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On the existence of global-in-time weak solutions
and scaling laws for

Kolmogorov’s two-equation model for turbulence
Alexander Mielke, Joachim Naumann

Abstract

This paper is concerned with Kolmogorov’s two-equation model for turbulence in R3 involv-
ing the mean velocity u, the pressure p, an average frequency ω > 0, and a mean turbulent
kinetic energy k. We consider the system with space-periodic boundary conditions in a cube
Ω =

(
]0, a[

)
3, which is a good choice for studying the decay of free turbulent motion sufficiently

far away from boundaries. In particular, this choice is compatible with the rich set of similarity
transformations for turbulence.

The main part of this work consists in proving existence of global weak solutions of this model.
For this we approximate the system by adding a suitable regularizing r-Laplacian and invoke
existence result for evolutionary equations with pseudo-monotone operators. An important point
constitutes the derivation of pointwise a priori estimates for ω (upper and lower) and k (only lower)
that are independent of the box size a, thus allow us to control the parabolicity of the diffusion
operators.

1 Introduction

In 1942, A.N. Kolmogorov (see [Kol42] and [Spa91, pp. 214–216] for an English translation) postu-
lated the following system of PDEs as a model for the isotropic homogeneous turbulent motion of an
incompressible fluid (x, t) ∈ R3 × ]0,∞[:

divu = 0 , (1.1a)

∂u

∂t
+ (u · ∇)u = ν0 div

(k
ω
D(u)

)
−∇p+ f , (1.1b)

∂ω

∂t
+ u · ∇ω = ν1 div

(k
ω
∇ω
)
− α1ω

2, (1.1c)

∂k

∂t
+ u · ∇k = ν2 div

(k
ω
∇k
)

+ ν0
k

ω

∣∣D(u)
∣∣2 − α2kω. (1.1d)

Throughout the paper, bold letters denote functions with values inR3 orR9 as well as normed spaces
of such functions. Here, the unknowns have the following physical meaning:

u is the velocity of the mean flow,

p is the average of the pressure,

ω is the average of the frequency associated with the
turbulent kinetic energy,

k is the mean turbulent kinetic energy.
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A. Mielke, J. Naumann 2

The velocity field v of the fluid motion is given by v = u+ũ, where ũ denotes the turbulent fluctuation
velocity, such that the scalar k is the time average 1

2
|ũ|2. Further,

ν0, ν1, ν2 > 0 and α2, α1 > 0 are dimensionless constant;

f is a given averaged external force,

D(u) =
1

2

(
∇u+ (∇u)>

)
is the mean strain-rate tensor.

The function ν0
k
ω

denotes the kinematic eddy viscosity, while ν1
k
ω

and ν2
k
ω

denote the corresponding
diffusion constants for the scalars ω and k. The constants ν0, ν1, ν2 > 0 and α2, α1 > 0 in (1.1)
related to the constants A, A′, A′′ [Kol42] (cf. also [Spa91, p.2̇13] where b = 2

3
k) as follows:

ν0 =
4

3
A, ν1 =

2

3
A′, ν2 =

2

3
A′′, α1 =

7

11
, α2 = 1. (1.2)

In Section 2 we discuss the scaling properties of the two-equation model (1.1) with the special viscosi-
ties “νj k/ω” and loss terms “α1ω

2” and “α2 kω”. These specific choices of power-law nonlinearities
relate to specific scaling laws in free turbulence. In [Kol42], there is no indication why the particular
values of α1 and α2 were chosen.

Since the numerical values of ν1 and ν2 are not relevant for the existence theory of weak solutions for
(1.1) we are going to develop below, we assume them to be equal to 1. A detailed discussion of the
numerical values of closure coefficients and their role in turbulence modeling can be found, e.g., in
[Bau13] and [Wil06, Chap. 4.3.1]. However, we keep the coefficient ν0 to emphasize that the viscous
dissipation generated by the viscous term in (1.1a) is feeding into the mean turbulent kinetic energy,
see the second last term in (1.1d). Hence, for sufficiently smooth solutions we have the formal energy
relation

d

dt

∫
R3

(1

2
|u|2 + k

)
dx =

∫
R3

(
f · u− α2ωk

)
dx, (1.3)

where the first term on the right-hand side gives the power of the external forces, while the second
term is Kolmogorov’s way of modeling dissipative losses, e.g. through thermal radiation. We refer to
[ObB02, ChL14] for general issues in turbulent modeling, in particular to [ChL14, Ch. 7+8] for the
mathematical analysis of the NS-TKE model (Navier-Stokes equation with Turbulent Kinetic Energy),
where the equation (1.1c) for ω is absent and the energetic losses in (1.1d) are modeled via k3/2/`
with a suitable mixing length ` instead of α2kω (see e.g. [ChL14, Eqn. (4.137)].

System (1.1) is an outgrowth of A.N. Kolmogorov’s theory of turbulence published in a series of papers
in 1941. Comprehensive presentations of this theory can be found, e.g., in [Fri04] and [MoY07, Vol. I,
Chap. 6.1, 6.2; Vol. II, Chap. 8] (see also the article [Tik91, pp. 488–503]). The function L = k1/2

ω

(“external length scale” or “size of largest eddies”) plays an important role for the study of the energy
spectrum of the turbulence (see [LaL91, Chap. 33], [Wil06, Chap. 8.1]). A review of the work of A.N.
Kolmogorov and the Russian school of turbulence can be found in [Yag94]. This paper contains also
some remarks about a possibly “missing source term” in (1.1c) (cf. [Spa91, p. 212]).

A profound discussion of the mathematical background of Obukhoff–Kolmogorov’s spectral theory of
turbulence (K41-functions, bounds for the energy spectrum for low and high frequencies) is given in
[Vig10].

In [BuM19], the authors study system (1.1) in Ω× ] 0, T [ , where Ω ⊂ R3 is a bounded C1,1 domain,
with mixed boundary conditions for ω and k, the condition u · n = 0 and a condition for the normal
traction of the tensor −pI + ν0

k
ω
D(u) on ∂Ω × ]0, T [. Under these boundary conditions, system

(1.1) characterizes a wall-bounded turbulent motion, i.e., turbulence is generated at the Dirichlet part
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Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 3

of the boundary. The authors complete this boundary value problem by the initial conditions (1.6b) and
prove the existence of a weak solution by combining a truncation method and the Galerkin approxima-
tion. Wall-generated turbulence is an important topic in engineering applications where two-equation
models, including the k - ε model, are heavily used, see [ChL14] and the references there.

The emphasis of this paper is quite different as we are interested in free turbulence (also called
isotropic or homogeneous turbulence) that develops far away of the boundary and is rather governed
by suitable scaling symmetries in the sense of [Obe02b] and [KLP20]. In [Kol42] Kolmogorov writes
about the derivation of his model: “We may submit to a rather less complete mathematical investiga-
tion the turbulent motion which is homogeneous and isotropic (in all scales), and from which mean
flow is absent; such a flow decays continuously with time. . . . Starting from the above local properties
of turbulence (and with the help of some more coarsely approximate assumptions), we may construct
the following complete system of equations to describe turbulent motion:” and then he states his two-
equation model (cited from English translation in [Spa91]).

To preserve these similarity transforms we avoid boundaries and use periodic boundary conditions
and on a cube size with side length a, that can be chosen much larger than the structures under
consideration. A bonus of the scaling invariance of (1.1) for f ≡ 0 is the existence of a rich class
of similarity solutions. Compatible with the periodic boundary conditions we have the following explicit
spatially constant solutions

u ≡ u◦, p ≡ 0, ω(t) =
ω◦

1+α1ω◦t
, k(t) =

k◦
(1+α1ω◦t)α2/α1

, (1.4)

i.e. the mean turbulent kinetic energy decays like t−α2/α1 , if there is no feeding through macroscopic
viscous dissipation. Indeed, independent of u and k, the equation (1.1c) for ω can always be solved
by the spatially constant solution ω(x, t) = ω◦/(1+α1ω◦t).

To show the effect of energy feeding from viscous dissipation into the turbulent kinetic energy k via
the source term ν0

k
ω
|D(u)|2 we can look at the following family of exact shear flow solutions:

u(x, t) =
U

1+α1ω◦t

sin(λx3)
cos(λx3)

0

 , ω(x, t) =
ω◦

1+α1ω◦t
, k(x, t) =

k◦
(1+α1ω◦t)2

. (1.5)

with p ≡ 0, where the positive constant parameters ω◦, k◦, λ, and U are related by

U2 =
α2 − 2α1

α1

k◦ and λ2 =
2α1

ν0

ω2
◦
k◦
.

These solutions only exist for the case α2/α1 > 2, and thus the decay of k like 1/t2 is slower than
1/tα2/α1 in (1.4), because of the spatially constant source term ν0

k
ω
|D(u)|2 = α1ω◦U

2(1+α1ω◦t)
−3.

As in [Obe02b] these invariant solutions exist because of the scaling symmetries, and moreover they
are indeed compatible with period boundary conditions if λa ∈ 2πN. For a given a we find infinitely
many solutions by choosing λn = 2πn/a and suitable k◦ and ω◦. This also highlights the fact that
there are no uniform compactness properties unless we prescribe a lower bound for k.

In place of R3 × ]0,∞[, in the present paper we study system (1.1) in the space-time cylinder Q =

Ω × ]0, T [, where Ω =
(
]0, a[

)3
with T, a > 0 arbitrary but fixed. To implement periodic boundary

conditions we interpret Ω as a torus by identifying the opposite sides. If ∂Ω denotes the boundary of
the cube Ω ⊂ R3 we set

Γi = ∂Ω ∩ {xi = 0}, Γi+3 = ∂Ω ∩ {xi = a} for i = 1, 2, 3,
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A. Mielke, J. Naumann 4

and complement (1.1) with periodic boundary conditions and initial conditions as follows:

u
∣∣
Γi× ] 0,T [

= u
∣∣
Γi+3× ] 0,T [

, analogously for p, ω, k,

D(u)
∣∣
Γi× ] 0,T [

= D(u)
∣∣
Γi+3× ] 0,T [

, analogously for ∇ω,∇k
for i = 1, 2, 3;

 (1.6a)

u = u0, ω = ω0, k = k0 in Ω× {0}. (1.6b)

Initial/boundary-value problem (1.1) and (1.6) characterizes a turbulent motion of an incompressible
fluid in Q that evolves from {u0, ω0, k0} at time t = 0. We assume the pressure to be periodic thus
avoiding additional pressure gradients that might occur when assuming that ∇p is periodic only. As
a consequence the mean flow a−3

∫
Ω
u(x, t) dx is constant, when assuming f ≡ 0, cf. [ChI94,

KaW97]. The usage of periodic boundary conditions is common in theoretical investigations of the
Navier-Stokes equations and modeling of free turbulence, see e.g. [FMRT01, LaL03, Fri04, Lew06,
LeL07, Vig10].

On physical grounds, the size a of the underlying cube Ω should be greater than certain quantities of
the turbulent motion. A detailed discussion of this aspect is given in [Dav04, pp. 25–26, 424–435] (cf.
also item 2◦ below). This is one of the main reasons why we consider a cube Ω of side length a and
periodic boundary conditions which provides an analysis that is completely independent of a. In par-
ticular, we can choose a much bigger than the “external length scale” L(x, t) := k(x, t)1/2/ω(x, t).

Our proof of the existence of weak solutions of (1.1) and (1.6), which has been already sketched in
[MiN15], is entirely independent of the discussion in [BuM19]. More specifically, the basic aspects of
our paper are:

1◦ In Section 3 we introduce the notion of weak solution {u, ω, k} with defect measure µ for (1.1)
and (1.6). This notion leads to a balance law for

∫
Ω
k(x, ·) dx and gives a connection between

the energy equality for 1
2

∫
Ω

∣∣u(x, ·)
∣∣2 dx and the vanishing of µ, cf. Proposition 3.7 which

states that (1.3) holds if µ = 0.

2◦ In Section 4 we present our existence theorem for weak solutions {u, ω, k} with defect mea-
sure µ. Based on comparison arguments with the explicit solution in (1.4) our solutions {u, ω, k}
satisfy, for a.a. (x, t) ∈ Ω× ]0, T [,

ω∗

1+α1ω∗t
≥ ω(x, t) ≥ ω∗

1+α1ω∗t
and k(x, t) ≥ k∗

(1+α1ω∗t)α2/α1
, (1.7)

if the initial conditions in (1.6b) satisfy the corresponding estimates at t = 0. It is important
to preserve these estimates even through the necessary approximations, since that provide a
lower bound for the diffusion coefficients k/w in the three evolution equations.

3◦ Moreover, the bounds in (1.7) provide a physically relevant lower bound for Kolmogorov’s exter-
nal length scale L = k1/2/ω, namely

L(x, t) =
k(x, t)1/2

ω(x, t)
≥ c (1+t)1−α2/(2α1) for all t ∈ [0, T ],

where α2 and α1 are from (1.1c) and (1.1d), and where c = const > 0 neither depends on a
nor on T (cf. Corollary 4.4 in Section 4). Using A.N. Kolmogorov’s values from (1.2) we have
α2/α1 = 11/7 and L grows at least as t3/14, which compares well to t2/7 mentioned in
[Kol42]).
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Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 5

4◦ The proof of our existence theorem is given in Section 5. It is based on the existence of an ap-
proximate solution {uε, ωε, kε} (without defect measure) of (1.1) and (1.6), establishing a-priori
estimates independently of ε and then carrying out the limit passage ε → 0. The existence of
the approximate solutions is obtained by applying an abstract existence results for evolution-
ary equations with pseudo-monotone operators from [Rou13, Thm. 8.9], see Appendix A for the
details.

5◦ Our approach is easily adaptable to more general domains with suitable boundary conditions,
and to the full-space Rd with general d ∈ N. However, for notational convenience and physical
relevance we restrict ourselves to d = 3 and the spatially periodic case.

6◦ In [Lew97] a simplified one-equation model of turbulence is studied, where a defect measure
appears as well (see the pages 397 and 416 there). Weak solutions for the full one-equation
model were obtained in [BLM11].

The parallel work in [BuM19] developed completely independently to the present work, which had
its origin in [MiN15]. The former work is based on an intricate Galerkin approximation with several
regularization parameters and is devoted to the case of bounded domains with nontrivial (even non-
smooth) boundary conditions that can trigger the generation of turbulence. For the initial condition
k0 := k(·, 0) we rely on the stronger assumption k0(x) ≥ k∗ > 0 to obtain the very explicit lower
bound for k(x, t) in (1.7) that is independent of the domain size a. In [BuM19] it is sufficient to assume
the much weaker condition min{0, log k0} ∈ L1(Ω), but estimates are given in terms of domain-
dependent constants. Moreover, [BuM19] has a stronger notion of solution that additionally guarantees
the validity of a local balance equation for the total energy density E(x, t) = k(x, t) + 1

2
|u(x, t)|2,

see Remark 3.6 and relation (3.11) there.

In subsequent work we will investigate similarity solutions that are induced by the scaling laws dis-
cussed in Section 2. The most challenging question will be the derivation of suitable solution concepts
that allow the turbulent kinetic energy k to vanish on parts of the domain. This would allow us to study
the predictions of the Kolmogorov model (1.1) in which way turbulent regions invade non-turbulent
regions.

2 Scaling laws and similarity

We consider the free turbulent motion of an incompressible fluid in R3 × ]0,∞[ which is governed by
the following system of PDEs (note that f ≡ 0):

divu = 0, (2.1a)

∂u

∂t
+ (u · ∇)u = div

(
d1(ω, k)D(u)

)
−∇p, (2.1b)

∂ω

∂t
+ u · ∇ω = div

(
d2(ω, k)∇ω

)
− g2(ω, k)ω, (2.1c)

∂k

∂t
+ u · ∇k = div

(
d3(ω, k)∇k

)
+ d1(ω, k)

∣∣D(u)
∣∣2 − g3(ω, k)k, (2.1d)

where u, p, ω and k are the unknowns, and

di :
(
]0,∞[

)2 −→ ]0,∞[ (i = 1, 2, 3),

gm :
(
]0,∞[

)2 −→ ]0,∞[ (m = 2, 3)
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A. Mielke, J. Naumann 6

are given coefficients. The coefficient d1(ω, k) represents a “generalized” viscosity of the fluid. System
(2.1) obviously includes Kolmogorov’s two-equation model (1.1) with

d1(ω, k) = ν0
k

ω
, d2(ω, k) = ν1

k

ω
, d3(ω, k) = ν2

k

ω
,

g2(ω, k) = α1ω, g3(ω, k) = α2ω.

We want to show that these choices are special, because they give a richer structure of scaling invari-
ances than arbitrary nonlinear functions. In particular, they respect the classical Reynolds symmetry
(see [ChL14, Sec. 3.3]), but go one step beyond because the viscosities dj(ω, k) also have scaling
properties. We refer to [Bar93, Obe02a, Obe02b] where the importance of scaling symmetries for the
modeling of free turbulence is discussed.

Let {u, ω, k} be a classical solution of (2.1) that has a suitable decay for |x| → ∞ such that the
following integrals over R3 exist. We multiply (2.1b) by u, integrate by parts over R3, integrate (2.1d)
over R3, and add the equations obtained. This gives the energy balance

d

dt

∫
R3

(1

2
|u|2 + k

)
dx = −

∫
R3

g3(ω, k)k dx, t ∈ ]0,∞[, (2.2)

cf. Proposition 3.7 in Section 4.

We are now studying the invariance of {u, ω, k} under the scaling

∂t 7→ α∂t, ∂xj 7→ β∂xj , u 7→ γu, ω 7→ ρω, k 7→ σk, (2.3)

where (α, β, γ, ρ, σ) ∈
(

] 0,+∞ [
)5

. Here, the pressure p is omitted, for it can be always suitably
scaled. In addition to the well-known scaling laws for the Navier-Stokes equations, the scaling (2.3)
have to leave invariant the coefficients di(ω, k) and gm(ω, t) for i = 1, 2, 3 and m = 2, 3, too.

To this end, we consider the following conditions for the family of parameters (α, β, γ, ρ, σ) and the
coefficients di and gm:

α = βγ, σ = γ2, (2.4)

∀ ω, k > 0 :

{
β2di(ρω, σk) = αdi(ω, k), i = 1, 2, 3,

gm(ρω, σk) = αgm(ω, k), m = 2, 3.
(2.5)

The first condition in (2.4) implies the invariance of the convective derivative ∂t + u · ∇ under (2.3),
while the second condition implies that |u|2 and k have the same scaling property which is necessary
for the conservation law (2.2) to hold. It is now easy to see that system (2.1) is invariant under the
scaling laws (2.3) if the conditions (2.4) and (2.5) hold.

In order to relate the present discussion to Kolmogorov’s two-equation model (1.1) we make an
“ansatz” for the parameter β as well as for the coefficients di and gm. For (γ, ρ), (ω, k) ∈

(
]0,∞[

)2

define
β = ρAγ1−2B (2.6)

di(ω, k) = Diω
−AkB, gm(ω, k) = Gmω

Ak1−B, (2.7)

where Di, Gm (i = 1, 2, 3; m = 2, 3) and A, B are arbitrary positive constants. Condition (2.6) is
equivalent to

β

γ
ρ−Aγ2B = 1 resp.

1

βγ
ρAγ2(1−B) = 1.
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Observing (2.4), it is readily seen that di and gm as in (2.7) obey the scaling conditions (2.5) for all
choices of Di, Gm, A, and B.

Finally, let A = B = 1 in (2.6) and (2.7), i.e. gm does not depend on k. Then we obtain

di(ω, k) = Di
k

ω
, gm(ω, k) = Gmω (i = 1, 2, 3; m = 2, 3).

Hence, Kolmogorov’s two-equation model of turbulence, which is obtained for Di = νi−1, G2 = α1,
and G3 = α2, is invariant under the scaling (2.3) with the two-parameter family

(ρ, γ) 7→ (α, β, γ, ρ, σ) =
(
ρ,
ρ

γ
, γ, ρ, γ2

)
. (2.8)

3 Definition of weak solutions

We begin with introducing notations that will be used throughout the paper.

Let X denote any real normed space with norm | · |X , and let 〈x∗, x〉X denote the dual pairing of
x∗ ∈ X∗ and x ∈ X . By Lp(0, T ;X) (1 ≤ p ≤ +∞) we denote the vector space of all equivalence
classes of Bochner measurable mappings u : [ 0, T ]→ X such that

‖u‖Lp(0,T ;X) =


(∫ T

0

∣∣u(t)
∣∣p
X

dt
)1/p

if 1 ≤ p < +∞,
ess sup
t∈[0,T ]

∣∣u(t)
∣∣
X

if p = +∞

is finite (see e.g. [Bou65, Chap. III, §3, Chap. IV, §3], [Bre73, App.] and [Dro01] for details). Let Ω ⊆
RN (N ≥ 2) be any open set, and let Q = Ω× ]0, T [ for T > 0. For 1 ≤ p < ∞ and u ∈ Lp(Q)
define

[u](t)(·) = u(·, t) for a.a. t ∈ [ 0, T ].

By Fubini’s theorem, the function t 7→
∫

Ω

∣∣u(x, t)
∣∣pdx is in L1(0, T ) and there holds∫ T

0

∥∥[u](t)
∥∥p
Lp(Ω)

dt =

∫
Q

∣∣u(x, t)
∣∣p dx dt.

An elementary argument shows that the mapping u 7→ [u] is a linear isometry of Lp(Q) onto
Lp
(
0, T ;Lp(Ω)

)
. Therefore, these spaces will be identified in what follows. By W 1,p(Ω) we denote

the usual Sobolev space, and we setW 1,p(Ω) =
(
W 1.p(Ω)

)N
.

Unless otherwise stated, from now on let Ω =
(
]0, a[

)3
denote the cube introduced in Section 1. We

define

W 1,p
per,div(Ω) =

{
u ∈ W 1,p(Ω); u

∣∣
Γi

= u
∣∣
Γi+3

(i = 1, 2, 3)
}
,

W 1,p
per,div(Ω) =

{
u ∈W 1,p

per(Ω); divu = 0 a.e. in Ω
}
,

C1
per,T (Q) =

{
ϕ ∈ C1(Q); ϕ

∣∣
Γi×]0,T [

= ϕ
∣∣
Γi+3×]0,T [

(i = 1, 2, 3), ϕ(x, T ) = 0 ∀ x ∈ Ω
}
,

C1
per,T,div(Q) =

{
v ∈ C1

per,T (Q); div v = 0 in Q
}
.
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We emphasize that the test functions in C1
per,T (Q) vanish at t = T . Finally, byM(Q) we denote the

vector space of all non-negative, bounded Radon measures on the σ-algebra of Borel sets ⊆ Q.

To simplify the notation we subsequently set α1 = 1 and ν2 = 1, which can always be achieved
by exploiting the scaling (2.8). We further set ν1 = 1, but keep the constant ν0 > 0 to emphasize
that the source term in the equation (1.1d) for the turbulent energy k arises from the dissipation in the
momentum equation (1.1b) for u.

Definition 3.1. Let f ∈ L1(Q), u0 ∈ L1(Ω) and ω0, k0 ∈ L1(Ω) such that ω0, k0 ≥ 0 a.e. in Ω.
A triple of measurable functions {u, ω, k} in Q is called weak solution of (1.1) and (1.6) with defect
measure µ ∈M(Q), if

ω > 0,
k

ω
≥ const > 0 a.e. in Q, (3.1)

u ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per,div(Ω)
)
,

ω ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per(Ω)
)
,

k ∈ L∞(0, T ;L1(Ω)
)
∩ L15/14

(
0, T ;W

1,15/14
per (Ω)

)
,

 (3.2)

∫
Q

k

ω

((
1 +

∣∣D(u)
∣∣)∣∣D(u)

∣∣+ |∇ω|+ |∇k|
)

dx dt <∞, (3.3)

the following weak equations hold

−
∫
Q

u · ∂v
∂t

dx dt−
∫
Q

(u⊗ u) : ∇v dx dt+ ν0

∫
Q

k

ω
D(u) : D(v) dx dt

=

∫
Ω

u0(x) · v(x, 0) dx+

∫
Q

f · v dx dt for all v ∈ C1
per,T,div(Q),

 (3.4)

−
∫
Q

ω
∂ϕ

∂t
dx dt−

∫
Q

ωu · ∇ϕ dx dt+

∫
Q

k

ω
∇ω · ∇ϕ dx dt

=

∫
Ω

ω0(x)ϕ(x, 0) dx−
∫
Q

ω2ϕ dx dt for all ϕ ∈ C1
per,T (Q),

 (3.5)

−
∫
Q

k
∂z

∂t
dx dt−

∫
Q

ku · ∇z dx dt+

∫
Q

k

ω
∇k · ∇z dx dt

=

∫
Ω

k0(x)z(x, 0) dx+

∫
Q

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
z dx dt

+

∫
Q

z dµ for all z ∈ C1
per,T (Q),


(3.6)

the Leray-Hopf type energy bound for the Navier-Stokes equation∫
Ω

1

2

∣∣u(x, t)
∣∣2 dx+

∫ t

0

∫
Ω

ν0
k

ω

∣∣D(u)
∣∣2 dx ds

≤
∫

Ω

1

2

∣∣u0(x)
∣∣2 dx+

∫ t

0

∫
Ω

f · u dx ds

 for a.a. t ∈ [0, T ], (3.7)

and the total energy satisfies the estimate∫
Ω

(1

2

∣∣u(x, t)
∣∣2+k(x, t)

)
dx+

∫ t

0

∫
Ω

α2kω dx ds

≤
∫

Ω

(1

2

∣∣u0(x)
∣∣2+k0(x)

)
dx+

∫ t

0

∫
Ω

f · u dx ds

 for a.a. t ∈ [0, T ]. (3.8)
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It is easy to see that all integrals in (3.4)–(3.6) are well-defined. It suffices to consider the integrals
with integrands ku · ∇z and k

ω

∣∣D(u)
∣∣2z in (3.6). Firstly, it is well-known that condition (3.2) on u

impliesu ∈ L10/3(Q) (combine Hölder’s inequality and Sobolev’s embedding theorem). Analogously,
the condition (3.2) on k implies k ∈ L10/7(Q) (take N = 3, θ = 3/4, (p1, p2) = (1, 15

14
), and

(s1, s2) = (∞, 15
14

) in Lemma 4.2(B) below). Hence, ku ∈ L1(Q). Secondly, k
ω

∣∣D(u)
∣∣2 ∈ L1(Q)

by virtue of (3.3).

Remark 3.2. The condition k/ω ≥ const > 0 is crucial for our existence theory, in particular for
obtaining the regularities for {u, ω, k} stated in (3.2). It would be desirable to develop an existence
theory without this condition, because this would allow us to study how the support of k, which may
be called the ‘turbulent region’, invades the ‘non-turbulent region’ where k ≡ 0.

Remark 3.3 (Classical solutions are weak solutions). Every sufficiently regular classical solution
{u, ω, k} of (1.1) and (1.6) satisfies the variational identities (3.4), (3.5) and (3.6) with defect mea-
sure µ = 0. To verify this, we multiply (1.1b), (1.1c) and (1.1d) by the test functions v, ϕ and z,
respectively, and integrate by parts over the cube Ω and then over the interval [ 0, T ]. Moreover, it is
easy to see that the energy inequalities (3.7) and (3.8) hold as equalities.

Of course, the important implication to be shown is that smooth weak solutions are indeed classi-
cal solutions. In order to establish this, we crucially use that the inequality (3.8) for the total energy∫

Ω

(
1
2
|u|2 + k

)
dx and combine it with the upper estimate (3.7) for the macroscopic kinetic energy∫

Ω
1
2
|u|2 dx and a lower energy estimate for the turbulent kinetic energy

∫
Ω
k dx, which will be de-

rived next.

Lemma 3.4. Let {u, ω, k} be a weak solution of (1.1) and (1.6) with defect measure µ. Then, we
have the integral relations∫

Ω

ω(x, t) dx+

∫ t

0

∫
Ω

ω2 dx ds =

∫
Ω

ω0(x) dx for all t ∈ [0, T ], (3.9a)

∫
Ω

k(x, t) dx =

∫
Ω

k0(x) dx+

∫ t

0

∫
Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
dx ds

+ µ
(
Ω×[0, t ]

)
for a.a. t ∈ [0, T ],

 (3.9b)

lim
t→0

∫
Ω

k(x, t) dx =

∫
Ω

k0(x) dx+ µ
(
Ω×{0}

)
, (3.9c)

∫
Ω

k(x, t) dx =

∫
Ω

k(x, s) dx+

∫ t

s

∫
Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
dx dτ

+µ
(
Ω× ] s, t ]

)
for a.a. s, t ∈ [0, T ] with s < t.

 (3.9d)

Proof. It suffices to prove (3.9b). The same reasoning gives (3.9a), and the relations (3.9c) and (3.9d)
follow from (3.9b). For t ∈ ] 0, T [ and m > 1

T−t (m ∈ N) we define

ηm(τ) =


1 if 0 ≤ τ ≤ t,

m(t−τ) + 1 if t < τ < t+ 1
m
,

0 if t+ 1
m
≤ τ < T.
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Taking z(x, τ) = 1 · ηm(τ) for (x, τ) ∈ Q in (3.6), we arrive at

m

∫ t+1/m

t

∫
Ω

k(x, τ) dx dτ =

∫
Ω

k0(x) dx+

∫ t+1/m

0

∫
Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
ηm dx dτ

+ µ
(
Ω×[ 0, t ]

)
+

∫
Ω×]t,t+ 1

m
[

ηm(τ) dµ. (3.10)

Using ηm(τ) ∈ [0, 1] we observe that
∫

Ω×]t,t+ 1
m

[
ηm(τ) dµ ≤ µ

(
Ω× ]t, t+ 1

m
[
)
→ 0 as m→∞.

Hence, taking the limit m → ∞ in (3.10) gives (3.9b) for every Lebesgue point t ∈ [0, T ] of the
function t 7→

∫
Ω
k(x, t) dx.

We are now ready to show that smooth enough weak solutions are indeed classical solutions and that
the associated defect measure has to vanish. .

Proposition 3.5 (Smooth weak solutions are classical). If {u, ω, k} is a weak solution of (1.1) and
(1.6) with defect measure µ (in the sense of Definition 3.1) such that u, ω, and k are sufficiently
smooth (e.g. twice continuously differentiable in x and once in t), then {u, ω, k} is a classical solution
of (1.1) and (1.6).

Proof. By definition weak solutions lie in W 1,2
per,div(Ω), which implies (1.1a). Similarly, the periodic

boundary conditions (1.6a) follow from the choice of spaces for the weak solution.

Using the smoothness of {u, ω, k} we can integrate by parts in the weak equations (3.4) and (3.5).
From this we obtain the validity of the classical equations (1.1b) and (1.1c) for u and ω, respectively,
and the initial conditions u(0, ·) = u0 and ω(0, ·) = ω0.

Since the Navier-Stokes equation is classically satisfied, the kinetic energy satisfies (3.7) with equality.
Adding this equality to relation (3.9b) for the turbulent energy, the term ν0

k
ω
|D(u)|2 exactly cancels;

and we obtain∫
Ω

(1

2
|u(x, t)|2+k(x, t)

)
dx =

∫
Ω

(1

2
|u0|2+k0

)
dx+

∫ t

0

∫
Ω

(
f ·u−α2kω

)
dx ds+ µ(Ω×[0, t])

for a.a. t ∈ [0, T ]. Comparing this to the total energy inequality (3.8) and using µ ≥ 0, we conclude
µ(Ω×[0, t]) for a.a. t ∈ [0, T ]. Thus, we find µ(Ω×[0, T [) = 0 which gives

∫
Q
z dµ = 0 in (3.6).

Again, using the smoothness of {u, ω, k} we can integrate by parts in the weak equations (3.6) and
obtain the validity of the classical equations (1.1d) and the initial conditions k(0, ·) = k0.

We note that by (3.9b) the defect measure µ ≥ 0 contributes positively to the integrated turbulent
energy

∫
Ω
k(x, t) dx. In contrast, the energy inequality (3.7) for weak solutions of the Navier-Stokes

equations provides an upper bound for the integrated kinetic energy
∫

Ω
1
2
|u(x, t)|2 dx in terms of

possibly different defect measure µNS. The expectation is that these two measures exactly cancel
each other when considering the total kinetic energy

∫
Ω

(
1
2
|u(x, t)|2 + k(x, t)

)
dx, and then (3.8)

holds as an equality. Our methods will not be strong enough to show this cancellation but we establish
the corresponding upper bound stated in (3.8), which may be interpreted as µ ≤ µNS. In the related
work [BuM19] the desired cancellation is derived by completely different methods.

Remark 3.6 (Conservation law for the energy density E). For fluid models involving an additional
energy equation, it is natural to derive equations for the total energy density, which in our case reads
E(x, t) = k(x, t) + 1

2
|u(x, t)|2. This idea goes back to Feireisl and Málek in [FeM06, BFM09] and
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provides a local balance law for the total energy density E. We expect that the result of [BuM19,
Thm. 1.1, Eqn. (1.50)] also holds in our case and conjecture that there exist weak solutions as stated
in Theorem 4.1 that additionally satisfy the distributional form of the local balance equation

∂

∂t
E + div

(
(E+p)u

)
= div

(k
ω
∇k + ν0

k

ω
D(u)u

)
+ f ·u− α2kω, (3.11)

A close inspection of our estimates shows that all terms in this equation can be defined as distributions,
if the pressure p is recovered from (1.1b) in the standard way. However, at present it remains unclear
how this relation can be derived using our approach based on pseudo-monotone operators.

Clearly, integrating the local balance law (3.11) over Ω and using the periodic boundary condition
implies that the total-energy inequality (3.8) holds as equality:∫

Ω

(1

2

∣∣u(x, t)
∣∣2 + k(x, t)

)
dx+ α2

∫ t

0

∫
Ω

kω dx ds

=

∫
Ω

(1

2

∣∣u0(x)
∣∣2 + k0(x)

)
dx+

∫ t

0

∫
Ω

f · u dx ds for all t ∈ [0, T ].

(3.12)

The following result shows that in this case the defect measure µ in (3.6) is closely related to the defect
measure associated with the weak solution of the Navier-Stokes equation. The result follows simply
by subtracting (3.9b) from (3.12).

Proposition 3.7 (Energy equalities and defect measure). Let {u, ω, k} and µ be a weak solution as
in Definition 3.1. If additionally the energy equality (3.12) holds, then the following two statements are
equivalent:

(i) µ = 0;

(ii)

∫
Ω

1

2

∣∣u(x, t)
∣∣2 dx+ ν0

∫ t

0

∫
Ω

k

ω

∣∣D(u)
∣∣2 dx ds

=
1

2

∫
Ω

∣∣u0(x)
∣∣2 dx+

∫ t

0

∫
Ω

f · u dx ds for a.a. t ∈ [ 0, T ].

This result shows that the two energy inequalities (3.7), (3.8) and the defect measure µ in (3.6) are
related to the classical problem of proving an energy equality for weak solutions of the Navier-Stokes
equations. A similar result for the case of Navier-Stokes equations with temperature dependent vis-
cosities has been obtained in [Nau08]. Defect measures also appear in a natural way in the context of
weak solutions of other types of nonlinear PDEs (see e.g. [AlV02, Har06, LLZ95]).

4 An existence theorem for weak solutions

We define the function spaces

C∞per(Ω) =
{
u|Ω ; u ∈ C∞(R3), u is a-periodic

in the directions e1, e2, e3

}
,

C∞per,div(Ω) =
{
u ∈ C∞per(Ω) ; divu = 0 in Ω

}
.
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We impose the following conditions upon the right-hand side in (1.1b) and the initial data in (1.6b):

f ∈ L2(Q); u0 ∈ L2
div(Ω) := C∞per,div(Ω)

‖·‖L2(Ω) , ω0 ∈ L∞(Ω), k0 ∈ L1(Ω),

there exist positive ω∗, ω∗ such that ω∗ ≤ ω0(x) ≤ ω∗ for a.a. x ∈ Ω,

there exist positive k∗ such that k0(x) ≥ k∗ for a.a. x ∈ Ω.

 (4.1)

The following theorem is the main result of our paper.

Theorem 4.1 (Main existence result). Assume (4.1) and α2 = const > 0 (cf. (1.1d)). Then there
exists a triple of measurable functions {u, ω, k} in Q and a measure µ ∈M(Q) such that

ω∗
1 + tω∗

≤ ω(x, t) ≤ ω∗

1 + tω∗
and

k∗
(1 + tω∗)α2

≤ k(x, t) for a.a. (x, t) ∈ Q; (4.2)

u ∈ Cw

(
[ 0, T ];L2(Ω)

)
∩ L2(0, T ;W 1,2

per,div(Ω)
)
,

ω ∈ Cw

(
[ 0, T ];L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per(Ω)
)
,

k ∈ L∞
(
0, T ;L1(Ω)

)
∩
⋂

1≤p<2

Lp
(
0, T ;W 1,p

per(Ω)
)
;

 (4.3)

∫
Q

k
(∣∣D(u)

∣∣2+|∇ω|2
)

dx dt <∞, (4.4)

u′ ∈
⋂

σ>16/5
L4/3

(
0, T ;

(
W 1,σ

per,div(Ω)
)∗)

,

ω′ ∈
⋂

σ>16/5
L4/3

(
0, T ;

(
W 1,σ

per (Ω)
)∗)

.

 (4.5)

The triple {u, k, ω} is a weak solution of (1.1) and (1.6) in the sense of Definition 3.1 with

u(0) = u0 in L2(Ω) and ω(0) = ω0 in L2(Ω); (4.6)

In particular, (3.6) holds and for all σ > 16/5 we have∫ T

0

〈
u′(t),v(t)

〉
W 1,σ

per,div

dt+

∫
Q

(
−(u⊗u) : ∇v + ν0

k

ω
D(u):D(v)

)
dx dt

=

∫
Q

f ·v dx dt for all v ∈ Lσ
(
0, T ;W 1,σ

per,div(Ω)
)

with v(·, T ) = 0;

 (4.7)

∫ T

0

〈
ω′(t), ϕ(t)

〉
W 1,σ

per
dt−

∫
Q

ωu · ∇ϕ dx dt+

∫
Q

k

ω
∇ω · ∇ϕ dx dt

= −
∫
Q

ω2ϕ dx dt for all ϕ ∈ Lσ
(
0, T ;W 1,σ

per (Ω)
)

with ϕ(·, T ) = 0.

 (4.8)

Of course, in (4.7) and (4.8) it suffices to consider σ = 16
5

+η for an arbitrarily small η > 0. The deriva-

tives u′ and ω′ in (4.5) are understood in the sense of distributions from ] 0, T [ into
(
W 1,σ

per,div(Ω)
)∗

and
(
W 1,σ

per (Ω)
)∗

, respectively (see e.g. [Bre73, App.], [Dro01, pp. 54–56] for details). Here we have
used the continuous and dense embeddings

W 1,2
per(Ω) ⊂ L2(Ω) ⊂

(
W 1,σ

per (Ω)
)∗

for σ ≥ 6

5
.
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To see that {u, ω, k} together with the measure µ in the above theorem are a weak solution of (1.1)
and (1.6) in the sense of the Definition 3.1, it suffices to note that (3.4) and (3.5) follow from (4.7) and
(4.8), respectively, by integration by parts of the first integrals on the left-hand sides.

Before starting the proof it is instructive to check that the above estimates (4.2) to (4.5) are enough
to show that all terms in (4.7), (4.8), and (3.6) are well defined. For this, we first recall the classical
Gagliardo-Nirenberg estimate and then provide an anisotropic version that is adjusted to the parabolic
problems on Q = [0, T ]× Ω, we use the short-hand notations

Ls(Lp) := Ls(0, T ;Lp(Ω)) and Jθ(a, b) := a1−θ(a+b
)θ
.

Lemma 4.2 (Gagliardo-Nirenberg estimates). For N ∈ N consider a bounded Lipschitz domain Ω ⊂
RN .
(A) (Classical isotropic version) Assume 1 ≤ p1 < p <∞, p2 ∈ ]1, N [ and θ ∈ ]0, 1[ such that

1

p
= (1−θ) 1

p1

+ θ
( 1

p2

− 1

N

)
. (4.9)

Then, there exists a constant C > 0 such that for all ψ ∈ W 1,p2(Ω) we have

‖ψ‖Lp(Ω) ≤ C Jθ
(
‖ψ‖Lp1 (Ω), ‖∇ψ‖Lp2 (Ω)

)
. (4.10)

(B) (Anisotropic version) Consider p, p1, p2, and θ as in (A) and s, s1, and s2 satisfying

1 ≤ s2 ≤ s ≤ s1 and
1

s
= (1−θ) 1

s1

+ θ
1

s2

. (4.11)

Then, there exists C∗ > 0 such that for all ϕ ∈ Ls2(0, T ;W 1,p2(Ω)) we have

‖ϕ‖Ls(Lp) ≤ C∗Jθ

(
‖ϕ‖Ls1 (Lp1 ), ‖∇ϕ‖Ls2 (Lp2 )

)
. (4.12)

Proof. Part (A) is well-known, see e.g. [Rou13, Thm. 1.24].

To establish Part (B) we apply Part (A) for ψ = ϕ(t) a.a. t ∈ [0, T ]. Thus, we obtain (abbreviating
‖ψ‖p := ‖ψ‖Lp(Ω))

‖ϕ‖sLs(Lp) =

∫ T

0

‖ϕ(t)‖sp dt
(4.10)
≤ C1

∫ T

0

‖ϕ(t)‖(1−θ)s
p1

(
‖ϕ(t)‖p1+‖∇ϕ(t)‖p2

)θs
dt

Hölder+(4.11)
≤ C1

∥∥ ‖ϕ‖p1

∥∥(1−θ)s
Ls1 (0,T )

∥∥∥ ‖ϕ‖p1+‖∇ϕ‖p2

∥∥∥θs
Ls2 (0,T )

s1≥s2
≤ C1

∥∥ϕ‖(1−θ)s
Ls1 (Lp1 )

(
T 1/s2−1/s1‖ϕ‖Ls1 (Lp1 )+‖∇ϕ‖Ls2 (Lp2 )

)θs
≤ C2

(
Jθ
(
‖ϕ‖Ls1 (Lp1 ), ‖∇ϕ‖Ls2 (Lp2 )

))s
,

which is the desired estimate.

Remark 4.3 (Well-definedness of nonlinear terms). We first show that the second integral on the left-
hand side of the variational identity in (4.7) is well-defined. For the integral of (u⊗u):∇v we see
that (4.3) allows us to use Lemma 4.2 with N = 3, (s1, p1) = (∞, 2) and (s2, p2) = (2, 2). With
θ = 3/4 part (A) gives

‖u‖L4(Ω) ≤ C
(
‖u‖L2(Ω) + ‖u‖1/4

L2(Ω)
‖∇u‖3/4

L2(Ω)

)
, (4.13)
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whereas part (B) leads to u ∈ L8/3(0, T ;L4(Ω)), which implies

u⊗u ∈ L4/3(0, T ;L2(Ω)). (4.14)

With σ > 16/5 > 2 we have ∇v ∈ L2(0, T ;L2(Ω)) and
∫
Q

(u⊗u) : ∇v dx dt is well defined.
Using θ = 3/5 in Lemma 4.2(B) we obtain s = p = 10/3 and hence conclude

‖u‖L10/3(Q) ≤ C2J3/5

(
‖u‖L∞(L2), ‖∇u‖L2(L2)

)
. (4.15)

For the integral of k
ω
D(u):D(v) we use ω ≥ ω∗/(1+Tω∗) > 0 from (4.2), k1/2D(u) ∈ L2(Q)

from (4.4). Using (4.3) we can apply Lemma 4.2(B) to k with N = 3, (s1, p1) = (∞, 1), and s2 =
p2 ∈ [1, 2[. Choosing θ = 3/4 we obtain s = p = 4p2/3, such that k lies in L4p2/3(0, T ;L4p2/3(Ω))
= L4p2/3(Q). As p2 ∈ [1, 2[ is arbitrary, we have k1/2 ∈ Lq(Q) for all q ∈ [1, 16/3[. By Hölder’s
inequality we arrive at

kD(u) = k1/2 k1/2D(u) ∈ Lp(Q) for all p ∈ [1, 16/11[. (4.16)

Using D(v) ∈ Lσ(0, T ;Lσ(Ω)) = Lσ(Q) with τ > 16/5 we see that there is always a p ∈
[1, 16/11[ such that 1

σ
+ 1

p
≤ 1. Hence we conclude∫

Q

∣∣k
ω
D(u):D(v)

∣∣ dx dt ≤ C‖kD(u)‖Lp(Q)‖D(v)‖Lσ(Q) <∞.

Thus, by a routine argument, (4.14) and (4.16) lead to the existence of the distributional derivative u′

as in (4.5), see also Sections 5.4–5.6.

An analogous reasoning applies to the second and the third integral on the left-hand side of the
variational identity in (4.8).

Finally, combining u ∈ L2(Q) and ∇k ∈ Lp(Q) for all p ∈ [1, 2[ (see (4.3)) and k ∈ L4p/3(Q)
from above, Hölder’s inequality gives

ku ∈ Lq(Q) and k∇k ∈ Lq(Q) for all q ∈ [1, 8/7[,

i.e., the second and third integral on the left-hand side in (3.6) are well defined.

The estimates (4.2), which will be derived by using suitable comparison arguments, allow us to deduce
the following result (based on the choice α1 = 1).

Corollary 4.4. For a.a. (x, t) ∈ Q, we have the following estimates:

L(x, t) :=
k(x, t)1/2

ω(x, t)
≥ k

1/2
∗

ω∗
(1 + tω∗)1−α2/2, (4.17)

1

ω∗
+ t ≤ 1

ω(x, t)
≤ 1

ω∗
+ t. (4.18)

Kolmogorov claimed in [Kol42] that L = L(x, t) “... grows in proportion of t2/7 ...” (see also [Spa91,
p. 215], [Tik91, p. 329]). Clearly, from (4.17) with α2 = 10/7 it follows

L(x, t) ≥ k
1/2
∗

ω∗
(1 + tω∗)2/7 for a.a. (x, t) ∈ Ω× ] t0, T [ .

Of course, Kolmogorov’s claim is compatible with our lower estimate for any choice α2 ≥ 10/7 (and
in [Kol42] α2 = 11/7 was chosen). However, it cannot be true for α2 ∈ ]0, 10/7[.
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5 Proof of the existence theorem

The proof of the main Theorem 4.1 proceeds in several steps. First we regularize the problem by
adding small higher-order dissipation terms of r-Laplacian type and small coercivity-generating lower
order terms. A general result for pseudo-monotone operators, which is detailed in Appendix A, then
provides approximate solutions {uε, ωε, kε}. In Section 5.2 we provide ε-independent upper and
lower bounds for ωε and kε by comparison arguments. In Section 5.3 we complement the standard
energy estimates by improved integral estimates for kε that allow us to pass to the limit ε ↘ 0 in
Section 5.5.

5.1 Defining suitable approximate solutions {uε, ωε, kε}

Let be ω∗, ω∗ and k∗ as in (4.1). We introduce the comparison functions

ω(t) =
ω∗

1 + tω∗
, ω(t) =

ω∗

1 + tω∗
, κ(t) =

k∗
(1 + tω∗)α2

for t ∈ [0, T ], (5.1)

which will be the desired bounds for ωε and kε in Q. Subsequently we will use the notion

ξ+ := max{ξ, 0} ≥ 0 and ξ− = min{ξ, 0} ≤ 0

for the positive and negative parts of real numbers or real-valued functions.

We choose a fixed number r ∈ ]3,∞[ and consider for all small ε > 0 the following r-Laplacian ap-

proximation of (1.1), where we add the coercivity-generating terms ε
∣∣u∣∣r−1

u, ε|ω|r−2ω and ε|k|r−2k
to the right-hand sides of (1.1b) to (1.1d), respectively:

divu = 0, (5.2a)

∂u

∂t
+ (u · ∇)u = ν0 div

( k+

ε+ ω+
D(u)

)
−∇p+ f

+ ε
(

div
(∣∣D(u)

∣∣r−2
D(u)

)
− |u|r−2u

)
,

(5.2b)

∂ω

∂t
+ u · ∇ω = div

( k+

ε+ ω+
∇ω
)
− ω+ω

+ ε
(

div
(
|∇ω|r−2∇ω

)
− |ω|r−2ω

)
+ ε
(
ω(t)

)r−1
,

(5.2c)

∂k

∂t
+ u · ∇k = div

( k+

ε+ω+
∇k
)

+ ν0
k+

ε+ ω++ εk+

∣∣D(u)
∣∣2−α2kω

+

+ ε
(

div
(
|∇k|r−2∇k

)
− |k|r−2k

)
+ ε
(
κ(t)

)r−1
.

(5.2d)

The additional terms ε
(
ω(t)

)r−1
and ε

(
κ(t)

)r−1
are added in (5.2c) and (5.2d), respectively, to make

the comparison principle work again. In principle, it would be possible to use different exponents ru,
rω, and rk in the equations (5.2b) to (5.2d), because they need to satisfy different restrictions. In our
case r = ru = rω = rk is sufficient and fits exactly with the assumptions in (A.1) with p = r for the
abstract existence Theorem A.1.
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We consider system (5.2) with initial data {u0,ε, ω0,ε, k0,ε} satisfying

{u0,ε, ω0,ε, k0,ε} ∈W 1,r
per,div(Ω)×W 1,r

per(Ω)×W 1,r
per(Ω), (5.3a)

ω∗ ≤ ω0,ε(x) ≤ ω∗ and k0,ε(x) ≥ k∗ a.e. in Ω, (5.3b)

u0,ε −→ u0 in L2(Ω), ω0,ε −→ ω0 a.e. in Ω,

k0,ε −→ k0 in L1(Ω) for ε→ 0.

}
(5.3c)

The existence of a sequence {u0,ε}ε>0 which satisfies (5.3a) follows immediately from the condition
on u0 in (4.1), whereas the existence of sequences {ω0,ε}ε>0 and {k0,ε}ε>0 satisfying (5.3) can be
derived by routine argument from the conditions on ω0 and k0 in (4.1).

The following lemma states the existence of weak solutions of (5.2) under the periodic boundary
conditions (1.6a) and initial data (5.3). This result, which we derive in Appendix A by a direct application
of existence results for pseudo-monotone evolutionary problems (see Theorem A.1), forms the starting
point for our discussion in Subsections 5.2–5.6.

Proposition 5.1 (Existence of approximate solutions). Let {u0,ε, ω0,ε, k0,ε}ε>0 be as in (5.3), r > 3,
and f ∈ L2(Q). Then, for every ε > 0 there exists a triple {uε, ωε, kε} such that

uε ∈ C
(
[ 0, T ];L2(Ω)

)
∩ Lr

(
0, T ;W 1,r

per,div(Ω)
)
, (5.4a)

ωε, kε ∈ C
(
[ 0, T ];L2(Ω)

)
∩ Lr

(
0, T ;W 1,r

per(Ω)
)
, (5.4b)

u′ε ∈ Lr
′(

0, T ;
(
W 1,r

per,div(Ω)
)∗)

, ω′ε, k
′
ε ∈ Lr

′(
0, T ;

(
W 1,r

per(Ω)
)∗)

, (5.4c)

and ∫ T

0

〈
u′ε(t),v(t)

〉
W 1,r

per,div

dt+

∫
Q

3∑
i=1

uε,i(∂iuε) · v dx dt

+ ν0

∫
Q

k+
ε

ε+ ω+
ε

D(uε) : D(v) dx dt

+ ε

∫
Q

(∣∣D(uε)
∣∣r−2

D(uε) : D(v) + |uε|r−2uε · v
)

dx dt

=

∫
Q

f · v dx dt for all v ∈ Lr
(
0, T ;W 1,r

per,div(Ω)
)
,


(5.5a)

∫ T

0

〈
ω′ε(t), ϕ(t)

〉
W 1,r

per
dt+

∫
Q

ϕuε · ∇ωε dx dt

+

∫
Q

k+
ε

ε+ ω+
ε

∇ωε · ∇ϕ dx dt+

∫
Q

ω+
ε ωεϕ dx dt

+ ε

∫
Q

(
|∇ωε|r−2∇ωε · ∇ϕ+ |ωε|r−2ωεϕ

)
dx dt

= ε

∫
Q

(
ω(t)

)r−1
ϕ dx dt for all ϕ ∈ Lr

(
0, T ;W 1,r

per(Ω)
)
,


(5.5b)
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∫ T

0

〈
k′ε(t), z(t)

〉
W 1,r

per
dt+

∫
Q

zuε · ∇kε dx dt

+

∫
Q

k+
ε

ε+ω+
ε

∇kε·∇z dx dt− ν0

∫
Q

k+
ε

ε+ω+
ε +εk+

ε

∣∣D(uε)
∣∣2z dx dt

+α2

∫
Q

kεω
+
ε z dx dt+ ε

∫
Q

(
|∇kε|r−2∇kε·∇z+|kε|r−2kεz

)
dx dt

= ε

∫
Q

(
κ(t)

)r−1
z dx dt for all z ∈ Lr

(
0, T ;W 1,r

per(Ω)
)
,


(5.5c)

uε(0) = u0,ε, ωε(0) = ω0,ε, kε(0) = k0,ε. (5.6)

The proof of Proposition 5.1 is the content of Appendix A. Observing the separability of W 1,r
per,div(Ω)

and W 1,r
per(Ω) and using (5.4), a routine argument yields that the system (5.5) is equivalent to the

following conditions for a.a. t ∈ [0, T ]:〈
u′ε(t),w

〉
W 1,r

per,div

+

∫
Ω

((
uε(t)·∇u(t)

)
·w + ν0

k+
ε (t)

ε+ω+
ε (t)

D
(
uε(t)

)
:D(w)

)
dx

+ ε

∫
Ω

(∣∣D(uε(t))∣∣r−2
D
(
uε(t)

)
: D(w) +

∣∣uε(t)∣∣r−2
uε(t) ·w

)
dx

=

∫
Ω

f(t) ·w dx for allw ∈W 1,r
per,div(Ω),


(5.7a)

〈
ω′ε(t), ψ

〉
W 1,r

per
+

∫
Ω

(
ψuε(t) · ∇ωε(t) +

k+
ε (t)

ε+ω+
ε (t)

∇ωε(t)·∇ψ
)

dx

+

∫
Ω

(
ω+
ε (t)ωε(t)ψ + ε

(∣∣∇ωε(t)∣∣r−2∇ωε(t) · ∇ψ +
∣∣ωε(t)∣∣r−2

ωε(t)ψ
))

dx

= ε
(
ω(t)

)r−1
∫

Ω

ψ dx for all ψ ∈ W 1,r
per(Ω),


(5.7b)

〈
k′ε(t), z

〉
W 1,r

per
+

∫
Ω

(
zuε(t) · ∇kε(t) +

k+
ε (t)

ε+ ω+
ε (t)

∇kε(t) · ∇z
)

dx

−ν0

∫
Ω

k+
ε (t)

ε+ω+
ε (t)+εk+

ε (t)

∣∣D(uε(t))∣∣2z dx+ α2

∫
Ω

kε(t)ω
+
ε (t)z dx

+ ε

∫
Ω

(∣∣∇kε(t)∣∣r−2∇kε(t) · ∇z +
∣∣kε(t)∣∣r−2

kε(t)z
)

dx

= ε
(
κ(t)

)r−1
∫

Ω

z dx for all z ∈ W 1,r
per(Ω)


(5.7c)

We notice that the set N ⊂ [ 0, T ] of measure zero of those t where (5.7) fails, does not depend on
(w, ψ, z). More specifically, if ε = εm > 0 with lim

m→∞
εm = 0, thenN can be chosen independently

of m.

The variational identities in (5.7) are the point of departure for the proof of a series of the a priori
estimates for {uε, ωε, kε} we are going to derive in Subsections 5.2–5.4.

5.2 Upper and lower bounds for {ωε, kε}

Let ω, ω and κ be as in (5.1) and r > 3 as chosen in Section 5.1. The following result provides
pointwise upper and lower bounds that are obtained via classical comparison arguments for weak
solutions of the scalar parabolic equations for ω and k, cf. (1.1c) and (1.1d), respectively.
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Lemma 5.2. Let be {uε, ωε, kε} a triple according to Proposition 5.1 with r > 3. Then,

ω(t) ≤ ωε(x, t) ≤ ω(t) and κ(t) ≤ kε(x, t) (5.8)

for a.a. (x, t) ∈ Q and for all ε > 0.

Proof. For notational simplicity, we set u ≡ uε, ω ≡ ωε and k ≡ kε within this proof.

Step 1: ω ≥ ω. The function ψ =
(
ω(·, t) − ω(t)

)−
is an admissible test function for (5.7b). Since

ω(t) does not depend on x we have 1
2
∇(ψ2) = ψ∇ω and ∇ω · ∇ψ = |∇ψ|2 ≥ 0. Using ω > 0

and the monotonicity of ω 7→ |ω|r−2ω we arrive at〈
ω′(t),

(
ω(t)− ω(t)

)−〉
W 1,r

per
+

∫
Ω

ω2
(
ω − ω(t)

)−
dx

≤ ε

∫
Ω

((
ω(t)

)r−1 − |ω|r−2ω
)(
ω − ω(t)

)−
dx ≤ 0 (5.9)

for a.a. t ∈ [ 0, T ]. By construction we have ω′(t) = d
dt
ω(t) = −

(
ω(t)

)2
. Identifying ω with a

function in C1
(
[0, T ];W 1,r

per(Ω)
)

the estimate (5.9) leads to

〈
ω′(t)− ω′(t),

(
ω(t)−ω(t)

)−〉
W 1,r

per
≤ −

∫
Ω

(
ω2 −

(
ω(t)

)2)(
ω − ω(t)

)−
dx ≤ 0.

By (5.1) and (5.3b), we have ω(x, 0)− ω(0) ≥ 0, which means ψ(x, 0) = 0 for a.a. x ∈ Ω. Using a
slight modification of [Lio69, pp. 290–291] we find∫

Ω

1

2
ψ(t)2 dx =

∫
Ω

1

2
ψ(0)2 dx+

∫ t

0

〈ψ′, ψ〉W 1,r
per

dt = 0 +

∫ t

0

〈ω′−ω′, (ω−ω)−〉W 1,r
per

dt ≤ 0.

Hence, we conclude ψ(t) = 0 for all t, which means that

ω(x, t) ≥ ω(t) for a.a. (x, t) ∈ Q. (5.10)

Step 2: ω ≤ ω. Next, we insert ψ =
(
ω(·, t)−ω(t)

)+
in (5.7b) and argue as in Step 1:

〈
ω′, (ω−ω)+

〉
W 1,r

per
+

∫
Ω

ω2
(
ω − ω

)+
dx ≤ ε

∫
Ω

(
(ω)r−1−ωr−1

)(
ω−ω

)+
dx ≤ 0.

For the last estimate we used ω ≥ ω, which was obtained in Step 1. Hence, as above,

d

dt

∫
Ω

1

2
ψ(t)2 dx =

〈
ω′(t)− ω̇(t),

(
ω(t)− ω(t)

)+〉
W 1,r

per
≤ −

∫
Ω

(
ω2−ω2

)(
ω−ω

)+
dx ≤ 0

for a.a. t ∈ [ 0, T ]. Again by (5.1) and (5.3b), we have ψ(0) = 0 a.e. in Ω and conclude

ω(x, t) ≤ ω(t) for a.a. (x, t) ∈ Q. (5.11)

Step 3: k ≥ κ. We first insert z = k−(·, t) into (5.7c) and find k ≥ 0 a.e. in Q. Next, we insert the

test function z(x, t) =
(
k(x, t)− κ(t)

)−
and obtain as above

〈
k′(t),

(
k(t)− κ(t)

)−〉
W 1,r

per
+ α2

∫
Ω

k(t)ω(t)
(
k−κ(t)

)−
dx ≤ 0

DOI 10.20347/WIAS.PREPRINT.2545 Berlin, October 16, 2018/rev. September 20, 2021



Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 19

for a.a. t ∈ [ 0, T ]. By construction κ satisfies κ′(t) = −α2κ(t)ω(t) for all t ∈ [ 0, T ]. It follows

d

dt

∫
Ω

1

2

((
k(t)−κ(t)

)−)2

dx =
〈
k′(t)− κ̇(t),

(
k(t)− κ(t)

)−〉
W 1,r

per

≤ −α2

∫
Ω

(
k(t)ω(t)− κ(t)ω(t)

)(
k(t)− κ(t)

)−
dx ≤ 0.

To see the last inequality, we useω ≤ ω a.e. inQ from Step 2, which gives k(x, t)ω(x, t) ≤ κ(t)ω(t)
for a.a. x of the set

{
x ∈ Ω ; k(x, t) ≤ κ(t)

}
. Since k(x, 0) ≥ κ(0) for a.a. x ∈ Ω by (5.1) and

(5.3b) we obtain, as above, k(x, t) ≥ κ(t) for a.a. (x, t) ∈ Q. Altogether the upper and lower bounds
in (5.8) are established.

5.3 Energy estimates for (uε, ωε) and improved estimates for kε

For the subsequent estimates we fix the data

D = {T, f , ω∗, ω∗, k∗, r}

and will indicate constants that only depend on D by CD. However, depending on the context the
constants CD may be different. We also define the constant

β∗ =
k∗

(1 + ω∗)(1 + Tω∗)α2
,

which according to Lemma 5.2 is a lower bound for kε/(ε+ωε). This will allows us to derive the
standard estimates for uε and ωε.

Lemma 5.3. There exists a constant CD > 0 such for all ε ∈ ]0, 1] and all solutions {uε, ωε, kε} as
in Proposition 5.1 we have the estimates

‖uε‖2
L∞(L2) +

∫
Q

(
β∗ +

kε
ε+ωε

)∣∣D(uε)
∣∣2 dx dt+ ε

∫
Q

(∣∣D(uε)
∣∣r+|uε|r) dx dt

≤ CD

(
‖u0,ε‖2

L2 + ‖f‖2
L2

)
,

 (5.12a)

‖ωε‖2
L∞(L2) +

∫
Q

(
β∗ +

kε
ε+ωε

)
|∇ωε|2 dx dt+ ε

∫
Q

(
|∇ωε|r + ωrε

)
dx dt

≤ CD

(
1 + ‖ω0,ε‖2

L2

)
.

 (5.12b)

Proof. We insert the test functionsw = uε and ψ = ωε in (5.7a) and (5.7b), respectively. Integrating
over [0, t] and using kε

ε+ωε
≥ β∗ a.e. in Q (cf. (5.8)), the desired estimates (5.12) are readily obtained

by the aid of Gronwall’s lemma.

By (5.3) the approximative initial conditions satisfy sup0<ε≤1

(
‖u0,ε‖L2+‖ω0,ε‖L2

)
<∞. Therefore

all terms on the left hand sides of (5.12) are bounded independently of ε ∈ ]0, 1].

Of course, one obtains a trivial bound for kε in L∞(0, T ;L1(Ω)) by testing (5.7c) with z ≡ 1. We
include this result in the following non-trivial estimate that implies uniform higher integrability of kε
as well as suitable bounds for ∇kε. For this we test (5.7c) by z = 1 − (1+kε)

−δ for δ ∈ ]0, 1[,
which is a well-known technique for treating diffusion equations with an L1 right-hand side, see e.g.
[BoG89, Rak91, BD*97].
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Proposition 5.4. For given data D, p ∈ [1, 2[, and δ ∈ ]0, 1[, there exists Cp,δ
D > 0 such that for all

ε ∈ ]0, 1] and all {uε, ωε, kε} as in Proposition 5.1, we have the estimate

‖kε‖L∞(0,T ;L1(Ω)) +

∫
Q

(
k4p/3
ε + |∇kε|p +

|∇kε|2

(1+kε)δ

)
dx dt

+ ε

∫
Q

( |∇kε|r

(1+kε)1+δ
+ kr−1

ε

)
dx dt

≤ Cp,δ
D

(
1 + ‖u0,ε‖2

L2(Ω)
+ ‖k0,ε‖L1(Ω)

)
.


(5.13)

Proof. Step 1: For 0 < δ < 1 we define Φ : [0,∞[→ [0,∞[ via

Φ(τ) = τ +
1

1− δ
(
1− (1+τ)1−δ), 0 ≤ τ <∞.

Hence, Φ is convex and satisfies, for all τ ≥ 0, the estimates

τ

2
− 2

1−δ
≤ Φ(τ) ≤ τ, Φ′(τ) = 1− 1

(1 + τ)δ
∈ [0, 1], Φ′′(τ) =

δ

(1 + τ)1+δ
. (5.14)

From [Rak92, pp. 360–361; cf. also pp. 365–366] (with W 1,p
per(Ω) in place of W 1,p

0 (Ω)) we have the
chain rule ∫ t

0

〈
k′ε(s),Φ

′(kε(s))〉W 1,r
per

ds =

∫
Ω

Φ
(
kε(x, t)

)
dx−

∫
Ω

Φ
(
k0,ε(x)

)
dx

for all t ∈ [ 0, T ]. When inserting z = Φ′
(
kε(·, t)

)
into (5.7c) we obtain∫

Ω

Φ′
(
kε(·, t)

)
uε(t) · ∇kε(t) dx =

∫
Ω

uε(t) · ∇
(
Φ(kε(·, t)

)
dx = 0 for a.a. t ∈ [0, T ],

where we used divuε = 0. With this we obtain (recall ν0 = 1 = α2)∫
Ω

Φ
(
kε(x, t)

)
dx+ δ

∫ t

0

∫
Ω

kε
ε+ωε

|∇kε|2

(1+kε)1+δ
dx ds

+ ε

∫ t

0

∫
Ω

(
δ
|∇kε|r

(1+kε)1+δ
+ kr−1

ε

(
1− 1

(1+kε)δ
))

dx ds

=

∫
Ω

Φ
(
k0,ε(x)

)
dx+ ε

∫ t

0

∫
Ω

(
κ(s)

)r−1
(

1− 1

(1+kε)δ

)
dx ds

+

∫ t

0

∫
Ω

( kε
ε+ωε+εkε

∣∣D(uε)
∣∣2 − kεωε)(1− 1

(1+kε)δ

)
dx ds

for all t ∈ [ 0, T ]. By (5.12a), (5.14), and kε/
(
(ε+ωε)(1+kε)

)
≥ 1/(1+ω(T )) > 0 we find

‖kε‖L∞(0,T ;L1(Ω)) + δ

∫
Q

|∇kε|2

(1+kε)δ
dx dt+ εδ

∫
Q

|∇kε|r

(1+kε)1+δ
dx ds+ ε

∫
Q

kr−1
ε dx dt

≤ c
( 1

1−δ
+ ‖u0,ε‖2

L2 + ‖k0,ε‖L1 + ‖f‖2
L2 + kr−1

∗

)
, (5.15)

where the constant c is independent of δ and ε. Thus, we have estimated all the terms on the left-hand
side of (5.13) except for the second and third.
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Step 2: To estimate ∇kε we choose p ∈ ]1, 2[ and δ = (2−p)/p ∈ ]0, 1[. With Hölder’s inequality
we find ∫

Q

|∇kε|p dx dt =

∫
Q

|∇kε|p

(1+kε)pδ/2
(1+kε)

pδ/2 dx dt

≤
(∫

Q

|∇kε|2

(1+kε)δ
dx dt

)p/2(∫
Q

(1+kε)
δp/(2−p) dx dt

)(2−p)/2

≤ 1

δp/2

(
δ

∫
Q

|∇kε|2

(1+kε)δ
dx dt

)p/2
T
(
|Ω|+‖kε‖L∞(0,T ;L1(Ω))

)
.

Using (5.15) this provides the estimate for the third term on the left-hand side of (5.13).

Step 3: To show higher integrability of kε we simply use the Gagliardo–Nirenberg interpolation from
Lemma 4.2 for z ∈ W 1,p(Ω) with Ω ⊂ R3 where p ∈ [1, 2[ as in Step 2:

‖z‖L4p/3(Ω) ≤ CGN‖z‖1/4

L1(Ω)

(
‖z‖L1(Ω) + ‖z‖Lp(Ω)

)3/4
,

Applying this to z = kε(t), taking the power 4p/3, and integrating t ∈ [0, T ] we obtain∫
Q

|kε|4p/3 dx dt =

∫ T

0

‖kε(t)‖4p/3

L4p/3(Ω)
dt ≤ C

4p/3
GN

∫ T

0

Kp/3
ε

(
Kε + ‖∇kε(t)‖Lp(Ω)

)p
dt,

where Kε := ‖kε(·)‖L∞(L1(Ω)) ≤ C < ∞ by Step 1. Hence, together with Step 2 the second term
on the left-hand side of (5.13)is uniformly bounded by the right-hand side of (5.13).

In summary, the desired a priori estimate (5.13) is established.

5.4 Estimates for {u′ε, ω′ε, k′ε}

We now provide a priori estimates on the time derivative. To obtain estimates that are independent of
ε ∈ ]0, 1] we recall r ≥ 3 and will use σ > r and estimate in the dual space of W 1,σ(Ω). While
for u′ε and ω′ε we obtain estimates in spaces Lq

(
0, T ; ((W 1,σ(Ω))∗

)
with q > 1, the time derivative

k′ε can be estimated only for q = 1, because of the source term kε
ε+ωε+εkε

|D(uε)|2, for which the
only ε-independent a priori estimate is in L1(Q) = L1(0, T ;L1(Ω)). This problem will result in the
occurrence of the defect measure µ. The estimates for u′ε and ω′ε will work for arbitrary r ≥ 3,
however, for the estimate of k′ε we need to restrict r to the small interval [3, 11/3[. Here the upper
bound r < 11/3 seems to be critical for N = 3, while 2 < r < 3 might still be considered.

Proposition 5.5. Let D be fixed.
(A) For all r ≥ 3 (implying r′ = r/(r−1) ≤ 3/2) and σ > r there exists a constant C1 such that for
all 0 < ε ≤ 1 the solutions {uε, ωε, kε} of Proposition 5.1 satisfy the estimates

‖u′ε‖Lr′ (0,T ;(W 1,σ
per,div(Ω))∗) + ‖ω′ε‖Lr′ (0,T ;(W 1,σ

per (Ω))∗) ≤ C1. (5.16)

(B) For all r ∈ [3, 11/3[ and σ > 8r/(11−3r) there exists a constant C2 such that for all 0 < ε ≤ 1
the solutions {uε, ωε, kε} of Proposition 5.1 satisfy

‖k′ε‖L1(0,T ;(W 1,σ
per )∗) ≤ C2. (5.17)
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Proof. Step 1. Estimate for u′ε: Forw ∈W 1,σ
per,div(Ω), we write (5.7a) in the form〈

u′ε(t),w
〉
W 1,σ

per,div

=
〈
u′ε(t),w

〉
W 1,r

per,div

=

∫
Ω

(
uε(t)⊗uε(t)

)
:∇w dx− ν0

∫
Ω

kε(t)

ε+ωε(t)
D
(
uε(t)

)
:D(w) dx (5.18)

− ε
∫

Ω

(∣∣D(uε(t))∣∣r−2
D
(
uε(t)

)
:D(w) +

∣∣uε(t)∣∣r−2
uε(t)·w

)
dx+

∫
Ω

f(t) ·w dx

=
4∑

m=1

Iε,m(t) for a.a. t ∈ [0, T ].

The aim is to show |Iε,m(t)| ≤ fε,m(t)‖w‖W 1,σ(Ω) with fε,m bounded in Lqm(0, T ) for some qm ≥
r/(r−1). For this, we proceed as in Remark 4.3, but use now thatw ∈W 1,σ

per,div(Ω) is fixed.

For Iε,1 we use ∇w ∈ Lσ(Ω) and need to bound |uε⊗uε| ≤ |uε|2 in Lσ
′
(Ω), which means

uε ∈ Lp(Ω) with p = 2σ/(σ−1). For this we use the bounds (5.12a) for uε, which allow us to apply
Lemma 4.2(B) with (s1, p1) = (∞, 2), (s2, p2) = (2, 2), N = 3, and θ = 3/(2σ) < 1/2. This
provides the desired p = 2σ/(σ−1) and q1 = s = 4σ/3.

To estimate Iε,2 we use ε+ ωε(x, t) ≥ ω(T ) > 0 and need to bound

|kεD(uε)| = k1/2
ε |k1/2

ε D(uε)| in Lq2(0, T ;Lσ
′
(Ω)).

By (5.12a) we have a uniform bound for |k1/2
ε D(uε)| in L2(Q) = L2(0, T ;L2(Ω)). Moreover, (5.13)

provides uniform bounds for ‖kε‖L∞(0,T ;L1(Ω)) and for ‖∇kε‖Lp(Q) with p ∈ [1, 2[. Hence, restricting
to q2 ∈ [1, 2] we proceed as follows:

‖kεD(uε)‖q2

Lq2 (0,T ;Lσ
′ (Ω))
≤
∫ T

0

(
‖k1/2

ε ‖L2σ/(σ−2)‖k1/2
ε D(uε)‖L2

)q2 dt ≤∫ T

0

‖kε‖q2/2

Lσ/(σ−2)‖k1/2
ε D(uε)‖q2

L2 dtHölder ≤
(∫ T

0

‖kε‖q2/(2−q2)

Lσ/(σ−2) dt
)(2−q2)/2(∫

Q

kε|D(uε)|2 dt
)q2/2

.

The second term in the last product is already uniformly bounded. To estimate the first term we apply
Lemma 4.2(B) with (s1, p1) = (∞, 1), s2 = p2 ∈ [1, 2[,N = 3, and θ = 6p2/((4p2−3)σ) ∈ ]0, 1[,
where we use σ > r ≥ 3 such that p2 can be chosen close to 2. From the interpolation condition
(4.11) we obtain the range of possible q2 via

2

q2

− 1 =
2−q2

q2

=
1

s
= (1−θ) 1

s1

+ θ
1

s2

= 0 + θ
1

p2

=
6

(4p2−3)σ
.

Thus, we are able to choose all q2 ∈ [1, 10σ/(5σ+6)[ by adjusting p2 suitably. As σ > r ≥ 3 we
see that q2 = 3/2 is always admissible.

Using σ ≥ r ≥ 3 and Hölder’s inequality, we obtain∣∣Iε,3(t)
∣∣ ≤ fε,3(t)‖w‖W 1,σ with fε,3(t) = Cε

∥∥uε(t)∥∥r−1

W 1,r .

By the uniform bound (5.12a) we obtain ‖fε,3‖Lr′ (0,T ) ≤ C∗ε
1/(r−1) with a constant C∗ independent

of ε. Thus, we can choose q3 = r′ = r/(r−1) ≤ 3/2.

With |Iε,4(t)| ≤ ‖f(t)‖L2‖w(t)‖L2 ≤ C‖f(t)‖L2‖w‖W 1,σ and f ∈ L2(Q) = L2(0, T ;L2(Ω))
we obtain q4 = 2, and conclude that in all cases we have qm ≥ r′ = r/(r−1) and the first part of
(5.16) is established.
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Step 2. Estimate for ω′ε: We proceed as in Step 1 by writing (5.7b) in the form

〈
ω′ε(t), ψ

〉
W 1,σ =

5∑
m=1

Jε,m(t) with |Jε,m(t)| ≤ gε,m(t)‖ψ‖W 1,σ ,

where gε,m has to be bounded in Lq̃m(0, T ) for suitable q̃m ≥ r′ = r/(r−1). Exploiting Lemma 5.2,
namely 0 < ω(T ) ≤ ωε(x, t) ≤ ω(0) = ω∗ and (5.12b) and proceeding as in Step 1 we easily find
q̃1 = q̃3 = q̃5 =∞, q̃2 = 10σ/(5σ+6) ≥ 3/2, and q̃4 = r′ ≤ 3/2. Thus, the second part of (5.16),
and hence all of (5.16), is established.

Step 3. Estimate for k′ε: We again write

〈
k′ε(t), z

〉
= −

∫
Ω

zuε(t) · ∇kε(t) dx−
∫

Ω

kε(t)

ε+ ωε(t)
∇kε(t) · ∇z dx (5.19)

+ ν0

∫
Ω

kε(t)

ε+ ωε(t) + εkε(t)

∣∣D(uε(t))∣∣2z dx− α2

∫
Ω

kε(t)ωε(t)z dx

− ε
∫

Ω

(∣∣∇kε(t)∣∣r−2∇kε(t) · ∇z +
∣∣kε(t)∣∣r−2

kε(t)z
)

dx+ ε
(
κ(t)

)r−1
∫

Ω

z dx

=:
7∑

m=1

Kε,m(t)

and have to show thatKε,m(t) ≤ hε,m(t)‖z‖W 1,σ , where hε,m is bounded in L1(0, T ) independently
of ε ∈ ]0, 1[ and m = 1, . . . , 7.

Before starting the estimates we note that the condition r ∈ [3, 11/3[ and σ > 8r/(11−3r) implies
σ > 12, which will be useful below.

For m = 1 we integrate by parts using divuε = 0 and obtain

|Kε,1(t)| =
∣∣∣ ∫

Ω

kεuε·∇z dx
∣∣∣ ≤ hε,1(t)‖z‖W 1,σ with hε,1(t) = ‖kεuε‖Lσ′ .

Using (5.12a) for uε and applying Lemma 4.2 with (s1, p1) = (∞, 2), (s2, p2) = (2, 2), N = 3,
and θ = 3/5 we find (s, p) = (10/3, 10/3) which means that uε is uniformly bounded in L10/3(Q).
Using the uniform bound (5.13) for kε in Lq(Q) for all q ∈ [1, 8/3[ we can choose q such that
1
q

+ 3
10
≤ 1/σ′ < 1 as σ > 40/13 and obtain∫ T

0

hε,1(t) dt ≤
∫ T

0

C‖kε(t)‖Lq(Ω)‖uε(t)‖L10/3(Ω) dt ≤ CT‖kε‖Lq(Q)‖uε‖L10/3(Q) ≤ CT,1.

For m = 2 we again use (5.13) and σ > 8. Choosing p ∈ [1, 2[ with 3/(4p) + 1/p + 1/σ ≤ 1
Hölder’s inequality gives∫ T

0

|Kε,2(t)| dt ≤
∫ T

0

‖kε‖L4p/3‖∇kε‖Lp‖∇z‖Lσ dt ≤ CT,2‖kε‖L4p/3(Q)‖∇kε‖Lp(Q)‖z‖W 1,σ .

The case m = 3 follows easily as ‖z‖L∞(Ω) ≤ C‖z‖W 1,σ because σ > N . Together with the simple
energy estimate (5.12a) (uniform boundedness of the dissipation) we obtain∫ T

0

|Kε,3(t)| dt ≤ C

∫
Q

kε
ε+ωε

|D(uε)|2 dx dt‖z‖L∞ ≤ C3‖z‖W 1,σ .
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The case m = 4 is also trivial, since |Kε,4(t)| ≤ C‖kε(t)‖ω∗‖z‖L∞ .

The most difficult term is Kε,5 because we do not have an a priori bound on ε|∇kε|r. We adapt the
method developed in Step 2 of the proof of Proposition 5.4. Using

|Kε,5(t)| ≤ hε,5(t)‖z‖W 1,σ with hε,5(t) = ε
∥∥|∇kε(t)|r−1

∥∥
Lσ′

we proceed as follows:∫ T

0

hε,5 dt = ε

∫ T

0

‖∇kε(t)‖r−1
L(r−1)σ′

dt ≤ εT 1/σ‖∇kε‖r−1

L(r−1)σ′ (Q)

≤ εT 1/σ
(∫

Q

|∇kε|(r−1)σ′

(1+kε)ρ
(1+kε)

ρ dx dt
)1/σ′

for a ρ > 0 to be chosen appropriately. Applying Hölder’s inequality with p = r′/σ′ > 1 and using
ε = ε1/rε1/(pσ′) we continue

≤ ε1/rT 1/σ
(∫

Q

ε|∇kε|r

(1+kε)pρ
dx dt

)1/(pσ′)(∫
Q

(1+kε)
p′ρ dx dt

)1/(p′σ′)

.

According to (5.13) both integral terms are uniformly bounded if we can choose ρ such that pρ ∈ ]1, 2]
and p′ρ < 8/3. Writing κ = 1/p this means κ < ρ < min{2κ, 8(1−κ)/3}, which has solutions
ρ if and only if κ ∈ ]0, 8/11[, i.e. we need p = r′/σ′ > 11/8 which in term can only be possible if
r′ > 11/8 or r < 11/3. Then, p = r′/σ′ > 11/8 is equivalent to σ > 8r/(11−3r). This explains

the restriction for r and σ in (5.17) and provides the L1 bound
∫ T

0
|Kε,5(t)| dt ≤ ε1/rCr,σ‖z‖W 1,σ .

The estimate ofKε,6 follows easily from (5.13) using r−1 ∈ [2, 8/3[, which implies ‖kε‖Lr−1(Q) ≤ C
and thus ∫ T

0

|Kε,6(t)| dt ≤
∫ T

0

ε‖kε‖r−1
Lr−1 dt ‖z‖L∞ ≤ εC‖z‖W 1,σ .

The case of Kε,7 is trivial.

For later use in the limit passage ε→ 0 we note that∫ T

0

(
|Kε,5(t)|+ |Kε,6(t)|+ |Kε,7(t)|

)
dt ≤ ε1/rCr,σ‖z‖W 1,σ . (5.20)

Hence, the a priori estimate (5.17) for k′ε is established.

5.5 Convergent subsequences

After having derived a series of a priori estimates we are now able to choose weakly converging
subsequences for ε→ 0. Of course the major step is to identify the limits of the nonlinear terms. For
simplicity we now choose one fixed r∗ ∈ [3, 11/3[ and a σ∗ > 12, which implies that Part (A) and (B)
of Proposition 5.5 can be applied. From (5.8), (5.12), (5.13), (5.16), and (5.17) we obtain a limit triple
{u, ω, k} with the properties

ω ≤ ω ≤ ω a.e. on Q,

u ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩W 1,r′∗
(
0, T ; (W 1,σ∗

per,div(Ω))∗
)
,

ω ∈ L∞(Q) ∩ L2(0, T ;W 1,2(Ω)) ∩W 1,r′∗
(
0, T ; (W 1,σ∗

per (Ω))∗
)
,

k ∈ L∞(0, T ;L1(Ω)) ∩ L4p/3(Q) ∩ Lp(0, T ;W 1,p
per (Ω)) ∩ BV(0, T ; (W 1,σ∗

per (Ω))∗
)

 (5.21)
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for all p ∈ [1, 2[, such that along a suitable subsequence (not relabeled) we have

uε ⇀ u in L2
(
0, T ;W 1,2

per,div(Ω)
)

and weakly∗ in L∞
(
0, T ;L2(Ω)

)
, (5.22a)

u′ε ⇀ u′ in Lr
′
∗
(
0, T ; (W 1,σ∗

per,div(Ω))∗
)
, (5.22b)

ωε ⇀ ω in L2
(
0, T ;W 1,2

per(Ω)
)

and weakly∗ in L∞(Q), (5.22c)

ω′ε ⇀ ω′ in Lr
′
∗
(
0, T ; (W 1,σ∗

per (Ω))∗
)
, (5.22d)

kε ⇀ k in Lp
(
0, T ;W 1,p

per (Ω)
)

and in L4p/3(Q) for all p ∈ [1, 2[. (5.22e)

These weak convergences imply the corresponding properties of the limits u and ω in (5.21). More-
over, ‖k‖L∞(0,T ;L1(Ω)) ≤ C < ∞ follows from (5.13) and (5.22e) by a routine argument. As in
[BaP12, Sec. 1.3.2] the space BV (0, T ;X), where X is a Banach space, denotes all functions
g : [0, T ] → X such that VarX(g, [a, b]) := sup

∑N
i=1 ‖g(ti)−g(ti−1)‖X < ∞ where the supre-

mum is taken over all finite partitions a ≤ t0 < t1 < · · · < tN ≤ b. Clearly, (5.17) implies
Var(W 1,σ

per )∗(kε, [0, T ]) = ‖k′ε‖L1(0,T ;(W 1,σ
per )∗) ≤ C2. Since for all partitions we have

N∑
i=1

‖k(ti)−k(ti−1)‖(W 1,σ
per )∗ ≤ lim inf

ε→0

N∑
i=1

‖kε(ti)−kε(ti−1)‖(W 1,σ
per )∗ ≤ C2,

which provides ‖k‖BV(0,T ;(W 1,σ∗
per (Ω))∗) ≤ C2 <∞ as stated at the end of (5.21).

We next apply the Aubin-Lions-Simon lemma (see [Sim87, Cor. 4, p. 85], [Lio69, Th. 5.1, p. 58], or
[Rou13, Lem. 7.7]) to obtain strong convergence. By taking a further subsequence (not relabeled)
Vitali’s theorem implies the pointwise convergence almost everywhere.

uε → u in Ls(Q) for all s ∈ [1, 10/3[ and a.e. in Q, (5.23a)

ωε → ω in Lp(Q) for all p > 1 and a.e. in Q, (5.23b)

kε → k in Lq(Q) for all q ∈ [1, 8/3[ and a.e. in Q, (5.23c)

To obtain the results in (5.23b) and (5.23c) we first derive strong convergence for s = p = q = 2
and then use the boundedness of the sequence for higher s, p, and q to obtain strong convergence
for intermediate values by Riesz interpolation (use (4.15) for uε).

We are now ready to consider also the limits of the nonlinear terms. We first treat the diffusive terms.

Lemma 5.6. Along the chosen subsequences for ε→ 0 we have the convergences

kε
ε+ωε

D(uε) ⇀
k

ω
D(u) and

kε
ε+ωε

∇ωε ⇀
k

ω
∇ω in Ls(Q) for all s ∈ [1, 16/11[, (5.24a)

kε
ε+ωε

∇kε ⇀
k

ω
∇k in Lσ(Q) for all σ ∈ [1, 8/7[. (5.24b)

Proof. We first recall the weak convergences of the gradientsD(uε),∇ωε, and∇kε in Lp(Q) for all
p ∈ [1, 2[, see (5.22). Next we establish the strong convergence( kε

ε+ωε

)1/2

→
(k
ω

)1/2

in Lq(Q) for all q ∈ [1, 16/3[. (5.25)

To see this we use the explicit estimate∥∥∥( kε
ε+ωε

)1/2 −
(k
ω

)1/2
∥∥∥
Lq(Q)

≤
∥∥∥( kε
ε+ωε

)1/2−
( k

ε+ωε

)1/2
∥∥∥
Lq(Q)

+
∥∥∥( k

ε+ωε

)1/2 −
(k
ω

)1/2
∥∥∥
Lq(Q)

≤
‖kε−k‖1/2

Lq/2(Q)

(1+ω(T ))1/2
+

∥∥(ε+ωε − ω) k1/2
∥∥
Lq(Q)

2(1+ω(T ))3/2
.
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Clearly, the first term on the right-hand side tends to 0 using (5.23c) and q/2 < 8/3. For the second
term we can still choose q̃ ∈ ]q, 16/3[ and p̃ � 1 such that 1/q = 1/q̃ + 1/p̃. Then, Hölder’s
inequality, k1/2 ∈ Lq̃(Q), and (5.23b) for p = p̃ yield the convergence to 0. Hence, the convergence
(5.25) is established.

Now using the weak convergences D(uε) ⇀ D(u) and ∇ωε ⇀ ∇ω, and ∇kε ⇀ ∇k in Lp(Q)
for p ∈ [1, 2[ and (5.25) we obtain the weak convergences

(
kε

ε+ωε

)1/2
D(uε) ⇀

(
k
ω

)1/2
D(u),

(
kε

ε+ωε

)1/2∇ωε ⇀
(
k
ω

)1/2∇ω,
(

kε
ε+ωε

)1/2∇kε ⇀
(
k
ω

)1/2∇k

in Lq(Q) for all q ∈ [1, 16/11[.

However, by the standard a priori estimates (5.12) we see that the first two sequences are bounded
in L2(Q) and hence converge weakly in L2(Q) as well. The convergence of the third term cannot be
improved, because we don’t have appropriate a priori bounds.

Multiplying once again by
(
kε/(ε+ωε)

)1/2
, which converges strongly according to (5.25), we obtain

the results in (5.24).

5.6 Limit passage ε→ 0 and appearance of the defect measure

In this subsection we finalize the proof of Theorem 4.1.

Using the convergences derived above it is now straight forward to perform the limit passage ε → 0
in the equation for uε and ωε. In the energy equation for kε we have to be a little more careful to show
the occurrence of the defect measure µ.

In the Steps 1 to 3 the limit ε→ 0 will be done with test functions with high integrability s in t ∈ [0, T ]
taking values in the SobolevW 1,τ (Ω) with large τ . This choice will be independent of the chosen r∗ in
the regularization terms. After the artificial r∗ has disappeared in the limit, in Step 4 we discuss which
minimal s and τ can be chosen in the weak form.

Step 1. Limit in the momentum balance for uε, from (5.5a) to (4.7): We consider a fixed test function

v ∈ Ls
(
0, T ;W 1,τ

per,div(Ω))∗
)

with s = 4 and τ ≥ s∗ > 12 and discuss the convergence of the five
terms on the left-hand side of (5.5a) individually.

The first term is linear in u′ε and converges because of (5.22b). The second term can be rewritten as∫
Ω

(
uε⊗uε) : ∇v dx dt and converges by (5.23a).

For the third term we use the nonlinear convergences from Lemma 5.6, cf. the first in (5.24a). The
fourth and fifth terms converge to 0 by the estimate

∫ T
0
|Iε,3(t)| dt ≤ C∗ε

1/(r∗−1)‖D(v)‖Lr∗ (Lσ∗ ) ≤
Cε1/(r∗−1)‖v‖Ls(W 1,τ ), see Step 1 of the proof of Proposition 5.5.

Thus, (4.7) is established for test functions v ∈ Ls
(
0, T ;W 1,τ

per,div(Ω))∗
)
.

Step 2. Limit for ωε, from (5.5b) to (4.8): This case works similar as Step 1.

Step 3. Limit in the energy equation for kε, from (5.5c) to (3.6): For this limit passage we choose a test

function z ∈ C1
per,T (Q), because we want to take the limit of the dissipation which is bounded only in

L1(Q).
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The first term of the left-hand side in(5.5c) is integrated by parts in time to obtain∫ T

0

〈
k′ε(t), z(t)

〉
W 1,r

per
dt =

∫
Ω

k0,εz(·, 0) dx−
∫
Q

kεz
′ dx dt →

∫
Ω

k0z(·, 0) dx−
∫
Q

kz′ dx dt

by (5.3c) and and (5.22e). For the second term we use (5.23) and conclude∫
Q

zuε·∇kε dx dt = −
∫
Q

kε∇uε·∇z d dt → −
∫
Q

ku·∇z dx dt.

For the third term Lemma 5.6 can be exploited (cf. (5.24a)) to find∫
Q

kε
ε+ ωε

∇kε · ∇z dx dt →
∫
Q

k

ω
∇k · ∇z dx dt.

We return to the fourth term at the end and continue with the fifth term. Using (5.23) and ω+
ε = ωε ≥

ω(·) > 0 we easily find
∫
Q
kεω

+
ε z dx dt→

∫
Q
kωz dx dt.

The sixth and seventh term on the left-hand side and the single term on the right-hand side converge
to 0, which was establish in Step 3 of the proof of Proposition 5.5, see (5.20).

For the fourth term, it remains to prove the appearance of the defect measure µ ∈M(Q) such that∫
Q

ν0kε
ε+ωε+εkε

∣∣D(uε)
∣∣2φ dx dt −→

∫
Q

ν0k

ω

∣∣D(u)
∣∣2φ dx dt+

∫
Q

φ dµ for all φ ∈ C(Q).

(5.26)

Indeed, by the positivity of the integrand and the a priori estimate (5.12a) we can apply Riesz’ Rep-
resentation Theorem for linear continuous functionals on C(Q). Hence, there exist µ̂ ∈ M(Q) =(
C(Q)

)∗
such that∫

Q

ν0kε
ε+ωε+εkε

∣∣D(uε)
∣∣2φ dx dt →

∫
Q

φ dµ̂ for all φ ∈ C(Q).

As in Lemma 5.6 we can show that
(

kε
ε+ωε+εkε

)1/2
D(uε) converges weakly to (k/ω)1/2D(u) in

L2(Q). Of course, this weak convergence remains true if we multiply by a continuous function ψ ∈
C(Q). Thus, the lower semi-continuity of the L2 norm yields∫

Q

ψ2 dµ̂ = lim
ε→0

∫
Q

ν0kε
ε+ ωε + εkε

∣∣D(uε)
∣∣2ψ2 dx dt ≥

∫
Q

ν0k

ω

∣∣D(u)
∣∣2ψ2 dx dt

for all ψ ∈ C(Q). Thus, the linear functional φ 7→
∫
Q
φ dµ̂−

∫
Q
ν0k
ω

∣∣D(u)
∣∣2φ dx dt is non-negative

and defines the desired defect measure µ ∈M(Q), and∫
Q

φ dµ̂ =

∫
Q

ν0k

ω

∣∣D(u)
∣∣2φ dx dt+

∫
Q

φ dµ for all φ ∈ C(Q),

which gives the desired convergence (5.26).

Step 4. More test functions: After having passed to the limit ε → 0 the regularization terms involving
the exponent r have disappeared. From the a priori estimates (5.21) for {u, ω, k} we know that
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u⊗u ∈ L5/3(Q) and k
ω
D(u) ∈ Lq(Q) for all q ∈ [1, 16/11[. Thus, by density we can extend the

set of test function v in (4.5) can be chosen in Ls
(
0, T ;W 1,τ

per,div(Ω)
)

for any s > 16/5 and τ > 16/5.
This proves (4.7) and (4.8) for the full set of test functions.

Moreover, we find u′ ∈ Lq
(
(W 1,q′

per,div(Ω))∗
)

for all q ∈ [1, 16/11[, which proves (4.5).

Step 5. Further statements: To derive (4.4) we defineJ : (k,u, ω) 7→
∫
Q
k (D(u)|2+|∇ω|2) dx dt

and use the a priori estimate J (kε,uε, ωε) ≤ C , which follows from (5.12) since ωε ≥ ω(T ) > 0.
The functional is convex in u and ω, hence it is lower semicontinuous with respect to strong conver-
gence in k (see (5.23c)) and weak convergence for (u, ω) (see (5.22a) and (5.22c)), so that

J (k,u, ω) ≤ lim inf
ε→0

J (kε,uε, ωε) ≤ C,

which is the desired estimate (4.4). The limit passage ε → 0 in the pointwise a priori estimates (5.8)
leads immediately to the pointwise estimates (4.2) for ω and k.

By (5.22b) and (5.22d) the functions uε(·) and ωε are uniformly bounded with respect to ε ∈ ]0, 1]
in W 1,r∗

(
0, T ; (W 1,σ∗(Ω))∗

)
⊂ C1/r∗

(
[0, T ]; (W 1,σ∗(Ω))∗

)
. Thus, we have uniform convergence

and obtain (u, ω) ∈ C1/r∗
(
[0, T ]; (W 1,σ∗(Ω))∗×(W 1,σ∗(Ω))∗

)
. Together with the essential bound-

edness of (u, ω) in L2(Ω)×L2(Ω) this implies

(u, ω) ∈ Cw([0, T ];L2(Ω)×L2(Ω)).

Hence (4.3) is established. Moreover, with (5.3c) and the uniform convergence we deduce the initial
conditions (4.6), i.e. u(·, 0) = u0 and ω(·, 0) = ω0.

Step 6. Energy estimates: To obtain the energy-dissipation inequality (3.7) for the Navier-Stokes equa-
tion, we insert w = uε(t) into (5.7a), integrate over the interval [0, t], drop the non-negative term∫ t

0

∫
Ω
ε|D(uε)|r dx dt, and take the limit ε→ 0.

Finally, we insert z ≡ 1 into (5.7c), integrate over [0, t] and add this identity to the one just obtained for
uε. Using kε

ε+ωε
− kε

ε+ωε+εkε
≥ 0 we can drop the two dissipation terms involving |D(uε)|2. Moreover,

the regularization term
∫

Ω
ε|∇kε|r−2∇kε · ∇z dx with z ≡ 1 gives 0. Hence, taking the limit ε→ 0

yields inequality (3.8) for the total energy.

With this, the proof of our main existence result in Theorem 4.1 is complete.

A Appendix. Existence of approximate solutions

We now provide the proof of Proposition 5.1, which will be obtained as an application of a general
existence result of evolutionary equations of pseudo-monotone type.

We consider a separable reflexive Banach space V that is continuously and densely embedded in
a Hilbert space H such that V ⊂ H ≈ H∗ ⊂ V ∗. For U ∈ V and Ξ ∈ V ∗ we denote the
dual pairing by 〈Ξ, U〉. Our operator A : V → V ∗ is assumed to satisfy the following conditions
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depending on p > 1:

p-boundedness: ∃C1 > 0 : ‖A(U)‖V ∗ ≤ C1

(
1+‖U‖p−1

V

)
for all U ∈ V ; (A.1a)

p-coercivity: ∃C2 > 0 : 〈A(U), U〉 ≥ 1

C2

‖U‖pV − C2 for all U ∈ V ; (A.1b)

pseudo-monotonicity:

if Um ⇀ U in V and lim sup
m→∞

〈A(Um), Um−U〉 ≤ 0, then

〈A(U), U−V 〉 ≤ lim inf
m→∞

〈A(Um), Um−V 〉 for all V ∈ V .

 (A.1c)

Under these conditions the following existence result is available.

Theorem A.1 (see e.g. [Rou13, Thm. 8.9]). Let V and H be as above and let the operator A :
V → V ∗ satisfy the assumptions (A.1) with p > 1. Then, for all T > 0, all u0 ∈ H , and all
f ∈ Lp′([0, T ];V ∗) there exists a solution u ∈ Lp(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗) of
the Cauchy problem

u′(t) + A(u(t)) = f(t) in V ∗ for a.a. t ∈ [0, T ] and u(0) = u0. (A.2)

To apply this result we choose p = r > 3, U = (u, ω, k),

H = L2
div(Ω)× L2(Ω)× L2(Ω), and V = W 1,r

per,div(Ω)×W 1,r
per (Ω)×W 1,r

per (Ω).

The operator A is defined to make the approximate system (5.5) equivalent to the abstract Cauchy
problem (A.2). We recall that ε > 0 is fixed in Proposition 5.1, so we do not keep track of the depen-
dence on ε. With V = (v, ϕ, w) we define A : V → V ∗ by

〈A(U), V 〉 = I(U, V )

:=

∫
Ω

u·∇u · v +

∫
Ω

k+

ε+ ω+
D(u) : D(v) (A.3)

+

∫
Ω

ϕu · ∇ω +

∫
Ω

k+

ε+ ω+
∇ω · ∇ϕ+

∫
Ω

ω+ωϕ

+

∫
Ω

wu · ∇k +

∫
Ω

k+

ε+ω+
∇k · ∇w −

∫
Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2w +

∫
Ω

k+ω+w

+ ε

∫
Ω

(∣∣D(u)
∣∣r−2

D(u) : D(v) + |u|r−2u · v

+ |∇ω|r−2∇ω · ∇ϕ+ |ω|r−2ωϕ+ |∇k|r−2∇k · ∇w + |k|r−2kw
)
.

For the rest of this appendix we continue to omit the measure symbol “ dx” for integration over Ω.
Moreover we have set α2 = ν0 = 1 for notational simplicity, because these numerical constant have
no influence on the analysis.

Proof of Proposition 5.1. It remains to establish the conditions (A.1) on the operator A.

Step 1. r-boundedness (A.1a): Using r > 3 and Hölder’s inequality, it is easily seen that all integrals
in the definition of I(U, V ) are well defined. In particular, we find a constant c1 > 0 such that∣∣I(U, V )

∣∣ ≤ c1

(
‖U‖2

V + ‖U‖r−1
V

)
‖V ‖V for all U, V ∈ V . (A.4)

But this implies (A.1a) because of r ≥ 3.
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Step 2. r-coercivity (A.1b): For estimating 〈A(U), U〉 = I(U,U) from below we see that all convec-
tive terms disappear because of divu = 0. After dropping the three non-negative terms arising from
the dissipation terms involving k+/(ε+ω+) we find

〈A(U), U〉 = I(U,U) ≥ ε
∥∥(D(u),u,∇ω, ω,∇k, k)

∥∥r
Lr(Ω)

−
∫

Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2k

(A.5)

for all U ∈ V . We now use k+/(ε+ω++εk+) ≤ 1/ε and r 	 3. By Hölder’s and Young’s inequality
we find c2 > 0 such that∫

Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2k ≤ 1

ε

∫
Ω

∣∣D(u)
∣∣2k ≤ ε

2

∫
Ω

∣∣D(u)
∣∣r +

ε

2

∫
Ω

|k|r + c2,

where the constant c2 depends on ε > 0, r > 3, and vol(Ω). Inserting this into (A.5) and using
Korn’s inequality inW 1,r(Ω) we have established (A.1b) for p = r.

Step 3. Strong convergence: In the remaining two steps we consider a sequenceUm = (um, ωm, km)
satisfying the assumptions in condition (A.1c), namely

(a) Um ⇀ U in V (b) lim sup
m→∞

〈A(Um), Um−U〉 ≤ 0. (A.6)

In this step we first show that this implies the strong convergence Um → U in V , and in Step 4 we
deduce the liminf estimate for (A.1c).

Combining parts (a) and (b) of (A.6) we immediately obtain

lim sup
m→∞

〈
A(Um)− A(U) , Um − U

〉
≤ 0. (A.7)

We decompose these duality products into ten separate integrals, namely

〈
A(Um)− A(U), Um − U

〉
=

10∑
j=1

Kj,m (A.8)

:=

∫
Ω

[
um·∇um−u·∇u

]
· (um−u) +

∫
Ω

[ k+
m

ε+ω+
m

D(um)− k+

ε+ω+
D(u)

]
:D(um−u)

+

∫
Ω

(um·∇ωm − u·∇ω) (ωm−ω) +

∫
Ω

[ k+
m

ε+ω+
m

∇ωm −
k+

ε+ω+
∇ω
]
· ∇(ωm−ω)

+

∫
Ω

(ω+
mωm − ω+ω)(ωm−ω) +

∫
Ω

(um · ∇km − u · ∇k)(km−k)

+

∫
Ω

[ k+
m

ε+ω+
m

∇km −
k+

ε+ω+
∇k
]
· ∇(km−k) +

∫
Ω

(kmω
+
m − kω+)(km−k)

−
∫

Ω

( k+
m

ε+ω+
m+εk+

m

∣∣D(um)
∣∣2 − k+

ε+ω++εk+

∣∣D(u)
∣∣2)(km − k)

+

∫
Ω

ε

[(
Φr(D(um))− Φr(D(u))

)
:D(um−u) +

(
Φr(um)− Φr(u)

)
·(um−u)

+
(
Φr(∇ωm)− Φr(∇ω)

)
· ∇(ωm−ω) +

(
Φr(ωm)− Φr(ω)

)
(ωm−ω)

+
(
Φr(∇km)− Φr(∇k)

)
· ∇(km−k) +

(
Φr(km)− Φr(k)

)
(km−k)

]
,
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where Φr(ξ) := |ξ|r−2ξ. The last term K10,m can be used to control Um − U in the norm of V by
using the estimate(

Φr(ξ)− Φr(η)
)
· (ξ−η) ≥ 22−r∣∣ξ − η∣∣r for all ξ,η ∈ RN ,

see [Lin06] for the derivation of the exact constant. In particular, we find

K10,m ≥ ε22−r∥∥Um − U∥∥rV , (A.9)

and the strong convergence Um → U follows if we show lim supm→∞K10,m ≤ 0.

By (A.7) we control the limsup of
∑10

1 Kj,m and hence obtain

lim sup
m→∞

K10,m = lim sup
m→∞

( 10∑
j=1

Kj,m −
9∑
l=1

Kl,m

)
≤ lim sup

m→∞

10∑
j=1

Kj,m − lim inf
m→∞

9∑
l=1

Kl,m

(A.7)
≤ 0 −

9∑
l=1

lim inf
m→∞

Kl,m.

Thus, it suffices to show lim infm→∞Kl,m ≥ 0 for l ∈ {1, ..., 9}. To do so, we use Um ⇀ U (i.e.
(A.6a)), which by r > 3 and the compact embedding W 1,r(Ω) b C0(Ω) implies

um → u, ωm → ω, km → k uniformly in Ω. (A.10)

For treating K1,m we use integration by parts and divum = divu = 0 to find

K1,m =

∫
Ω

(
div(um⊗um) : ∇u− u·∇u · um

)
→
∫

Ω

(
div(u⊗u) : ∇u− u·∇u · u

)
= 0,

because of the uniform convergence um → u.

Similarly, the other convective terms K3,m and K6.m converge to 0, since ωm → ω and km → k
converge uniformly.

For the second term K2,m we again use the uniform convergence in the decomposition

K2,m =

∫
Ω

( k+
m

ε+ω+
m

− k+

ε+ω+

)
D(um) : D(um−u) +

∫
Ω

k+

ε+ω+
D(um−u) : D(um−u).

The first integral converges to 0 as the two terms involvingD are bounded in Lr(Ω) ⊂ L2(Ω) while
the prefactor converges to 0 uniformly. The second integral is non-negative, hence lim inf

m→∞
K2,m ≥ 0

follows. Analogously, the lim inf
m→∞

of K4,m and K7,m is non-negative.

By uniform convergence of the integrands we easily obtain K5,m → 0 and K8,m → 0.

In K9,m the integrand is a product of a function bounded uniformly in Lr/2(Ω) and km−k, which
converges uniformly to 0; hence K9,m → 0 as well.

This finishes the proof of Step 3 guaranteeing Um → U in V .

Step 4. A is pseudo-monotone: For the sequence Um satisfying (A.6) we have to show

〈A(U), U−V 〉 ≤ lim inf
m→∞

〈A(Um), Um−V 〉 for all V = (v, ϕ, w) ∈ V (A.11)
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By Step 3 we are now able to use the strong convergence Um → U . Again we split the duality-product
term into ten parts and treat the parts separately:

〈
A(Um), Um − V

〉
=

10∑
j=1

Gj,m (A.12)

=:

∫
Ω

um·∇um · (um−v) +

∫
Ω

k+
m

ε+ω+
m

D(um) : D(um−v)

+

∫
Ω

um·∇ωm (ωm−ϕ) +

∫
Ω

k+
m

ε+ω+
m

∇ωm · ∇(ωm−ϕ)

+

∫
Ω

ω+
mωm(ωm−ϕ) +

∫
Ω

um·∇km (km−w) +

∫
Ω

k+
m

ε+ω+
m

∇km · ∇(km−w)

+

∫
Ω

kmω
+
m(km−w)−

∫
Ω

k+
m

ε+ω+
m+εk+

m

∣∣D(um)
∣∣2(km−w)

+

∫
Ω

ε
(

Φr(D(um)) : D(um−v) + Φr(um) · (um−v) + Φr(∇ωm) · ∇(ωm−ϕ)

+ Φr(ωm)(ωm−ϕ) + Φr(∇km) · ∇(km−w) + Φr(km)(km−w)
)
.

Using the uniform convergence ofUm (see (A.10)) and the strong convergence inLr(Ω) of the deriva-
tives ∇Um it is straight forward to see that the integrals Gj,m for j ∈ {1, ..., 9} converge to their
respective limits. For G10,m we can use the estimate∣∣Φr(ξ)− Φr(η)

∣∣ ≤ 3r
(
|ξ|+ |η|

)r−2∣∣ξ − η∣∣ for all ξ,η ∈ RN ,

see [Bou65, exerc. 10.a, p. 257]. Thus, we conclude that (A.11) holds, even with equality.

Hence, all the assumptions in (A.1) are established, Theorem A.1 is applicable, and the proof of
Proposition 5.1 is complete.

Remark A.2. An alternative proof for Proposition 5.1 is given in the first draft [MiN18] of the present
work. That proof is based on the method of elliptic regularization of abstract evolution equations,
cf. [Lio69, Ch. 3, Thm. 1.2].
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[BuM19] Bulíček, M.; Málek, J.: Large data analysis for Kolmogorov’s two-equation model of turbu-
lence. Nonlinear Analysis Real World Appl. 50, 104–143 (2019).

[ChI94] Chossat, P.; Iooss, G.: The Couette-Taylor problem. New York: Springer-Verlag 1994.

[ChL14] Chacón Rebello, T.; Lewandowski, R: Mathematical and Numerical Foundations of Turbu-
lence Models and Applications. Birkhäuser’s Modeling and Simulation in Science, Engineering
and Technology series, Springer, New-York 2014.

[Dav04] Davidson, P.A.: Turbulence. An introduction for scientists and engineers. Oxford Univ. Press,
Oxford 2004.

[Dro01] Droniou, J:. Intégration et espaces de Sobolev à valeurs vectorielles. Preprint 2001.
https://hal.archives-ouvertes.fr/hal-01382368/

[FeM06] Feireisl, E.; Málek, J.: On the Navier-Stokes equations with temperature-dependent transport
coefficients, Differ. Equ. Nonlinear Mech. 2006, Art. ID 90616, 14 pp., (2006).

[FMRT01] Foias, C.; Manley, O.; Rosa, R.; Temam, R.: Navier-Stokes equations and turbulence. Cam-
bridge University Press, 2001.

[Fri04] Frisch, U.: Turbulence. The legacy of A.N. Kolmogorov (2nd ed.), Cambridge Univ. Press,
Cambridge 2004.

[Har06] Harpes, P.: Bubbling of approximations for the 2-D Landau-Lifschitz flow. Comm. Partial Dif-
ferential Equations 31, 1–20 (2006).

[KaW97] Kagei, Y.; von Wahl, W.: The Eckhaus criterion for convection roll solutions of the Oberbeck-
Boussinesq equations. Int. J. Non-Linear Mech., 32, 563–620 (1997).

[KLP20] Klingenberg, D.; Oberlack, M.; Pluemacher, D.: Symmetries and turbulence modeling.
Physics of Fluids 32, 025108/18 pp. (2020).

[Kol42] Kolmogorov, A.N.: The equations of turbulent motion of an incompressible viscous fluid (Rus-
sian). Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 56–58 (1942) (English translations in: [Spa91, pp. 214–
216], [Tik91, pp. 328-330]).

[LaL91] Landau, L.D.; Lifschitz, E.M.: Lehrbuch der theoretischen Physik. Band VI: Hydromechanik.
Akademie-Verlag, Berlin 1991.

[LaL03] Layton, W.; Lewandowski, R.: A simple and stable scale-similarity model for LES: energy
balance and existence of weak Solutions. Applied Math. letters 16, 1205–1209 (2003).

[LeL07] Lederer, J.; Lewandowski, R.: A RANS 3D model with unbounded eddy viscosities. Ann. Inst.
H. Poincaré Anal. Nonlinéaire 24, 413–441 (2007).

[Lew97] Lewandowski, R.: The mathematical analysis of the coupling of a turbulent kinetic energy
equation to the Navier–Stokes equation with an eddy viscosity, Nonlinear Anal. 28, 393–417
(1997).

DOI 10.20347/WIAS.PREPRINT.2545 Berlin, October 16, 2018/rev. September 20, 2021



A. Mielke, J. Naumann 34

[Lew06] Lewandowski, R.: Vorticities in a LES model for 3D periodic turbulent flows. J. Math. Fluid.
Mech. 8, 398–422, (2006).

[Lin06] Lindqvist, P.: Notes on the p-Laplace equation. Report at Univ. Jyväskylä, De-
partment Math. Statistics, 102, Jyväskylä, 80 pp. (2006). Available in pdf-format:
https://folk.ntnu.no/lqvist/p-laplace.pdf.

[Lio69] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod,
Gauthier-Villars, Paris 1969.

[LLZ95] Lin, F.-H.; Liu, C.; Zhang, P.: On hydro-dynamics of viscoelastic fluids. Commun. Pure Appl.
Math. 58, 1437–1471 (2005).

[MiN15] Mielke, A.; Naumann, J.: Global-in-time existence of weak solutions of Kolmogorov’s two-
equation model of turbulence. C. R. Acad. Sci. Paris, Ser. I 353, 321–326 (2015).

[MiN18] Mielke, A.; Naumann, J.: On the existence of global-in-time weak solutions and scaling laws
for Kolmogorov’s two-equation model of turbulence. Preprint January 6, 2018, arXiv:1801.02039.

[MoY07] Monin, A.S.; Yaglom, A.M.: Statistical fluid mechanics. 2 vols. Transl. of the 1965 Russian
original, ed. by J.L. Lumley. Dover Publ. Mineola, New York 2007.

[Nau08] Naumann, J.: On weak solutions to the equations of non-stationary motion of heat-conducting
incompressible viscous fluids: defect measure and energy inequality. In: Parabolic and Navier-
Stokes Equs. Banach Center Publ., vol. 81, Warsaw, 287–296 (2008).

[ObB02] Oberlack, M. and Busse, F. H.: Theories of Turbulence. CISM Courses and Lectures No.
442, Springer 2002.

[Obe02a] Oberlack, M.: On the decay exponent of isotropic turbulence. Proc. Applied Math. Mech. 1,
294–297, (2002).

[Obe02b] Oberlack, M.: Symmetries and invariant solutions of turbulent flows and their implications
for turbulence modelling. In [ObB02], pages 301–366 (2002).

[Rak91] Rakotoson, J.M.: Some quasilinear parabolic equations. Nonl. Analysis, TMA 17:12, 1163–
1175 (1991).

[Rak92] Rakotoson, J.: A compactness lemma for quasilinear problems: applications to parabolic
equations. J. Funct. Anal. 106, 358–374 (1992).
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