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Temporal dissipative solitons in a delayed model of a ring
semiconductor laser

Alexander Pimenov, Shalva Amiranashvili, Andrei G. Vladimirov

Abstract

Temporal cavity solitons are short pulses observed in periodic time traces of the electric field
envelope in active and passive optical cavities. They sit on a stable background so that their
trajectory comes close to a stable CW solution between the pulses. A common approach to
predict and study these solitons theoretically is based on the use of Ginzburg-Landau-type partial
differential equations, which, however, cannot adequately describe the dynamics of many realistic
laser systems. Here for the first time we demonstrate formation of temporal cavity soliton solutions
in a time-delay model of a ring semiconductor cavity with coherent optical injection, operating in
anomalous dispersion regime, and perform bifurcation analysis of these solutions.

1 Introduction

Temporal localised structures (TLS) of light propagating along the axial direction in nonlinear cavi-
ties attracted significant theoretical and experimental attention in the last decade due to their poten-
tial applications for optical data storage and transmission [1–4]. Similarly to the solitons of nonlinear
Schrödinger equation [5], dissipative optical TLS known also as temporal cavity solitons are localized
in time and can be studied with the help of complex Ginzburg-Landau-type equations in the co-moving
reference frame as stationary solutions of a properly constructed ordinary differential equations [6].
Although this approach allows a detailed bifurcation analysis of TLS solutions, complex Ginzburg-
Landau models are hardly applicable to account accurately for certain important physical effects in
realistic laser devices, such as those containing intracavity semiconductor medium [7]. This is why
travelling wave-type models [8, 9] are commonly used to model the dynamics of semiconductor de-
vices. However, since the traveling wave models are rather complicated and their analysis is usually
limited to direct numerical simulations, an alternative and more simple approach to the analysis of
multimode semiconductor lasers was proposed in [10–12] based on the use of delay differential equa-
tions (DDEs). DDE laser models can be derived from the travelling wave equations under certain
non-restrictive simplifying physical assumptions and they proved to be a viable alternative to the stan-
dard models based on partial differential equations. In addition to asymptotic stability analysis [12,13]
the DDE approach allows for numerical study [10–16] of CW and periodic intensity regimes using
well-developed Floquet theory and software packages such as DDE-BIFTOOL [17].

In this paper, using a DDE model we investigate cavity solitons first predicted theoretically in the
anomalous dispersion regime in the Lugiato-Lefever equation (LLE) [18], which is equivalent to the
driven damped nonlinear Schrödinger equation . This equation describes qualitatively the dynamics of
the electric field envelope in a passive optical cavity subject to weak coherent optical injection, when
the injection frequency is close to a resonant frequency of the cavity. However, far enough from the
resonance one can observe a bistability between two branches of dissipative solitons corresponding
to different longitudinal cavity modes. This phenomenon is missing in the LLE and can be studied
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Figure 1: Schematic representation of an optically injected ring laser consisting of a SOA as an ampli-
fying medium, a spectral filter, and dispersive long fiber delay line.

using a travelling-wave-type equation [19]. Similarly to the traveling wave equation DDE models ac-
count fully for the multimode nature of the optical cavities, and, in addition, the anomalous dispersion
of the fiber waveguide can be described by including a distributed delay term into model equations [7].
Here, we develop a DDE model to study dissipative soliton in an optically injected ring cavity laser
containing semiconductor optical amplifier (SOA), long dispersive fiber delay line, and a narrow band-
pass spectral filter [13] . We perform stability analysis of the injection-locked steady states in the limit
of large delay [20] and demonstrate analytically the appearance of modulational instability and cavity
solitons. Finally, we reduce full distributed DDE model to a simplified DDE model that preserves the ef-
fect of the chromatic dispersion on the dynamics of the ring laser, and perform numerical continuation
and stability analysis of the periodic cavity soliton solutions in this model using the software package
DDE-BIFTOOL.

2 Delayed model of a dispersive semiconductor ring laser

Let us consider a ring laser shown schematically in Fig. 1. The laser is subject to a single-mode optical
injection and contains three main elements: SOA acting as an amplifying medium, spectral filter, and
dispersive fiber delay line. To describe the chromatic dispersion of the delay line we use the approach
of Ref. [7], where it was assumed that the dispersion is caused by a single Lorentzian absorption line
with the full-width at half-maximum Γ and the central frequency Ω strongly detuned with respect to
the frequency of the lasing transition. Normal dispersion regime in this case corresponds to Ω > 0
and the anomalous dispersion – to Ω < 0. To model the dynamics of the injected laser we use the
following set of DDEs for the complex envelope of the electric field A(t) at the entrance of the SOA,
material polarisation P (t), and the saturable gain of the SOA G(t) [7]:

dA

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2+iϕ [AT + PT ] + ηeiw0t, (1)

dG

dt
= γg

[
g0 −G− (eG − 1) |AT + PT |2

]
, (2)

P (t) = −σL
∫ t

−∞
e−(Γ+iΩ)(t−s)

J1

[√
4σ(t− s)

]
√
σ(t− s)

A(s)ds, (3)

whereAT = A(t−T ), PT = P (t−T ), T is the cavity round trip time, γ andw describe the spectral
width and the central frequency of the filter, η and w0 are the strength and the frequency of the optical
injection, σ is the total dispersion strength proportional to the delay line length. The parameters κ and
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Figure 2: Left: S-shaped branch of injection-locked CW states of Eqs. (1)-(3) obtained by varying
optical injection rate η for σ ≈ 2000. Center: branches of pseudo-continuous spectrum illustrating the
destabilization of the upper part of CW branch via modulational instability (MI) at η ≈ 0.0058. Right:
temporal cavity solitons with the repetition period close to T = 400 (right). Other parameters are:
Ω = −13, Γ = 0.001, α = 5,κ = 0.3, γ = γg = 1, g0 = 1.19, η = 0.0058, w = w0 = 0 and

φ = −0.2 + σ(αΓ−Ω)
Γ2+Ω2 − α log κ

2
.

ϕ, describe, respectively, linear attenuation and phase shift per cavity round trip, α is the linewidth
enhancement factor, γg is the carrier relaxation rate, and g0 is the pump parameter.

3 Stability analysis in the limit of large delay, modulational insta-
bility, and cavity solitons

By choosing the injection frequency as a reference frequency we can setw0 = 0 in Eqs. (1)-(3). Then,
the injection-locked CW solution of these equations takes the form A(t) = A0e

iϕ0 and G(t) = G0,
where P (t) can be expressed as P (t) = P0 =

(
e−σ/[Γ+iΩ] − 1

)
A0e

iφ0 . Similarly to the case of
LLE [6], we are interested in the situation, where the CW branch shown in the left panel of Fig. 2
exhibits a bistable behaviour due to the presence of strong nonlinear phase-amplitude coupling intro-
duced by the linewidth enchancement factor α.

We look for cavity solitons in the vicinity of the bistability curve when the upper CW state is destabilised
at large enough dispersion strength σ via a modulational instability in the anomalous dispersion regime
(Ω < 0). Linearizing Eqs. (1)-(3) near the injection locked CW solution, assuming that linear pertur-
bations evolve exponentially in time δA, δP, δG ∝ eλt, where λ is the eigenvalue, evaluating the
integral (3) as δP ∝ eλt

(
e−σ/[Γ+λ+iΩ] − 1

)
, and taking determinant of the Jacobian of the resulting

system we obtain a transcendental characteristic equation in the following form

c1(λ)Y 2 + c2(λ)Y + c3(λ) = 0, (4)

where Y = e−λT is the exponential term that appears from the delayed variables AT , PT . We look
for instability of the CW solution in the limit of large delay T � 1, when the eigenvalues λ with
infinitesimally small real parts λ1, λ = iµ + (λ1 + iλ2)/T + O(1/T 2), belonging to the so-called
pseudo-continuous spectrum [20] cross the imaginary axis. To this end substitute λ ≈ iµ in the
coefficients c1, c2, and c3 in the characteristic equation 4 and solve this equation to express λ1 as a
function of µ

λ1 = −Re log Yk(µ),
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Figure 3: Left: Bifurcation diagram illustrating branches of CW and periodic cavity soliton solutions
of (6)-(8) obtained by varying injection rate η. Center: a magnified region where the soliton branch
shows a spiralling behaviour leading to a multistability between cavity solitons with different widths.
Right: Profiles of different cavity solitons on the spiralling branch for η = 0.006 (thick solid) and
η ≈ 0.00606 (thin lines). Here σ = 9,Ω = −2,Γ = 0, κ = 0.25, g0 = 1.33, φ = −0.252− α log κ

2
,

and other parameters are as in Fig. 2.

where Y1 and Y2 represent two roots of quadratic equation (4) corresponding to the two curves of
pseudo-continuous spectrum shown in the cental panel of Fig. 2. We note that the above-described
algorithm of pseudo-continuous specrum calculation in the large delay limit was developed for con-
ventional DDEs [20], but it is also valid when the distributed delay term (3) is present. In the absence
optical injection, η = 0, the necessary analytical condition for the appearance in the anomalous dis-
persion regime of the modulational instability of the CW state with the rotation frequency ν was derived
in [7]:

αD2 < −
1

γ2
, (5)

where second-order dispersion coefficient is given by D2 = Im d2

dν2

(
−σ

Γ+i(Ω+ν)

)
. We have used

this condition to locate modulational instability of the injection-locked steady state at σ = 2000 for
Ω = −13, see central panel of Fig. 2, where the branches of pseudo-continuous spectrum are shown
in the criticality. Right panel of Fig. 2 shows a stable cavity soliton obtained with the help of direct
numerical integration of (1)-(3).

4 Reduced DDEs

Using Padé approximant of the integrand in (3) in the frequency domain we can simplify the distributed
delay system (1)-(3) to obtain an approximate DDE model with a single fixed delay that is still capable
of describing the formation of cavity solitons in the anomalous dispersion regime

dA

dt
+ (γ − iw)A =

γ
√
κe(1−iα)G/2+iϕ

1 + iσ
2(Ω−iΓ)

[(
1− iσ

2(Ω− iΓ)

)
AT + PT

]
+ ηeiw0t, (6)

dG

dt
= γg

g0 −G− (eG − 1)

∣∣∣(1− iσ
2(Ω−iΓ)

)
AT + PT

∣∣∣2
1 + σ(σ−4Γ)

4(Γ2+Ω2)

 , (7)
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dP

dt
= −

i(Ω− iΓ) +
σ

2
(

1 + iσ
2(Ω−iΓ)

)
P − σ

1 + iσ
2(Ω−iΓ)

A. (8)

Using the algorithm described in the previous subsection, we have performed stability analysis of the
injection locked states of Eqs. (6)-(8) in the large delay limit and found the parameter values where the
the upper part of the CW branch exhibits a modulational instability in the anomalous dispersion regime.
We used the software package DDE-BIFTOOL [17] to perform a continuation and stability analysis of
the cavity soliton branch, see Fig. 3, and demonstrated a very good qualitative agreement between
the simplified DDE model and the original distributed delay model (1)-(3). Unlike to that of the LLE
model [6], the cavity soliton branch shown in Fig. 3 demonstrates a spiralling behavior, which bares
similarities to the spatial cavity soliton branches calculated earlier in the models of semiconductor
devices [21].

5 Conclusion

In this short communication, we have studied with the help of distributed delay model the effect of
chromatic dispersion on the dynamics of an optically injected ring semiconductor laser. In the limit
of large delay we have performed analytical stability analysis of injection-locked CW states, and in
the anomalous dispersion regime found the modulational instability point of the upper part of bistable
CW branch. We demonstrated numerically the formation of temporal cavity solitons and proposed
a simplified DDE model with a single fixed delay for their description. Bifurcation analysis of cavity
solitons of the simplified model has beep performed with the help of DDE-BIFTOOL [17] software
package. The results of this analysis we found to be quite similar to those obtained earlier with the
LLE equation [6].
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