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Efficient coupling of electro-optical and heat-transport models
for broad-area semiconductor lasers

Mindaugas Radziunas, Jürgen Fuhrmann, Anissa Zeghuzi, Hans-Jürgen Wünsche,
Thomas Koprucki, Carsten Brée, Hans Wenzel, Uwe Bandelow

Abstract

In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor
lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined
on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model de-
termined on the longitudinal-lateral domain that is a projection of the device to the active region of
the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index
changes, the EO-solver exploits these distributions and provides time-averaged field intensities,
quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repet-
itively by the HT-solver for the generation of the heat sources entering the HT problem solved in
the next iteration step.

1 Introduction

High-power (HP) edge-emitting broad-area semiconductor lasers (BALs) [Fig. 1(a)] are important light
sources due to their numerous applications [1]. Accurate modeling and simulation of BALs are critical
for improving their performance or for the evaluation of novel design concepts [2]. Since the emission
of BALs usually has an irregular spatiotemporal dynamics, the adequate modeling of the optical fields
in BALs should account for the time and at least two spatial (longitudinal and lateral) coordinates.
Fig. 1(b) gives a schematic representation of the domain where such an electro-optical (EO) model
of BALs should be defined. This domain can be interpreted as a projection of the whole diode (panel
(a) of the same figure) to the active zone of the diode consisting of a single or several quantum wells
(QWs).

For a proper recovery of the essential emission characteristics in HP BALs operated in continuous-
wave (CW) mode, the self-heating-induced change of the refractive index plays a crucial role and
cannot be ignored. Due to extremely different time scales (femto- and picoseconds for optical fields,
nanoseconds for carrier densities, and microseconds for thermal effects), fully comprehensive dynamic
simulation of arbitrary HP BALs is hardly possible. For this reason, the majority of BAL solvers rely on
differently reduced models. For example, partial-differential equation models that are steady in time
and two- or three- dimensional in space are used for the simulation of special laser devices operating
in steady-state (master-oscillator power-amplifier lasers, [3]), or the analysis of stable optical modes
close to threshold [4]. Models with eliminated longitudinal dependence have also been used to analyze
the optical modes and their dynamics [5, 6].

In our previous work on the dynamics of BALs and tapered BALs [7, 8, 9], we were exploiting a 1 (time)
+ 2 (space) dimensional EO model and solver BALaser [10], that has been recently extended by an
inhomogeneous current-spreading (CS) solver [11, 12]. Thermal effects were represented by a linear
dependence of the wavelength tuning on the injected current [7, 8] or by a fixed externally estimated
thermal contribution to the spatial distribution of the refractive index [9]. Recently, we have demon-
strated that our EO solver iteratively coupled to an external steady heat transport (HT) solver used
to simulate thermal distributions within several lateral-vertical laser cross-sections [see Fig. 1(c)] can
reproduce the experimentally observable narrowing of the near fields in HP BALs [13]. In particular,
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Figure 1: Schematic representation of an edge-emitting broad-area laser (a), its projection to the active
zone (b), and the transverse cross-section Ω (c), where the heat-transport and the inhomogeneous
current-spreading (thick black-framed region Ωcs) problems are solved.

these simulations have shown that for a proper estimation of the spatial emission quality we should
take into account not only a thermally-induced lateral but also a longitudinal variation of the refractive
index distribution. In this paper, we briefly introduce our EO and HT models and discuss the realization
of the iterative coupling between corresponding in-house developed solvers.

This paper is organized as follows. In Section 2 we give a brief description of the EO model equations.
The following Section 3 discusses the HT model and its simplification. Section 4 gives a brief overview
of numerical algorithms used to solve the EO- and HT- models and explains an iterative coupling
between the corresponding solvers. Finally, Section 5 presents and discusses as an example the
simulation of a typical BAL device.

2 Electro-optical model

For modeling the nonlinear dynamics in BALs, we use a 2(space)+1(time) dimensional traveling wave
(TW) model [7, 8, 9] and the EO-solver BALaser [10] developed at the Weierstrass Institute in Berlin.
In this model, we take into account only the optical field and carrier dynamics within the thin active zone
of the laser along the lateral and longitudinal coordinates x and z, see Fig. 1(b). A set of effective model
parameters represents the influence of the vertical device structure. In the computational domain, we
distinguish different areas according to the positions of the electrical contacts, etched trenches, or
unbiased regions. The following paraxial TW equations govern the spatiotemporal dynamics of the

optical field E(x, z, t) =
(
E+

E−

)
with E+ and E− denoting the slowly varying complex amplitudes of

the counter-propagating optical fields:

ng

c0
∂tE =

[( −∂z −iκ(x, z)
−iκ(x, z) ∂z

)
− i

2n̄k0
∂2
x − iβ(x, z, t)− D

2

]
E + Fsp,

DE = ḡ(x, z) (E − p) , ∂tp = γ̄(x, z)(E − p) + iω̄(x, z)p,

β = k0

[
ñ0(x, z)−

√
σNN + ñT (x, z)

]
+ ig(N,‖E‖

2)−α0(x,z)−fNN−α2P ‖E‖2
2

,

g =
g′(x,z) ln

(
max(N,N0)

Ntr

)
1+εG‖E‖2

,
(
−1√
R0

)
· E(x, 0, t) =

(√
Rl
−1

)
· E(x, l, t) = 0,

(1)
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with ‖E‖2 = E ·E and η ·ζ =
∑

j η
j∗ζj being a standard dot product of two vectors. ng, c0, κ, k0 =

2π/λ0, n̄, and Fsp are the group velocity index, the speed of light in vacuum, the field coupling factor
in the presence of Bragg gratings, the free-space central wavenumber (λ0: central wavelength), the
reference refractive index, and the Langevin noise term, respectively. The local photon density ‖E‖2 is

related to the local field power density P (measured in W/m2) through the relation P =
hc20
λ0ng
‖E‖2 (h:

Planck constant, e: elementary charge). The linear operator D models the material gain dispersion in
Lorentzian approximation with ḡ, γ̄, and ω̄ denoting the amplitude, the half-width at the half height, and
the relative gain peak frequency detuning, respectively. The complex propagation factor β accounts
for background-, free carrier-, and two-photon absorption α0, fNN , and α2P‖E‖2 [14], for an initially
induced refractive index profile (etched trenches, for example) ñ0, electronic and thermal corrections
of the index

√
σNN and ñT (subject of this paper), as well as for the material gain g which depends

on the local carrier densityN(x, z, t) and takes into account nonlinear gain compression. Parameters
R0 and Rl are the field intensity reflection coefficients of the diode facets at z = 0 and z = l (l:
the length of the BAL). If needed, the longitudinal boundary conditions can be extended by additional
terms representing optical injection or feedback from an external cavity [9]. At the lateral borders
of the (sufficiently broad) computational domain, numerical method-induced periodic conditions are
imposed. In our simulations, just before these borders, we introduce artificial absorbing regions, see
Fig. 1(b), which further suppress reinjection of the optical fields to the computational domain through
the lateral borders.

The diffusive rate equation

∂tN=∂x(DN∂xN)+ jaz(x,z,t)
ed
−
[
N
τN

+BN2+CN3
]
− c0

ng
<[E · (g−D)E] (2)

governs the dynamics of the carrier densities. d is the depth of the active zone, whereas DN and jaz
are carrier diffusion and injected current density at the active zone (y ∈ AZ), respectively:

DN = DN(N, ∂Nϕaz), jaz(x, z0, t0) = −σp(x, y, z0)∂yϕ(x, y, z0, t0)|y∈AZ ,

Whereas the carrier-dependent voltage at the active zone is a known function of the carrier density,
ϕaz = ϕaz(N(x, z0, t0)), to determine jaz for each z0 and t0 we need to solve the Laplace problem

∇x,y · (σp(x, y, z0)∇x,yϕ(x, y, z0, t0)) = 0, (x, y) ∈ Ωcs,
ϕ|Γc = U, ϕ|Γaz = ϕaz(x, z0, t0), ∂nϕ|Γcs\(Γaz∪Γc) = 0,

(3)

for the quasi-Fermi potential ϕ(x, y, z0, t0) in the corresponding lateral/vertical (x/y) cross-section
[black-framed region Ωcs in Fig. 1(c)] of the BAL device [11, 12]. Here, the piecewise constant function
σp(x, y, z0) is the electrical conductivity of p-doped materials within the domain Ωcs, the function
ϕ and the flux σp∂nϕ are continuous at the material interfaces, Γcs, Γc, and Γaz denote the whole
outer border of Ωcs and the parts of this border located at the electrical contact and the active zone,
respectively, whereas U is the applied voltage at the contact. For more details on the model, the laser
diode structure considered below, and typical parameters, see Refs. [12, 15].

3 Thermal model

A HT model for BALs should take into account the heat spreading in the whole device and, in general,
is given by a (3+1)-dimensional heat conduction equation. However, due to the strongly differing time
scales and limited computing resources, such a model is not applicable to the study of the thermal-
electrooptical dynamics in BALs. For this reason, we introduce two main simplifications.

DOI 10.20347/WIAS.PREPRINT.2558 Berlin 2018



M. Radziunas et al. 4

First, since the characteristic distances in the longitudinal (z) and transverse (x/y) directions differ by
at least ten times, we neglect the heat diffusion in z direction. The dynamic heat conduction equation
for each fixed z0, in this case, reads as

cL(x, y, z0)∂tT = ∇x,y · (κL(x, y, z0)∇x,y)T + s(x, y, z0, t).

The temperature distribution T (x, y, z0, t) and the heat flux κL∂nT preserve the continuity at the
interfaces between different materials and satisfy the boundary conditions[

κL∂nT + T−Ths
rth

] ∣∣∣
(x,y)∈Γhs

= ∂nT |(x,y)∈Γ\Γhs
= 0, (x, y) ∈ Ω, (4)

where Γ and Γhs are the border of the whole domain Ω and the part of this border at the heat sink
[lower or/and upper border of Ω in Fig. 1(c)], respectively. Coefficients cL and κL are thermal capacity
and conductivity, respectively, Ths and rth are temperature and thermal resistance at the heat sink.
Function s is the heat source which, following Ref. [13], we write as a sum of four different parts,
sJoule, sabs, srec, and sdef , representing Joule, absorption, non-radiative carrier recombination, and
quantum defect heating sources, respectively:

sJoule = δ[(x,y)∈Ωcs]
‖~j‖2(x,y,z0,t)
σp(x,y,z0)

,

sabs =
(
δ[y∈AZ]fNN + δ[y 6∈AZ]dα(x, y, z0)Φ2(y)

)
P,

srec = δ[y∈AZ] e ϕaz[
N
τN

+BN2 + CN3],

sdef = δ[y∈AZ] max{g(N, ‖E‖2)( eλ0

hc0
ϕaz − 1), 0}P.

Here, the piecewise constant α represents an effective linear absorption of different materials, the
step-function δ[ζ] is equal to 1 when the condition ζ is fulfilled and is 0 otherwise. Seeking to avoid

a computationally expensive estimation of the total current flux ‖~j‖ = σp‖∇x,yϕ‖ within the whole
cross-section domain Ωcs at each position z0 and time t, in the following, we exploit a simple approxi-
mation

‖~j(x, y, z0, t)‖ ≈ δ[((x,y)∈Ωcs)&(x∈ΠxΓc)]

∣∣∣ U−ϕaz(x,z0,t)∫
(x,y)∈Ωcs

σ−1
p (x,y,z0)dy

∣∣∣,
which one can easily derive from the CS-problem (3) with the neglected lateral current spreading,
∂xϕ = 0. The notation ΠxΓc above denotes the projection of the electrical contact position Γc onto
the lateral x- axis and, therefore, represents those (x, y) which are below or above the electrical
contact. After this replacement, the time dependence of all heat sources is determined by the y-
independent functions ‖E‖2 (proportional to P ), N , and ϕaz which can be accessed when solving
the EO model (1)-(3).

The huge difference in the time scales of optoelectronic and thermal processes motivates our second
simplification. Namely, a proper calculation of the heat-transport evolution would require computations
of the transients over several microseconds, whereas the final operating state in the electro-optical
model usually can be achieved in less than ten nanoseconds. For this reason, within up to several
nanosecond long transients (t ∈ [t0 − τ, t0], τ ∼ ns), we ignore the temperature evolution and
look for temperature distributions T̄ (x, y, z0) averaged over this time interval instead. The static HT
problem for T̄ at each z0 reads

∇x,y · (κL(x, y, z0)∇x,y)T̄ (x, y, z0) + 〈s〉τ (x, y, z0) = 0, (x, y) ∈ Ω, (5)

where T̄ satisfies the boundary conditions (4) and 〈χ〉τ = 1
τ

∫ t0
t=t0−τ χ(t)dt denotes the time average

of the function χ(t) over the time interval [t0− τ, t0]. The time-averaged heat source 〈s〉τ in Eq. (5) is
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Coupling of electro-optical and heat-transport models 5

generated using different functions of fields, carriers, Fermi potentials, and current injection (denoted
by νj below) which can be collected when solving the EO-model during the time interval [t0 − τ, t0]:

〈s〉τ (x, y, z0) =
∑

j ιj(x, y, z0)〈νj〉τ (x, z0).

Functions ιj in the formula above depend on the material and model parameters, the geometry of
the device, and the initially precalculated static operating vertical mode intensity Φ2(y), see the black
curve in Fig. 2(a).
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Figure 2: (a): vertical distributions of the optical mode intensity (black) and the refractive index (thick
gray). (b): typical calculated distribution of time-averaged temperature T̄ (x, y, z0) at a single vertical-
lateral cross-section of the BAL. (c): calculated distribution of the temperature T̄az(x, z) at the position
of the active zone.

Typical calculations of the temperature distribution T̄ within a single cross-section of the 4 mm long and
90 µm wide HP-BAL operating at ∼ 13 W are shown in Fig. 2(b). The three-dimensional distribution
T̄ (x, y, z0) obtained after resolving the 2D-problem (5) for all domain discretization-induced laser
cross-sections z = z0 is used for the determination of the temperature T̄az within the active zone
layer [see Fig. 2(c)] and the thermally-induced refractive index correction ñT :

T̄az = 1
d

∫
y∈AZ T̄ (x, y, z0)dy, ñT =

∫
n′T (x,y,z0)

ñ0(x,y,z0)
n̄

Φ2(y)T̄ (x,y,z0)dy∫
Φ2(y)dy

.

Here, the piecewise constant distribution ñ0 is defined by the refractive indices of corresponding ma-
terials [e.g., grey line in Fig. 2(a)] and n′T denotes the change of these indices with changing temper-
ature. Whereas T̄az is used for the definition of several parameters of the EO model, ñT is of crucial
importance when seeking to obtain proper characteristics of the stimulated emission.

4 Numerical algorithm

When performing comprehensive simulations of the dynamics in HP BALs, we solve numerically the
dynamic TW model (1), (2), the static CS problems (3), and the static HT problems (4), (5). Each of
these three models is resolved by the corresponding solver. The interaction of all these models and
solvers is schematically represented in Fig. 3(a).
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For numerical integration of the TW model, we exploit the software kit BALaser [10]. The numer-
ical algorithm is based on the split-step method for the field equations (1) and the finite difference
approximations of the carrier rate equations (2). The temporal-longitudinal propagation and the lateral
diffraction of the fields in (1) are treated by means of finite difference schemes and a fast Fourier
transform algorithm, respectively. For the acceleration of time-consuming calculations, the numerical
algorithm was parallelized using distributed-memory paradigm. As a consequence, instead of ∼ 2
hours required for simulation of 1-ns long transients of a typical BAL using the single process on a sin-
gle core of our server, we perform the same simulations exploiting 30 processes in about 5 minutes.
More details on the algorithms used to solve the TW model can be found in Refs. [8, 9].
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Figure 3: (a): schematics of the HP BAL simulator. (b) and (c): evolution of the time-averaged far-
fields and thermally-induced refractive index change profiles ñT (x) at the front facet, respectively,
during the iterative application of EO- and HT-solvers for a 4 mm-long HP-BAL device having a 90µm-
wide contact stripe with ∼ 13 W emission power. Solid black curves correspond to the initial iteration
step where the temperature distribution was not yet accounted for by the EO solver.

Once dealing with the CS problem (3), we use the finite volume discretization based schemes and
the software toolkit pdelib [16] developed at the Weierstrass Institute in Berlin. Since the TW and CS
solvers should exchange information at each time iteration step, the consequent multiple application
of the CS solver numerically is too expensive. For example, during 1-ns transient simulations of typical
BALs, one needs to exploit the CS-solver about 10 million times! For this reason, we use the linearity
of the CS problem and the Green-function-like approach. Within an initialization step of our combined
EO-solver [see Fig. 3(a)], we apply the CS solver for the construction of a Nx× (Nx+1)-dimensional
matrixM (Nx: number of the equidistant lateral mesh points xi used when solving the TW model)
consisting of (Nx+1) “elementary” discrete injected current density Nx-dimensional vector-functions
jiaz, i = 0, . . . , Nx, corresponding to the CS problems with elementary (discrete) boundary conditions
(U,ϕaz) = (1, 0) in the case of i = 0, and (U,ϕaz) = (0, δ[x=xi](x)) for i = 1, . . . , Nx. Later, the
multiplication ofM with the actual (instantly changing) (N+1)-dimensional vector (U,ϕaz)

T gives
us the required function jaz. To reduce the number of (∼ N2

x ) arithmetic operations required by the
full matrix-vector multiplication, we ignore the majority of small off-diagonal elements ofM. For more
details on the applied algorithms for the CS problem, see Ref. [11].

For the numerical solution of the HT problem (4), (5), we use the toolkit pdelib [16] again. The nu-
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Coupling of electro-optical and heat-transport models 7

merical method is based on a finite volume space discretization, resulting in a sparse linear system
of equations AhTh = −sh (Ah, sh, Th: discrete approximations of the differential operator, source,
and temperature, respectively) which is solved via the LU factorization Ah = LhUh into easily invert-
ible upper and lower triangular factors, s.t. Th = −U−1

h L−1
h sh [17]. Since the differential operator in

Eq. (5) is linear, and most of the considered BALs have a single or only a few different cross-sections,
the same LU factorization can be applied w.r.t. multiple source functions sh corresponding to different
values of z. For typical laser structures, the calculation time required by the HT-solver does not exceed
1-2 minutes (compare to at least ∼ 30 minutes needed for standard 5-ns long transient simulations
of the same BALs by the EO-solver). Typical calculated heat distributions within the lateral-vertical
cross-section and the active layer of the HP-BAL device are shown in Figs. 2(b) and (c), respectively.

The EO- and HT-solvers are self-consistently coupled using the following iterative procedure:

(0) In this initialization step, we perform ≥ 5 ns long transient simulations of the BAL with the
dynamic EO-solver using given temperature and refractive index distributions T̄az(x, z) and
ñT (x, z), or setting T̄az=Ths and ñT =0 if these distributions are not provided.

(1) Our EO simulations provide time-averaged distributions 〈‖E‖2〉τ (x, z) (which are proportional
to 〈P 〉τ (x, z)), 〈N〉τ (x, z), and 〈ϕaz〉τ (x, z). All these functions together with the originally
supplied mode intensity profile Φ2(y) are used for the construction of the (time-averaged) heat
source function 〈s〉τ (x, y, z).

(2) The static HT-solver uses the estimated source 〈s〉τ . From the obtained 3-dimensional temper-
ature distribution T̄ (x, y, z), we construct 2-dimensional distributions T̄az(x, z) and ñT (x, z)
in the active layer.

(3) We perform ≥ 5 ns long transient simulations of the BAL with the dynamic EO-solver using the
distributions T̄az(x, z) and ñT (x, z) and proceed to the step (1) of our iterative procedure.

5 Example

To illustrate the performance of our iterative coupling of EO- and HT-solvers, we have simulated the
dynamics in a 4 mm-long HP-BAL device having a 90µm-wide contact stripe with ∼ 13 W emission
power, considered earlier in Refs. [12, 15]. Different curves in Figs. 3(b) and (c) represent calculated
far fields and distributions ñT (x, z) (estimated at the front facet, z = l) obtained during different
iteration steps.

When first initiating the EO-solver, the considered BAL is switched off, whereas the distributions T̄az
and ñT are set to constants Ths and 0, respectively. Far-fields averaged over the last 2 ns of the
first simulated 5 ns transients are shown by the upper solid black curve in Fig. 3(b). In the absence
of a thermally induced refractive index profile nT , the far-field divergence is relatively small. In the
next step of the algorithm, the HT-solver exploits the time-averaged distributions calculated by the
EO-solver for the definition of T̄az and ñT , see the black curve in panel (c) of the same figure. Next,
during the consequent 5 ns transient calculations the EO-solver accounts for the previously defined
T̄az and ñT , whereas the HT-solver is using the heat sources specified by the just updated time
averaged distributions. Panel (c) shows how the initial correction slightly enhances the profile of n̄T ,
whereas the following iterations imply only small additional deviations (order 10−5) of n̄T , see inset
of Fig. 3(c). The far-fields change further during this iterative procedure. Once inspecting the far-field
profiles obtained during the consequent iterations [curves counted from top to down in Fig. 3(b)], one
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M. Radziunas et al. 8

can clearly distinguish growing emission around±6◦. After approximately seven iterations (40 ns after
switching on the laser), these distributions converge.

In conclusion, we discussed an efficient coupling of the dynamic EO- and the static HT-solvers for
BALs. The calculation time used by the HT solver usually is less than 10% of the time required by
the EO solver. The application of the HT-solver allows a self-consistent estimation of the temperature
distribution and the thermal lensing within the active zone of the device, which is crucial for proper
simulation of the emission from CW HP-BALs by the EO-solver.
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