn1/3)O2 cycled at a moderate rate
of 100 mA g–1 are presented in Figure 3. The first charge cor-
responds to a capacity of 234 mA h g–1, with the subsequent
discharge yielding 209 mA h g–1. Such efficiency in the first cy-
cle has been observed before and is typical of these materi-
als.[9,12,15,17,19,25] The shape of the curves and their invariance
on cycling are in good agreement with previous re-
sults.[9,12,15,17,19,35,36] The variation of charge and discharge
capacity with cycle number is shown in Figure 4a for three dif-
ferent upper cut-off voltages, 4.2, 4.4, and 4.6 V, also at a rate
of 100 mA g–1. The capacities, as expected, increase with an
increase in the voltage. More importantly, after the first ten
cycles, capacity retention on cycling to 4.6 V is excellent. A
capacity of 190 mA h g–1 is obtained on cycle 220 representing
a capacity retention of 99.99 % per cycle from cycle 20 to cy-
cle 220. Although good capacity retention has been obtained
at lower capacities (low-voltage cut off) and low rates
(∼ 20 mA g–1) in earlier studies, this is, as far as we are aware,
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Figure 1. Comparison of the experimental (!) and calculated (–) X-ray
diffraction patterns for Li(Ni1/3Co1/3Mn1/3)O2, as synthesized in this
work. Vertical lines indicate peak positions. The difference plot is also
shown.

(a)

(b)

Figure 2. SEM images of a) as-prepared Li(Ni1/3Co1/3Mn1/3)O2, b) an
electrode after 100 cycles between 2.5 and 4.6 V at 100 mA g–1.

Figure 3. Voltage versus capacity profiles for Li(Ni1/3Co1/3Mn1/3)O2. The
cell was cycled at 100 mA g–1 in the voltage range 2.5–4.6 V and at 30 °C.
From the second cycle onwards the total charging time was set to 3 h
(CCCV mode). Cycle numbers are shown.

(b) OCP during charge and discharge for macro-
porous Liy(Ni1/3Mn1/3Co1/3)O2 (Fig. 3 of [6],
reprinted with permission of Wiley-VCH).

Figure 1: Non-linear EOCP as function of the capacity, which is direct proportional to y.

is related to measurable open circuit potential E in a half cell with metallic Li as counter
electrode [2–4], i.e.

E(y) = 1
e0

(
µLi − µ(y)

)
with µLi = const. (1)

where y is the mole fraction of intercalated lithium. The open circuit potential (OCP) is in
general a non-linear function of y (or the capacity) and the central characteristic quantity of
the respective intercalation material. Fig. 1a shows typically measured functions of various
materials[5] and Fig. 1b especially of Liy(Ni1/3Mn1/3Co1/3)O2[6].
Quite commonly, the OCP is tabulated [7–9] or fitted to some polynomial [2, 10–13], rational,
exponential [14], piecewise polynomials [15], or combination of these functions [16–19]. Despite
that this in entails in general a huge amount of parameters to capture the non-linear behavior
of the OCP, it lacks any thermodynamic interpretation.
However, since the origin of the OCP, and especially its concentration dependency, is of
pure thermodynamic nature, this is a major shortcoming. Hence more recent attempts try
to overcome these conventional fitting approaches by more elaborate thermodynamic models
of the chemical potential µ [20–22]. They rely essentially on an entropic contribution to
the chemical potential of an ideal lattice in combination with an enthalpy of mixing [23, 24],
commonly called regular solution [25, 26]. The thermodynamics of mixtures and their deviation
from ideality is a longstanding topic of physical chemistry, and we refer to [27–29] for details.
In this work we provide a systematic thermodynamic modeling of a free energy density ψ and
the corresponding chemical potential µ for a general lithium intercalation compound. Three
central aspects enter the free energy modeling, the reference contribution ψR (yielding the
constant E0), the entropy of mixing contribution ψS and the enthalpy contribution ψH , i.e.

ψ = ψR + ψS + ψH . (2)

For the entropic contribution, we extend the common ideas of lattice mixtures to more re-
alistic and flexible scenarios of variable occupation numbers on a lattice. For the enthalpy
contribution, we extend the common ideas of regular solutions to a specific Redlich-Kister
type expression. Overall, this leads to an free energy model with a rather small amount of
interpretable parameters showing a remarkable agreement to experimental data of the OCP.
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a) c)b)

lattice site

possible !
permutation

constituent

impossible !
permutation

P2

P1

Figure 2: Sketch of possible configurations and permutations on a lattice. a) occupation number
ω = 1, which corresponds to an ideal lattice mixture, b) with an occupation number ω = 4
and larger species A on the same lattice, c) ω = 4 but similar sized particles as in a). Note
that for a fixed lattice site one permutation with this site could be possible while another one
is forbidden, e.g. in b) the permutation P1 is impossible while P2 is possible.

2 Entropy of Mixing with variable occupation number

For the entropy of mixing we consider a mixture on a lattice, where N indistinguishable Li
constituents mix on N` lattice sites. However, we assume that each particle requires ω sites
of the lattice, see Fig. 2. The origin for the uptake of ω lattice sites are diverse. One could
consider that a mobile ionic species on the lattice solvates vacancies, or that ion-ion inter-
actions prohibit a closer arrangement. For ion conducting materials it is well known that far
more interstitial sites in a crystal structure can exist than the maximum number of ions on
a lattice [30, 31]. However, the sake of this work is not to actually discuss the origin of the
occupation number ω, but the thermodynamic consequences.

The number of vacancies on the lattice is then

NV = N` − ω ·N (3)

and the number of mixing particles is

Nmix = N +NV = N` + (1− ω)N . (4)

This yields for the configurational entropy

S = kBln
(
N,NV

Nmix

)
≈ kB

(
N · ln

(
N

Nmix

)
+ kBT NV · ln

(
NV

Nmix

))
, (5)

where the Stirling approximation for large N ’s was used. It is crucial that number of mixing
particles Nmix enters the configurational entropy in the denominator and not the total number
N` of lattice sites. This accounts, for example, for the effect that a permutation of a particle
with an empty lattice is forbidden if the particle would require adjacent lattice sites that
are already occupied (see Fig. 2.b the permutation P1). However, the very same position is
available for the particle which previously prohibited the permutation (Fig 2.b permutation
P2).
This yields for the entropic free energy contribution

ΨS
A = kBT N · ln

(
N

Nmix

)
+ kBT NV · ln

(
NV

Nmix

)
(6)
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and in the transition to densities

N

V
→ n ,

NV

V
→ nV and ΨS

A

V
→ ψS (7)

the configurational entropic free energy density

ψS = kBT (n · ln (c) + nV · ln (cV )) (8)

with

c = n

nmix = n

n` + (1− ω)n and cV = nV

nmix = n` − ωn
n` + (1− ω)n . (9)

Note that for ω = 1 the classical entropy of mixing on a lattice is obtained [22, 31]. We assume
that the number density of lattice sites is constant, which corresponds to an incompressibility
constraint [32], i.e. n` = const., and call

y = n

nω
`

∈ (0, 1). (10)

with nω
` := 1

ω
n` mole fraction of Li . Note that the maximum amount Nmax of species A on

the lattice is thus Nmax = 1
ω
N`.

The chemical potential contribution of the entropy of mixing is

µS = ∂ψS

∂n
= kBT ln (c)− kBT ωln (cV ) (11)

with

c =
n
n`

1 + (1− ω) n
n`

= y

ω + (1− ω)y = ĉ(y) (12)

and

cV = n` − ωn
n` + (1− ω)n = 1− y

1 + 1−ω
ω
y

= ĉV (y) (13)

satisfying c+ cV = 1. Note that in the variables c and cV the entropy of mixing looks like an
ideal mixture. However, since we actually control y = n

nω
`
, i.e. the amount of particles on the

lattice, the entropic contribution µS is non-ideal. A similar effect was found recently for the
impact of the solvation shell on the entropy of mixing in liquid electrolytes [33]. One could
thus also consider the occupation number ω as solvation shell of vacancies on a lattice.
Rewriting the configurational entropy (8) and the chemical potential contribution (11) explic-
itly in terms of y, by inserting the representations in (11), yields

ψS = nω
` kBT ·

(
y · ln

(
y

ω + (1− ω)y

)
+ ω(1− y) · ln

(
1− y

1 + 1−ω
ω
y

))
(14)

and

µS = kBT

(
ln
(

y

ω + (1− ω)y

)
− ω · ln

(
1− y

1 + 1−ω
ω
y

))
. (15)
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(a) Entropic free energy density ψS as function of
the mole fraction y.
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(b) Entropic chemical potential contribution µS
A

as function of the mole fraction y.

Figure 3: Influence of the occupation number ω on the free energy density and the chemical
potential.

These are the configurational entropy contributions with variable occupation number ω and
considerably the generalization of the classical entropy of mixing on a lattice. Fig. 3a displays
the entropic contribution of free energy density and Fig. 3b the entropy contribution to the
chemical potential as function of the mole fraction y and the occupation number ω.
The influence of the occupation number ω on the free energy and the chemical potential
becomes evident for y → 1, since the lattice becomes then completely filled. This decreases
the free energy, quite similar as in a solvation shell mixture [32, 33], since the competition for
vacant sites increases. In the chemical potential contribution, the impact of the occupation
number becomes well marked for y > 0.8 and broadens the tail of function. This is of special
importance as we shall see in the overall comparison to experimental data.

3 Redlich–Kister type enthalpy

Next we consider an enthalpy of mixing (or excess enthalpy ) ψH contribution to of the free
energy. For a simple regular solution [23–26] a contribution of

ψH
A = nω

` kBT γ · y · (1− y) (16)
is frequently considered as enthalpy term. This yields for γ < 2.5 a phase separation, which has
an enormous impact on the overall behavior of a many particle electrode [34]. Here, however,
we focus on γ > 2.5, whereby no phase separation occurs and the intercalated lithium is
actually a solid solution.
A consecutive extension of this approach was approach was proposed by Redlich and Kister
[35] as

ψH = nω
` kBT γ

(
y(1− y) · hRK(y)

)
(17)

with

hRK(y) =
K∑

k=1
Ak(2 · y − 1)k−1. (18)
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We focus in the following exclusively on a very specific version of the coefficients and refer to
[21] for a discussion on the general Redlich–Kister equation.
For the following discussion, we assume

Ak = (−1)k

k
(19)

yielding

h =
K∑

k=1

(−1)k

k
(2 · y − 1)k−1 (20)

and thus an enthalpy free energy density contribution

ψH
A = nω

` kBT γy(1− y)
(

K∑
k=1

(−1)k

k
(2 · y − 1)k−1

)
. (21)

This function has essentially two parameters, the interaction energy γ and the Redlich–Kister
degree K. The corresponding chemical potential contribution is

µH = ∂ψH

∂n
= kBT γ · ((1− 2y)h(y) + y(1− y) · ∂yh(y)) = kBT γ · g(y) (22)

with

∂yh(y) = 2
K∑

k=2
(k − 1)(−1)k

k
(2y − 1)k−2 (23)

and

g(y) = (1− 2y)
K∑

k=1
Ak(2 · y − 1)k−1 + y(1− y)2

K∑
k=2

(k − 1)(−1)k

k
(2y − 1)k−2 (24)

=
(

(2y − 1) +
K∑

k=2

(
2(k + 1)y(1− y)− 1

)(−1)k

k
(2 · y − 1)k−2

)
(25)

Especially for K = 1, 2, 3 we have

µH

kBT
= γ ·


(2y−1), for K = 1
(2y−1) + 1

2

(
6y(1−y)− 1

)
, for K = 2

(2y−1) + 1
2

(
6y(1−y)− 1

)
− 1

3

(
8y(1−y)− 1

)
(2y−1) for K = 3

. (26)

Fig. 4a displays the corresponding free energy density contribution and Fig. the chemical
potential contribution 4b for various values of γ.

4 Discussion and conclusion

For the overall free energy density we obtain thus

ψ = n · gR + nR
` kBT

(
y ·ln

( 1
ω
y

1+ 1−ω
ω
y

)
+ ω(1−y)ln

(
1− y

1+ 1−ω
ω
y

)
+γ · y(1−y) · h(y)

)
(27)
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(a) Enthalpy free energy contribution.
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(b) Enthalpy chemical potential contribution.

Figure 4: The Redlich–Kister-type contributions for various values of γ and N .

with reference free energy density ψR = n · gR and correspondingly for the chemical potential

µ = gR + kBT f(y) with f(y) = ln
( 1

ω
y

1+ 1−ω
ω
y

)
− ω · ln

(
1− y

1 + 1−ω
ω
y

)
+ γ · g(y) (28)

with g(y) according to eq. (24). For the open circuit potential we have thus

E(y) = E0 − kBT

e0
f(y) with E0 = 1

e0
(µLi − gR) . (29)

For the following discussion, we set E0 = 3.95 / V whereby we have three parameters, the
interaction energy γ and the number of occupation sites ω, and the Redlich–Kister degree K,
which are combined as ~p = (ω, γ,K).
Figure 5a shows a computation of the OCP for y ∈ (0, 0.5) and a variation of γ (with ω = 1
and N = 3), while Fig. 5b shows the OCP for y ∈ (0.5, 1) with a variation of ω (and γ0).
It turns out that the Redlich–Kister type enthalpy mainly influences the OCP in the region
y ∈ (0, 0.5), where an increasing values of γ increases the potential of the discharged state
y = 0. The occupation number has a minor contribution in the range y ∈ (0, 0.5) since
for diluted mixtures on lattice the occupation number ω becomes negligible. However, for
y ∈ (0.5, 1) the occupation number becomes expectably dominant, yielding an earlier decay
of the cell voltage with respect to y for increasing values of ω. We can thus conclude that
γ mainly impacts the cell voltage in the region y ∈ (0, 0.5) and especially the voltage E

∣∣∣
y→0

while the occupation number broadens the voltage decay for y ∈ (0.5, 1). By comparison to
Fig. 1 we would thus expect ω > 1 and γ > 0 and we discuss several parameter combinations
~pj in the following.
Note that we can measure the absolute error ∆EOCP and relative error ∆rOCP to measurable
data (y̌m, Ěm), m = 1, . . . ,M , where M is the number of measured points, as

εE =

√√√√ 1
M

M∑
m=1

(Ěm−E(y̌m))2 and δE =

√√√√ 1
M

M∑
m=1

(Ěm−E(y̌m)
Ěm

)2
. (30)

For the following validation study of Liy(Ni1/3Mn1/3Co1/3)O2 (NMC) we rely on data of P.
Bruce et. al [6] and N. Nitta et. al [5]. The data-points ĚBruce were extracted from Fig. 3 of
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(a) Ideal lattice mixture with variation of the reg-
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(b) Variation of the occupation number ω with
vanishing enthalpy contribution.

Figure 5: Open circuit potential according to (29).

[6] (1st-cycle) and ĚNitta from Fig. 4.e of [5] (Liy(Ni1/3Mn1/3Co1/3)O2). First note that the
experimental errors between the two data sets are

εE
Bruce,Nitta = 0.120 /V and rE

Bruce,Nitta = 3.65% . (31)

We seek thus an approximation within the range of the absolute and relative experimental
error.
Fig. 6 displays the computed open circuit voltage E for various parameter vectors ~pj, j =
1, . . . , 4, which are summarized in table 1.

Table 1: Overview of the parameter study ~pj, j = 1, . . . , 4 and the corresponding approximation
errors to measured data of Bruce and Nitta.

Parameter ω γ K εE
Bruce δE

Bruce εE
Nitta δE

Nitta
~p1 1 0 0 0.270 /V 7.200% 0.35546 /V 10.420%
~p2 1 13 1 0.113 /V 3.369% 0.18617 /V 5.958%
~p3 5 13 2 0.059 /V 2.012% 0.14713 /V 4.958%
~p4 10 13 3 0.064 /V 1.860% 0.09652 /V 3.167%

Expectably, the most common and simple model of an ideal lattice, i.e.

µ(y; ~p1) = kBT ln
(

y

1− y

)
, (32)

yields large deviations to the experimental data, c.f. Tab. 1, with relative errors of 7% and
10% in the standard quadratic norm. Accounting for a regular solution term in the chemical
potential, i.e.

µ(y; ~p2) = kBT ln
(

y

1− y

)
+ kBT γ(1− 2y) with γ = 13 , (33)

halves the absolute and relative error compared to an ideal lattice. However, the qualitative
difference to the experimental data manifests in absolute errors of 0.113 /V (and 0.186 /V ).
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Figure 6: Comparison between the measured open circuit voltage of Liy(Ni1/3Mn1/3Co1/3)O2
(+) Data of , (•) Data of [5], and computations according to eq. (29) with various parameters
~pj.

Accounting for an occupation number of ω > 1 further decreases the deviation to experimental
data, yielding for ω = 1 and γ = 13 (with K = 2) already absolute errors in the order of the
experimental error. For ω = 10, γ = 13 and K = 3 we yield finally also relative errors below
the experimental errors, whereby we propose

µ = kBT

(
ln
( 1

ω
y

1+ 1−ω
ω
y

)
− ω · ln

(
1− y

1 + 1−ω
ω
y

)
+ γ · g(y)

)
(34)

with

g(y) = (2y−1) + 1
2
(
6y(1−y)− 1

)
− 1

3
(
8y(1−y)− 1

)
(2y−1) (35)

as a simple (in the sense that the model has only two parameters) but efficient and thermo-
dynamically sound material function for Liy(Ni1/3Mn1/3Co1/3)O2 with γ = 13 and ω = 10.
Of course, the the preceding discussion can be adapted to other non-phase separating mate-
rials, forming solid solutions of intercalated lithium. The combination of Redlich–Kister-type
enthalpy terms and a variable lattice occupation turns out to be a simple but effective tool-
box to model the the free energy density of a lithium intercalation compound and thus the
corresponding open circuit potential.
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