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Optimal control of semiconductor melts by traveling magnetic
fields

Peter Nestler, Nico Schlömer, Olaf Klein, Jürgen Sprekels, Fredi Tröltzsch

Abstract

In this paper, the optimal control of traveling magnetic fields in a process of crystal growth from
the melt of semiconductor materials is considered. As controls, the phase shifts of the voltage in
the coils of a heater-magnet module are employed to generate Lorentz forces for stirring the crys-
tal melt in an optimal way. By the use of a new industrial heater-magnet module, the Lorentz
forces have a stronger impact on the melt than in earlier technologies. It is known from experi-
ments that during the growth process temperature oscillations with respect to time occur in the
neighborhood of the solid-liquid interface. These oscillations may strongly influence the quality of
the growing single crystal. As it seems to be impossible to suppress them completely, the main
goal of optimization has to be less ambitious, namely, one tries to achieve oscillations that have a
small amplitude and a frequency which is sufficiently high such that the solid-liquid interface does
not have enough time to react to the oscillations. In our approach, we control the oscillations at a
finite number of selected points in the neighborhood of the solidification front. The system dynam-
ics is modeled by a coupled system of partial differential equations that account for instationary
heat condution, turbulent melt flow, and magnetic field. We report on numerical methods for solv-
ing this system and for the optimization of the whole process. Different objective functionals are
tested to reach the goal of optimization.

1 Introduction

1.1 The technology of traveling magnetic fields and the main goal of optimiza-
tion

The control of the growth of bulk semiconductor (GaAs, Si, Ge) single crystals from the melt by means
of traveling magnetic fields has received considerable attention from crystal growing industry world-
wide in recent years. The most important industrial technique for the growth of single-crystals from the
melt is the so-called “Czochralski method”, depicted in Fig. 1.1. In this configuration, a rotating single
crystal seed is dipped into the melt, which is contained in a counter-rotating crucible. The seed is then
slowly pulled out of the melt, and a single crystal solidifies.

In the Czochralski process, the melt flow is turbulent, which creates the problem that impurities can
find their way into the growing crystal, lowering its quality. Also, crystal growers want the solid-liquid
interface (the “free boundary” between melt and crystal) to have a certain shape; moreover, the tem-
perature oscillations of the melt in the region directly below the crystal should have small amplitudes
and not too small frequencies, in order that the solidification front has no time to react to them, since
this may lead to the growth of crystals of lower quality.

Since the melt is electrically conducting, electromagnetic fields can play the role of a control, since a
Lorentz force is induced into the melt in their presence. In the past, time-dependent magnetic fields
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were successfully applied to improve crystal growth processes from the melt. Originally, the magnetic
fields were generated by magnets or induction coils placed outside of the growth apparatus. However,
with this kind of configuration it requires much energy and some technical efforts to produce a magnetic
field of sufficient magnitude in the melt, especially in cases when the thick walls of a pressure chamber
shield the magnetic field significantly (e. g., in the growth of III–V compounds with the LEC or VCz
processes). In the project KRISTM̃AG

R©
, an internal heater-magnet module was developed, which

consists of several coils that operate as a resistance heater while simultaneously generating a traveling
magnetic field. It was demonstrated that this heater-magnet module can produce appropriate magnetic
fields in the melt with moderate power consumption (see, e.g., [25, 29, 33, 34]).

In this paper, we aim to demonstrate that – in principle – methods of nonlinear optimization can be
applied to achieve the goals mentioned above. Mathematically, one has to solve an optimal control
problem for a system of partial differential equations on a complicated, nonsmooth, and axisymmet-
ric domain which is composed of a multitude of subdomains having different material properties. The
PDE system features the following components:

– Maxwell’s equations for the electromagnetic field,
– a nonlinear heat equation coupled to nonlocal radiation boundary conditions,
– strongly temperature-dependent and anisotropic physical coeffients,
– the Boussinesq approximation of the Navier-Stokes equations for electrically and thermally con-
ducting fluids.

For details of the model, we refer to [6, 9], see also Section 2 below. Fundamental contributions to the
mathematical analysis of this model were made in the seminal works [4–9]. The numerical simulation
of this highly complex mathematical model was performed for a real growth apparatus in the framework
of the project KRISTM̃AG

R©
in joint work with the Leibniz Institute for Crystal Growth (IKZ) in Berlin-

Adlershof. In this connection, we refer the reader to [24, 25, 26, 29, 33, 34]. Note that the problem
studied here is much more involved than that analyzed in [13], where the fluid part was not included.

In this contribution, we show the applicability of mathematical optimization techniques to a simplified
model. In particular, we do not consider the transfer of heat from the heater coils to the melt via
radiation. Our results show the efficiency of the control by traveling magnetic fields. Although this
is done for a simplified setting, the method should be applicable also for the full model. However, the
implementation would be essentially more difficult. But already the simplified model is very challenging.

The main goal of the optimization problem posed here is as follows. In a specific spatial point P1 within
the melt (cf. Figure 2.2 for the location of this point), the melt should behave as follows: considered
as a function of time, the temperature at P1 should vary with a sufficiently high frequency, while the
amplitudes of the temperature oscillations remain small. We will present a numerical method for the
optimization of this process, i.e., for the computation of an optimal traveling magnetic field. To influence
the melt flow, traveling magnetic fields are used that are generated by a heater-magnet module, indi-
cated as HMM in Figure 1.1. For controlling purposes, the phase shifts of the voltages in the magnetic
induction coils of the HMM are at our disposal. Although the total voltages might be controlled as well,
this possibility is not considered in this paper.

The heater-magnet module includes five induction coils that can be separately controlled, i.e., the
phase shifts can be fixed for each coil. In this way, our control is just a vector in R5. We do not consider
a time-depending control function as it is often considered in optimal control theory. In this way, the
control space is of very low dimension, and we do not have to cope with a control discretization.
Instead, the main difficulties originate from other sources. First, the problem is complicated by the
curse of dimension, due to the coupled and highly nonlinear system of PDEs that models the behavior
of the melt (recall that this system is composed of the nonlinear heat equation for the temperature of
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Figure 1.1: Growth apparatus with heater-magnet module and crucible.

the melt, the transient Navier-Stokes equations for the melt flow, and Maxwell type equations for the
Lorentz forces); second, the computed fields exhibit a fairly “wild” behavior, close to being chaotic. For
this reason, standard methods of optimal control theory such as adjoint-based gradient computations
turned out to be useless. While being differentiable in theory (at least in a spatially two-dimensional
setting), the control-to-state mapping associating the flow and temperature fields to the control vector
turns out to be numerically nondifferentiable. Finding a suitable objective functional that expresses
best the aim of our optimization, was another difficult issue. We will report on the application of several
functionals that turned out to be useful.

1.2 Related literature

Our paper is a contribution to the field of optimization and control of magneto-hydrodynamical systems
(MHD). The numerical analysis of such problems was extensively studied since the mid-nineties of the
last century. We refer exemplarily to [22, 23, 20, 21, 17, 36, 15] and the references therein. Moreover,
we mention [2, 18, 19]. In [2, 19], the solidification in crystal melts is controlled, while in [18] Lorentz
forces are used to control weakly conducting fluids. However, the complexity of these problems is
smaller and they are not solved with an industrial background.

In contrast to the abovementioned papers, we discuss a control problem of semiconductor crystal
growth having a real industrial background. Moreover, we deal with the optimization of traveling mag-
netic fields induced by a heater-magnet module located in the interior of the growth apparatus, which
is also a new feature. In this technology, the Lorentz forces can have a quite strong influence on the
crystal melt.
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2 Modeling the system dynamics

The semiconductor melt flow is contained in a crucible, which is the rotationally symmetric three-
dimensional bounded domain obtained by rotating the two-dimensional domain of Figure 2.2 about
the axis that coincides with its left edge. Throughout this paper, this two-dimensional domain will be
denoted by Ω. The crucible, i.e., the three-dimensional domain obtained by rotating Ω, is denoted by
Ω. Figure 2.2 also displays the two observation points P1 and P2 that we use. In P1, the optimization
criterion of high frequency temperature oscillation with small amplitude is to be met.

Figure 2.2: Cross section Ω of the crucible with observation points P1 = (0.0241,0.4055) (red color,
left) and P2 = (0.0442,0.4007) (blue color, right); the z-axis is vertical, the r-axis horizontal.

The process is modeled by the evolution equations for the temperature θ , the fluid velocity v, the
pressure p, and the Lorentz force fL, which are discussed next. The model constitutes a simplification
of the model considered in, e.g., [6].

2.1 Heat equation

We will frequently use cylindrical coordinates (r,φ ,z); in particular, for the flow velocity v we have v =
vrer + vzez + vφ eφ , where {er, eφ , ez} is the associated orthogonal system of tangent coordinates.
Since we assume that temperature and flow velocity do not depend on the rotation angle φ , only
the two-dimensional velocity vector v̂ := (vr,vz) appears in the heat equation. For convenience, we
formulate the differential equations in cartesian coordinates. Cylindrical coordinates were used in all
computations. Notice that the directions z and r comply with the cartesian coordinates for the two-
dimensional domain Ω.

The equations for the heat conduction are

ρ c(∂tθ + v̂ ·∇θ) = div (κ ∇θ) in (0,T )×Ω,

θ = gD on ΓD,

κ ∂nθ = gN on ΓN ,

∂nθ = 0 on Γ0,

θ(0, ·) = θ0 in Ω.

(2.1)
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Here, ΓD and ΓN denote the Dirichlet and Neumann boundary parts of the boundary ∂Ω of the
crucible Ω, Γ0 is the left edge of Ω, i.e., the rotational axis. Γ0 is part of the Neumann boundary,
because there the Neumann data are zero by symmetry. These boundary parts are displayed in Figure
2.3. By ∂n, we denote the two-dimensional outward normal derivative at the boundary of Ω. By gD,
the given temperature of the melt is denoted, where the solidified semiconductor crystal geometrically
“touches” the melt. Observe that we have neglected the heat sources originating from the induction
currents within the melt. This seems to be a reasonable simplification, since the Joule heating is likely
to be small and of minor importance. To simplify the setting, we further assume that the temperature
gD is constant with respect to time and given. For this purpose, we took a temperature field that was
computed by the full model of [24, 26] for the velocity vector v = 0, i.e., without convection. A rough
description is that gD and gN are adapted to the ground temperature for operating the process of
crystal growth that was computed by the full model including heat radiation. In Section 3.1, we will
report on the concrete selection of gD, gN and θ0.

Numerical implementation

For the numerical solution of the heat equation, we implemented a finite element method with respect
to the space variable. Here, triangular finite elements with standard piecewise linear and continuous
ansatz functions were applied. Moreover, we used the fractional step scheme with respect to time,
see [39, 16]. We also refer to the expositions in [30, 32]. This refined version of the standard Crank-
Nicolson method essentially stabilizes the numerical method and yields better results.

2.2 Navier-Stokes equations

The flow of the semiconductor melt was modeled by the three-dimensional instationary Navier-Stokes
equations with Boussinesq approximation,

ρ [∂tv+(v ·∇)v]−ν∆v+∇p = f (θ)+ fL in D× (0,T ),

divv = 0 in D× (0,T ),

v(·,0) = v0(·) in D,

(2.2)

with density ρ , velocity vector v, pressure p, viscosity ν , bouyancy force f (θ), and Lorentz force
fL. Here, v0 is a certain initial flow field that will be specified in Section 3.1. Recall that D is the
three-dimensional domain generated by rotating the two-dimensional domain Ω about the z-axis.

Data 1 (Coefficients in heat and Navier-Stokes equations) In the computations, we fixed the density
ρ = 5713 kg

m3 , the heat conductivity κ = 17.8 W
mK , the heat capacity c = 434 J

kgK , and the viscosity

ν = 2.8 ·10−3; these data correspond to a GaAs melt.

Boundary conditions

The Navier-Stokes equations have to be complemented by appropriate boundary conditions that de-
pend on the particular parts of the boundary. We formulate them in cylindrical coordinates.

The boundary parts of Γ = ∂Ω are displayed in Figure 2.3. The left edge of Γ, associated with
r = 0, is denoted by Γ0. The left upper boundary of the melt surface is depicted in red color. This is
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the part ΓD ⊂ Γ where the growing crystal is supposed to touch the melt. The remaining part of Γ,
ΓN = Γ\Γ0∪ΓD is the Neumann boundary. The part ΓS ⊂ ΓN of the Neumann boundary forms the
shell of the crucible and ΓT = ΓN \ΓS forms the top surface of the melt that is not below the crystal.

Figure 2.3: Boundary parts of Ω. The Neumann boundary ΓN is equal to ΓT ∪ΓS.

In Γ0, natural boundary conditions should be satisfied. To improve the stability and convergence prop-
erties of the numerical scheme for solving the equations, we fixed the conditions

vr = vφ = 0 on Γ0.

By symmetry, we have natural Neumann boundary data for vz,

∂nvz = 0 on Γ0.

On ΓD it is natural to impose a no-slip boundary condition on vr and to fix vz = 0. Moreover, the
growing crystal rotates about the axis r = 0 with the constant speed of −5rpm (rotations per minute);
this is reflected in a Dirichlet boundary condition for vφ on ΓD,

vr = vz = 0 and vφ =−5rpm on ΓD.

The crucible rotates in the opposite direction, so that the no-slip boundary condition on the part of the
Neumann boundary forming the shell of the crucible yields that

vr = 0, vz = 0, vφ = 5(rpm) on ΓS.

On ΓT , we postulate that the melt cannot move in the direction of the melt surface, leading to a kind
of no-slip boundary conditions for vz. Moreover, we postulate that the surface rotates with the same
velocity as the crucible:

vz = 0,vφ = 5, on ΓT ,

Summarizing, we use the following boundary conditions for the Navier-Stokes equations:

on Γ0 : vr = vφ = 0, ∂nvz = 0,

on ΓD : vr = vz = 0, vφ =−5,

on ΓT : vz = 0, vφ = 5,

on ΓS : vr = 0, vz = 0,vφ = 5,

(2.3)
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Numerical implementation

The rather turbulent behavior of the crystal melt required a very careful selection of the numerical
method for the Navier-Stokes equations. As for the heat equation, we applied a fractional step method
for the time discretization, [14, 16, 32]. For the space discretization, a finite element method was
implemented. Here, we used the (quadratic) Taylor-Hood element along with a grad-div stabilization,
see [31]. Moreover, the mass lumping technique [5] was used to avoid the inversion of mass matrices.
In view of this, the Taylor-Hood elements were complemented by bubble functions.

Additionally, the Van Kan projection method [38, 16] was implemented. In the implicit convection diffu-
sion step of this method, we resolved the arising linear systems by GMRES. In the pressure correction
step, the conjugate gradient method with hierarchical preconditioning was implemented.

2.3 Equations for the magnetic field

The heater-magnet module includes five induction coils that consist of three or four or five windings
each. The total number of windings is twenty-two, see Figure 2.4 for the location and main direction
of influence of the coils. On the induction coil k, k ∈ {1, . . . ,5}, the complex voltage vk = Vk eiϕk , is
imposed, where ϕk ∈ [0,2π] is the phase shift to be optimized.

Figure 2.4: Geometry of melting pot and induction coils underlying the numerical tests. From the right
lower coil to the very left coil, the number of windings is 5, 5, 5, 3, 4. The distance from the upper
boundary of the highest winding to the lower boundary of the lowest one is 0.208 m. The melting pot
has a thickness of 3-4 mm. This setting reflects the situation of Fig.1.1; it is also used in the software
package maelstrom, [37].

The coils in the heater-magnet module (HMM) (heat magnet module) have two aims: first of all, they
generate heat by resistive heating within the coils and heat up the growth apparatus and therefore also
the crucible and the melt. We do not consider the temperature distribution in the growth apparatus.
In our simplified model, the influence of the temperature field in the overall growth apparatus is incor-
porated via extracting the temperature field in the melt from a simulation of the complete apparatus,
generating the ground temperature. This ground temperature is used to generate the the Dirichlet and
Neumann boundary data of the heat equation; cf. the remarks in Section 3.1.

The second task of the induction coils, namely the generation of a Lorentz force in the melt by induced
magnetic fields, is decisive for the optimization. The Lorentz force fL depends on the electrical currents
in the inductions coils and hence on the vector of phase shifts ϕ = (ϕ1, . . . ,ϕ5) in the five induction
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coils. It is given by
fL(ϕ) = j(ϕ)×B(ϕ),

where j = jeφ : D→ C3 denotes the electrical current and D is a sufficiently large bounded compu-
tational domain with smooth boundary that contains D; B stands for the magnetic flux density. In our
numerical examples, D was a ball of radius 1m centered in the middle of the melting pot.

For B : D→ C3, we follow the approach in [35] and use the following vector potential ansatz with a
complex magnetic potential ψ ,

B = curlA, A = ψ eφ .

The potential ψ is the solution to an elliptic boundary value problem. To formulate this elliptic problem,
let vk` and jk` denote the total voltage and the electrical current in the winding ` of induction coil k, and
let nk be the number of windings of coil k, k ∈ {1, . . . ,5}, ` ∈ {1, . . . ,nk}. The coils are numbered
in the following order: Right lower, right middle, right upper, left coil under the melting pot (4 windings)
and right coil under the melting pot (3 windings); cf. Fig. 2.4.

Moreover, let Ωk` denote the cross section of the winding ` of coil k, which is orthogonal to the
direction of the winding. To find the associated potential ψ , all of the complex-valued voltages vk`
must be determined. Assume for a while that these voltages are known. Then the scalar complex
potential ψ is obtained as the solution to the following elliptic boundary value problem (see [35]):

−div
grad(rψ)

µ r
=


0 in the insulators,

−iωσ ψ +
σ

2πr
vk` in the winding ` of coil k,

−iωσ ψ in the other conductors,

in D

∂nψ = 0 on ∂ D.

(2.4)

Here, σ is the electrical conductivity, while µ denotes the magnetic permeability. The boundary value
problem (2.4) is complemented by interface conditions on the boundaries between different materials
as they are defined in [27]. We should mention that the notation of the potential used in [27] differs
from ours. Indeed, the potential ψ used in [27] is related to the potential ψ in (2.4) by ψ := r ψ , with
the potential (2.4) standing on the right-hand side and the one of [27] on the left-hand side.

The electrical current jk` in the winding ` of coil k is obtained from

jk` =
vk`

2π

∫
Ωk`

σ

r
drdz− iω

∫
Ωk`

σ ψ drdz. (2.5)

Then the electrical current j : D→ C3 is given by

j =


0 in the nonconducting domain

−iωσ ψ +
σvk`

2πr
in winding ` of coil k, k ∈ {1, . . . ,5}, ` ∈ {1, . . . ,nk},

−iωσ ψ in conductors not being coils (e.g., D).

(2.6)

To find the unknown complex-valued voltages vk` in the windings, we follow [27]. To this end, we define
particular potentials ψk`, k ∈ {1, . . . ,5}, ` ∈ {1, . . . ,nk}, that solve equation (2.4) for the following
particular choice of the voltages: for fixed k, `, we solve equation (2.4) with the particular voltages
vmn := ukl

mn, m ∈ {1, . . . ,5}, n ∈ {1, . . . ,nm}, where

ukl
mn =

{
1 if m = k, n = `,

0 otherwise.
(2.7)
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Since (2.4) is a linear system, its solution ψ can be obtained by superposition of the particular poten-
tials, i.e.,

ψ =
5

∑
k=1

nk

∑
`=1

vk`ψk`. (2.8)

Now, two additional facts determine the unknown voltages vk`. First, in all windings of the same coil k,
the currents must be the same,

jk`− jk(`+1) = 0, `= 1, . . . ,nk−1. (2.9)

We insert the representation (2.8) for ψ in (2.5). This yields expressions for the jk` in terms of the
values vk`. Next, we insert these expressions for the currents jk`, j`(k+1) in (2.9) above. For each coil
k, this yields nk−1 complex homogeneous linear equations for the unknown voltages. The coefficients
of the equations can be determined by the integrals in (2.5). In our setting, we have 3 ·4+3+2 = 17
such equations.

The second information for fixing the voltages is that

nk

∑
`=1

vk` =Vk eiϕk , k = 1, . . . ,5, (2.10)

where Vk is the total voltage of the induction coil k.

Data 2 (Voltages) For all the computational examples, we selected the following voltages: V1 =V2 =
V3 = 38V, V4 =V5 = 25V .

In this way, we obtain five additional complex inhomogeneous linear equations. Altogether, we arrive
at a linear system

Aw = b (2.11)

with a complex 22×22-matrix A and a given complex vector b ∈ C22 having components that equal
either zero or Vkeiϕk . The entries of A are easily obtained from (2.8) and the integrals appearing in
(2.5). The complex solution vector w contains all unknown voltages vk` as components.

Summary for the computation of fL(ϕ):

Preparatory step: Solve the elliptic equation (2.4) for the 22 particular voltages (2.7), k = 1, . . . ,5,
`= 1, . . . ,nk, to obtain the particular potentials Φk`. Establish the matrix A as explained above.

Next, the following steps have to be performed:

1 Solve the linear (complex) system of equations Aw = b, where – according to our implemented
numbering – b has the components

b j =


Vk eiϕk , if j = 5k and k ∈ {1,2,3},
V4 eiϕ4, if j = 19,
V4 eiϕ5, if j = 22,
0, otherwise.

2 Extract the values for vk` from w and determine the complex vector potential ψ by superposition,

ψ =
5

∑
k=1

nk

∑
`=1

vk`ψk`.

DOI 10.20347/WIAS.PREPRINT.2549 Berlin 2018
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3 Compute the electrical current j = −iσωψ in Ω according to (2.6), notice that the induction
coils are located outside of Ω.

4 Determine the Lorentz force by

fL =
1
2

Re

(
j
r

∇(rψ̄)

)
.

Data 3 (Electrical conductivities and magnetic permeabilities) In the magnetic field equations, we fixed
the following data: Electrical conductivity σ in 1

Ωm : We took σ = 0 in the argon gas above the melt, in
the gas surrounding the crucible, and in the the melting pot. Moreover, we selected σ = 52000 in the
induction coils, σ = 3.0 ·10−07 in the solidified GaAs crystal above the melt, cf. [3], and σ = 7.9 ·105

in the GaAs melt. Magnetic permeability in H
m : We computed with µ = µ0 := 4π 10−7 in all materials

except the gas surrounding melting pot and induction coils (painted in gray color in Fig. 2.4), where we
took 1.00000037 µ0. For the angular frequency, the value ω = 600π was used.

Numerical implementation

The Maxwell equations (2.4) were solved using maelstrom [37], a numerical software tool for the solu-
tion of magnetohydrodynamics problems in cylindrical coordinates based on FEniCS [1]. A core com-
ponent of the solver is a preconditioner suggested by Kolmbauer and Langer [28]. Our implementation
also followed Chaboudez [4].

3 Optimization of the electromagnetic field

Let us recall the main aim of our optimal control problem, namely to determine phase shifts ϕ1, . . . ,ϕ5
for the voltages in the five induction coils such that, in the observation point P1, the temperature θ is
oscillating at high frequency and low amplitude with respect to the time. More precisely, the mapping
t 7→ θ(P1, t) should exhibit this property.

3.1 Modeling the ground temperature in the crystal melt

As mentioned in the introduction, the full mathematical model of the real crystal growth process is more
complex than the simplified one we formulated in the preceding sections. In our model, we assumed
that suitable Dirichlet or Neumann boundary data are known for the temperature θ at ∂Ω. In this way,
we adopt a heat conduction problem with fixed boundary data. In contrast to this, the full model of [24,
26] includes heat radiation between heater-magnet module HMM and crucible. Moreover, it assumes
heat radiation between the free upper surface of the melt and the growth chamber of the furnace. For
a precise computation of the temperature and the melt flow, the effects of heat radiation cannot be
neglected. However, in our paper we want to address the applicability of optimization methods to the
problem posed. We will confirm this for the simplified model only, and it is clear that these methods can
be transferred to the full model including heat radiation. This would, however, considerably increase
the numerical complexity and the computing time.

The heat in the crystal melt is received from the induction coils of the HMM via radiative heat transfer.
In this way, the ground temperature level in the melting pot is generated. In the induction coils, the heat
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is generated by resistive heating. After a certain period of time of heating, a sufficiently high ground
temperature is achieved.

For the optimization of the process of crystal growth, we assume that the melting pot has already
reached the ground temperature. The associated amplitudes Vk of the voltages that account for the
heating of the melt are not the subject of optimization. They are kept fixed.

To fix suitable boundary data gD and gN in our simplified problem, we took the following approach:
associated with given heat generating currents in the heater-magnet module, a temperature field was
computed by the full model of [24, 26] including heat radiation but without convection, i.e., we selected
the velocity vector v = 0 in (2.1). From this temperature field in the domain Ω, we extracted the Neu-
mann and Dirichlet boundary data gN and gD that fit best to the pre-computed field. These boundary
data are kept fixed during the whole optimization process. In other words, the Dirichlet and Neumann
boundary data stand for the boundary data of the ground temperature field without considering the
flow of the melt. The distribution of the ground temperature field is shown in Figure 3.1.

Figure 3.5: Ground temperature of the melt.

3.2 Initial data for the optimization process

In this paragraph, we report on the choice of the initial data θ0 and v0 in the equations (2.1) and (2.2).

Initiating from the ground temperature in Figure 3.1, we started our computations without control, i.e.,
with fL = 0. After a sufficiently long time t1, the uncontrolled solution exhibits certain basic spatio-
temporal patterns that repeat in a fairly stable way, close to being periodic. Let us denote the temper-
ature and velocity fields at t1 by θ1(x) := θ(x, t1) and v1(x) := v(x, t1), respectively.

While this explains the initial data for the temperature and the flow field equations (2.1) and (2.2), it
cannot be recommended to start the mathematical optimization process initiating from these fields
θ1(x) and v1(x). This would cause extremely long computing times. Instead, we worked as follows.

Starting with the fields θ1, v1 at a new initial time, we imposed a fixed control vector of phase shifts
(ϕ0

1 , . . . ,ϕ
0
k ) that was known to generate an acceptable behavior of the melt. Associated with that

vector, we computed the temperature and flow fields up to the time t2 = 300. The fields θ̂0(x) :=
θ(x, t2) and v̂0(x) := v(x, t2) were taken as initial data in the equations (2.1) and (2.2). Then the
optimization method was applied in the new time period [0,30]. The objective functional, however,
was evaluated only in [20,30]. In other words, the interval of observation is [20,30].
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3.3 Objective functionals to be minimized

The main goal of optimization can be achieved in different ways. Let us first report on our attempts to
define a suitable objective functional that models this optimization aspect best.

We did not consider problems of vector optimization that would include both aims at the same time
(high oscillation and small amplitudes of the temperature in the observation point P1), since it turned
out that the second goal, small amplitudes, was achieved for high temperature frequencies ωθ auto-
matically. Therefore, we concentrated on maximizing the frequency ωθ , obtaining small amplitudes as
a byproduct. Yet, the aim of maximizing the frequency can be achieved in different ways.

� First, we maximized the number of zeros of the functions t 7→ θ(P1, t)−θmin and t 7→ θ(P1, t)−
θmax, where θmin < θmax are suitably chosen real numbers between the observed minimal and
maximal values of the real temperature θ . In other words, we counted the number of crossings
of the graph of the function t 7→ θ(P1, t) with the lines θ = θmin and θ = θmax.

The maximization of this number of line crossings worked well. Nevertheless, the selection of
the values θmin, θmax turned out to be difficult and was not satisfactory.

� We also tried to minimize some first Fourier modes of the function t 7→ θ(P1, t) while some
higher Fourier modes were maximized. This criterion was not very successful.

� Finally, we concentrated on maximizing an approximation of the total variation of the function
t 7→ θ(P1, t), and on maximizing the L2-norm of the function t 7→ θ(P1, t). Both these methods
were very successful. We will report on this issue in the next paragraphs.

3.3.1 Total variation type functional

We recall that ϕ = (ϕ1, . . . ,ϕ5) is the control to be found. As our first favorite objective functional,
the following approximation of the total variation of the function t 7→ θ(P1, t) is considered in the fixed
time interval [20,30]

var(ϕ) :=
`

∑
i=1
|θϕ(P1, ti)−θϕ(P1, ti−1)|−

γ

2
|ϕ|2, (3.12)

where 20 = t0 < t1 < .. . < t` = 30 is an equidistant partition of [20,30] and ` was sufficiently
large; we took ` = 2000. Here, | · | denotes the Euclidean norm, and γ > 0 is a small regularization
parameter

By the subscript ϕ as in θϕ , we indicate that θϕ is the temperature field associated with the control
vector ϕ of phase shifts. We did not use the functional (3.12) in this form. Instead, we applied the
following averaged objective functional J,

J(ϕ) :=
1

z(θϕ)

`

∑
i=1
|θϕ(P1, ti)−θϕ(P1, ti−1)|−

γ

2
|ϕ|2 , (3.13)

where
z(θϕ) = maxΘϕ −minΘϕ and Θϕ = {θϕ(P1, t0), . . . ,θϕ(P1, tn)}.

By averaging with z, the oscillations are better related to the main temperature differences. Associated
with the objective functional J, we considered the following optimal control problem (P):

max
ϕ∈φad

J(ϕ) :=
1

z(θϕ)

`

∑
i=1
|θϕ(P1, ti)−θϕ(P1, ti−1)|−

γ

2
|ϕ|2 , (P)
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subject to the equations

ρ c(∂tθ + v ·∇θ) = div (κ ∇θ) in Ω× (0,30),
θ = gD on ΓD,

∂nθ = gN on ΓN ,

∂nθ = 0 on Γ0,

θ(0, ·) = θ̂0(·),

ρ[∂tv+(v ·∇)v]−ν∆v+∇p = f (θ)+ fL(ϕ) in D× (0,30),
v(0, ·) = v̂0(·),

divv = 0,

subject to the boundary conditions (2.3) for the velocity v and

FL(ϕ) = j(ϕ)×B(ϕ),

where j(ϕ) and B(ϕ) are computed as in Section 2.3 and f is the buoyancy force. The set of admis-
sible phase shifts φad was defined by

φad = {ϕ ∈ R5, 0≤ ϕ ≤ 2π, ϕ1 ≥ ϕ2 ≥ ϕ3, ϕ4 ≤ ϕ5}.

This admissible set includes an important property of the magnetic field that accounts for the Lorentz
force: it is chosen as a traveling magnetic field.

Remark 1 (i) In the optimization, we fixed the amplitudes Vk in all of the induction coils and op-
timized only with respect to the phase shifts ϕ1, . . . ,ϕ5. A further optimization of the voltages
might be useful as well, but this was not the subject of our investigation and would need some
additional constraints.

(ii) The ratio between Lorentz force and buoyancy force is approximately 1 : 4. Although the buoy-
ancy force is dominant, the Lorentz force has sufficient influence on the melt.

Remark 2 The function ϕ 7→ var(ϕ) defines a reduced objective functional, i.e., the state functions
θ and v appear only implicitely via the solution of the state equations (2.1), (2.2) and (2.4). To compute
J for a given ϕ , first the Lorentz force fL(ϕ) is determined by the equations (2.4). Having fL(ϕ), the
coupled system (2.1), (2.2) is solved to obtain θ . Finally, θ is inserted in the functional var to obtain
J.

3.3.2 A formula for the frequency

Although the function t 7→ θ(P1, t) exhibits a certain periodic behavior, it is not a periodic function,
so that we cannot define a frequency in the standard sense. To have a certain substitute, we invoked
a well-known tool of signal processing, the so-called auto-correlation. The frequency of a periodic
function y : [−T,T ]→ R can be obtained from the auto-correlation function τ 7→ Ry(τ),

Ry(τ) =
∫ T

−T
y(t)y(t + τ)dt.
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If y is periodic, then the maximum of Ry is attained at τ = 0, hence by

Ry(0) =
∫ T

−T
y2(t)dt.

For increasing τ > 0, the next local maximum on the right of τ = 0 it attained at τ = p(y), where
p(y) is the period of y. If y is not periodic but behaves like a periodic function, as the function t 7→
θ(P1, t) does, then one can use this information to define a substitute for the frequency. To this end,
we consider the auto-correlation function

τ 7→ Rθ (τ) =
∫ T

−T
θ(P1, t) ·θ(P1, t + τ)dt

and determine its first local maximum on the right of τ = 0. We take the location τ of this local
maximum, set pθ := τ , and define

ωθ :=
1
pθ

as a substitute for the frequency the number. On [−T,0], we used the even extension the function
t 7→ θ(P1, t). In the numerical tests, the number ωθ will be indicated to have a quantification for the
frequency.

3.4 Numerical examples

3.4.1 Minimization of the total variation functional

All of the optimization runs were started with the initial vector ϕ0 = [140,70, 0,0,70]. The objec-
tive value for the averaged total variation was J(ϕ0) = 2.532186. The corresponding temperature
oscillation in the point P1 is displayed in Figure 3.6.

Figure 3.6: Function t 7→ θ(P1, t) for the initial iterate ϕ0 = [140,70,0,0,70].

As the numerical optimization method for the total variation functional, we applied the MATLAB code
pattern search compiled in FORTRAN. We selected this code, since the reduced bounded
variation function J is, in principle, numerically not differentiable. Tests with the MATLAB code fmincon
confirmed that, for our problems, pattern search performed better. For the spatial discretization
of Ω, we used a fairly coarse grid of about 2000 spatial nodes was used to ensure acceptable running
times for the optimization.
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Figure 3.7: Example 1, snapshot of temperature θ and vector field (vr,vz) without Lorentz force.

Figure 3.8: Example 1, function t 7→ θ(P1, t) for vanishing Lorentz force.

Example 1 (Solution of the state equations without Lorentz force) To better illustrate the effects of our
optimization by Lorentz forces, in Figure 3.7 a snapshot of a typical uncontrolled temperature field θ is
displayed along with the associated vector field (vr,vz) in the domain Ω. The associated temperature
oscillations are shown in Figure 3.8.

Example 2 (Optimization and Crank-Nicolson scheme) In this example, we solved the Navier-Stokes
and heat equations using the Crank-Nicolson scheme without fractional-step technique and with the
time-step size 0.005. After approximately 200 function evaluations, which needed more than four days
on an Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz with 24.00 GB RAM, the optimization code
pattern search returned the vector ϕ = [118,70,0.5,120, 124.5]; the value of the objective
functional is J(ϕ) = 10.8487, cf. Fig 3.9 (left). The frequency, determined via auto-correlation, is
ωθ = 0.5362 Hz. See also Figure 3.9 (right), where the difference between τ = 0 and the location of
the next local maximum is approximately 1.865 = 1/0.5362.
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Figure 3.9: Example 2, function t 7→ θ(P1, t) and auto-correlation

Example 3 (Optimization and fractional-step scheme) Here, we improved the stability of the numer-
ical scheme for the state equations using the fractional-step scheme. First of all, the numerical re-
sult is more precise. Second, we were able to work with the larger time step 0.01. This reduced
the computational time by about two days. The optimal result computed by pattern search is
ϕ = [118,70,0.5,120,124] with an associated optimal value J(ϕ) = 13.8579, cf. Figure 3.10 (left).
The frequency is ωθ = 0.7576 Hz; see the auto-correlation plot in Figure 3.10 (right), where the
distance between τ = 0 and the next maximum location is close to 1.32 = 1/0.7576.

Figure 3.10: Example 3, function t 7→ θ(P1, t) and auto-correlation; in the left figure, the value zero
corresponds to a temperature of 1511K.

3.4.2 Maximization of the energy of t 7→ θ(P1, t)

Another useful functional is the L2-norm of the function t 7→ θ(P1, t), namely

J2(ϕ) :=
∫ 30

20
θϕ(P1, t)2 dt.

Maximizing J2 subject to the constraints ϕ ∈Φad delivered very encouraging results.

Example 4 (Maximization of the L2-norm) Here, we used the same adjustment as in Example 3, but
instead of the total variation functional J, we maximized the energy functional J2. Now, the objec-
tive functional was of integral type and differentiable. Therefore, we invoked the optimization code
fmincon. The computed optimal shift is ϕ = [345.40,139.69,68.11, 199.45,199.56] with an op-
timal objective value J2(ϕ) = 1.21 ·104 and frequency ωθ = 0.495; see Figure 3.11.
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Figure 3.11: Example 4: Function t 7→ θ(P1, t); the value zero corresponds to 1511K.
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