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A Redlich—Kister type free energy model for
Li-intercalation compounds with variable lattice
occupation numbers

Manuel Landstorfer

Abstract

One of the central quantities of a lithium ion intercalation compound is the open
circuit potential, the voltage a battery material delivers in thermodynamic equilibrium.
This voltage is related to the chemical potential of lithium in the insertion material
and in general a non-linear function of the mole fraction of intercalated lithium. Ex-
perimental data shows further that it is specific for various materials. The open circuit
voltage is a central ingredient for mathematical models of whole battery cells, which
are used to investigate and simulate the charge and discharge behavior and to interpret
experimental data on non-equilibrium processes. However, since no overall predictive
theoretical method presently exists for the open circuit voltage, it is commonly fitted to
experimental data. Simple polynomial fitting approaches are widely used, but they lack
any thermodynamic interpretation. More recently systematically and thermodynamically
motivated approaches are used to model the open circuit potential. We provide here an
explicit free energy density which accounts for variable occupation numbers of Li on the
intercalation lattice as well as Redlich—Kister-type enthalpy contributions. The derived
chemical potential is validated by experimental data of Li,(Ni;/3Mnj/3C01/3)O2 and
we show that only two parameters are sufficient to obtain an overall agreement of the
non-linear open circuit potential within the experimental error.
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1 Introduction

In this study we want to derive and discuss a free energy density function 1) for lithium ion
intercalation compounds like the high energy density material Li,(Ni,, Mn,,Co,,)O2, (y €
(0,1), 21 + 20+ 23 = 1) [1]. The chemical potential p of intercalated lithium in such materials
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Figure 1: Non-linear as function of the capacity, which is direct proportional to .

is related to measurable open circuit potential £ in a half cell with metallic Li as counter
electrode [244], i.e.

1

E(y) = o

(uLi — p(y)) with  up; = const. (1)

where y is the mole fraction of intercalated lithium. The open circuit potential (OCP) is in
general a non-linear function of y (or the capacity) and the central characteristic quantity of
the respective intercalation material. Fig. shows typically measured functions of various
materials[5] and Fig. |Lb| especially of Li, (Ni;/sMny/3C01/3)O4[6].

Quite commonly, the OCP is tabulated [7H9] or fitted to some polynomial [2], [I0HI3], rational,
exponential [14], piecewise polynomials [15], or combination of these functions [I6H19]. Despite
that this in entails in general a huge amount of parameters to capture the non-linear behavior
of the OCP, it lacks any thermodynamic interpretation.

However, since the origin of the OCP, and especially its concentration dependency, is of
pure thermodynamic nature, this is a major shortcoming. Hence more recent attempts try
to overcome these conventional fitting approaches by more elaborate thermodynamic models
of the chemical potential p [20H22]. They rely essentially on an entropic contribution to
the chemical potential of an ideal lattice in combination with an enthalpy of mixing [23] [24],
commonly called regular solution [25], [26]. The thermodynamics of mixtures and their deviation
from ideality is a longstanding topic of physical chemistry, and we refer to [27H29] for details.

In this work we provide a systematic thermodynamic modeling of a free energy density ¢) and
the corresponding chemical potential ;2 for a general lithium intercalation compound. Three
central aspects enter the free energy modeling, the reference contribution ¢ (yielding the
constant E°), the entropy of mixing contribution ¢° and the enthalpy contribution ¥, i.e.

R (2)
For the entropic contribution, we extend the common ideas of lattice mixtures to more re-
alistic and flexible scenarios of variable occupation numbers on a lattice. For the enthalpy
contribution, we extend the common ideas of regular solutions to a specific Redlich-Kister

type expression. Overall, this leads to an free energy model with a rather small amount of
interpretable parameters showing a remarkable agreement to experimental data of the OCP.
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Figure 2: Sketch of possible configurations and permutations on a lattice. a) occupation number
w = 1, which corresponds to an ideal lattice mixture, b) with an occupation number w = 4
and larger species A on the same lattice, ¢) w = 4 but similar sized particles as in a). Note
that for a fixed lattice site one permutation with this site could be possible while another one
is forbidden, e.g. in b) the permutation P1 is impossible while P2 is possible.

2 Entropy of Mixing with variable occupation number

For the entropy of mixing we consider a mixture on a lattice, where N indistinguishable Li
constituents mix on N, lattice sites. However, we assume that each particle requires w sites
of the lattice, see Fig. [2] The origin for the uptake of w lattice sites are diverse. One could
consider that a mobile ionic species on the lattice solvates vacancies, or that ion-ion inter-
actions prohibit a closer arrangement. For ion conducting materials it is well known that far
more interstitial sites in a crystal structure can exist than the maximum number of ions on
a lattice [30, 31]. However, the sake of this work is not to actually discuss the origin of the
occupation number w, but the thermodynamic consequences.

The number of vacancies on the lattice is then
Ny =N;—w-N (3)
and the number of mixing particles is
N™ =N+ Ny =Ny + (1 —w)N . (4)

This yields for the configurational entropy

NN N
S = kBm( Nmixv) ~ ks (V10 (o

)+kBTNV-In(]<[Vn‘:iX>) , (5)

where the Stirling approximation for large N's was used. It is crucial that number of mixing
particles N™* enters the configurational entropy in the denominator and not the total number
N, of lattice sites. This accounts, for example, for the effect that a permutation of a particle
with an empty lattice is forbidden if the particle would require adjacent lattice sites that
are already occupied (see Fig. .b the permutation P1). However, the very same position is
available for the particle which previously prohibited the permutation (Fig .b permutation
P2).

This yields for the entropic free energy contribution

al >+kBTNV-In(NV> (6)

\DS:kBTN'In <Nmix N mix
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and in the transition to densities

N N U
V—>n,7v—>nv and 7A—>¢S (7)

the configurational entropic free energy density
V¥ = kT (n-In(c) +ny -In(cy)) (8)

with

n n and ny nge —wn (9)
c = — = n Cy = — = .
nm™x  ng+ (1 —w)n VT pmix T o+ (1—w)n

Note that for w = 1 the classical entropy of mixing on a lattice is obtained [22] 31]. We assume
that the number density of lattice sites is constant, which corresponds to an incompressibility
constraint [32], i.e. ny = const., and call

n
T
with n§ := Ln, mole fraction of Li . Note that the maximum amount N™ of species A on

the lattice is thus N™ = LN,

The chemical potential contribution of the entropy of mixing is

s oS
p’ = ——— =kgTIn(c) — kT win (ey) (11)
on
with
=t =g (12)
I+ (1-w)y wt+(l-wy
and

o oon—wn  l—y
T+ (1-win 1+ 12y

cy = ¢v(y) (13)

satisfying ¢ + ¢,y = 1. Note that in the variables ¢ and ¢y the entropy of mixing looks like an
ideal mixture. However, since we actually control y = %, i.e. the amount of particles on the
4
lattice, the entropic contribution 1 is non-ideal. A similar effect was found recently for the
impact of the solvation shell on the entropy of mixing in liquid electrolytes [33]. One could

thus also consider the occupation number w as solvation shell of vacancies on a lattice.

Rewriting the configurational entropy and the chemical potential contribution ([11]) explic-
itly in terms of y, by inserting the representations in ({11, yields

kT i Y N ) [T
vt (v (Y e ()

L (O ) s (ﬁyy» | (12)
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Figure 3: Influence of the occupation number w on the free energy density and the chemical
potential.

These are the configurational entropy contributions with variable occupation number w and
considerably the generalization of the classical entropy of mixing on a lattice. Fig. [3a| displays
the entropic contribution of free energy density and Fig. the entropy contribution to the
chemical potential as function of the mole fraction y and the occupation number w

The influence of the occupation number w on the free energy and the chemical potential
becomes evident for y — 1, since the lattice becomes then completely filled. This decreases
the free energy, quite similar as in a solvation shell mixture [32] 33], since the competition for
vacant sites increases. In the chemical potential contribution, the impact of the occupation
number becomes well marked for y > 0.8 and broadens the tail of function. This is of special
importance as we shall see in the overall comparison to experimental data.

3 Redlich—Kister type enthalpy

Next we consider an enthalpy of mixing (or excess enthalpy ) ¥ contribution to of the free
energy. For a simple regular solution [23H26] a contribution of

U =nike Ty y-(1—y) (16)

is frequently considered as enthalpy term. This yields for v < 2.5 a phase separation, which has
an enormous impact on the overall behavior of a many particle electrode [34]. Here, however,
we focus on v > 2.5, whereby no phase separation occurs and the intercalated lithium is
actually a solid solution.

A consecutive extension of this approach was approach was proposed by Redlich and Kister
[35] as

V! =ngk Ty (y(1 - y) - AR )) (17)
with

hRE(y K2y —1)F (18)

HMN

DOI 10.20347/WIAS.PREPRINT.2560 Berlin 2018



M. Landstorfer 6

We focus in the following exclusively on a very specific version of the coefficients and refer to
[21] for a discussion on the general Redlich—Kister equation.

For the following discussion, we assume

A=Y (19)

yielding

=

S (20)

and thus an enthalpy free energy density contribution

O =ng kT yy(1 —y) (Z (_kl)k (2-y— 1)'“‘1) : (21)

k=1

This function has essentially two parameters, the interaction energy v and the Redlich—Kister
degree K. The corresponding chemical potential contribution is

s 0;2 = kT (1= 2)hly) +y(1 =) - 9,h(y) = kT - 9y)  (22)

with
3 (1) k2
Iyh(y) =2 Z_:(k — )2y -1 (23)
and
o) = (1=20) A2y =1 1=y k- DIy -1 )
k=1 k=2
= ((2y — 1)+ 3 (20k+ Dy(1 —y) - 1) (_kl) (2-y- 1)'“‘2) (25)
k=2
Especially for K =1,2,3 we have
- (2y—1), for K =1
H o =y 2y=1) + L (6y(1—y) - 1), for K =2 . (26)

(2y—1) + 3(6y(1—y) — 1) — $(8y(1—y) — 1)(2y—1) for K =3

Fig. displays the corresponding free energy density contribution and Fig. the chemical
potential contribution [4b| for various values of ~.

4 Discussion and conclusion

For the overall free energy density we obtain thus

ﬁjy) +v-y(l—y) - h(?J)) (27)

w

Y=n-g —|—nek:T<y In<1+y y>+w(1 y)In (

w

1+
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Figure 4: The Redlich—Kister-type contributions for various values of v and N.

with reference free energy density ¢ = n - g® and correspondingly for the chemical potential

p=g"+ kT fly) with f(y)=In (ﬁ%)—wn (Jléy)ﬂ-g(w (28)

with ¢g(y) according to eq. . For the open circuit potential we have thus

CET ) with B9 = L (g — g®) | (29)

E(y) = E° -
(y) o ”

For the following discussion, we set E° = 3.95 /1 whereby we have three parameters, the
interaction energy v and the number of occupation sites w, and the Redlich—Kister degree K,
which are combined as p'= (w, v, K).

Figure |5a| shows a computation of the OCP for y € (0,0.5) and a variation of y (with w =1
and N = 3), while Fig. [5b| shows the OCP for y € (0.5,1) with a variation of w (and ~0).
It turns out that the Redlich—Kister type enthalpy mainly influences the OCP in the region
y € (0,0.5), where an increasing values of ~ increases the potential of the discharged state
y = 0. The occupation number has a minor contribution in the range y € (0,0.5) since
for diluted mixtures on lattice the occupation number w becomes negligible. However, for
y € (0.5,1) the occupation number becomes expectably dominant, yielding an earlier decay
of the cell voltage with respect to y for increasing values of w. We can thus conclude that
~ mainly impacts the cell voltage in the region y € (0,0.5) and especially the voltage E’y%{)

while the occupation number broadens the voltage decay for y € (0.5,1). By comparison to
Fig. [1] we would thus expect w > 1 and v > 0 and we discuss several parameter combinations
p; in the following.

Note that we can measure the absolute error AECCP and relative error Ar°CP to measurable

data (gjm,Em), m=1,..., M, where M is the number of measured points, as

£F = \l]\14 S (By—E(fn))? and 6 = \l]\14 S (B By

m=1 m=1 Em

(30)

For the following validation study of Li,(Ni;/sMn;/3C0;/3)O2 (NMC) we rely on data of P.
Bruce et. al [6] and N. Nitta et. al [5]. The data-points £B"¢ were extracted from Fig. 3 of
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Figure 5: Open circuit potential according to ([29).

[6] (1%t-cycle) and EN™2 from Fig. 4.e of [5] (Li,(Ni;/3Mn,/3Co0;/3)Os). First note that the
experimental errors between the two data sets are

8jl;’?ruce,Nitta = 0120/\/ and Tgruce,Nitta = 365% : (31)

We seek thus an approximation within the range of the absolute and relative experimental
error.

Fig. |§] displays the computed open circuit voltage E for various parameter vectors pj,j =

1,...,4, which are summarized in table [I]

Table 1: Overview of the parameter study pj,j = 1,...,4 and the corresponding approximation
errors to measured data of Bruce and Nitta.

Parameter | w g K Z':gruce 5I§ruce E‘:ﬁitta 5ﬁitta
D1 110 |010270/V |7200% | 0.35546 /V | 10.420%
Do 1 {13} 1 ||0.113/V |3.369% || 0.18617 /V | 5.958%
D3 511312 |0.059/V |2.012% || 0.14713/V | 4.958%
D4 1013 3 | 0.064/V | 1.860% || 0.09652/V | 3.167%

Expectably, the most common and simple model of an ideal lattice, i.e.
S Yy
1(y; pr) = keT'In <1—y> , (32)

yields large deviations to the experimental data, c.f. Tab. , with relative errors of 7% and
10% in the standard quadratic norm. Accounting for a regular solution term in the chemical
potential, i.e.

11(y; pa) = keT'In <1y> +keT'y(1—2y) with =13, (33)

halves the absolute and relative error compared to an ideal lattice. However, the qualitative
difference to the experimental data manifests in absolute errors of 0.113 /V (and 0.186 / V).
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Accounting for an occupation number of w > 1 further decreases the deviation to experimental

data, yielding for w = 1 and v = 13 (with K = 2) already absolute errors in the order of the

experimental error. For w = 10, v = 13 and K = 3 we yield finally also relative errors below
the experimental errors, whereby we propose

o A n(——Y ) gy (34)
et RN — — W - - < .
p =k e ) AU

o(y) = (2y=1) + 5 (6y(1—y) — 1) = 5 (Sy(1-9) ~ 1) (2~ 1) (3)

with

as a simple (in the sense that the model has only two parameters) but efficient and thermo-
dynamically sound material function for Li,(Ni; 3Mn;/3C0;/3)O9 with v = 13 and w = 10.
Of course, the the preceding discussion can be adapted to other non-phase separating mate-
rials, forming solid solutions of intercalated lithium. The combination of Redlich—Kister-type
enthalpy terms and a variable lattice occupation turns out to be a simple but effective tool-

box to model the the free energy density of a lithium intercalation compound and thus the
corresponding open circuit potential.
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