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Additive manufacturing graded-material design based on
phase-field and topology optimization

Massimo Carraturo, Elisabetta Rocca, Elena Bonetti,
Dietmar Hömberg, Alessandro Reali, Ferdinando Auricchio

Abstract

In the present work we introduce a novel graded-material design for additive manufacturing
based on phase-field and topology optimization. The main novelty of this work comes from the in-
troduction of an additional phase-field variable in the classical single-material phase-field topology
optimization algorithm. This new variable is used to grade the material properties in a continuous
fashion. Two different numerical examples are discussed, in both of them we perform sensitivity
studies to asses the effects of different model parameters onto the resulting structure. From the
presented results we can observe that the proposed algorithm adds additional freedom in the
design, exploiting the higher flexibility coming from additive manufacturing technology.

1 Introduction

Structural topology optimization [7] is a numerical method which aims, by means of a density function,
at optimally distributing a limited amount of material within a volume, representing the initial geometry
of a body undergoing specific loads and displacement boundary conditions.

Structural topology optimization was originally introduced as a discrete formulation where areas of
dense material and voids are alternated without any transition region [6]. This first approach, also
known as 0-1 topology optimization problem, leads to many difficulties from both an analytical and a
numerical point of view [18].

A possible alternative approach is based on homogenization methods, where the macroscopic mate-
rial properties are obtained from microscopic porous material characteristics [1, 16]. Such a strategy
leads to optimized structures with large grey-scale regions of perforated, porous material, which are in
general undesired due to their elevated manufacturing complexity, in particular when classical manu-
facturing processes, such as milling or molding are adopted. To obtain a clear black and white design,
Solid Isotropic Material Penalization (SIMP) method has been introduced in [23]. The SIMP method
consists of penalizing the density region, different from the void or bulk material, by choosing a suit-
able interpolation scheme for material properties at the macroscopic scale [5, 8]. This approach has
been successfully employed in many engineering applications beside of structural problems, e.g. fluid
analysis [14], fluid- and acoustic-structure interaction [21, 22], heat conduction [15], multi-physics [3],
and composite structures [19].

An alternative to the SIMP method is a topology optimization based on the phase-field method, for
the first time introduced by [11]. Successively, this method has been employed by [12] for stress
constrained problems and by [20] in the shape and topology optimization context for minimum com-
pliance and eigenfrequency maximization problems. More recently, [17] have solved nonlinear elastic
problems by means of the phase-field approach, while [13] have been the first to apply this method
in the context of isogeometric analysis. Similarly to the SIMP method, phase-field based topology op-
timization penalizes an approximation of the interface perimeter, such that, by choosing a very small
positive penalty term, one can obtain a sharp interface region separating solid materials and voids [9].
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M. Carraturo et al. 2

Inspired by the aforementioned works on phase-field-based topology optimization, we aim here at
developing an optimization procedure to obtain structures which exploit the possibility of additive man-
ufacturing (AM) technology to distribute material through a body locally varying the material density.
Even if such an approach can potentially include a multi-material case, in this work we consider only
a graded-material design, i.e., where a single material is gradually distributed through the body. The
result of such an optimization routine is a structure with graded stiffness values, i.e., a material with
stiffness continuously varying within the body, alternating regions of soft material with other regions
of stiffer material. The approach proposed in the present paper reintroduces the typical grey-scale
regions of early topology optimization methods but within a controlled and numerically stable formu-
lation. This choice is justified by the fact that modern AM technologies allow to grade the density of a
body in an almost continuous fashion, varying the amount of distributed material point-by-point during
the printing process.

The outline of the work at hand is organized as follows. In Sec. 2 we recall the formulation for a single-
material phase-field-based topology optimization. Sec. 3 introduces the novel phase-field approach
for graded material structures. Then, Sec. 4 discusses two-dimensional numerical examples, carrying
out sensitivity studies for different choices of numerical parameters. Finally, in Sec. 5 we draw our
conclusions on the present work.

2 Single-material phase-field topology optimization

In this section we recall the classical formulation for a phase-field-based topology optimization of a
single-material homogeneous structure, closely following [10].

2.1 State equations

We consider a domain Ω ⊂ Rd where a material is distributed by means of a scalar phase-field
variable φ, representing a material density fraction, hence φ ∈ [0, 1] with φ ≡ 0 corresponding to
a void (i.e., no material) and φ ≡ 1 to a dense material. Adopting a linear elastic model, the state
equations are as follows:

div (Cε(u)) = 0 in Ω (1)

u = 0 on ΓD (2)

Cε(u) = g on ΓN (3)

with C = C(φ) the fourth-order linear material tensor, u the displacement field vector, ε(u) the
symmetric strain defined as ε = ∇Su =

(
∇u +∇uT

)
/2, g the external load on the boundary

ΓN ⊂ ∂Ω, and ΓD ⊂ ∂Ω, | ΓD |6= 0, the portion of the boundary where homogeneous Dirichlet
boundary conditions are applied.

Assuming the material tensor C to depend on φ, the solution of problem Eq.s (1) to (3) depends on
the distribution of the scalar field φ (i.e., u = u(φ)). We treat the void as a very soft material, adopting
the following expression for C:

C(φ) = CAφ
p + CB(1− φ)p

where CA is the positive definite material tensor of the dense material, CB is the positive definite
material tensor of an idealized very soft material (representing the voids), and p can be any positive
value; for simplicity, we assume CB = γ2CA, with γ � 1, while, following [8], we set p = 3.

The weak form of the linear elastic problem Eq.s (1) to (3) can be written as:∫
Ω

ε(u) : C(φ)ε(v)dΩ =

∫
ΓN

g · vdΓ. (4)
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Additive manufacturing graded-material design 3

with v ∈ H1
D(Ω) a virtual displacement field. Referring to [10] we can prove that for any given

g ∈ L2(ΓN) and φ ∈ L∞(Ω), there exists a unique u ∈ H1
D(Ω) fulfilling Eq. (4) , with H1

D(Ω) :=
{v ∈ H1(Ω) : v = 0 on ΓD}.

2.2 Single-material topology optimization as a minimization problem

The goal of our topology optimization process is to properly minimize the compliance of a given struc-
ture, by optimally distributing a limited amount of material.

To properly minimize the compliance, we introduce an objective functional J (φ,u(φ)) defined as:

J (φ,u(φ)) =∫
ΓN

g · u(φ)dΓ + κ

∫
Ω

[
γ

2
‖ ∇φ ‖2 +

1

γ
ψ0(φ)

]
dΩ

(5)

where the first integral represents a measure of the global system compliance, defined as the inverse
of the stiffness, while, assuming κ > 0 and a double-well potential function ψ0(φ) = (φ − φ2)2 ,
the second integral is an approximation of the perimeter of the interfaces between regions with φ = 0
and φ = 1. In equation Eq. (5) γ corresponds to the thickness of the diffuse interface, i.e., the
region where 0 < φ < 1, the term γ/2 | ∇φ |2 penalizes jumps between φ = 0 and φ = 1, while
ψ0(φ)/γ represents the double-well potential function penalizing phases with φ different from 0 and 1.
We remark that following [10] we choose the same scaling parameter γ to penalize the sharp interface
region and to define the void soft material; this choice is justified by the assumption that when one of
the two values goes to zero also the other one has to vanish.

The minimization of the functional in Eq. (5) is imposed under the assumption of distributing a limited
constant quantity of material inside the domain, hence, we introduce the constraint:∫

Ω

φdΩ = m | Ω |

with 0 < m ≤ 1 representing a target domain volume fraction. Clearly, the displacement field
u(φ) solving the topology optimization problem should also be solution of the linear elastic problem
of Eq. (4) .

In conclusion, the minimization problem we aim to solve is the following.
Problem (P):

min
φ

J (φ,u(φ))

such that the following constraints are satisfied:∫
Ω

ε(u) : C(φ)ε(v)dΩ =

∫
ΓN

g · vdΓ. (6)

M(φ) =

∫
Ω

φdΩ−m | Ω |= 0, (7)

with φ ∈ H1(Ω) satisfying the constraint:

0 ≤ φ ≤ 1 a.e. in Ω. (8)

Following the argument by [10], we can prove that the minimum constrained problem (P) has at
least one solution (cf. [10, Thm. 4.1]). In particular, to solve problem (P) we introduce the Lagrangian
functional L, defined as:

L(φ,u, λ,p) = J (φ,u) + λM(φ) + S(φ,u,p), (9)
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M. Carraturo et al. 4

where λ is the Lagrange multiplier introduced to impose the volume constrain of Eq. (7) and the
operator S is defined as:

S(φ,u,p) =

∫
Ω

ε(u) : C(φ)ε(p)dΩ−
∫

ΓN

g · pdΓ,

which we introduce together with the adjoint variable p. The solution of problem (P) is equivalent to
the minimization of Eq. (9) subjected to constraint in Eq. (8) ; this last problem problem can be seen
as an optimal control problem, with solutions (φ̄, ū, λ̄, p̄) that have to satisfy the first order optimality
conditions defined by:

DuL
(
φ̄, ū, λ̄, p̄

)
= 0,

DpL
(
φ̄, ū, λ̄, p̄

)
= 0,

DλL
(
φ̄, ū, λ̄, p̄

)
= 0,

DφL
(
φ̄, ū, λ̄, p̄

) (
φ− φ̄

)
≥ 0 ∀φ ∈ Φad,

where Φad is the set of admissible controls defined as follows:

Φad := {φ ∈ H1
D(Ω) : 0 ≤ φ ≤ 1 a.e. in Ω}.

We also note that for the problem under investigation DpL = DuL, hence the so-called adjoint
equation (holding true for every v ∈ H1

D(Ω)):∫
Ω

ε(p̄) : C(φ)ε(v)dΩ =

∫
ΓN

g · vdΓ,

is identical to the weak form of the linear elastic problem Eq. (4) , which implies that p̄ = ū . We refer
to [10] for the complex analysis of optimality conditions.

To obtain a more compact formulation, we define here the energy density of the system and its deriva-
tive w.r.t. the scalar field φ as:

E(φ,u) = ε(u) : C(φ)ε(u),

and
∂E(φ,u)

∂φ
= ε(u) :

∂C(φ)

∂φ
ε(u).

To discretize our continuous problem we employ a gradient flow dynamics, namely Allen-Cahn gradient
flow [2], a steepest descent pseudo-time stepping method with a time-step increment τ . Thus the
optimal control problem (P) can be now rewritten as follows:

DuL v = 0, (10)

DλL vλ =Mvλ = 0, (11)

γ

τ

∫
Ω

(φn+1 − φn)vφdx = −DφL vφ, (12)

where

DφL =
∂J
∂φ

+ λ
∂M
∂φ

+
∂S
∂φ

,

with vλ ∈ R and vφ ∈ Φad.
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Additive manufacturing graded-material design 5

The problem defined in Eq.s (10) to (12) can be written in the following weak extended formulation:

∫
Ω

ε(u) : C(φ)ε(v)dΩ =

∫
ΓN

g · vdΓ, (13)∫
Ω

vλ(φn+1 −m)dΩ = 0, (14)

γ

τ

∫
Ω

(φn+1 − φn)vφdΩ + κγ

∫
Ω

∇φn+1 · ∇vφdΩ

+ λ

∫
Ω

vφdΩ−
∫

Ω

vφ
∂E(φn,un)

∂φ
dΩ

+
κ

γ

∫
Ω

∂ψ0(φn)

∂φ
vφdΩ = 0. (15)

2.3 Single-material finite element formulation

We derive here a finite element approximation of the phase-field topology optimization problem defined
in Eq.s (13) to (15). To this end we discretize the physical domain Ω using three different meshes
Qu, Qφ and Qλ, corresponding to the field variables u, φ and λ and their variations v, vφ and vλ,
respectively. On each mesh we interpolate the nodal values of the field variables and their variations
by means of piecewise linear basis functions, such that:

u ≈ Nuũ, v ≈ Nuṽ,

φ ≈ Nφφ̃, vφ ≈ Nφṽφ,

λ ≈ Nλλ̃, vλ ≈ Nλṽλ.

Introducing the proposed discretization in Eq.s (13) to (15) the discrete version of the optimal control
problem becomes:

1

τ


0 0

0 0

0

Mλφ

0 Mφλ Mφφ




ũ

λ̃

φ̃

+


Kuu 0

0 0

0

0

0 0 Kφφ




ũ

λ̃

φ̃


=

 f
qλ

qφ + qs + qψ


(16)
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M. Carraturo et al. 6

with the matrix and vector terms defined as follows:

Kuu =

∫
Ω

∇Nu
TC∇NudΩ,

Mφφ = γ

∫
Ω

NT
φNφdΩ,

Kφφ = κγ

∫
Ω

∇NT
φ∇NφdΩ,

Mλφ = τ

∫
Ω

NT
λNφdΩ =

(
Mφλ

)T
,

f =

∫
ΓN

Nu
TgdΓ,

qφ =
γ

τ

∫
Ω

(
NT
φNφ

)
φ̃ndΩ = Mφφφ̃n,

qλ =

∫
Ω

NT
λmdΩ,

qs =

∫
Ω

NT
φ

∂E(φ̃n, ũn)

∂φ
dΩ,

qψ =
κ

γ

∫
Ω

2NT
φ

∂ψ0(φ̃n)

∂φ
dΩ.

The discrete linear system in Eq. (16) can be written in a compact form as:(
1

τ
M + K

)
x = q, (17)

which can be solved with either a direct or an iterative solver. In particular, we solve the problem
in Eq. (17) employing Alg. 1 .

Alg. 1 solves the problem in two separate steps: first it solves the state equation discussed in Sub-
sec. 2.1 to get the solution vector ũn+1 (line 3), secondly, the remaining system is solved to obtain the
phase-field vector φ̃∗

n+1 and the Lagrange multiplier vector λ̃n+1 (line 4). The vector φ̃∗
n+1 is then

rescaled within the interval [0, 1] to obtain the phase-field solution vector φ̃n+1 fulfilling the constraints
(line 5). We use the increment ∆φ based on the L2-norm and defined as:

∆φ =

∥∥∥φ̃n+1 − φ̃n
∥∥∥
L2∥∥∥φ̃n∥∥∥

L2

, (18)

as a criteria to assert the convergence of the algorithm, which is otherwise stopped when user defined
maximum number of iterations maxiter is reached.

3 Graded-material phase-field topology optimization

In the following section we extend the previously presented formulation of topology optimization to the
case of a graded material definition. We refer to this approach as graded-material phase-field topology
optimization. The mathematical analysis of the corresponding optimization problem will be the subject
of a forthcoming paper [4].
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Additive manufacturing graded-material design 7

Algorithm 1: Single-material optimization algorithm

input :Q,Qφ,Qλ,φ̃0.
output: Optimal topology

1 φ̃n ← φ̃0

2 while ∆φ ≥ tol and n ≤ maxiter do

3 (ũn+1, λ̃n+1, φ̃
∗
n+1)←solve(17)

4 φ̃n+1 ←rescale
(
φ̃
∗
n+1

)
to [0, 1]

5 update(∆φ)

6 φ̃n ← φ̃n+1

7 end

3.1 State equation

We now consider the case of an inhomogeneous material distribution; in particular, we assume that
the material elastic fourth-order tensor C can vary linearly between different positive definite tensors,
CA and CB , through a material grading scalar variable χ ∈ [0, φ], with φ ∈ [0, 1], such that:

C(χ) = CAχ+ CB(φ− χ),

where the soft material CB is defined as:

CB =
1

β
CA,

with 0 < β ≤ 1 a so-called softening factor, used to define the soft material tensor CB as a fraction
of the dense material tensor CA. In such a way, the stiffness of the body can continuously vary from
a full dense material (χ = φ) to a softer one (χ = 0). Therefore, the definition of the fourth-order
material tensor C(φ, χ), previously defined in Sec. 2 , can now be modified as:

C(φ, χ) = C(χ)φp + γ2
φC(χ)(1− φ)p, (19)

where 0 < γφ � 1 and again we choose a penalty parameter p = 3. The definition of the material
tensor in Eq. (19) leads us to an optimized structure where, as in the single-material case, the
perimeter of the body is defined by the sharp interface of the phase-field variable φ, while the stiffness
of the material continuously varies within the structure, following the distribution of the material grading
variable χ. Hence, the graded-material weak form of the linear elastic problem of Eq. (4) reads:∫

Ω

ε(u) : C(φ, χ)ε(v)dΩ =

∫
ΓN

g · vdΓ (20)

with the virtual displacement v ∈ H1
D(Ω).

3.2 Graded-material topology optimization as a minimization problem

We want now to define an objective functional which optimizes a structure with an inhomogeneous
material distribution. This new graded-material objective functionalJM(φ, χ,u(φ, χ)) can be defined
as:

JM(φ, χ,u(φ, χ)) =

∫
ΓN

g · u(φ, χ)dΓ+

κφ

∫
Ω

[
γφ
2
| ∇φ |2 +

1

γφ
ψ0(φ)

]
dΩ + κχ

∫
Ω

γχ
2
| ∇χ |2 dΩ,

DOI 10.20347/WIAS.PREPRINT.2553 Berlin 2018



M. Carraturo et al. 8

with κφ, κχ > 0 and γχ > 0, and where the first two integrals are the same of the objective functional
in Eq. (5) , while the additional integral term γχ/2 (| ∇χ |)2 is introduced to penalize the gradient of
the scalar field χ.

Following the same approach described for the single-material case, the global graded-material mini-
mization problem can be now written as follows:

min
φ,χ

JM(φ, χ,u(φ, χ)),∫
Ω

ε(u) : C(φ, χ)ε(v)dΩ =

∫
ΓN

g · vdΓ,

M(φ) =

∫
Ω

φdΩ−m | Ω |= 0,

where φ, χ ∈ H1(Ω), under the constraint

0 ≤ φ ≤ 1 a.e. in Ω,

and the additional constraint on χ:
0 ≤ χ ≤ φ a.e. in Ω.

We can now define the graded-material Lagrangian LM as:

LM(φ, χ,u, λ,p) =

JM(φ, χ,u) + λM(φ) + SM(φ, χ,u,p),

where, the operator SM for the graded-material formulation is calculated as:

SM(φ, χ,u,p) =

∫
Ω

ε(u) : C(φ, χ)ε(p)dΩ−
∫

ΓN

g · pdΓ.

Analogously to the previously introduced set of admissible controls Φad for the phase-field variable φ,
we define now the set of admissible controls Ξad for the grading variable χ as:

Ξad := {χ ∈ H1(Ω) : 0 ≤ χ ≤ φ a.e. in Ω}.

Clearly, also in the graded-material case we want that the optimal control solutions φ̄ and χ̄ have to
satisfy the first order necessary optimality conditions, which can be derived as:

DφLM(φ̄, χ̄, ū, λ̄, p̄)
(
φ− φ̄

)
≥ 0 ∀φ ∈ Φad

and
DχLM

(
φ̄, χ̄, ū, λ̄, p̄

)
(χ− χ̄) ≥ 0 ∀χ ∈ Ξad,

where ū and p̄ are solutions of the graded-material state equation Eq. (20) and of the corresponding
adjoint problem, respectively. Also in this case the displacement field u is self-adjoint and hence we
have p̄ = ū. For a complete analysis of necessary first order optimality conditions we refer to the
forthcoming paper [4].

Analogously to the single-material case, we can define the energy density of the system and its deriva-
tives w.r.t. both the scalar field φ and the material grading variable χ as:

EM(φ, χ,u) = ε(u) : C(φ, χ)ε(u),

DOI 10.20347/WIAS.PREPRINT.2553 Berlin 2018



Additive manufacturing graded-material design 9

∂EM(φ, χ,u)

∂φ
= ε(u) :

∂C(φ, χ)

∂φ
ε(u) =

ε(u) :
[
3C(χ)φ2 + 3γ2

φC(χ)(1− φ)2
]
ε(u)

and

∂EM(φ, χ,u)

∂χ
= ε(u) :

∂C(φ, χ)

∂χ
ε(u) =

ε(u) :

[(
CA −

1

β
CA

)(
φ3 + γ2

φ(1− φ)3
)]
ε(u).

The optimal control problem can be solved as in the single-material case by means of the Allen-Cahn
gradient flow, leading to the following set of equations:

γφ
τ

∫
Ω

(φn+1 − φn)vφdΩ + κφγφ

∫
Ω

∇φ · ∇vφdΩ+∫
Ω

vφλdΩ−
∫

Ω

vφ
∂EM(φn, χn,un)

∂φ
dΩ

κφ
γφ

∫
Ω

∂ψ0(φn)

∂φ
vφdΩ = 0, (21)

γχ
τ

∫
Ω

(χn+1 − χn)vχdΩ + κχγχ

∫
Ω

∇χ · ∇vχ dΩ −
∫

Ω

vχ
∂EM(φn, χn,un)

∂χ
dΩ = 0, (22)

to be solved under the volume constraint∫
Ω

vλ(φ−m)dΩ = 0. (23)

In order to estimate the total amount of material in the structure, we define a material fraction index
mχ as:

mχ =
1

| Ω |

∫
Ω

χdΩ,

which can be considered as a measure of the global amount of material used to print the structure.
The equivalent material fraction index for the single-material case mφ is equal to the volume fraction
m, such that:

mφ = m =
1

| Ω |

∫
Ω

φdΩ.

3.3 Graded-material finite element formulation

We aim now at obtaining a discrete formulation for the graded-material phase-field topology optimiza-
tion problem. To this end, the displacement field u, the phase-field variable φ, the Lagrange multiplier
λ and their corresponding variations are approximated using the same discretization already defined
in Subsec. 2.3 . Additionally, we need to discretize the material grading variable χ on the domain Ω;
such a discretization is obtained introducing an additional mesh Qχ, such that the material grading
variable χ and its variation vχ can be written as:

χ ≈ Nχχ̃ and vχ ≈ Nvχṽχ,

where Nχ and Nvχ are the piecewise linear shape functions which interpolate the nodal degrees of
freedoms χ̃ and ṽχ, respectively.

DOI 10.20347/WIAS.PREPRINT.2553 Berlin 2018
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The discrete form of Eq.s (21) to (23) can thus be written in a compact notation as:

1

τ


0 0 0 0
0 Mφφ 0 Mφλ

0 0 Mχχ 0
0 Mλφ 0 0



ũ

φ̃
χ̃

λ̃

+


Kuu 0 0 0
0 Kφφ 0 0
0 0 Kχχ 0
0 0 0 0



ũ

φ̃
χ̃

λ̃

 =


f

qφ + qs′ + qψ

qχ + qt

qλ


(24)

where the newly defined matrix and vector terms are:

Mχχ = γχ

∫
Ω

NT
χNχdΩ,

Kχχ = κχγχ

∫
Ω

∇NT
χ∇NχdΩ,

qχ =
γχ
τ

∫
Ω

NT
χNχχ̃ndΩ,

qs′ =

∫
Ω

NT
φ

∂EM(φ̃n, χ̃n, ũn)

∂χ
dΩ,

qt =

∫
Ω

NT
φ

∂ψ0(φ̃n)

∂φ
dΩ.

Alg. 2 describes the iterative procedure to obtain the graded-material optimized structure discussed
so far. The adopted solution scheme is very similar to Alg. 1 but in this case we have to solve at
each iteration the graded-material linear system defined in Eq. (24) to obtain the phase-field solution
vector φ̃n+1 and the grading scalar variable vector χ̃n+1.

Algorithm 2: Graded-material optimization algorithm
input :Q,Qφ,Qχ,Qλ, φ0, χ0

1 . output: Optimal topology
2 φn ← φ0

3 χn ← χ0

4 while ∆φ ≥ tol and n ≤ maxiter do

5 (ũn+1, φ̃
∗
n+1, χ̃

∗
n+1, λ̃n+1)← solve(24)

6 φ̃n+1 ← rescale
(
φ̃
∗
n+1

)
to [0, 1]

7 χ̃n+1 ← rescale
(
χ̃∗n+1

)
to [0, φ]

8 update(∆φ)
9 φn ← φn+1

10 χn ← χn+1

11 end

4 Numerical Examples

In this section two numerical examples are presented: in the first one we consider a cantilever beam
structure while in the second one we study a simply-supported beam structure. In the cantilever beam
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Figure 1: Cantilever beam: Initial configuration and problem domain.

example we discuss two sensitivity studies. Firstly, we vary the values of the graded-material interface
parameter γχ (i.e., the parameter which represents the thickness of the material grading variable
interface) and, secondly, we change the slenderness of the structure. In the simply-supported beam
example, again we perform two studies. In the first one we use different values for the softening factor
β while in the second one we increase the load acting on the structure.

4.1 Cantilever beam

We consider the cantilever beam problem depicted in Fig. 1 , with dimensions a = 2mm and b =
1mm and a traction force g = (0,−600)N/mm applied at the right-end of the lower edge of the
structure, while the left edge is fixed. We assume the initial material being a dense isotropic material,
i.e., CA = (λ+ 2µ)1⊗ 1 + 2µI, where the Lame’s parameters λ and µ can be expressed in terms
of the Young modulus E and the Poisson coefficient ν as follows:

λ =
E

(1 + ν)(1− 2ν)
, (25)

and

µ =
E

2(1 + ν)
. (26)

The softening factor β is chosen equal to 4, i.e., the soft material tensor CB is four times softer than
CA. We choose a dense material having E = 12.5GPa and ν = 0.25. We discretize the domain Ω
using a mesh with 128× 64 quadrilateral elements and we set m = 0.45, κχ = κφ = 4, γφ = 0.02,
a time step increment ∆τ = 1.0× 10−6, φ0 = 0.5 as initial solution, and a tolerance equal to 0.01.

4.1.1 Sensitivity study of the graded-material interface parameters γχ

In this first sensitivity study we investigate the different topologies obtained by varying γχ between
0.001 and 0.1, as reported in Fig. 2 . The results show that the optimal multi-material distribution is
very different from the single-material optimized topology depicted in Fig. 3 , for values of γχ smaller
than γφ. In fact, in this case, the voids present in the single-material structure are replaced by areas of
soft material. Contrary, if γχ is chosen to be bigger than γφ the solution presents void regions similarly
to the single-material case. Finally, we observe that, as expected, when the thickness of the diffuse
interface is too small compared to the element size, the solution does not converge anymore ( Fig. 2a ).
Table 1 reports the values of the compliance and of the material fraction index mχ for different values
of γχ. It can be seen that employing a softer material will increase the compliance of the body, leading
at the same time to lighter structures compared to the homogeneous material case.
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(a) γχ = 0.001 (b) γχ = 0.005

(c) γχ = 0.010 (d) γχ = 0.020

(e) γχ = 0.050 (f) γχ = 0.100

Figure 2: Cantilever beam: Sensitivity study of the multi-material interface parameters γχ. If γχ ≤
γφ = 0.02 different values of the graded-material interface parameters do not affect too much the final
solution, which presents a wide region of soft material filling the voids which, instead, characterize the
single-material solution (see Fig. 3 ); whereas, for γχ ≥ γφ, the final solution of the graded-material
case tends to a single-material configuration with multiple holes in the structure. Finally, if we choose
γχ too small with respect to our element size, the solution do not converge anymore as in Fig. 2a .

Figure 3: Cantilever beam: Sensitivity study of the graded-material interface parameters γχ. Single-
material optimized structure.

4.1.2 Sensitivity study of the slenderness of the structure

On the cantilever beam we perform a second sensitivity study varying the slenderness ratio s = a/b
(i.e., the ratio between the length and the height of the cantilever beam), for a fixed value of the
graded-material interface parameter (γχ = 0.02). Fig. 4 shows the final topologies for three different
slenderness ratios, where all the resulting structures are characterized by internal regions of softer
material and an external support of stiffer material.
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Table 1: Cantilever beam: Sensitivity study of the graded-material interface parameters γχ. Compli-
ance and material index values for different choices of γχ.

γχ compliance mχ convergence

0.001 105.3 0.380 NO
0.005 122.9 0.265 YES
0.01 133.0 0.245 YES
0.02 141.9 0.230 YES
0.05 154.0 0.225 YES
0.1 165.4 0.201 YES

full dense material 52.3 mφ = 0.45 YES

(a) s = 1 (b) s = 2

(c) s = 4

Figure 4: Cantilever beam: Sensitivity study of the slanderness of the structure s. Varying the slan-
derness ratio s = a/b we obtain optimized structures characterized by an outer frame of stiff material
filled with regions of soft materials.

4.2 Simply-supported beam

In this second example we choose Acrylonitrile Butadiene Styrene (ABS), which is a common ther-
moplastic polymer widely used in 3D-printing applications, as material to obtain an optimized simply-
supported beam structure. The problem is symmetric and thus we decide to solve only half of the
domain as depicted in Fig. 5 , where h = 1mm an L/2 = 2mm, with a distributed external load g
equal to (0,−50)N/mm applied on the top edge of the structure. The Young modulus and the Poisson
coefficient of ABS plastic are 2.3GPa and 0.35, respectively. We set m = 0.4, κφ = κχ = 1 and
γφ = γχ = 0.01, while we choose a pseudo-time step ∆τ = 1.0 × 10−6 and an initial solution
φ0 = 0.5.

4.2.1 Sensitivity study of the softening factor β

Fig. 6 presents the results of a sensitivity analysis performed varying the softening factor β from 1
to 4. The resulting optimized structures show that, introducing grey-scale regions in the structure, the
optimal design is modified, replacing the typical voids of SIMP approach with areas of soft material.
Again we observe in Table 2 that introducing a soft material within the algorithm leads to structure with
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Figure 5: Simply-supported beam: Initial configuration and problem domain.

Table 2: Simply-supported beam: Sensitivity study of the softening factor β. Compliance and material
index values for different choices of β.

β compliance mχ convergence

1 20.5 0.40 YES
2 37.3 0.32 YES
3 46.4 0.24 YES
4 58.6 0.18 YES

a smaller material index but a lower compliance. The values of the softening factor strongly influences
the final results and give us the possibility to obtain intermediate structure such as the one in Fig. 6b
.

4.2.2 Sensitivity study of the distributed load

On the simply-supported beam we conduct a second sensitivity study fixing β = 3 and increasing the
distributed load g by a factor of 2 and 3, respectively. The resulting structures are reported in Fig. 7 .
As we expected employing a heavier load reduces the areas of soft material, increasing at the same
time the number of columnar structures in the final topology. We want to remark here that the structure
of Fig. 7b did not converge even after 1000 iterations. Since the mesh is not modified, this behavior
is due to the choice of the stiffer material, which is in this case too soft for such a heavy load.

5 Conclusions

In the present work we have introduced a novel phase-field topology optimization algorithm based on
a graded material definition.

The numerical results show that the additional control parameter χ, introduced in our phase-field
formulation, allows to increase the number of possible optimal designs delivered by the topology opti-
mization process.

In particular, we have introduced the possibility to control the distribution of the material density within
our structure in a continuous fashion. Such a feature can be in many cases highly desirable, in partic-
ular if we consider additive manufacturing applications.

Moreover the algorithm allows to easily control the amount of regions with graded material distribution,
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(a) β = 1 (b) β = 2

(c) β = 3 (d) β = 4

Figure 6: Simply-supported beam: Sensitivity study of the softening factor β. Increasing the values of
the softening factor, i.e., employing a softer material, the optimized structure does not present anymore
the typical holes resulting from a single-material optimization 6a. Voids are now replaced by a region
of soft material.

(a) g × 2 (b) g × 3

Figure 7: Simply-supported beam: Sensitivity study of the distributed load g. Increasing the load on
the upper edge of the structure we observe an increment in the region occupied by full dense material
and the presence of holes and columnar structures.

delivering results which can be in between a fully black-and-white approach and a purely graded-
material distribution.

In the near future we aim at investigating mechanical properties of 3D-printed structures designed
using the graded-material phase-field topology optimization algorithm.
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