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Abstract.We consider the Dirichlet problem for equations of elliptic type in a domain G
with a boundary @G: A probabilistic representation of solutions to the problem is connected

with a system of stochastic di�erential equations (SDE). Unlike usual approximation of SDE

when a time-discretization is exploited, here a space-discretization is recommended. We

construct weak approximations for which an estimate of their errors contains derivatives

of the required solution to the Dirichlet problem only of lower order. In particular, it is

important for problems with a boundary layer. We simulate a Markov chain in G on the

basis of a one-step approximation using variable step in the space. The chain should be

stopped entering a su�ciently small neighborhood of the boundary @G. We estimate the

average number of steps before stopping and state some convergence theorems.

1. Introduction

Consider the Dirichlet problem for an equation of elliptic type

Lu(x) + g(x) :=

1

2

nX
i;j=1

aij(x)
@2u

@xi@xj
+

nX
i=1

bi(x)
@u

@xi
+ c(x)u+ g(x) = 0; x 2 G (1.1)

u j@G= '(x) (1.2)

The following conditions are assumed to be satis�ed :

(i) G is open bounded set with twice continuously di�erentiable boundary @G;
(ii) the coe�cients aij(x); bi(x); c(x); g(x) belong to the class C2( �G); c(x) � 0; ' 2

C4(@G);
(iii) aij = aji, and the matrix a(x) = faij(x)g satis�es a strict ellipticity condition,

i.e., a constant a > 0 exists such that for any x 2 �G; y 2 Rn the following inequality
nX

i;j=1

aij(x)yiyj � a2
nX
i=1

yi
2

(1.3)

holds.

The conditions (i)-(iii) ensure the existence of the unique solution u(x) of the problem
(1.1){(1.2) belonging to the class C4( �G) [14]:
Let �(x) be a matrix (for instance, a lower triangular matrix) that is obtained from

the following equality

a(x) = �(x)�>(x)

The solution to the problem (1.1){(1.2) has various probabilistic representations:

u(x) = E

Z
�

0

g(Xx(t))Yx;1(t)dt+E'(Xx(�))Yx;1(�) (1.4)

where Xx(t); Yx;1(t) is the solution of the Cauchy problem for the system of stochastic

di�erential equations (SDE)

dX = b(X)dt� �(X)h(X)dt+ �(X)dw(t); X(0) = x (1.5)

dY = c(X)Y dt+ h>(X)Y dw(t); Y (0) = 1 (1.6)

In (1.4){(1.6) b(x) = (b1(x); :::; bn(x))>; h(x) = (h1(x); :::; hn(x))>; hi(x); i = 1; :::; n;
are arbitrary functions belonging to the class C2( �G); w(t) = (w1(t); :::; wn(t))> is a

standard Wiener process, which is de�ned on a probabilistic space (
;F ;P) and which

is measurable with respect to the 
ow Ft; t � 0; Y is a scalar, � is a �rst passage
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time of the path Xx(t) to the boundary @G: The usual representation (see [1]) can be

seen in (1.4){(1.6) if h = 0; other are rest on Girsanov's theorem. Let us apply the

representation (1.4){(1.6) under

h(x) = ��1(x)b(x)

Then it has the form

u(x) = E('(Xx(�))Yx;1(�) + Zx;1;0(�)) (1.7)

where Xx(t); Yx;1(t); Zx;1;0(t) is the solution to the system

dX = �(X)dw(t) (1.8)

dY = c(X)Y dt+ (��1(X)b(X))>Y dw(t) (1.9)

dZ = g(X)Y dt (1.10)

with the initial data X(0) = x; Y (0) = 1; Z(0) = 0: Denote the solution of the system

(1.8){(1.10) with the initial data X(0) = x; Y (0) = y; Z(0) = z by Xx(t); Yx;y(t);
Zx;y;z(t): We always set y > 0 for de�niteness.

Introduce the function

v(x; y; z) = E('(Xx(�))Yx;y(�) + Zx;y;z(�)) (1.11)

Clearly

v(x; y; z) = u(x)y + z (1.12)

Only the last section (Section 7) is devoted to the general problem (1.1){(1.2). The

most e�ective results can be obtained in the case of constant coe�cients at higher

derivatives in (1.1). For simplicity, here (see Sections 3-6) we consider the more special

case when aij(x) = �ija
2, where a > 0 and �ij is the Kronecker delta. In this case the

equations (1.8) and (1.9) acquire the folowing form

dX = adw(t) (1.13)

dY = c(X)Y dt+
1

a
b>(X)Y dw(t) (1.14)

The simplicity of the equation (1.13) allows to simulate its solution exactly.

Let �� (��r) be the interior of a �-neighborhood (of an �r-neighborhood) of the
boundary @G belonging to �G: Let � � a and � < �r=2: Usually r is taken su�ciently

small and � = O(rq); q > 1. Introduce in Rn balls U� and U(x); x 2 Gn�� : U� is the

open ball of radius � with centre at the origin; U(x) for x 2 Gn��r is the open ball

of radius ar and U(x) for x 2 ��rn�� is the open tangent ball of radius �(x; @G) with
centre at x:
Consider the following random walk over small spheres which starts at x 2 Gn��:

For de�niteness let x 2 Gn��r: We set X0 = x: Let #1 be the �rst passage time of

the Wiener process w(t) to the sphere @Ur; we set X1 = X0 + aw(#1): Clearly, X1

has the uniform distribution on @U(X1): If X1 2 Gn��r; we search #1 + #2 which

is the �rst passage time of the process w(t) � w(#1); t � #1; to the same sphere

@Ur and we set X2 = X1 + a(w(#1 + #2) � w(#1)). If X1 2 ��rn��; we turn to

a walk over boundary of tangent ball U(X1) : we search #1 + #2 which is the �rst

passage time of the process w(t) � w(#1); t � #1; to the sphere @U 1

a
�(X1;@G)

and we

set X2 = X1 + a(w(#1 + #2)� w(#1)) as before. If X2 2 Gn��r; we turn again to the

walk over a sphere of radius ar with centre at X2; and if X2 2 ��rn��; we continue the
walk over tangent sphere and so on. At each k-th step it is a random walk over surface
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@U(Xk�1): Clearly, Xk has the uniform distribution on @U(Xk�1): Let � = �x be the

�rst number at which X� 2 ��: Let us set #� = 0 for k > � and Xk = X� for k � �:
So, we obtain a random walk

X0 = x
X1 = X0 + aw(#1)
: . . . . . . . . . . . . .
Xk = Xk�1 + a(w(#1 + :::+ #k)� w(#1 + :::+ #k�1)); k = 1; :::; �
Xk = X�; k � �

which stops at a random step �: It is a Markov chain.

Let Bk = �(X0; X1; :::; Xk); k = 1; 2; :::; be the sequence of �-algebras generated by

the random walk X0; X1; :::; Xk; ::: .
Presuppose that a method of approximation of the system (1.13){(1.14), (1.10) is

done and the sequences Y0; Y1; :::; Yk; :::; Z0; Z1; :::; Zk; ::: which approximate Yx;y(#1 +
::: + #k); Zx;y;z(#1 + ::: + #k); k = 1; 2; :::; correspondingly are constructed such that

Yk; Zk are Bk-measurable and they are stopped at the random step �: Let �X� be the

point of the boundary @G closest to X�: Put �Y� = Y�; �Z� = Z�: We are interested in

the di�erence

R = Ev( �X�; �Y�; �Z�)�Ev(Xx(�); Yx;y(�); Zx;y;z(�)) = Ev( �X�; �Y�; �Z�)� v(x; y; z)

since Ev( �X�; �Y�; �Z�) = E('( �X�) �Y� + �Z�) = E('( �X�)Y� + Z�) is taken as an approxi-

mation of v(x; y; z) = u(x)y + z:
We have

v( �X�; �Y�; �Z�)� v(x; y; z) = (v( �X�; �Y�; �Z�)� v(X�; Y�; Z�))

+(v(X�; Y�; Z�)� v(X��1; Y��1; Z��1)) + :::+ (v(X1; Y1; Z1)� v(x; y; z))

= (u( �X�)� u(X�))Y� +
1X
k=1

(v(Xk; Yk; Zk)� v(Xk�1; Yk�1; Zk�1))���k

and consequently

R = E(u( �X�)� u(X�))Y�+

1X
k=1

E(v(Xk; Yk; Zk)� v(Xk�1; Yk�1; Zk�1))���k (1.15)

An evaluation of R depends on a bound of the �rst term and on a one-step approx-

imation which gives bounds for the summands in right-hand side of (1.15). Our aim is

to �nd such one-step approximations that do not use the simulation of #k (it is a fairly
di�cult problem) and error of which can be bounded without using any derivatives

or at least without using high derivatives of the solution u(x) to the input problem

(1.1){(1.2). The latter is very important for problems with a small parameter at higher

derivatives because a boundary layer arises in such a situation, and the higher deriva-

tives of the solution u the larger values they take. Such approximations are based on

simulation of some conditional mathematical expectations like as

�i = E(

Z
#

0

wi(s)ds=w(#)); �ij = E(

Z
#

0

wi(s)dwj(s)=w(#))

Section 2 is devoted to some auxiliary lemmas and to simulation of �i; �ij: Various one-
step approximations are constructed in Section 3. The bound of the �rst term in (1.15)

essentially depends on �: The average number of steps E� also depends on �: A choice

of � is connected with exactness of a one-step approximation. As usual � = O(rk) if the
3



order of one-step approximation is equal to O(rk+2): Theorems on the average number

of steps E� and other results relevant for evaluation of the sum in (1.15) are obtained

in Section 4. The convergence theorems are proved in Section 5. In the case of a small

parameter at the second derivatives (this case is treated in Section 6), the system (1.8){

(1.10) becomes a system with a small noise and we construct some speci�c methods

for its approximate integration. Another way in this case rests on the fact that in the

almost whole domain G with the exception of a narrow boundary layer the solution to

the Dirichlet problem can be found su�ciently precise and simply by analytical tools

(this part of the solution is known as external expansion). Basing on this, we propose

a method of random walk in the narrow layer for searching the remaining part of the

solution (known as interior expansion). The e�ectiveness of this analytic-numerical

method is achieved because of small average number of steps for the random paths in

the greatly narrow domain. In the last section (Section 7) we consider two methods for

the general problem (1.1){(1.2). In contrast to the case of constant � in (1.8) we cannot

obtain the exact random walk Xk now. In the �rst method, which is the essentially

modi�ed variant of the method from [11], we solve (1.8) approximately by freezing its

coe�cients at every step at the point Xk�1: The next point Xk is found by a random

walk over the boundary of a small ellipsoid. The second method is remarkable in the

respect that the corresponding random walk terminates on @G: Therefore, we do not

require the neighborhood �� of the boundary @G; and the part E(u( �X�) � u(X�))Y�
of the error R disappears. The methods represented in Section 7 are similar to the

methods developed for the boundary value problems for the equations of parabolic type

[9].

The contents of the present paper are connected with weak approximations for SDE

[7], [17], [15] (see also [8], [5]). Unlike these works where a time-discretization is

exploited, here a space-discretization is used, which is necessary to solve boundary

value problems. Moreover, here we pay a special attention to numerical analysis of

the boundary layer which arises in the case of a small di�usion. Other approaches

to probabilistic methods of solving boundary value problems for di�erential equations

with partial derivatives are discussed, for instance, in [2], [6], [16].

2. Conditional expectation of Ito's integrals connected with Wiener's

process in the ball

Here both a probabilistic representation and an explicit form of solution will be

exploited for Dirichlet's problem in the ball Ur = fx = (x1; :::; xn) : jxj2 = x1
2

+ ::: +

xn
2 � r2g :

1

2
�u+ g(x) = 0; jxj < r (2.1)

u jjxj=r= '(x) (2.2)

In (2.1){(2.2) g(x) 2 C1(jxj � r); '(x) 2 C(jxj = r):
The probabilistic representation for the solution to the problem (2.1){(2.2) has the

form

u(x) = E'(x+ w(#x)) +E

Z
#x

0

g(x+ w(s))ds (2.3)

where w(t) = (w1(t); :::; wn(t)) is an n-dimensional standard Wiener process and #x is
the �rst passage time of the process x+ w(t) to the sphere @Ur:
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The explicit formula for the solution has the following form [14]

u(x) =
Z
j�j=r

Pr(x; �)'(�)dS� +
Z
j�j<r

Gr(x; �)g(�)d� (2.4)

where Pr is the Poisson kernel:

Pr(x; �) =
r2 � jxj2
�nrjx� �jn (2.5)

and Gr is the Green function which for n = 2 is equal to

Gr(x; �) =
1

2�
ln
jxj � j(r=jxj)2x� �j

rjx� �j ; n = 2 (2.6)

and for n > 2 is equal to

Gr(x; �) =
1

(n� 2)�n
� ( 1

jx� �jn�2 �
(r=jxj)n�2

j(r=jxj)2x� �jn�2 ); n > 2 (2.7)

In (2.5), (2.7) �n is area of the unit sphere in Rn : �n = 2�n=2=�(n=2): Remember

that �nr
n�1 is area of the sphere @Ur and �nr

n=n is volume of the ball Ur:

Proceeding to simulation of the conditional expectation E(
R
#

0 w
i(s)ds=w(#)) where

# = #0 is the �rst passage time of the Wiener process w(t) to the sphere @Ur let us

assume that

E(

Z
#

0

wi(s)ds=w(#)) = �wi(#); i = 1; :::; n (2.8)

If (2.8) is true then the constant � can be found from the condition

E(

Z
#

0

wi(s)ds� �wi(#))2 �! min
�

i.e.,

� =
Ewi(#)

R
#

0 w
i(s)ds

Ewi2(#)
(2.9)

Lemma 2.1. For every i = 1; :::; n the following formulae hold:

Ewi2(#) =
r2

n
(2.10)

Ewi(#)

Z
#

0

wi(s)ds = E

Z
#

0

wi2(s)ds =
r4

2n(n+ 2)
(2.11)

and consequently � from (2.9) is equal to

� =
r2

2(n+ 2)
(2.12)

Proof. The relation (2.10) is evident due to the identity w12(#) + :::+wn2(#) = r2:
Further from Ito's formula

dwi(t)
Z

t

0

wi(s)ds =
Z

t

0

wi(s)ds � dwi(t) + wi
2

(t)dt

and therefore

Ewi(#)
Z

#

0

wi(s)ds = E

Z
#

0

wi
2

(s)ds

5



It is not di�cult to verify that the function u = r4�jxj4 is a solution to the problem
1

2
�u+ 2(n+ 2)jxj2 = 0; ujjxj=r = 0

Therefore (see (2.3))

u(0) = r4 = 2(n+ 2)E

Z
#

0

nX
k=1

wk
2

(s)ds = 2n(n + 2)E

Z
#

0

wi
2

(s)ds
(2.13)

that gives (2.11). Lemma 2.1 is proved.

It turns out that the hypothesis (2.8) is true.

Theorem 2.1. For every i = 1; :::; n the following equality holds:

E(

Z
#

0

wi(s)ds=w(#)) =
r2

2(n+ 2)
wi(#) (2.14)

Proof. The equality (2.14) will be proved if we prove the following relation

E('(w(#)) �
Z

#

0

wi(s)ds) =
r2

2(n+ 2)
E('(w(#)) � wi(#)) (2.15)

for a su�ciently large class of functions ':We shall prove (2.15) for all '(x) 2 C(jxj =
r): Let us extend the function '(x) 2 C(jxj = r) to a function '(x) 2 C(jxj � r) as
the harmonic function in the open ball Urn@Ur, i.e.,

1

2
�' = 0; jxj < r (2.16)

Hence due to (2.4) and (2.5)

'(�) =
Z
@Ur

r2 � j�j2
�nrj� � �jn'(�)dS�; j�j < r (2.17)

As w(#) has the uniform distribution on the sphere @Ur; we have

E('(w(#)) � wi(#)) =
1

�nrn�1

Z
@Ur

'(�)�idS� (2.18)

Thanks to Ito's formula

d('(w(t)) �
Z

t

0

wi(s)ds) =
nX

k=1

@'

@xk
(w(t)) �

Z
t

0

wi(s)ds � dwk(t)

+'(w(t)) � wi(t) +
1

2

nX
k=1

@2'

@xk
2
(w(t)) �

Z
t

0

wi(s)ds � dt

Taking into account (2.16) we obtain from here

E('(w(#)) �
Z

#

0

wi(s)ds) = E(

Z
#

0

'(w(s)) � wi(s)ds) (2.19)

Thus from (2.3)

E('(w(#)) �
Z

#

0

wi(s)ds) = u(0) (2.20)

where u(x) is the solution to the problem

1

2
�u+ '(x) � xi = 0; jxj < r; ujjxj=r = 0 (2.21)

6



Using now (2.4) and (2.7) for x = 0 we obtain in the case n > 2

u(0) =
Z
j�j<r

1

(n� 2)�n
� ( 1

j�jn�2 �
1

rn�2
) � '(�) � �id�

Substituting '(�) from (2.17) and using Fubini's theorem we can write

u(0) =
1

(n� 2)�2
n

Z
j�j=r

[

Z
j�j<r

(
1

j�jn�2 �
1

rn�2
) � r

2 � j�j2
rj� � �jn � �

id�] � '(�)dS�
(2.22)

Let us calculate the integral over j�j < r in (2.22). For de�niteness take i = 1 and

let � = (�1; :::; �n); �1
2

+ ::: + �n
2

= r2: If �1 = 0 then the integral over j�j < r is

obviously equal to zero. Let �1 6= 0: Introduce the vector �0 = (r; 0; :::; 0) and consider

the orthogonal transformation T = ftijg; i; j = 1; :::; n; such that

T� = �0 (2.23)

It follows from (2.23) that the vectors (tk1; :::; tkn); k = 2; :::; n; are orthogonal to the
vector � and consequently the vector (t11; :::; t1n) is collinear with the vector �, i.e.,

t11 =
�1

r
; t12 =

�2

r
; :::; t1n =

�n

r

Let us change variables in the integral over j�j < r according to the formula

� = T�1�

Note that

�1 = t11�
1 + t21�

2 + :::+ tn1�
n =

�1

r
�1 + t21�

2 + ::: + tn1�
n

As T is orthogonal and all the components of �0 beginning from the second compo-

nent are equal to zero, we obtainZ
j�j<r

(
1

j�jn�2 �
1

rn�2
) � r

2 � j�j2
rj� � �jn � �

1d�

=

Z
j�j<r

(
1

j�jn�2 �
1

rn�2
) � r

2 � j�j2
rj� � �0jn

� (�
1

r
�1 + t21�

2 + :::+ tn1�
n)d� = Cn�

1

(2.24)

where

Cn =
1

r

Z
j�j<r

(
1

j�jn�2 �
1

rn�2
) � r

2 � j�j2
rj� � �0jn

� �1d�

To calculate Cn put in (2.20), (2.22) i = 1 and '(x) = x1 ('(x) = x1 is evidently

harmonic). For such a function from (2.20) and (2.11) we have

u(0) = E

Z
#

0

w12(s)ds =
r4

2n(n + 2)

But from (2.22) and (2.24)

u(0) =
1

(n� 2)�2
n

Z
j�j=r

Cn�
12dS�

and evidently Z
j�j=r

�1
2

dS� =
�nr

n�1

n
7



Therefore

Cn =
n� 2

2(n+ 2)
� �n

rn�3

Now for '(x) 2 C(jxj = r) from (2.20), (2.22) and (2.18)

E('(w(#)) �
Z

#

0

wi(s)ds) = u(0) =

1

(n� 2)�2
n

� n� 2

2(n+ 2)
� �n

rn�3

Z
j�j=r

�i'(�)dS� =
r2

2(n+ 2)
�E('(w(#)) �wi(#))

Thus, the theorem is proved for n > 2. The case n = 2 can be considered quite

analogously. Consider �nally the case n = 1: For even functions ' the relation

E('(w(#)) �
Z

#

0

w(s)ds) =
r2

6
E('(w(#)) � w(#)) (2.25)

is evidently ful�lled because both sides of (2.25) are equal to zero. Let ' be odd and

'(�r) = �'(r) = c: Then one can take the function '(x) =
c

r
x as a function ' in both

sides of (2.25) and obtain (2.25) as a consequence of (2.11). Theorem 2.1 is proved in

full.

Lemma 2.2. Let ' be harmonic in Ur and ' 2 C3(jxj � r): Then

E

Z
#

0

@'

@xi
(w(s)) �wj(s)ds =

E

Z
#

0

@'

@xj
(w(s)) � wi(s)ds =

r2

2(n+ 2)
E

Z
#

0

@2'

@xi@xj
(w(s))ds (2.26)

Proof. Let  be a harmonic function and  2 C2(jxj � r): Due to harmonicity of

 we have from Ito's formula that

d (w(t)) � wi(t) =
nX

k=1

@ 

@xk
(w(t)) � wi(t)dwk(t)

+ (w(t))dwi(t) +
@ 

@xi
(w(t))dt

and hence

E( (w(#)) � wi(#)) = E

Z
#

0

@ 

@xi
(w(s))ds (2.27)

Using (2.19), (2.15) and (2.27) we obtain

E

Z
#

0

 (w(s)) � wi(s)ds =
r2

2(n+ 2)
E

Z
#

0

@ 

@xi
(w(s))ds (2.28)

But the function  (x) =
@'

@xj
(x) 2 C2(jxj � r) is harmonic. Substituting it in (2.28)

we arrive at (2.26). Lemma 2.2 is proved.

Theorem 2.2. For every i; j = 1; :::; n the following formulae hold:

E(

Z
#

0

wi(s)dwi(s)=w(#)) =
1

2
wi

2

(#)� r2

2n
(2.29)
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E(

Z
#

0

wi(s)dwj(s)=w(#)) =
1

2
wi(#)wj(#); i 6= j (2.30)

Proof. The equality (2.29) is obvious since # does not depend on w(#) and E# =

r2=n: For (2.30) it is su�cient to prove

E('(w(#)) �
Z

#

0

wi(s)dwj(s)) =
1

2
E('(w(#)) � wi(#)wj(#)) (2.31)

for any ' which is the trace of harmonic ' 2 C3(jxj � r) on @Ur:
We have

d('(w(t)) �
Z

t

0

wi(s)dwj(s)) =
nX

k=1

@'

@xk
(w(t)) �

Z
t

0

wi(s)dwj(s) � dwk(t)

+'(w(t)) � wi(t)dwj(t) +
@'

@xj
(w(t)) � wi(t)dt

From here and from Lemma 2.2

E('(w(#)) �
Z

#

0

wi(s)dwj(s)) = E

Z
#

0

@'

@xj
(w(s)) �wi(s)ds

= E

Z
#

0

@'

@xi
(w(s)) � wj(s)ds = E('(w(#)) �

Z
#

0

wj(s)dwi(s)) (2.32)

But Z
#

0

wj(s)dwi(s) = wi(#)wj(#)�
Z

#

0

wi(s)dwj(s) (2.33)

The relation (2.31) follows from (2.32) and (2.33). Theorem 2.2 is proved.

Introduce the functions

hm(x) = E#m
x
; m = 1; 2; :::

where x 2 Ur; #x is the �rst passage time of the process x + w(t) to the sphere @Ur:
As it follows from one of Dynkin's theorems (see [1], Theorem 13.17), the function

hm(x) is the only solution to the following Dirichlet problem

1

2
�h1 + 1 = 0; h1 j@Ur

= 0

1

2
�hm +mhm�1(x) = 0; hm j@Ur

= 0; m = 2; 3; ::: (2.34)

The solution of the problem is obviously a function of the variable � = (x; x)1=2 =
jxj; 0 � � � r: We denote this function as qm(�): We easily obtain the following

boundary value problem for n > 1 (we recall that n is a dimension of the Wiener

process w(t))

1

2
q
00

1 +
n� 1

2�
q
0

1 + 1 = 0; q1(0) <1; q1(r) = 0

1

2
q
00

m
+
n� 1

2�
q
0

m
+mqm�1(�) = 0; qm(0) <1; qm(r) = 0 (2.35)

We mark that if n = 1 then (2.34) can be rewritten in the form

1

2
h
00

m
+mhm�1(x) = 0; hm(�r) = hm(r) = 0

9



The equations (2.35) are solvable by quadratures. One can also �nd the required

solution in the form

qm(�) = �0�
2m + �1�

2(m�1)r2 + �2�
2(m�2)r4 + ::: + �mr

2m

By such a way we can sequentially obtain

h1(x) =
r2 � jxj2

n

h2(x) =
jxj4

n(n + 2)
� 2r2jxj2

n2
+

(n + 4)r4

n2(n+ 2)

and so on.

In particular

E# =
r2

n
; E#2 =

n + 4

n2(n + 2)
r4; D# =

2

n2(n+ 2)
r4 (2.36)

But with growth of m such formulae become complicated. For example,

E#3 =
n2 + 12n+ 48

n3(n + 2)(n+ 4)
r6

Therefore, it is useful to obtain some simple bounds for hm(x):

Lemma 2.3. The following bounds

1

nm
(r2 � jxj2)m � hm(x) �

m!

nm
r2m�2(r2 � jxj2); m = 1; 2; ::: (2.37)

hold. Consequently

1

nm
r2m � E#m � m!

nm
r2m (2.38)

and for � < n=r2

E exp(�#) � n

n� �r2
(2.39)

Proof. The inequalities (2.37) are true for m = 1 because h1(x) = (r2 � jxj2)=n:
Let the right part of (2.37) be true for the number m: Consider the function �hm+1(x)
satisfying the equation

1

2
��hm+1 + (m+ 1)

m!

nm
r2m�2(r2 � jxj2) = 0; �hm+1 j@Ur

= 0 (2.40)

The function hm+1(x) satis�es the following equation (see (2.34))

1

2
�hm+1 + (m + 1)hm(x) = 0; hm+1 j@Ur

= 0 (2.41)

Due to the inductive hypothesis we get from (2.40) and (2.41) that

hm+1(x) � �hm+1(x) (2.42)

Consider now

~hm+1(x) =
(m+ 1)!

nm+1
r2m(r2 � jxj2)

We obtain directly

1

2
�~hm+1 +

(m+ 1)!

nm
r2m = 0; ~hm+1 j@Ur

= 0 (2.43)
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But

(m+ 1)!

nm
r2m � (m + 1)!

nm
r2m�2(r2 � jxj2); 0 � jxj � r

Hence it follows from (2.40), (2.43) and (2.42) that

hm+1(x) � �hm+1(x) � ~hm+1(x)

The right side of (2.37) is proved.

Now prove the left part of the inequality (2.37). Introduce the function

�hm(x) =
1

nm
(r2 � jxj2)m

Due to the inductive hypothesis �hm(x) � hm(x): For �hm+1(x) we obtain directly

1

2
��hm+1 = �m + 1

nm
(r2 � jxj2)m +

4m(m+ 1)

nm+1
(r2 � jxj2)m�1jxj2 �

�(m + 1)�hm(x) � �(m + 1)hm(x); �hm+1 j@Ur
= 0 (2.44)

Comparing (2.41) with (2.44) we get

�hm+1(x) � hm+1(x)

The inequalities (2.37) imply (2.38) and (2.39) easily. Lemma 2.3 is proved.

Lemma 2.4. Let '(t) be an Ft-measurable process with continuous sample functions.

Let

E

Z
#

0

'2(s)ds <1 (2.45)

Then

E( max
0�t�#

j
Z

t

0

'(s)dwi(s)j)2m �

K(E max
0�s�#

j'(s)j4m)1=2 � r2m; i = 1; :::; n; m = 1; 2; ::: (2.46)

Proof. Let � be the �rst passage time of the process

�i(t) =
Z

t

0

�#�s'(s)dwi(s) =
Z

#

0

'(s)dwi(s)

to the endpoints of the interval (�R;R): Introduce

Z(t) =
Z

t

0

��^#�s'(s)dwi(s) =
Z

�^#

0

'(s)dwi(s)

Of course, Z(t) depends on i and R: Clearly jZ(t)j � R:
We have

dZ2m(s) = 2mZ2m�1(s)��^#�s'(s)dwi(s) +m(2m� 1)Z2m�2(s)��^#�s'
2(s)ds

(2.47)

Due to the boundedness of Z(t) and the condition (2.45)

E

Z
t

0

Z4m�2(s)��^#�s'
2(s)ds <1

Hence from (2.47)

EjZ(t)j2m = E

Z
t

0

m(2m� 1)jZ(s)j2m�2��^#�s'2(s)ds �
11



m(2m� 1)E( max
0�s�t

jZ(s)j2m�2 � max
0�s�#

'2(s) � #) (2.48)

By applying the H�older inequality with p =
2m

2m� 2
(see such a reception, for in-

stance, in [3]) we get

EjZ(t)j2m � m(2m� 1)(E max
0�s�t

jZ(s)j2m)
2m�2
2m � (E( max

0�s�#
j'(s)j2m � #m))

1

m

(2.49)

As Z(t) is a martingale, we can use the Doob inequality

E max
0�s�t

jZ(s)j2m � (
2m

2m� 1
)2mEjZ(t)j2m

From here and (2.49) and then from the Cauchy-Bunyakovskii inequality and Lemma

2.3 we have

E max
0�s�t

jZ(s)j2m � KE( max
0�s�#

j'(s)j2m � #m) �

K(E max
0�s�#

j'(s)j4m)1=2 � (E#2m)1=2 � K(E max
0�s�#

j'(s)j4m)1=2 � r2m

As the right side of this inequality does not depend on t and R; we can direct them

to in�nity and obtain the inequality (2.46). Lemma 2.4 is proved.

3. One-step approximations

Let for de�niteness x 2 Gn��r (see Introduction). Then U(x) is a ball of radius ar
with centre at x: Let # be the �rst passage-time of the Wiener process w(t) to the

sphere @Ur: Then Xx(#) = x + aw(#) 2 @U(x) and # is the �rst passage time of the

solution Xx(t) of the equation (1.13) to the sphere @U(x): Consider the solution Xx(t);
Yx;y(t); Zx;y;z(t) of the system (1.13){(1.14), (1.10) at the time # : Xx(#); Yx;y(#);
Zx;y;z(#): Clearly, X1 = Xx(#) has the uniform distribution on @U(x) and it can be

simulated exactly. Our aim is to construct approximation Y1; Z1 for Yx;y(#); Zx;y;z(#)
so that the di�erence

d = E(v(X1; Y1; Z1)� v(Xx(#); Yx;y(#); Zx;y;z(#)))

= E(u(X1)Y1 + Z1 � u(Xx(#))Yx;y(#)� Zx;y;z(#))

= Eu(Xx(#))(Y1 � Yx;y(#)) +E(Z1 � Zx;y;z(#)) (3.1)

should be small.

Repeatedly applying Ito's formula like Wagner-Platen expansion [18], [8], [5] we can

obtain the following formula

Yx;y(#) = y +
1

a
y

nX
i=1

bi(x)wi(#) + c(x)y#+
1

a2
y

nX
i=1

nX
j=1

bi(x)bj(x)
Z

#

0

wj(t)dwi(t)

+y
nX
i=1

nX
j=1

@bi

@xj
(x)

Z
#

0

wj(t)dwi(t) + �11 + �12 + �13 (3.2)

where

�11 = a
nX
i=1

Z
#

0

Z
t

0

@c

@xi
(Xx(s))Yx;y(s)dw

i(s)dt
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+
1

a

nX
i=1

Z
#

0

Z
t

0

c(Xx(s))b
i(Xx(s))Yx;y(s)dw

i(s)dt

+
1

a

nX
i=1

Z
#

0

Z
t

0

c(Xx(s))b
i(Xx(s))Yx;y(s)dsdw

i(t)

+
nX
i=1

nX
j=1

Z
#

0

Z
t

0

(
a

2

@2bi

@xj
2
(Xx(s)) +

1

a

@bi

@xj
(Xx(s))b

j(Xx(s)))Yx;y(s)dsdw
i(t)

(3.3)

�12 =
Z

#

0

Z
t

0

(c2(Xx(s)) +
a2

2

nX
i=1

@2c

@xi
2
(Xx(s)))Yx;y(s)dsdt

+
nX
i=1

Z
#

0

Z
t

0

@c

@xi
(Xx(s))b

i(Xx(s))Yx;y(s)dsdt (3.4)

and �13 contains a sum of integrals like

Ii1;i2;i3 =
Z

#

0

Z
t

0

Z
s

0

f i1i2i3(Xx(s1))Yx;y(s1)dw
i1(s1)dw

i2(s)dwi3(t)

i1 = 0; 1; :::; n; i2 6= 0; i3 6= 0 (3.5)

where f i1i2i3 is a �nite sum of products and any product has not more than three factors

of the form bi, @bi=@xj ; @2bi=@xj@xk; @3bi=@xj@xk@xl; and c: Underline that �13 = 0 if

b = 0:
For Z we have

Zx;y;z(#) = z + g(x)y#+ �21 + �22 (3.6)

where

�21 = a
nX
i=1

Z
#

0

Z
t

0

@g

@xi
(Xx(s))Yx;y(s)dw

i(s)dt

+
1

a

nX
i=1

Z
#

0

Z
t

0

g(Xx(s))b
i(Xx(s))Yx:y(s)dw

i(s)dt (3.7)

and

�22 =
Z

#

0

Z
t

0

(g(Xx(s))c(Xx(s)) +
a2

2

nX
i=1

@2g

@xi
2 (Xx(s)))Yx;y(s)dsdt

+
nX
i=1

Z
#

0

Z
t

0

@g

@xi
(Xx(s))b

i(Xx(s))Yx;y(s)dsdt (3.8)

Let us put

Y1 = y +
1

a
y

nX
i=1

bi(x)wi(#) + c(x)y
r2

n
+

1

2a2
y

nX
i=1

nX
j=1

bi(x)bj(x)wi(#)wj(#)

� 1

2a2
y
r2

n

nX
i=1

bi
2

(x) +
1

2
y

nX
i=1

nX
j=1

@bi

@xj
(x)wi(#)wj(#)� 1

2
y
r2

n

nX
i=1

@bi

@xi
(x)

(3.9)

Z1 = z + g(x)y
r2

n
(3.10)

We note that Y1 > 0 for su�ciently small r as it has been supposed y > 0:
13



We have

d = E(u(Xx(#))E(Y1 � Yx;y(#) j w(#))) +E(Z1 � Zx;y;z(#)) (3.11)

Due to the relation E(# j w(#)) = E# = r2=n; Theorem 2.2, formulae (3.2) and (3.6)

we have from here that

d = �Eu(Xx(#)E(�11 + �12 + �13 j w(#))� E(�21 + �22) =

�Eu(Xx(#)(�11 + �12 + �13)� E(�21 + �22) (3.12)

Introduce the following integrals

Ii1(t; f; r) =
Z

t^#

0

f(Xx(s))Yx;y(s)dwi1
(s) =

Z
t

0

�#�sf(Xx(s))Yx;y(s)dwi1
(s)

Ii1;:::;ik(t; f; r) =
Z

t^#

0

Z
t1

0

:::
Z

tk�1

0

f(Xx(tk))Yx;y(tk)dwi1
(tk):::dwik

(t1); k > 1

(3.13)

where the indices i1; :::; ik take values in the set f0; 1; :::; ng; and where dw0(t) is un-
derstood to mean dt:
We set Ii1;:::;ik(f; r) := Ii1;:::;ik(#; f; r):
The following lemma will be used below.

Lemma 3.1. Let r be su�ciently small, # be the �rst passage time of w(t) to
the sphere @Ur; and f be a continuous function de�ned in �Ur0

; r � r0: Then for all
su�ciently small r the integral Ii1;:::;ik(f; r) satis�es the inequality

(EjIi1;:::;ik(f; r)j2m)1=2m � Kyr
P

k

j=1
(1+�i

j
)
; m = 1; 2; ::: (3.14)

where K is a constant depending on k and m; and

�ij =

(
1; ij = 0

0; ij 6= 0

i.e., the degree of smallness of the integral Ii1;:::;ik(f; r) with respect to r can be guided by
the following rule: dt contributes two to the order of smallness, and dwi(t); i = 1; :::; n;
contributes one.

Furthermore, if at least one index ij; j = 1; :::; k; is not equal to zero then

EIi1;:::;ik(f; r) = 0;
kX

j=1

i2
j
6= 0 (3.15)

Proof. The last assertion of this lemma is obvious. We shall prove (3.14) by induc-

tion on k. And we shall prove more. Namely, we prove for any m = 1; 2; ::: that

(E max
0�t�#

jIi1;:::;ik(t; f; r)j2m)1=2m � Kyr
P

k

j=1
(1+�i

j
)
; m = 1; 2; ::: (3.16)

We note that various constants in the proof are given the same letter K:
Let k = 1: Let jf(x)j � K for x 2 �Ur0

: If i1 = 0 (i.e., dwi1
(t) = dt) then

E max
0�t�#

jI0(t; f; r)j2m � KE(#2m max
0�t�#

Y 2m
x;y

(t)) �

K(E#4m)1=2(E max
0�t�#

Y 4m
x;y

(t))1=2 (3.17)
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If i1 6= 0 then according to Lemma 2.4

E max
0�t�#

jIi1(t; f; r)j2m � Kr2m(E max
0�t�#

Y 4m
x;y

(t))1=2 (3.18)

Let us prove that Emax0�t�# Y
4m
x;y

(t) <1:

Since c(x) � 0, then

0 < Yx;y(t) � �Yx;y(t)

where �Yx;y(t) is a positive martingale satisfying the following equation

d �Y =
1

a
b>(X) �Y dw(t)

We have

d �Y 4m =
4m

a
b>(X) �Y 4mdw(t) +

4m(4m� 1)

2

1

a2
jb(X)j2 �Y 4mdt

From here

E max
0�t�#

Y 4m
x;y

(t) � E max
0�t�#

�Y 4m
x;y

(t) � (
4m

4m� 1
)4mE �Y 4m

x;y
(#) =

(
4m

4m� 1
)4mE exp

(
2m(4m� 1)

a2

Z
#

0

jb(Xx(s))j2ds
)
� KE expfB#g

(3.19)

where B is a constant.

Now (3.16) for k = 1 and for all su�ciently small r follows from (3.17){(3.19) and

from Lemma 2.3 (see (2.39)).

Due to inductive hypothesis and (2.38) and under dwik+1
(t) = dt we have (underline

that the inequality (3.16) under given k is true for all m and, in particular, for 2m)

E max
0�t�#

jIi1;:::;ik;ik+1(t; f; r)j2m = E max
0�t�#

j
Z

t

0

�#�sIi1;:::;ik(s; f; r)dsj2m �

E( max
0�t�#

jIi1;:::;ik(t; f; r)j2m � #2m) � (E max
0�t�#

jIi1;:::;ik(t; f; r)j4m)1=2 � (E#4m)1=2 �

(Kyr
P

k

j=1
(1+�i

j
)
)2m � r4m

From here (as ik+1 = 1)

(E max
0�t�#

jIi1;:::;ik;ik+1(t; f; r)j2m)1=2m � Kyr
P

k

j=1
(1+�i

j
) � r2 = Kyr

P
k+1

j=1
(1+�i

j
)

i.e., the inequality (3.16) is proved for ik+1 = 1:
Now let ik+1 = i 6= 0: Then due to Lemma 2.4

E max
0�t�#

jIi1;:::;ik;ik+1(t; f; r)j2m = E max
0�t�#

j
Z

t

0

�#�sIi1;:::;ik(s; f; r)dwik+1
(s)j2m �

K(E max
0�t�#

jIi1;:::;ik(t; f; r)j4m)1=2 � (E#2m)1=2 � (Kyr
P

k

j=1
(1+�i

j
)
)2m � r2m

which is equivalent to (3.16). Lemma 3.1 is proved in full.

Let us return to (3.12). According to the mean value theorem

u(Xx(#)) = u(x) + a
nX

k=1

@u

@xk
(�)wk(#) (3.20)
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where � is a point between x and Xx(#): Let

M0(x) = max
�2 �U(x)

ju(�)j; M1(x) = max
�2 �U(x); 1�i�n

j @u
@xi

(�)j

We have (see (3.15))

Eu(x)(�11 + �13) = 0; E�21 = 0

Due to Lemma 3.1 and the Cauchy-Bunyakovskii inequality

jdj � M0(x)jE�12j+ aM1(x)
nX

k=1

Ejwk(#)(�11 + �13)j+Ej�22j

� (K0M0(x) +K1M1(x) +K2)yr
4 (3.21)

where K0; K1; K2 are constants depending only on a; b; c; and g:
So, we obtain the following theorem.

Theorem 3.1. The one-step error d = d(x; y; r) of the approximation X1 =

x + aw(#) and (3.9){(3.10) has the form (3.21), i.e., the degree of smallness of this
approximation with respect to r is equal to 4.

Consider another approximation

Y1 = y +
1

a
y

nX
i=1

bi(x)wi(#) + c(x)y
r2

n
(3.22)

Z1 = z + g(x)y
r2

n
(3.23)

Now from (3.11) instead of (3.12) we obtain (again using Theorem 2.2)

d = �Eu(Xx(#)) �Y � Eu(Xx(#))(�11 + �12 + �13)�E(�21 + �22)
(3.24)

where

�Y =
1

2a2
y

nX
i=1

nX
j=1

bi(x)bj(x)wi(#)wj(#)� 1

2a2
y
r2

n

nX
i=1

bi
2

(x)+

1

2
y

nX
i=1

nX
j=1

@bi

@xj
(x)wi(#)wj(#)� 1

2
y
r2

n

nX
i=1

@bi

@xi
(x)

The last two terms in (3.24) can be bounded like (3.21). For evaluating of the �rst

term let us write down

u(Xx(#)) = u(x) + a
nX

k=1

@u

@xk
(x)wk(#) +

1

2
a2

nX
k=1

nX
j=1

@2u

@xk@xj
(�)wk(#)wj(#)

(3.25)

and denote

M2(x) = max
�2 �U(x); 1�i;j�n

j @2u

@xi@xj
(�)j

Since

E(u(x) + a
nX

k=1

@u

@xk
(x)wk(#)) �Y = 0

we have obtained the following theorem.
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Theorem 3.2. The one-step error d = d(x; y; r) of the approximation X1 = x +
aw(#) and (3.22){(3.23) has the form

jdj � (K0M0(x) +K1M1(x) +K2M2(x) +K3)yr
4 (3.26)

Remark 3.1. We note that the degree of smallness of both approximations (3.9){

(3.10) and (3.22){(3.23) is equal to 4. But the bound (3.21) does not depend on second

derivatives of the function u:

Consider the case bi(x) = 0; i = 1; :::; n: In this case

Yx;y(#) = y + c(x)y#+

a
nX
i=1

Z
#

0

Z
t

0

@c

@xi
(Xx(s))Yx;y(s)dw

i(s)dt+
Z

#

0

Z
t

0

c1(Xx(s))Yx;y(s)dsdt =

y + c(x)y# + a
nX
i=1

@c

@xi
(x)y

Z
#

0

wi(t)dt+ c1(x)y
#2

2
+ �11 + �12 + �13

(3.27)

where

c1(x) = c2(x) +
a2

2

nX
i=1

@2c

@xi
2
(x)

�11 = a2
nX
i=1

nX
j=1

Z
#

0

Z
t

0

Z
s

0

@2c

@xi@xj
(Xx(s1))Yx;y(s1)dw

j(s1)dw
i(s)dt

�12 =

a
nX
i=1

Z
#

0

Z
t

0

Z
s

0

(
@c

@xi
(Xx(s1))c(Xx(s1)) +

1

2
a2

nX
j=1

@3c

@xi@xj
2
(Xx(s1)))Yx;y(s1)ds1dw

i(s)dt

+a
nX

j=1

Z
#

0

Z
t

0

Z
s

0

@

@xj
c1(Xx(s1)) � Yx;y(s1)dwj(s1)dsdt

�13 =
Z

#

0

Z
t

0

Z
s

0

(c1(Xx(s1))c(Xx(s1)) +
1

2
a2

nX
j=1

@2c1

@xj2
(Xx(s1))) � Yx;y(s1)ds1dsdt

For Z we have

Zx;y;z(#) = z + g(x)y#+

a
nX
i=1

Z
#

0

Z
t

0

@g

@xi
(Xx(s))Yx;y(s)dw

i(s)dt+
Z

#

0

Z
t

0

g1(Xx(s))Yx;y(s)dsdt

= z + g(x)y#+ a
nX
i=1

@g

@xi
(x)y

Z
#

0

wi(t)dt+ g1(x)y
#2

2
+ �21 + �22 + �23

(3.28)

where

g1(x) = g(x)c(x) +
a2

2

nX
i=1

@2g

@xi2
(x)
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and �21; �22; �23 are similar to �11; �12; �13 (we do not write them down here).

We note due to Lemma 3.1 that

E�11 = E�12 = E�21 = E�22 = 0

Ewk(#)�11 = 0; k = 1; :::; n (3.29)

and that for �11; �21 the degree of smallness with respect to r is equal to 4, for �12; �22
it is equal to 5, for �13; �23 it is equal to 6.

Consider the following one-step approximation (see Theorem 2.1 and (2.36))

Y1 = y + c(x)y
r2

n
+ a

nX
i=1

@c

@xi
(x)y � r2

2(n+ 2)
wi(#) +

1

2
c1(x)y �

4 + n

n2(2 + n)
r4

(3.30)

Z1 = z + g(x)y
r2

n
+

1

2
g1(x)y �

4 + n

n2(2 + n)
r4 (3.31)

Theorem 3.3. The one-step error d = d(x; y; r) of the approximation X1 = x +
aw(#) and (3.30){(3.31) has the form

jdj � (K0M0(x) + a2K1M1(x) + a4K2M2(x) +K3)yr
6 (3.32)

where K0; K1; K2; K3 depend only on c and g:

Proof. Due to Theorem 2.1, formula (2.36) for E#2; and (3.29) we have

d = E(u(Xx(#))E(Y1 � Yx;y(#) j w(#)) +E(Z1 � Zx;y;z(#)) =

�Eu(Xx(#))(�11 + �12 + �13)�E�23

Using expansions (3.20) and (3.25) we obtain

d = �E1

2
a2

nX
k=1

nX
j=1

@2u

@xk@xj
(�)wk(#)wj(#)�11�

Ea
nX

k=1

@u

@xk
(�1)w

k(#)�12 � Eu(Xx(#))�13 � E�23

Finally, the Cauchy-Bunyakovskii inequality and Lemma 3.1 imply (3.32).

Theorem 3.3 is proved.

It is not di�cult to obtain the following result.

Theorem 3.4. The one-step error d = d(x; y; r) of the approximation

X1 = x + aw(#); Y1 = y + c(x)y
r2

n
; Z1 = z + g(x)y

r2

n
(3.33)

has the form

jdj � (K0M0(x) + a2K1M1(x) +K2)yr
4 (3.34)

We note that the bound (3.34) does not contain second derivatives in contrast to the

case b 6= 0:

18



4. The average number of steps

Consider the question about average characteristics of �: In connection with the

homogeneous Markov chain Xk we introduce a one-step transition function

P (x;B) = P(X1 2 B j X0 = x)

where B is a Borel set belonging to �G: If x 2 Gn��r then P (x;B) is concentrated
on the surface @U(x) of radius ar; if x 2 ��rn�� then P (x;B) is concentrated on the

surface @U(x) of radius �(x; @G); and if x 2 �� then P (x;B) is concentrated at the

point x:
De�ne an operation P acting on functions v(x); x 2 �G; by formula

Pv(x) =
Z
�G

P (x; dy)v(y) = Ev(X1); X0 = x

and an operator

Av(x) = Pv(x)� v(x)

which is called by generator of the chain.

The generator gives an average increment of function v on the trajectory of the

considering chain per step.

Consider a boundary value problem in �G

Pv(x)� v(x) = �f(x); x 2 Gn�� (4.1)

v(x) = 0; x 2 �� (4.2)

which is connected with the chain Xk:
In (4.1) f(x) is a continuous function de�ned on the compact Gn�� : f 2 C(Gn��):

It is not di�cult to prove that there exists the only solution to the problem (4.1){(4.2)

which is a continuous function on Gn��: This solution is known (see [19]) to be the

following function

v(x) = E
�x�1X
k=0

f(Xk); X0 = x (4.3)

where �x relates to the chain starting at x:
If f � 1 then

v(x) = E�x

Further, if v(x) is the solution of the boundary value problem (4.1){(4.2) with the

function f(x) satisfying in Gn�� the inequality
f(x) � 1

then thanks to (4.3) we have

E�x � v(x) (4.4)

Consider the function

V1(x) =

(
A2 + (h; x)� x2; x 2 Gn��
0; x 2 ��

where the constant A2 and the vector h are such that for all x 2 �G the inequality

A2 + (h; x)� x2 � 0

is ful�lled. As in [10] we obtain the following result.
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Lemma 4.1. The inequalities

PV1(x)� V1(x) � �a2r2; x 2 Gn��r (4.5)

PV1(x)� V1(x) � 0; x 2 ��rn�� (4.6)

hold.

Proof. Let x 2 Gn��r and let U(x) do not intersect with ��: The measure P (x;B)
concentrates on @U(x) and due to the inclusion U(x) 2 Gn�� the function V1(y) on
@U(x) is equal to A2 + (h; y)� y2: Let dS be an area element of the surface @Ur and

let S be an area of this surface (remember Ur is a sphere with centre at the origin).

We have

PV1(x) = EV1(X1) = EV1(x + aw(#)) =

1

S

Z
@Ur

(A2 + (h; x + az)� (x + az)2)dS =

A2 + (h; x)� x2 � 1

S

Z
@Ur

(�h + 2x; az)dS � 1

S

Z
@Ur

a2z2dS (4.7)

Clearly Z
@Ur

(h+ 2x; az)dS = 0;
1

S

Z
@Ur

a2z2dS = a2r2

and the equality (4.7) implies

PV1(x)� V1(x) = �a2r2

Let now x 2 Gn��r but the part of U(x) can belong to ��: Introduce temporarily a

function �V1(y) which is equal to A2 + (h; y)� y2 on the all surface @U(x): Therefore,
as in (4.7) we obtain

P �V1(x) = A2 + (h; x)� x2 � a2r2

Since V1(y) � �V1(y) on @U(x) we have PV1(x) � P �V1(x) and consequently the

inequality (4.5) is proved for all x 2 Gn��r: By the same way it can be proved that

for x 2 ��rn�� the inequality PV1(x)� V1(x) � ��2(x; @G) is ful�lled. Lemma 4.1 is

proved.

Now introduce the function

V2(x) =

8>>>><
>>>>:

ln
�r

�
+ 1; x 2 Gn��r

ln
�(x)

�
+ 1; x 2 ��rn��

0; x 2 ��

where �(x) = �(x; @G):

Lemma 4.2. If r > 0 is su�ciently small then the inequalities

PV2(x)� V2(x) � 0; x 2 Gn��r (4.8)

PV2(x)� V2(x) � �Cn; x 2 ��rn�� (4.9)

hold. Here Cn does not depend on x: If the set G is convex, the assumption of smallness
of r can be omitted.
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Proof. As V2(x) � ln
�r

�
+ 1 for all x 2 G then PV2(x) � ln

�r

�
+ 1 for all

x too. Consequently, the inequality (4.8) is proved. Now let x 2 ��rn�� and �(x) =
�(x; @G) = �: At the beginning we consider the case � < � � �r

2
: In the case U(x) � ��r

we have

PV2(x) =
1

S

Z
@U(x)

V2(y)dS

Let S(h); 0 � h � 2�; be an area of spherical segment of height h: We have

S(h) =
Sp
�
� �(n=2)

�((n� 1)=2)
� 1

�n�2

Z p2�h�h2

0

�n�2p
�2 � �2

d� , 0 � h � �

S(h) = S � S(2�� h); � � h � 2�

where S is an area of sphere of radius � :

S =
2�n=2

�(n=2)
�n�1

In the case of convexity G we have

PV2(x) �
1

S

Z 2�

�

(ln
h

�
+ 1)S 0(h)dh (4.10)

From here

PV2(x)� V2(x) � 1 + ln 2 + ln
�

�
� S(�)

S
� 1

S

Z 2�

�

S(h)

h
dh� (ln

�

�
+ 1)

= �S(�)
S

+
1

S

Z
�

0

S(h)

2�� h
dh� 1

S

Z
�

�

2(�� h)

h(2�� h)
S(h)dh (4.11)

For h � � let us bound
S(h)

S
from below. We have

S(h)

S
=

1p
�
� �(n=2)

�((n� 1)=2)
� 1

�n�2

Z p2�h�h2

0

�n�2p
�2 � �2

d�

� 1p
�
� �(n=2)

�((n� 1)=2)
� 1

�n�2

Z p2�h�h2

0

�n�2

�
d� = An �

1

�n�1
(2�h� h2)(n�1)=2

(4.12)

where

An =
1p
�
� �(n=2)

�((n� 1)=2)
� 1

n� 1

Using the inequality 2�h� h2 � �h under h � � and continuing (4.12) we obtain

S(h)

S
� An � (

h

�
)(n�1)=2 (4.13)

As � < � we can use (4.13) and obtain

�S(�)
S

+
1

S

Z
�

0

S(h)

2�� h
dh < �S(�)

S
+
S(�)

S

Z
�

0

dh

2�� h
=
S(�)

S
(�1 + ln

2�

2�� �
)

� S(�)

S
(�1 + ln 2) � (�1 + ln 2) � An � (

�

�
)(n�1)=2 (4.14)
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Using (4.12) �nd an upper bound for the third term in the right-hand part of (4.11)

� 1

S

Z
�

�

2(�� h)

2�h� h2
S(h)dh �

�An �
1

�n�1

Z
�

�

2(�� h)(2�h� h2)(n�3)=2dh � �An �
1

�n�1

Z
�

�

2(�� h)(�h)(n�3)=2dh =

�An(
8

n2 � 1
� 4

n� 1
(
�

�
)(n�1)=2 +

4

n + 1
(
�

�
)(n+1)=2) (4.15)

The relations (4.11), (4.14) and (4.15) imply

PV2(x)� V2(x) � �An(
8

n2 � 1
+ (1� ln 2� 4

n� 1
)(
�

�
)(n�1)=2 +

4

n+ 1
(
�

�
)(n+1)=2)

(4.16)

Remember that (4.16) is proved for x which satis�es the inequality � < � = �(x; @G) �
�r

2
: Examine now x 2 ��rn�� with �(x; @G) >

�r

2
: Introduce temporarily a function

�V2(y) which is equal to �V2(y) = ln
�(y)

�
+ 1 on the all surface @U(x): Clearly, the

inequality (4.16) is ful�lled for the function �V2(y) too. But �V2(y) � V2(y) on @U(x):
Consequently PV2(x) � P �V2(x): As �V2(x) = V2(x) the inequality (4.16) is proved for

all x 2 ��rn��: It is not di�cult to �nd for any n = 2; 3; ::: a constant Cn > 0 such

that under � = �(x) > �

An(
8

n2 � 1
+ (1� ln 2� 4

n� 1
)(
�

�
)(n�1)=2 +

4

n + 1
(
�

�
)(n+1)=2) � Cn

(4.17)

If G is not necessarily convex but r is su�ciently small, we can use another inequality

instead of (4.10). The new inequality is distinguished from (4.10) only by presence of

a small term in the right hand side. It is easy to see that the term is O(r2): As a result
we obtain (4.17) with a new constant Cn which di�ers from the old one by a quantity

of O(r2) and, consequently, new Cn will be positive again. Lemma 4.2 is proved.

Remark 4.1. We do not aim for the highest precision and the bound (4.17) is fairly

rough. For example, under n = 3 the area S(h) is equal to Sh=2�; the integral in (4.10)
is equal to ln 2�=� and it holds

PV2(x)� V2(x) � ln 2� 1; x 2 ��rn��; n = 3

Theorem 4.1. If r > 0 is su�ciently small then there exist constants B and C such
that for any x

E�x �
B

a2r2
+ C ln

�r

�
(4.18)

If � = O(rp); p > 1; then

E�x �
B + 1

a2r2
(4.19)

If G is convex and r � d=2 where d is a diameter of G then the random walk is
realized over touching spheres and

E�x � C ln
d

2�
(4.20)
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Proof. The inequalities (4.18){(4.20) simply 
ow out from Lemma 4.1, Lemma 4.2,

and (4.4) if in the capacity of v(x) we take

v(x) =
V1(x)

a2r2
+
V2(x)

Cn

(4.21)

Theorem 4.1 is proved.

Remark 4.2. Let us emphasize that the number p does not play any essential role

for the upper bound of average number of steps E�:

Lemma 4.3 (see [19]). Let q(x) > 0; q 2 C(Gn��); f(x) � 0; f 2 C(Gn��); f(x) =
0 for x 2 ��: Let z(x) be a solution to the boundary value problem

q(x)Pz(x)� z(x) = �f(x); x 2 Gn�� (4.22)

z(x) = 0; x 2 �� (4.23)

Then for x 2 Gn��

z(x) = f(x) +E
�x�1X
k=1

f(Xk)�
k�1
i=0 q(Xi) (4.24)

Proof. We have for x 2 Gn��
z(x) = f(x) + q(x)Pz(x) = f(x) + q(x)Ez(X1) =

f(x) + q(x)E(f(X1) + q(X1)Pz(X1)) =

f(x) + q(x)E(��x>1f(X1)) + q(x)E(��x>1q(X1)E(z(X2)=X1)) =

f(x) + q(x)E(��x>1f(X1)) + q(x)E(��x>2q(X1)z(X2)) =

f(x) + q(x)E(��x>1f(X1)) + q(x)E(��x>2q(X1)f(X2))+

q(x)E(��x>3q(X1)q(X2)z(X3)) = ::: = f(x) + q(x)E(��x>1f(X1)) + :::+

q(x)E(��x>Nq(X1):::q(XN�1)f(XN)) + q(x)E(��x>N+1q(X1):::q(XN)z(XN+1))

Turning N to in�nity we obtain (4.24). Lemma 4.3 is proved.

Corollary. Let the conditions of Lemma 4.3 be ful�lled. If q = const > 1; f(x) = 1

for x 2 Gn�� ; then

z(x) = E(1 + q + q2 + ::: + q�x�1) =
1

q � 1
(Eq�x � 1)

If q = const > 1; f(x) � c for x 2 Gn�� ; then

Eq�x <1; E(1 + q + ::: + q�x�1) � 1

c
z(x)

Lemma 4.4. Let � = O(rp); p > 1: Then there exists a constant � > 0 and a
constant K > 0 such that for all su�ciently small r

E
�x�1X
k=0

(1 + �r2)k = O(
1

r2
) (4.25)
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E(1 + �r2)�x < K (4.26)

P(�x � k) � K(1� �r2)k (4.27)

Proof. For the function v(x) from (4.21) we have

(1 + �r2)Pv � (1 + �r2)v � �(1 + �r2); x 2 Gn��
or

(1 + �r2)Pv � v � �r2v � (1 + �r2); x 2 Gn��

v = 0; x 2 ��

Thus, the function v(x) is a solution to the problem (4.22){(4.23) with q(x) = 1+�r2

and with f(x) that satis�es the following inequality

f(x) � 1 + �r2 � �r2v = 1 + �r2 � �

a2
V1(x)�

�r2

Cn

V2(x)

Clearly, f(x) � 1=2 for su�ciently small � and r: By Corollary to Lemma 4.3

E
�x�1X
k=0

(1 + �r2)k � 2v(x)

and, consequently, (4.25) is proved. The relation (4.25) implies (4.26) easily. The rela-

tion (4.27) is obtained from (4.26) with the help of the Chebyshev inequality. Lemma

4.4 is proved.

5. Convergence theorems

Here we construct a number of algorithms for the Dirichlet problem

1

2
a2�u+

nX
i=1

bi(x)
@u

@xi
+ c(x)u+ g(x) = 0; x 2 G; (5.1)

u j@G= '(x) (5.2)

which are based on the one-step approximations obtained in Section 3.

The domain G and the coe�cients bi(x); c(x); g(x) and the function '(x) in (5.1){

(5.2) are supposed to satisfy the conditions (i){(ii) (see Introduction). We remember

that �� is the interior of a �-neighborhood of the boundary @G belonging to �G: Let
U 2 Rn be an open ball of radius 1 with centre at the origin and with the boundary

@U: Let � be a point uniformly distributed on the sphere @U and �1; �2; ::: be such

independent random points.

Basing on the one-step approximation (3.22){(3.23) we construct the following al-

gorithm. For de�niteness, let x 2 Gn�ar where r is su�ciently small. We set X0 =

x; r1 = r and

X1 = X0 + ar1�1

If Xk 2 Gn�ar; we set rk+1 = r: If Xk 2 �arn�r2 ; we set rk+1 =
1

a
�(Xk; @G): And in

both cases

Xk+1 = Xk + ark+1�k+1
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Let � = �x be the �rst number at which X� 2 �r2 : Then we set Xk = X� for k � �;
i.e., our algorithm is stopped at a random step �: We note that rk � r for all k: Now
we can write for k < � :

Xk+1 = Xk + ark+1�k+1 ; X0 = x (5.3)

Yk+1 = Yk � (1 +
rk+1

a

nX
i=1

bi(Xk)�
i

k+1 + c(Xk)
r2
k+1

n
) ; Y0 = 1 (5.4)

Zk+1 = Zk + Ykg(Xk)
r2
k+1

n
; Z0 = 0 (5.5)

We note that if r is su�ciently small then all Yk are positive: Yk > 0:
After obtaining X�; Y�; Z� we �nd the point �X� 2 @G which is the closest to X�

and set �Y� = Y�; �Z� = Z�: Then we calculate

v( �X�; �Y�; �Z�) = u( �X�) �Y� + �Z� = '( �X�)Y� + Z�

The desired solution to the problem (5.1){(5.2) is approximately equal to

u(x) �= E('( �X�)Y� + Z�) �=
1

N

nX
m=1

('( �X(m)
�

)Y (m)
�

+ Z(m)
�

) (5.6)

where �X(m)
�

; Y (m)
�

; Z(m)
�

; m = 1; :::; N; are independent realizations of the algorithm
(5.3){(5.5). The �rst approximate equality in (5.6) involves an error brought about by

replacing Xx(�); Yx;1(�); Zx;1;0(�) by �X�; Y�; Z�; in the second approximate equality

the error comes from the Monte-Carlo method. The �rst error is estimated by O(r2)

(see Theorem 5.1 below) and the second one by O(1=
p
N):

Construct an algorithm basing on the one-step approximation (3.9){(3.10):

Xk+1 = Xk + ark+1�k+1 ; X0 = x (5.7)

Yk+1 = Yk � (1 +
rk+1

a

nX
i=1

bi(Xk)�
i

k+1 + c(Xk)
r2
k+1

n
+ 
(Xk; rk+1; �k+1)) ; Y0 = 1

(5.8)

Zk+1 = Zk + Ykg(Xk)
r2
k+1

n
; Z0 = 0 (5.9)

where


(x; r; �) =
r2

2a2

nX
i=1

nX
j=1

bi(x)bj(x)�i�j�

r2

2a2n

nX
i=1

bi
2

(x) +
r2

2

nX
i=1

nX
j=1

@bi

@xj
(x)�i�j � r2

2n

nX
i=1

@bi

@xi
(x)

Let us note that

j
(x; r; �)j = O(r2)

where O is uniform with respect to x 2 G; � 2 @U and

E(
(Xk; rk+1; �k+1)=Bk) = 0 (5.10)

For the Dirichlet problem

1

2
a2�u+ c(x)u+ g(x) = 0; x 2 G (5.11)

u j@G= '(x) (5.12)
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we can also suggest two algorithms. One of them is based on the one-step approxima-

tion (3.33). We write down another one which is based on the one-step approximation

(3.30){(3.31). Now we choose �r4 as �� and set rk+1 =
1

a
�(Xk; @G) if Xk 2 �arn�r4:

We obtain

Xk+1 = Xk + ark+1�k+1 ; X0 = x (5.13)

Yk+1 = Yk � (1 + c(Xk)
r2
k+1

n
+

a

2(n+ 2)

nX
i=1

@c

@xi
(Xk)r

3
k+1�

i

k+1)+

Yk �
4 + n

2n2(2 + n)
c1(Xk)r

4
k+1 ; Y0 = 1 (5.14)

Zk+1 = Zk + Yk � (g(Xk)
r2
k+1

n
+

4 + n

2n2(2 + n)
g1(Xk)r

4
k+1) ; Z0 = 0

(5.15)

We note that by Theorem 4.1 the average number of steps for all the methods

presented here is O(
1

r2
):

Proceeding to convergence theorems let us use the relation (1.15)

jE('( �X�)Y� � Z�)� u(x)j = jRj � jE(u( �X�)� u(X�))Y�j+
1X
k=1

j ~dkj

where

~dk = E��>k�1(v(Xk; Yk; Zk)� v(Xk�1; Yk�1; Zk�1))

We note that � = �x here and below.

Clearly

u(Xk�1)Yk�1 � Zk�1 = v(Xk�1; Yk�1; Zk�1) =

E(v(XXk�1
(#k); YXk�1;Yk�1

(#k); ZXk�1;Yk�1;Zk�1
(#k))=Bk�1)

Therefore

~dk = E��>k�1dk

where

dk = E(v(Xk; Yk; Zk)� v(XXk�1
(#k); YXk�1;Yk�1

(#k); ZXk�1;Yk�1;Zk�1
(#k))=Bk�1)

(5.16)

is a one-step error for the point (Xk�1; Yk�1; Zk�1): Thus

jRj � jE(u( �X�)� u(X�))Y�j+
1X
k=1

jE��>k�1dkj (5.17)

Theorem 5.1. Let c(x) � �c0 < 0: Then both the method (5.3){(5.5) and the
method (5.7){(5.9) have the second order of convergence with respect to r; i.e., for all
su�ciently small r

jE('( �X�)Y� � Z�)� u(x)j � Kr2 (5.18)

In addition, the constant K for the method (5.3){(5.5) depends on the �rst and second
derivatives of the required solution u(x) while this constant for the method (5.7){(5.9)

depends only on �rst derivatives.
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Proof. Let us restrict ourselves to the proof of the method (5.7){(5.9). Due to

Theorem 3.1 the one-step error dk from (5.16) satis�es the following inequality

jdkj � KYk�1r
4 (5.19)

where (see (3.21))

K0M0(x) +K1M1(x) +K2 � K

for all x 2 �G:
As X� 2 �r2 we have

ju( �X�)� u(X�)j � Kr2

Therefore

jRj � Kr2EY� +Kr4
1X
k=0

E��>kYk (5.20)

Clearly, K does not depend on the second derivatives of u(x) here:
We have for k > 0 (see (5.10)

E��>kYk � E��>k�1Yk =

E(��>k�1Yk�1E(1 +
rk

a

nX
i=1

bi(Xk�1)�
i

k
+ c(Xk�1)

r2
k

2
+ 
(Xk�1; rk; �k)=Bk�1)) =

E(��>k�1Yk�1(1 + c(Xk�1)
r2
k

2
)) � (1� c0

2
r2) �E��>k�1Yk�1 �

(1� c0

2
r2)2 �E��>k�2Yk�2 � ::: � (1� c0

2
r2)k

From here

Kr4
1X
k=0

E��>kYk � Kr2 (5.21)

(remember that often various constants in this paper are given the same letter K).

Further

EY� =
1X
k=1

E��=kYk =
1X
k=1

(E��>k�1Yk � E��>kYk) = E��>0Y1 +
1X
k=1

E��>k(Yk+1 � Yk)

But

E��>k(Yk+1 � Yk) = E��>kYk(
rk+1

a

nX
i=1

bi(Xk)�
i

k+1 + c(Xk)
r2
k+1

2
+ 
(Xk; rk+1; �k+1)) =

E(��>kYkE(
rk+1

a

nX
i=1

bi(Xk)�
i

k+1 + c(Xk)
r2
k+1

2
+ 
(Xk; rk+1; �k+1)=Bk)) =

E(��>kYk � c(Xk)
r2
k+1

2
) < 0

Hence

EY� � E��>0Y1 � EY1 < 1 (5.22)

The relations (5.20), (5.21) and (5.22) imply (5.18). Theorem 5.1 is proved.
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Theorem 5.2. Let c(x) � 0: Then the method (5.13){(5.15) has the fourth order of
convergence with respect to r :

jE('( �X�)Y� � Z�)� u(x)j � Kr4 (5.23)

The constant K depends on the �rst and second derivatives of u(x):

Proof. Due to Theorem 3.3 the one-step error dk from (5.17) satis�es the following

inequality

jdkj � KYk�1r
6

As X� 2 �r4 we have

ju( �X�)� u(X�)j � Kr4

where K depends on the �rst derivatives of u(x):
Therefore

jRj � Kr4EY� +Kr6
1X
k=0

E��>kYk (5.24)

with K satisfying Theorem 5.1.

It follows from (5.14) that for anyhow small �0 there exists r0 > 0 such that for all

r � r0

Yk � Yk�1(1 + �0r
2) � ::: � (1 + �0r

2)k

Therefore

E��>kYk � (1 + �0r
2)kE��>k

Let �0 < � for � from Lemma 4.4. Then for all su�ciently small r

E��>kYk � (1� (� � �0)r
2)k (5.25)

In the same way as in the previous theorem one can prove that

EY� � 1 (5.26)

The relations (5.24), (5.25) and (5.26) imply (5.23). Theorem 5.2 is proved.

Remark 5.1. The more simple method based on the one-step approximation (3.33)

has the second order of convergence with a constantK depending on the �rst derivatives

of u(x):

Remark 5.2. We have considered a number of methods in the case aij(x) = a2�ij
where �ij is the Kronecker delta. But all the results can be carried over to the case

of constant coe�cients aij: Let us construct an algorithm analogous to (5.7){(5.9) for

de�niteness. In this case we have to integrate the system (1.8){(1.10) with a constant

matrix �:
Clearly, together with (1.3) the following inequality

a2
nX
i=1

yi
2 �

nX
i;j=1

aijyiyj � �a2
nX
i=1

yi
2

(5.27)

holds for any y 2 Rn and a constant �a > 0:
Let X0 = x: If Xk 2 Gn��ar; we set rk+1 = r; and if Xk 2 ��arn�r2; we search a

number rk+1 such that the ellipsoid (��1(X �Xk); �
�1(X �Xk)) = r2

k+1 touches @G:
In both cases we set

Xk+1 = Xk + �rk+1�k+1
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Let � = �x be the �rst number at which X� 2 �r2: Then we set Xk = X� for

k � �, i.e., our algorithm is stopped at a random step �: We note that rk �
�a

a
r for

all k: Underline that the distinction, consisting in a random walk over small ellipsoids

instead of a random walk over small spheres, is not essential.

Proceeding to an integration of (1.8){(1.10) we get (remember that ��1b(x) = h(x))

Yx;y(#) �= y + y
nX
i=1

hi(x)wi(#) + c(x)y#+ y
nX
i=1

nX
j=1

hi(x)hj(x)
Z

#

0

wj(t)dwi(t)+

y
nX
i=1

nX
j=1

@hi

@xj
(x)

Z
#

0

(�w(t))jdwi(t) (5.28)

Zx;y;z(#) �= z + g(x)y# (5.29)

instead of (3.2) and (3.6).

Then we construct the one-step approximation Y1; Z1 similar to (3.9), (3.10), i.e.,

we substitute
r2

n
instead of #;

1

2
wj(#)wi(#); i 6= j; instead of

R
#

0 w
j(t)dwi(t) and

1

2
wi

2

(#) � r2

2n
instead of

R
#

0 w
i(t)dwi(t) in (5.28) and (5.29) (see Theorem 2.2 and

formula (2.36)). In addition we take into account thatZ
#

0

(�w(t))jdwi(t) =
nX

k=1

�jk
Z

#

0

wk(t)dwi(t)

Having the one-step approximation we can easily obtain an algorithm similar to

(5.7){(5.9) substituting rk+1�
i

k+1 instead of wi(#) on (k + 1)-st step.

6. Boundary layer

Proceeding to the numerical investigation of a boundary layer let us consider the

following model problem:

1

2
"2�u+ c(x)u = g(x); x 2 UR (6.1)

u j@UR
= 0 (6.2)

where "� 1; UR 2 Rn is an open ball of radius R with center at the origin, c(x) and
g(x) belong to C1( �UR) and c(x) � �c0 < 0; x 2 �UR:
A solution u(x; ") to this problem has a 
uent alteration everywhere in UR with the

exception of a small neighborhood of @UR which is called boundary layer and which is

narrowed with decreasing ": The solution u(x; ") varies sharply in the boundary layer.

It is well known (see [4] and references therein) that the width of the boundary layer

for the problem (6.1){(6.2) is evaluated by l" (l is a number), i.e., boundary layer has

a form �l": Moreover, it is known that

ju(x; ")j � K; j @u
@xi

(x; ")j � K; j @2u

@xi@xj
(x; ")j � K; x 2 URn�l";

ju(x; ")j � K; j @u
@xi

(x; ")j � K

"
; j @2u

@xi@xj
(x; ")j � K

"2
; x 2 �l" (6.3)

An analytical approach to this problem consists in construction of an external as-

ymptotic expansion V (x; ") and of an interior asymptotic expansion W (x; "): They
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describe the solution in URn�l" and in �l" correspondingly: The external expansion has

a form

V (x; ") =
1X
k=0

"2kvk(x)

where

v0(x) =
g(x)

c(x)
; vk(x) = ��vk�1(x)

c(x)
; k � 1

The function V (x; ") is an asymptotic solution in URn�l"; i.e., the function

Vm(x; ") =
mX
k=0

"2kvk(x) (6.4)

is distinguished from the solution in URn�l" by O("2m+2):
The interior expansion W (x; ") is necessary for compensation of a discrepancy in

the boundary conditions. It turned out that outside of the boundary layer W (x; ") =
O("N); " ! 0; for any N: The sum V +W is an asymptotic solution of the problem

(6.1){(6.2). The interior expansion is constructed in a more complicated way and it is

not brought here.

It should be noted that the problem (6.1){(6.2) is one of the simplest ones in the

theory of boundary layer. If, for instance, the condition c(x) � �c0 < 0; x 2 �UR; is
violated so that the function c(x) may take zero values then analytical investigation of a

corresponding problem becomes exceedingly intricate. Therefore, a numerical approach

to problems with a small or with an intermediate parameter at higher derivatives is

actual. But it should not be supposed that one can use general numerical methods

(for example, the methods from Section 5) without taking into account the smallness

of the parameter at higher derivatives. Principal di�culties lie in the fact that the

average number of steps evaluated as O(
1

"2r2
) by Theorem 4.1 is big, and derivatives

of the solution in the boundary layer are great. Let us analyze these and some other

di�culties for the problem (6.1){(6.2).

As before we consider a random walk over spheres with radius "r in URn�"r (as

we have " instead of a now) and over tangent to @UR spheres in �"rn�� where � is

su�ciently small (in any case � < "r=2).
Now it is convenient to present the error R (see (5.17)) in the following form

jRj � jE(u( �X�)� u(X�))Y�j+
1X
k=1

jE��>k�1dkj �

jE(u( �X�)� u(X�))Y�j+
1X
k=1

jE��l"n��(Xk�1)dkj+
1X
k=1

jE�URn�l"(Xk�1)dkj
(6.5)

because

��>k�1 = ��l"n��(Xk�1) + �URn�l"(Xk�1)

Let the one-step error dk be bounded by �0(r; ")Yk�1 in the part �l"n�� of the bound-
ary layer �l" and by �1(r; ")Yk�1 outside of the boundary layer, i.e., in URn�l":We note

that the method (5.3){(5.5) under b(x) = 0 and the method (5.13){(5.15) have Yk � 1

for su�ciently small r if c(x) � �c0 < 0: For similar methods we obtain from (6.5)

that

jRj � jE(u( �X�)� u(X�))Y�j+ �0(r; ")E�0 + �1(r; ")E�1 (6.6)
30



where �0 and �1 are random numbers of steps inside and outside of the boundary

layer correspondingly. Clearly, �0 and �1 depend on x: Due to Theorem 4.1 we have

E�1 �
K

"2r2
: Fortunately, due to the stated below lemma E�0 �

K

r2
:

Lemma 6.1. There exists a constant K > 0 such that for any x 2 URn�� and
su�ciently small both " and r

E�0 �
K

r2
(6.7)

Proof. We have

E�0 = E
1X
k=1

��l"n��(Xk�1)

Consider the following function

v(x) =

8><
>:

3l2"2; 0 � jxj � R� l"
(R� jxj)(jxj � (R� 4l")); R � l" � jxj � R� �
0; R � � � jxj � R

Clearly v 2 C(Gn��) and
jv(x)j � 4l2"2; x 2 Gn��

Evaluate Pv(x)�v(x) for x belonging to the intersection of the boundary layer with

URn��; i.e., x 2 �l"n��: At �rst let x 2 �l"n�� be such that U"r(x) 2 �l"n��: Then
Pv(x) = Ev(X1) = Ev(x+ "w(#)) =

1

S

Z
@Ur

(R� jx+ "zj)(jx+ "zj � (R� 4l"))dS =

�R2 + 4lR"� jxj2 � "2r2 +
1

S
(2R� 4l")

Z
@Ur

jx+ "zjdS (6.8)

Due to the Taylor formula we have

jx+ "zj = jxj+ (x; z)

jxj "+
1

2
(
jzj2
jxj �

(x; z)2

jxj3 )"2 +O((r")3) (6.9)

Since

1

S

Z
@Ur

(z1)2dS = ::: =
1

S

Z
@Ur

(zn)2dS =
1

nS

Z
@Ur

nX
i=1

(zi)2dS =
r2

n

we get

1

S

Z
@Ur

(x; z)2dS =
1

S

nX
i=1

Z
@Ur

(xizi)2dS =
r2

n
jxj2 (6.10)

From (6.9) and (6.10)

1

S
(2R� 4l")

Z
@Ur

jx+ "zjdS = (2R� 4l")(jxj+ 1

2

r2"2

jxj �
1

2

r2"2

njxj) +O((r")3) �

(2R� 4l")jxj+ r2"2(1� 1

n
) +O((r")3)

Therefore, from (6.8) under su�ciently small r" we obtain

Pv(x)� v(x) � � 1

2n
"2r2
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This inequality can be proved for all x 2 �l"n�� by the same way as Lemma 4.1 has

been proved.

If 0 � jxj � R � l" � r" then Pv(x)� v(x) = 0 because v(x + "z) = 3l2"2 = const
under z 2 @Ur: Finally, if R� l"� r" � jxj � R� l"; we prove that Pv(x)� v(x) � 0

as in Lemma 4.1 introducing the function �v(y) = 3l2"2 � v(y):

Thus, we obtain for the function V (x) =
2n

"2r2
v that

PV (x)� V (x) � ���l"n��(x)
Consequently

E�0 � V (x) � 2n

"2r2
4l2"2 =

K

r2

Lemma 6.1 is proved.

Let us return to the inequality (6.6). The �rst term in the right side of (6.6) is

bounded by
K�

"
according to (6.3) (to the point let us note that for the problem

(6.1){(6.2) we need not seek �X� as u( �X�) = 0). If we choose � = O(rp); then the

�rst term can be done su�ciently small. At the same time due to Theorem 4.1 the

average number of steps depends on p insigni�cantly and as before it is evaluated by

O(
1

"2r2
): The factor E�0 = O(

1

r2
) in the second term (Lemma 6.1) is comparatively not

big and the other factor �0(r; ") depends on behavior of the solution in the boundary

layer and it may take big values. But the methods from the previous section do not

contain in their errors any too higher order derivatives of the solution and therefore

the second term can also be done small. The third term in (6.6) has the very big

factor E�1 = O(
1

"2r2
) and consequently this term can be decreased only by means

of �1(r; "): Thus, the principal problem is contained in construction of a su�ciently

precise and e�ective one-step approximation in the larger domain URn�l": Let us take
into consideration that the system (1.8){(1.10) for the problem (6.1){(6.2) is a system

with small noise:

dX = "dw(t) (6.11)

dY = c(X)Y dt (6.12)

dZ = g(X)Y dt (6.13)

In [12], [13] some speci�c methods for systems with small noise are constructed.

The errors of those methods have not a traditional form O(hq) (here h is a step with

respect to time) but are estimated by O(hp + "khq); q < p: Time-step order of such a

method is equal to q which is comparatively low and thanks to this fact one may reach

a certain e�ciency. Moreover, according to large p and the factor "k at hq the method

error becomes su�ciently small, and the method reaches high exactness. These ideas

can be carried over to the approximation under space-discretization as well. We shall

construct an e�cient one-step approximation in the main domain URn�l" with an error

of the form O(r2p+"kr2q):We remember that the solution u(x; ") has a 
uent alteration
in URn�l":
At the beginning let us analyze a method based on the one-step approximation

(3.33). According to (6.3) M0(x) and M1(x); x 2 �l"; in (3.34) are bounded by K and

K=" correspondingly. Hence �0(r; ") � Kr4 (of course, we have to take " instead of a
in (3.34)) and due to Lemma 6.1 the second term in (6.6) has the acceptable bound
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O(r2): Clearly, the third term has the following bound �1(r; ")E�1 � Kr4 � K
"2r2

� Kr2

"2
and we have to choose too small r to obtain an acceptable accuracy. This circumstance

leads in turn to increasing the average number of steps.

For the method (5.13){(5.15) we get analogously: �0(r; ")E�0 � Kr4; �1(r; ") �
Kr6; �1(r; ")E�1 �

Kr4

"2
: But this method can be simpli�ed without an essential loss

of accuracy. To this aim consider the following method:

Xk+1 = Xk + "rk+1�k+1 ; X0 = x (6.14)

Yk+1 = Yk � (1 + c(Xk)
r2
k+1

n
+

"

2(n+ 2)

nX
i=1

@c

@xi
(Xk)r

3
k+1�

i

k+1)+

Yk �
4 + n

2n2(2 + n)
c2(Xk)r

4
k+1 ; Y0 = 1 (6.15)

Zk+1 = Zk + Yk � (g(Xk)
r2
k+1

n
+

4 + n

2n2(2 + n)
c(Xk)g(Xk)r

4
k+1) ; Z0 = 0

(6.16)

Here we choose �r3 as �� and set: rk+1 = r if Xk 2 URn�"r; rk+1 =
1

"
(R � jXkj) if

Xk 2 �"rn��:
This method does not require calculation of the second derivatives

@2c

@xi
2
and

@2g

@xi
2
at

every step in contrast to the method (5.13){(5.15). Analogously to Theorem 3.3 one

can prove that

jdj � K(M0(x) + "2M1(x))yr
6 +K"4M2(x)yr

4 +K("2r4 + r6)y

Therefore (see (6.3)) for both �0(r; ") and �1(r; ") we have

j�i(r; ")j � K("2r4 + r6); i = 0; 1 (6.17)

The error (6.17) is only of the fourth order with respect to r (due to this fact the

method (6.14){(6.16) is fairly simple) but at the same time it is su�ciently small due

to the factor "2: Using (6.17) with regard to � = r3 it is not di�cult to obtain the

following result (we remark that now the �rst term in (6.6) is O(
r3

"
) � Kr2 +K

r4

"2
).

Theorem 6.1. Let � = r3: The error of the method (6.14){(6.16) is estimated by

jRj � Kr2 +K
r4

"2
(6.18)

and the average number of steps for this method is equal to O(
1

"2r2
):

Let us emphasize that the big average number of steps leads to the extraordinary

computational expenses. At the same time we can �nd the solution of the problem

(6.1){(6.2) in URn�l" with great accuracy according to (6.4). We use this fact and

construct below an analytic-numerical method.

We set

u(x; ") �= Vm(x; "); x 2 URn�l"
and instead of (6.1){(6.2) we introduce

1

2
"2�u+ c(x)u = g(x); R� l" < jxj < R (6.19)
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u jjxj=R�l"= Vm(x; "); u jjxj=R= 0 (6.20)

Consider the following random walk de�ned by r < max("; l") and � � r in the

layer R � l" � jxj � R : if R � l" � jXkj < R � l" + � or R � � < jXkj � R; then
Xk+1 = Xk; if R � l" + � � jXkj < R � l" + "r or R � "r < jXkj � R � �; then

rk+1 is equal to
1

"
(jXkj � (R � l")) or

1

"
(R � jXkj) correspondingly; if R � l" + "r

� jXkj � R� "r; then rk+1 = r: In the second and third cases we put

Xk+1 = Xk + "rk+1�k+1 (6.21)

Lemma 6.2. The average number of steps for the random walk (6.21) is estimated

by O(
1

r2
):

Proof. This lemma can be proved in just the same way as Lemma 6.1 by introducing

the function

v(x) =

8><
>:

0; R � l" � jxj < R� l"+ �
(R� jxj)(jxj � (R� l")); R � l"+ � � jxj � R� �
0; R � � < jxj � R

It is not di�cult to prove the following theorem.

Theorem 6.2. Let � = r5: Then the error of the method (6.14){(6.16) for the problem
(6.19){(6.20) is estimated by

jRj � K("2r2 + r4) +K
r5

"
(6.22)

and the average number of steps is equal to O(
1

r2
):

It is clear that the error for the original problem (6.1){(6.2) is more than (6.22)

about O("2m+2): We see the proposed analytic-numerical method be greatly e�ective:

it is more exact (compare the errors (6.22) and (6.18)) and it has the lesser average

number of steps.

Remark 6.1. Undoubtedly, many results obtained for the model problem (6.1){

(6.2) here can be used for more general problems. In particular, they can be carried

over to the problem (5.1){(5.2) under a = "; bi(x) = 0; c(x) � �c0 < 0 without any

essential change.

7. General problem

We o�er two methods for the general problem (1.1){(1.2) here. As in the case of

constant coe�cients aij (see Remark 5.2) we can write the inequality (5.27). Now aij

depends on x and (5.27) holds for any x 2 �G; y 2 Rn: For constructing a random walk

in �G we use the system (1.8) with frozen coe�cients and choose � = r2. Let X0 = x: If
Xk 2 Gn��ar; we set rk+1 = r; and if Xk 2 ��arn�r2; we search a number rk+1 such that

the ellipsoid (��1(Xk)(X �Xk); �
�1(Xk)(X �Xk)) = r2

k+1 touches @G: In both cases

we set

Xk+1 = Xk + �(Xk)rk+1�k+1 (7.1)

Let � = �x be the �rst number at which X� 2 �r2 : Then we set Xk = X� for k � �;
i.e., the random walk is stopped at a random step �:
Consider the following one-step approximation of the solution to the system (1.8){

(1.10):

X1 = x+ �(x)w(#) (7.2)
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Y1 = y + yc(x)
r2

n
+ yh>(x)w(#) (7.3)

Z1 = z + yg(x)
r2

n
(7.4)

where w(#) has the uniform distribution on the sphere @Ur and r is such that the

ellipsoid (��1(x)(X � x); ��1(x)(X � x)) = r2 belongs to �G:
Let u(x) be a solution to the problem (1.1){(1.2) and let v(x; y; z) = u(x)y + z: In

connection with (1.15) let us evaluate

Ev(X1; Y1; Z1)� v(x; y; z) = E(u(x+ �(x)w(#)) � (y + yc(x)
r2

n
+ yh>(x)w(#)))+

z + yg(x)
r2

n
� (u(x)y + z) (7.5)

We have

u(x+ �(x)w(#)) = u(x) +
nX
i=1

@u

@xi
(x)(�(x)w(#))i+

1

2

nX
i;j=1

@2u

@xi@xj
(x)(�(x)w(#))i � (�(x)w(#))j+

1

6

nX
i;j;m=1

@3u

@xi@xj@xm
(x)(�(x)w(#))i � (�(x)w(#))j � (�(x)w(#))m + � (7.6)

In (7.6) � evidently satis�es the following inequality

j�j � KM4r
4 (7.7)

where M4 is an upper bound for the fourth partial derivatives of the solution u(x) in
�G:
Let us write several relations which are necessary for our calculations:

Ewi(#) = 0; Ewi(#)wj(#) = �ij
r2

n
; Ewi(#)wj(#)wm(#) = 0 (7.8)

1

2
E

nX
i;j=1

@2u

@xi@xj
(x)(�(x)w(#))i � (�(x)w(#))j =

1

2
E

nX
i;j=1

@2u

@xi@xj
(x)

nX
k=1

�ik(x)wk(#) �
nX

m=1

�jm(x)wm(#) =

1

2

nX
i;j=1

@2u

@xi@xj
(x)

nX
k=1

�im(x)�jm(x)
r2

n
=

1

2

nX
i;j=1

aij(x)
@2u

@xi@xj
(x) � r

2

n
(7.9)

E
nX
i=1

@u

@xi
(x)(�(x)w(#))i � h>(x)w(#) =

E
nX
i=1

@u

@xi
(x)

nX
k=1

�ik(x)wk(#) �
nX

m=1

hm(x)wm(#) =

nX
i=1

@u

@xi
(x)

nX
m=1

�im(x)hm(x) � r
2

n
=

nX
i=1

bi(x)
@u

@xi
(x) � r

2

n
(7.10)
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Using the relations (7.6){(7.10) and the fact that u(x) is a solution to the equation

(1.1) we easily get from (7.5):

Ev(X1; Y1; Z1)� v(x; y; z) =

y(
1

2

nX
i;j=1

aij(x)
@2u

@xi@xj
+

nX
i=1

bi(x)
@u

@xi
+ c(x)u+ g(x)) � r

2

n
+ y�1 = y�1

where �1 satis�es

j�1j � K(M2 +M3 +M4)r
4

We have obtained the following lemma.

Lemma 7.1. The degree of smallness of the one-step approximation (7.2){(7.4) with
respect to r is equal to 4:

jEv(X1; Y1; Z1)� v(x; y; z)j � Kyr4

where K depends on derivatives of u(x) up to the fourth order.

Basing on the random walk (7.1) and on the one-step approximation (7.2){(7.4)

we can construct the corresponding algorithm by the same way as it has been done

in Section 5. The average number of steps for this algorithm is equal to O(
1

r2
): If

c(x) � �c0 < 0 then this algorithm has the second order of convergence with respect

to r; i.e., the relation (5.18) is ful�lled. This assertion can be proved without any

change in comparison with Theorem 5.1. But the constant K in the considered method

depends on the higher derivatives of u(x) than, for instance, in the method (5.3){(5.5).

Let us turn to the second method. Its random walk is constructed by the following

way.

Let � be a vector with coordinates �i; i = 1; :::; n; that are mutually independent

random variables taking values � 1p
n
with probability

1

2
: Clearly, if x 2 Gn��ar; then

x + �(x)� 2 �G: For x 2 G we set X0 = x: If Xk 2 Gn��ar; we set rk+1 = r; and if

Xk 2 ��arn@G; we search a minimal number rk+1 such that one of points from the set

fX : X = Xk + �(Xk)rk+1�g belongs to @G: In both cases we set

Xk+1 = Xk + �(Xk)rk+1�k+1 (7.11)

In the second case the point Xk+1 with probability
1

2n
falls on @G:

Let � = �x be the �rst number at which X� 2 @G: Then we set Xk = X� for k � �;
i.e., the random walk is stopped at a random step �: The obtained random walk gets

a �nite number of values at every step (it is equal to 2n) in contrast to the previous

walk and it does not require any neighborhood �� of the boundary @G: Due to this

fact we need not seek the point �X� and the �rst term in (1.15) for the second method

is lacking.

A one-step approximation in the second method is of the form

X1 = x + �(x)r� (7.12)

Y1 = y + yc(x)
r2

n
+ yh>(x)r� (7.13)

Z1 = z + yg(x)
r2

n
(7.14)
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Now we have

u(x+ �(x)r�) = u(x) + r
nX
i=1

@u

@xi
(x)(�(x)�)i+

1

2
r2

nX
i;j=1

@2u

@xi@xj
(x)(�(x)�)i � (�(x)�)j+

1

6
r3

nX
i;j;m=1

@3u

@xi@xj@xm
(x)(�(x)�)i � (�(x)�)j � (�(x)�)m + � (7.15)

where � satis�es the equality (7.7) again.

Instead of (7.8){(7.10) we get

E�i = 0; E�i�j = �ij
1

n
; E�i�j�m = 0 (7.16)

1

2
E

nX
i;j=1

@2u

@xi@xj
(x)(�(x)�)i � (�(x)�)j = 1

2n

nX
i;j=1

aij(x)
@2u

@xi@xj
(x)

(7.17)

E
nX
i=1

@u

@xi
(x)(�(x)�)i � h>(x)� = 1

n

nX
i=1

bi(x)
@u

@xi
(x) (7.18)

Using (7.15){(7.18) we can obtain the same results as for the �rst method: the

method based on the random walk (7.11) and on the one-step approximation (7.12){

(7.14) has the second order of convergence with respect to r and its average number of

steps is equal to O(
1

r2
):
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