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On the existence of global-in-time weak
solutions and scaling laws for Kolmogorov’s

two-equation model of turbulence

Alexander Mielke, Joachim Naumann

Abstract

This paper is concerned with Kolmogorov’s two-equation model for free turbu-
lence in R3 involving the mean velocity u, the pressure p, an average frequency
ω > 0, and a mean turbulent kinetic energy k. We first discuss scaling laws for a
slightly more general two-equation models to highlight the special role of the model
devised by Kolmogorov in 1942. The main part of the paper consists in proving
the existence of weak solutions of Kolmogorov’s two-equation model under space-
periodic boundary conditions in cubes Ω = ( ] 0, l [ )3 with l > 0. For this we provide
new a priori estimates and invoke existence result for pseudo-monotone operators.

1 Introduction

In 1942, A.N. Kolmogorov (see [Kol42] and [Spa91, pp. 214–216] for an English transla-
tion) postulated the following system of PDEs as a model for the isotropic homogeneous
turbulent motion of an incompressible fluid in R3 × [ 0,+∞ [ :

divu = 0 , (1.1a)

∂u

∂t
+ (u · ∇)u = ν0 div

(k
ω
D(u)

)
−∇p+ f , (1.1b)

∂ω

∂t
+ u · ∇ω = ν1 div

(k
ω
∇ω
)
− α1ω

2, (1.1c)

∂k

∂t
+ u · ∇k = ν2 div

(k
ω
∇k
)

+ ν0
k

ω

∣∣D(u)
∣∣2 − α2kω. (1.1d)

Throughout the paper, bold letters denote functions with values in R3 or R9 as well as
normed spaces of such functions. Here, the unknowns have the following physical meaning:

u is the velocity of the mean flow,

p is the average of the pressure,

ω is the average of the frequency associated with
the turbulent kinetic energy,

k is the mean turbulent kinetic energy.
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A. Mielke, J. Naumann 2

The velocity field v of the fluid motion is given by v = u+ũ, where ũ denotes the turbulent

fluctuation velocity, such that the scalar k is the temporal average 1
2
|ũ|2. Further,

ν0, ν1, ν2 > 0 are dimensionless and constant closure coefficients;

α2, α1 > 0 are dimensionless and constant closure coefficients;

f is the given external force,

D(u) =
1

2

(
∇u+ (∇u)>

)
is the mean strain-rate tensor.

The function ν0
k
ω

denotes the kinematic eddy viscosity, while ν1
k
ω

and ν2
k
ω

denote the
corresponding diffusion constants for the scalars ω and k. We refer to Section 2 for the
scaling properties of this specific choice by Kolmogorov. Since the numerical values of ν1

and ν2 are not relevant for the theory of weak solutions for (1.1) we are going to develop
below, we assume them to be equal to 1. A detailed discussion of the numerical values of
closure coefficients and their role in turbulence modeling can be found, e.g., in [Bau13] and
[Wil06, Chap. 4.3.1]. However, we keep the coefficient ν0 to emphasize that the viscous
dissipation generated by the viscous term in (1.1a) is feeding into the mean turbulent
kinetic energy, see the second last term in (1.1d). Hence, for sufficiently smooth solutions
we have the formal energy relation

d

dt

∫

R3

(1

2
|u|2 + k

)
dx =

∫

R3

(
f · u− α2ωk

)
dx,

where the first term on the right-hand side gives the power of the external forces, while
the second term is Kolmogorov’s way of modeling dissipative losses, e.g. through thermal
radiation.

From the two closure coefficients α1 and α2 in the last terms of (1.1c) and (1.1d),
respectively, only the ratio α2/α1 is relevant, as α1 can be set to 1 by suitable rescalings,
see Section 2. Note that for f ≡ 0 there are explicit spatially constant solutions

u ≡ u◦, ω(t) =
ω◦

1 + α1ω◦t
, k(t) =

k◦
(1 + ω◦α1t)α2/α1

, (1.2)

i.e. the mean turbulent kinetic energy decays like t−α2/α1 , if there is no feeding through
macroscopic viscous dissipation. Under the assumptions ω(0, x) ≥ ω∗ > 0 and k(0, x) ≥
k∗ > 0 for all x ∈ R3 we will show that in the general case the solutions satisfy similar
lower bounds, see Section 5.2.

System (1.1) is an outgrowth of A.N. Kolmogorov’s theory of turbulence published
in a series of papers in 1941. Comprehensive presentations of this theory can be found,
e.g., in [Fri04] and [MoY07, Vol. I, Chap. 6.1, 6.2; Vol. II, Chap. 8] (see also the article

[Tik91, pp. 488–503]). The function L = k1/2

ω
(“external length scale” or “size of largest

eddies”) plays an important role for the study of the energy spectrum of the turbulence
(see [LaL91, Chap. 33], [Wil06, Chap. 8.1]). A review of the work of A.N. Kolmogorov
and the Russian school of turbulence can be found in [Yag94]. This paper contains also
some remarks about a possibly “missing source term” in (1.1c) (cf. [Spa91, p. 212]).

A profound discussion of the mathematical background of Obukhoff–Kolmogorov’s
spectral theory of turbulence (K41-functions, bounds for the energy spectrum for low and
high frequencies) is given in [Vig10].

In place of R3 × [ 0,+∞ [ , in the present paper we study system (1.1) in the space-

time cylinder Q = Ω× ] 0, T [ , where Ω =
(

] 0, l [
)3

with 0 < l < +∞ and 0 < T < +∞

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 3

arbitrary, but fixed. To implement periodic boundary conditions we interpret Ω as a torus
by identifying the opposite sides. If ∂Ω denotes the boundary of the cube Ω ⊂ R3 we set

Γi = ∂Ω ∩ {xi = 0}, Γi+3 = ∂Ω ∩ {xi+3 = l} for i = 1, 2, 3,

and complement (1.1) with periodic boundary conditions and initial conditions as follows:

u
∣∣
Γi× ] 0,T [

= u
∣∣
Γi+3× ]0,T [

, analogously for p, ω, k,

D(u)
∣∣
Γi× ] 0,T [

= D(u)
∣∣
Γi+3× ] 0,T [

, analogously for ∇ω,∇k
(i = 1, 2, 3)





(1.3a)

u = u0, ω = ω0, k = k0 in Ω× {0}. (1.3b)

Initial/boundary-value problem (1.1) and (1.3) characterizes a turbulent motion of an
incompressible fluid in Q that evolves from {u0, ω0, k0} at time t = 0.

On physical grounds, the size l of the underlying cube Ω should be greater than
certain quantities of the turbulent motion. A detailed discussion of this aspect is given in
[Dav04, pp. 25–26, 424–435] (cf. also item 2◦ below). This is one of the main reasons why
we consider a cube Ω of side length l and periodic boundary conditions which provides an
analysis that is completely independent of l. In particular, we can choose l much bigger
than the “external length scale” L = k1/2

ω
.

In [BuM16], the authors study system (1.1) in Ω× ] 0, T [ , where Ω ⊂ R3 is a bounded
domain with C1,1-boundary ∂Ω, mixed boundary conditions for ω and k, the condition
u · n = 0 and a condition for the normal traction of the tensor −pI + ν0

k
ω
D(u) on

∂Ω× ] 0, T [ . Under these boundary conditions, system (1.1) characterizes a wall-bounded
turbulent motion, i.e., turbulence is generated at the Dirichlet part of the boundary. The
authors complete this boundary value problem by the initial conditions (1.3b) and prove
the existence of a weak solution by combining a truncation method and the Galerkin
approximation.

The emphasis of our present paper is quite different from that of [BuM16], as we
are interested in free turbulence which is independent of the boundary and thus has to
obey certain scaling invariances (see Section 2). This can only be understood by using
periodic boundary conditions and assuming that the cube size l is much larger than the
structures under consideration. However, it is well-known that the study of Navier-Stokes
equations with periodic boundary conditions is more delicate due to mean-flow effects
and several choices of the Helmholtz decomposition (see, e.g., [ChI94, IoM91, KaW97] for
more details).

Our proof of the existence of weak solutions of (1.1) and (1.3), which has been al-
ready sketched in [MiN15], is entirely independent of the discussion in [BuM16]. More
specifically, the basic aspects of our paper are:

1◦ In Section 3 we introduce the notion of weak solution {u, ω, k} with defect measure
µ for (1.1) and (1.3) . This notion leads to a balance law for

∫
Ω
k(x, ·) dx and gives

a connection between the energy equality for 1
2

∫
Ω

∣∣u(x, ·)
∣∣2 dx and the vanishing of

µ (cf. the Proposition, and Corollary 4.5 in Section 4).

2◦ In Section 4 we present our existence theorem for weak solutions {u, ω, k} with
defect measure µ. Based on comparison arguments with the solution in (1.2) this

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



A. Mielke, J. Naumann 4

solution satisfies the inequality

L =
k1/2

ω
≥ c (1+t)1−α2/(2α1) for all t ∈ [0, T ],

where α2 and α1 are from (1.1c) and (1.1d), and where c = const > 0 neither
depends on l nor on T (cf. Corollary 4.4 in Section 4). If α2/α1 ≤ 10/7, then L
grows at least as t2/7 (cf. A.N. Kolmogorov [Kol42]).

3◦ The proof of our existence theorem is given in Section 5. It is based on the existence
of an approximate solution {uε, ωε, kε} (without defect measure) of (1.1) and (1.3),
establishing a-priori estimates independently of ε and then carrying out the limit
passage ε → 0. The existence of the approximate solutions is obtained by apply-
ing an abstract existence results for evolutionary equations with pseudo-monotone
operators from [Rou13, Thm. 8.9], see Appendix A for the details.

4◦ Our approach is easily adaptable to more general domains with suitable boundary
conditions, and to the full-space Rd with general d ∈ N. However, for notational
convenience and physical relevance we restrict ourselves to d = 3 and the spatially
periodic case.

In subsequent work we will investigate similarity solutions that are induced by the
scaling laws discussed in Section 2. The most challenging question will be the derivation
of suitable solution concepts that allow the turbulent kinetic energy k to vanish on parts
of the domain. This would allow us to study the predictions of the Kolmogorov model
(1.1) in the way turbulent regions invade non-turbulent regions.

2 Scaling laws

We consider the free turbulent motion of an incompressible fluid in R3× ] 0,+∞ [ which
is governed by the following system of PDEs (note that f ≡ 0):

divu = 0, (2.1a)

∂u

∂t
+ (u · ∇)u = div

(
d1(ω, k)D(u)

)
−∇p, (2.1b)

∂ω

∂t
+ u · ∇ω = div

(
d2(ω, k)∇ω

)
− g2(ω, k)ω, (2.1c)

∂k

∂t
+ u · ∇k = div

(
d3(ω, k)∇k

)
+ d1(ω, k)

∣∣D(u)
∣∣2 − g3(ω, k)k, (2.1d)

where u, p, ω and k are the unknowns, and

di :
(

] 0,+∞ [
)2 −→ ] 0,+∞ [ (i = 1, 2, 3),

gm :
(

] 0,+∞ [
)2 −→ ] 0,+∞ [ (m = 2, 3)

are given coefficients. The coefficient d1(ω, k) represents a “generalized” viscosity of the
fluid. System (2.1) obviously includes Kolmogorov’s two-equation model (1.1) with

d1(ω, k) = ν0
k

ω
, d2(ω, k) = ν1

k

ω
, d3(ω, k) = ν2

k

ω
,

g2(ω, k) = α1ω, g3(ω, k) = α2ω.

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 5

We want to show that these choices are special, because they give a richer structure of
scaling invariances than more general functions. We refer to

Let {u, ω, k} be a classical solution of (2.1) that has a suitable decay for |x| → ∞
such that the following integrals over R3 exist. We multiply (2.1b) by u, integrate by
parts over R3, integrate (2.1d) over R3, and add the equations obtained. This gives the
energy balance

d

dt

∫

R3

(1

2
|u|2 + k

)
dx = −

∫

R3

g3(ω, k)k dx, t ∈ ] 0,+∞ ] (2.2)

(cf. Section 4, Corollary 4.5).

We are now studying the invariance of {u, ω, k} under the scaling

∂t 7→ α∂t, ∂xj 7→ β∂xj , u 7→ γu, ω 7→ ρω, k 7→ σk, (2.3)

where (α, β, γ, ρ, σ) ∈
(

] 0,+∞ [
)5

. Here, the pressure p is omitted, for it can be always
suitably scaled. In addition to the well-known scaling laws for the Navier-Stokes equations,
the scaling (2.3) have to leave invariant the coefficients di(ω, k) and gm(ω, t) for i = 1, 2, 3
and m = 2, 3, too.

To this end, we consider the following conditions for the family of parameters (α, β, γ, ρ, σ)
and the coefficients di and gm:

α = βγ, σ = γ2, (2.4)

∀ ω, k > 0 :

{
β2di(ρω, σk) = αdi(ω, k), i = 1, 2, 3,

gm(ρω, σk) = αgm(ω, k), m = 2, 3.
(2.5)

The first condition in (2.4) implies the invariance of the convective derivative ∂t + u · ∇
under (2.3), while the second condition implies that |u|2 and k have the same scaling
property which is necessary for the conservation law (2.2) to hold. It is now easy to see
that system (2.1) is invariant under the scaling laws (2.3) if the conditions (2.4) and (2.5)
hold.

In order to relate the present discussion to Kolmogorov’s two-equation model (1.1)
we make an “ansatz” for the parameter β as well as for the coefficients di and gm. For

(γ, ρ), (ω, k) ∈
(

] 0,+∞ [
)2

define

β = ρAγ1−2B (2.6)

di(ω, k) = Diω
−AkB, gm(ω, k) = Gmω

Ak1−B, (2.7)

where Di, Gm (i = 1, 2, 3; m = 2, 3) and A, B are arbitrary positive constants. Condition
(2.6) is equivalent to

β

γ
ρ−Aγ2B = 1 resp.

1

βγ
ρAγ2(1−B) = 1.

Observing (2.4), it is readily seen that di and gm as in (2.7) obey the scaling conditions
(2.5) for all choices of Di, Gm, A, and B.

Finally, let A = B = 1 in (2.6) and (2.7), i.e. gm does not depend on k. Then we
obtain

di(ω, k) = Di
k

ω
, gm(ω, k) = Gmω (i = 1, 2, 3; m = 2, 3).

Hence, Kolmogorov’s two-equation model of turbulence, which is obtained for Di = νi−1,
G2 = α1, and G3 = α2, is invariant under the scaling (2.3) with the two-parameter family

(ρ, γ) 7→ (α, β, γ, ρ, σ) =
(
ρ,
ρ

γ
, γ, ρ, γ2

)
. (2.8)

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



A. Mielke, J. Naumann 6

3 Definition of weak solutions

We begin with introducing notations that will be used throughout the paper.
Let X denote any real normed space with norm | · |X , and let 〈x∗, x〉X denote the dual

pairing of x∗ ∈ X∗ and x ∈ X. By Lp(0, T ;X) (1 ≤ p ≤ +∞) we denote the vector space
of all equivalence classes of Bochner measurable mappings u : [ 0, T ]→ X such that

‖u‖Lp(0,T ;X) =





(∫ T
0

∣∣u(t)
∣∣p
X

dt
)1/p

if 1 ≤ p < +∞,
ess sup
t∈[0,T ]

∣∣u(t)
∣∣
X

if p = +∞

is finite (see, e.g., [Bou65, Chap. III, §3, Chap. IV, §3], [Bre73, App.] and [Dro01] for
details). Let Ω ⊆ RN (N ≥ 2) be any open set, and let Q = Ω× ] 0, T [ (0 < T < +∞).
For 1 ≤ p < +∞ and u ∈ Lp(Q) define

[u](t)(·) = u(·, t) for a.a. t ∈ [ 0, T ].

By Fubini’s theorem, the function t 7→
∫

Ω

∣∣u(x, t)
∣∣pdx is in L1(0, T ) and there holds

∫ T

0

∥∥[u](t)
∥∥p
Lp(Ω)

dt =

∫

Q

∣∣u(x, t)
∣∣p dx dt.

An elementary argument shows that the mapping u 7→ [u] is a linear isometry of Lp(Q)
onto Lp

(
0, T ;Lp(Ω)

)
. Therefore, these spaces will be identified in what follows. By

W 1,p(Ω) we denote the usual Sobolev space, and we set W 1,p(Ω) =
(
W 1.p(Ω)

)N
.

Unless otherwise stated, from now on let Ω =
(

]0, l [
)3

denote the cube introduced in
Section 1. We define

W 1,p
per,div(Ω) =

{
u ∈ W 1,p(Ω); u

∣∣
Γi

= u
∣∣
Γi+3

(i = 1, 2, 3)
}
,

W 1,p
per,div(Ω) =

{
u ∈W 1,p

per(Ω); divu = 0 a.e. in Ω
}
,

C1
per,T (Q̄) =

{
ϕ ∈ C1(Q̄); ϕ

∣∣
Γi× ] 0,T [

= ϕ
∣∣
Γi+3× ] 0,T [

(i = 1, 2, 3), ϕ(x, T ) = 0 ∀ x ∈ Ω
}
,

C1
per,T,div(Q̄) =

{
v ∈ C1

per,T (Q̄); div v = 0 in Q
}
.

We emphasize that the test functions in C1
per,T (Q̄) vanish at t = T . Finally, byM(Q̄) we

denote the vector space of all non-negative, bounded Radon measures on the σ-algebra
of Borel sets ⊆ Q̄.

To simplify the notation we subsequently set α1 = 1 and ν2 = 1, which can always
be achieved by exploiting the scaling (2.8). We further set ν1 = 1, but keep the constant
ν0 > 0 to emphasize that the source term in the equation (1.1d) for the turbulent energy
k arises from the dissipation in the momentum equation (1.1b) for u.

Definition 3.1. Let f ∈ L1(Q), u0 ∈ L1(Ω) and ω0, k0 ∈ L1(Ω) such that ω0, k0 ≥ 0 a.e.
in Ω. A triple of measurable functions {u, ω, k} in Q is called weak solution of (1.1) and
(1.3) with defect measure µ ∈M(Q̄), if

ω > 0,
k

ω
≥ const > 0 a.e. in Q, (3.1)

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



Existence of weak solutions for Kolmogorov’s two-equation model of turbulence 7

u ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per,div(Ω)
)
,

ω ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per(Ω)
)
,

k ∈ L∞
(
0, T ;L1(Ω)

)
∩ L15/14

(
0, T ;W

1,15/14
per (Ω)

)
,





(3.2)

∫

Q

k

ω

((
1 +

∣∣D(u)
∣∣)∣∣D(u)

∣∣+ |∇ω|+ |∇k|
)

dx dt < +∞, (3.3)

and the following weak equations holds:

−
∫

Q

u · ∂v
∂t

dx dt−
∫

Q

(u⊗ u) : ∇v dx dt+ ν0

∫

Q

k

ω
D(u) : D(v) dx dt

=

∫

Ω

u0(x) · v(x, 0) dx+

∫

Q

f · v dx dt for all v ∈ C1
per,T,div(Q̄),





(3.4)

−
∫

Q

ω
∂ϕ

∂t
dx dt−

∫

Q

ωu · ∇ϕ dx dt+

∫

Q

k

ω
∇ω · ∇ϕ dx dt

=

∫

Ω

ω0(x)ϕ(x, 0) dx−
∫

Q

ω2ϕ dx dt for all ϕ ∈ C1
per,T (Q̄),





(3.5)

−
∫

Q

k
∂z

∂t
dx dt−

∫

Q

ku · ∇z dx dt+

∫

Q

k

ω
∇k · ∇z dx dt

=

∫

Ω

k0(x)z(x, 0) dx+

∫

Q

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
z dx dt

+

∫

Q̄

z dµ for all z ∈ C1
per,T (Q̄).





(3.6)

It is easy to see that all integrals in (3.4)–(3.6) are well-defined. It suffices to consider the

integrals with integrands ku · ∇z and k
ω

∣∣D(u)
∣∣2z in (3.6). Firstly, it is well-known that

condition (3.2) on u implies u ∈ L10/3(Q) (combine Hölder’s inequality and Sobolev’s
embedding theorem). Analogously, the condition (3.2) on k implies k ∈ L10/7(Q) (take
N = 3, θ = 3/4, (p1, p2) = (1, 15

14
), and (s1, s2) = (∞, 15

14
) in Lemma 4.2(B) below). Hence,

ku ∈ L1(Q). Secondly, k
ω

∣∣D(u)
∣∣2 ∈ L1(Q) by virtue of (3.3).

Remark 3.2. Every sufficiently regular classical solution {u, ω, k} of (1.1) and (1.3) sat-
isfies the variational identities (3.4), (3.5) and (3.6) with defect measure µ = 0. To verify
this, we multiply (1.1b), (1.1c) and (1.1d) by the test functions v, ϕ and z, respectively,
and integrate by parts over the cube Ω and then over the interval [ 0, T ].

Remark 3.3. The condition k/ω ≥ const > 0 is crucial for our existence theory, in
particular for obtaining the regularities for {u, ω, k} stated in (3.2). It would be desirable
to develop an existence theory without this condition, because this would allow us to
study how the support of k, which is may be called the turbulent region, invades the
non-turbulent region where k ≡ 0.

Remark 3.4. From (3.6) it follows that

−
∫

Q

k
∂z

∂t
dx dt−

∫

Q

ku · ∇z dx dt+

∫

Q

k

ω
∇ω · ∇z dx dt

≥
∫

Ω

k0(x)z(x, 0) dx+

∫

Q

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
z dx dt (3.7)

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



A. Mielke, J. Naumann 8

for all z ∈ C1
per,T (Q̄) with z ≥ 0 in Q. Choosing z ≡ 1 we find

∫

Ω

k(x, T ) dx ≥
∫

Ω

k0(x) dx+

∫

Q

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
dx dt.

A suitably adapted version of inequality (3.7) has been obtained in [BuM16, p. 10,
eqn. (1.55)]. Our concept of weak solution of (1.1) and (1.3) with defect measure provides
a more precise statement than this inequality and corresponds to the well-known energy
equality for weak solutions of the Navier-Stokes equations (cf. (3.11) and Corollary 4.5
below).

More specifically, the variational identity in (3.6) gives the following result about
possible jump discontinuities of the function t 7→

∫
Ω
k(x, t) dx.

Proposition 3.5. Let {u, ω, k} be a weak solution of (1.1) and (1.3) with defect measure
µ. Then, we have the integral relations

∫

Ω

ω(x, t) dx+

∫ t

0

∫

Ω

ω2 dx ds =

∫

Ω

ω0(x) dx for all t ∈ [0, T ], (3.8)

∫

Ω

k(x, t) dx =

∫

Ω

k0(x) dx+

∫ t

0

∫

Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
dx ds

+µ
(
Ω̄× [0, t ]

)
for a.a. t ∈ [0, T ],





(3.9)

lim
t→0

∫

Ω

k(x, t) dx =

∫

Ω

k0(x) dx+ µ
(
Ω̄× {0}

)
, (3.10)

∫

Ω

k(x, t) dx =

∫

Ω

k(x, s) dx+

∫ t

s

∫

Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
dx dτ

+µ
(
Ω̄× ] s, t ]

)
for a.a. s, t ∈ [0, T ] with s < t.





(3.11)

Proof. It suffices to prove (3.9). The same reasoning gives (3.8), and (3.10) and (3.11)
follow from (3.9). For t ∈ ] 0, T [ and m > 1

T−t (m ∈ N) we define

ηm(τ) =





1 if 0 ≤ τ ≤ t,

m
(
t+ 1

m
− τ
)

if t < τ < t+ 1
m
,

0 if t+ 1
m
≤ τ < T.

Taking z(x, τ) = 1 · ηm(τ), (x, t) ∈ Q in (3.6), we arrive at

m

∫ t+1/m

t

∫

Ω

k(x, τ) dx dτ (3.12)

=

∫

Ω

k0(x) dx+

∫ t+1/m

0

∫

Ω

(
ν0
k

ω

∣∣D(u)
∣∣2 − α2kω

)
ηm dx dτ (3.13)

+ µ
(
Ω̄× [ 0, t ]

)
+m

∫

Ω̄×]t,t+ 1
m

[

(
t+

1

m
− τ
)

dµ.
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Observing that

m

∫

Ω̄×]t,t+ 1
m

[

(
t+

1

m
− τ
)

dµ ≤ µ
(

Ω̄×
]
t, t+

1

m

[ )
−→ 0 as m→∞,

the limit passage m → ∞ in (3.13) gives (3.9) for every Lebesgue point t ∈ [0, T ] of the
function t 7→

∫
Ω
k(x, t) dx.

4 An existence theorem for weak solutions

We define the function spaces

C∞per(Ω) =
{
u|Ω ; u ∈ C∞(R3), u is l-periodic

in the directions e1, e2, e3

}
,

C∞per,div(Ω) =
{
u ∈ C∞per(Ω) ; divu = 0 in Ω

}
.

We impose the following conditions upon the right-hand side in (1.1b) and the initial data
in (1.3b):

f ∈ L2(Q); u0 ∈ C∞per,div(Ω)
‖·‖L2(Ω) , ω0 ∈ L∞(Ω), k0 ∈ L1(Ω),

there exist positive ω∗, ω∗ such that ω∗ ≤ ω0(x) ≤ ω∗ for a.a. x ∈ Ω,

there exist positive k∗ such that k0(x) ≥ k∗ for a.a. x ∈ Ω.





(4.1)

The following theorem is the main result of our paper.

Theorem 4.1 (Main existence result). Assume (4.1) and α2 = const > 0 (cf. (1.1d)).
Then there exists a triple of measurable functions {u, ω, k} in Q and a measure µ ∈M(Q̄)
such that

ω∗
1 + tω∗

≤ ω(x, t) ≤ ω∗

1 + tω∗
and

k∗
(1 + tω∗)α2

≤ k(x, t) for a.a. (x, t) ∈ Q; (4.2)

u ∈ Cw
(
[ 0, T ];L2(Ω)

)
∩ L2(0, T ;W 1,2

per,div(Ω)
)
,

ω ∈ Cw
(
[ 0, T ];L2(Ω)

)
∩ L2

(
0, T ;W 1,2

per(Ω)
)
,

k ∈ L∞
(
0, T ;L1(Ω)

)
∩ ⋂

1≤p<2

Lp
(
0, T ;W 1,p

per(Ω)
)
;





(4.3)

∫

Q

k
(∣∣D(u)

∣∣2+|∇ω|2
)

dx dt < +∞, (4.4)

u′ :=
∂

∂t
u ∈

⋂
σ>16/5

L4/3
(
0, T ;

(
W 1,σ

per,div(Ω)
)∗)

,

ω′ :=
∂

∂t
ω ∈

⋂
σ>16/5

L4/3
(
0, T ;

(
W 1,σ

per (Ω)
)∗)

.





(4.5)

The triple {u, k, ω} is a weak solution of (1.1) and (1.3) in the sense of Definition 3.1.
In particular, for all σ > 16/5 we have that

∫ T

0

〈
u′(t),v(t)

〉
W 1,σ

per,div

dt+

∫

Q

(
−(u⊗u) : ∇v + ν0

k

ω
D(u):D(v)

)
dx dt

=

∫

Q

f ·v dx dt for all v ∈ Lσ
(
0, T ;W 1,σ

per,div(Ω)
)

with v(·, T ) = 0;





(4.6)
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∫ T

0

〈
ω′(t), ϕ(t)

〉
W 1,σ

per
dt−

∫

Q

ωu · ∇ϕ dx dt+

∫

Q

k

ω
∇ω · ∇ϕ dx dt

= −
∫

Q

ω2ϕ dx dt for all ϕ ∈ Lσ
(
0, T ;W 1,σ

per (Ω)
)

with ϕ(·, T ) = 0;





(4.7)

that (3.6) holds; and that

u(0) = u0 in L2(Ω) and ω(0) = ω0 in L2(Ω); (4.8)

1

2

∫

Ω

∣∣u(x, t)
∣∣2 dx+ ν0

∫ t

0

∫

Ω

k

ω

∣∣D(u)
∣∣2 dx ds

≤ 1

2

∫

Ω

∣∣u0(x)
∣∣2 +

∫ t

0

∫

Ω

f · u dx ds





for a.a. t ∈ [0, T ]; (4.9)

∫

Ω

(1

2

∣∣u(x, t)
∣∣2+k(x, t)

)
dx+ α2

∫ t

0

∫

Ω

kω dx ds

≤
∫

Ω

(1

2

∣∣u0(x)
∣∣2+k0(x)

)
dx+

∫ t

0

∫

Ω

f · u dx ds





for a.a. t ∈ [0, T ]. (4.10)

Of course, in (4.6) and (4.7) it suffices to consider σ = 16
5

+ η for an arbitrarily small
η > 0. The derivatives u′ and ω′ in (4.5) are understood in the sense of distributions
from ] 0, T [ into

(
W 1,σ

per,div(Ω)
)∗

and
(
W 1,σ

per (Ω)
)∗

, respectively. Here we have used the
continuous and dense embeddings (see, e.g., [Bre73, App.], [Dro01, pp. 54–56] for details)

W 1,2
per(Ω) ⊂ L2(Ω) ⊂

(
W 1,σ

per (Ω)
)∗

for σ ≥ 6

5
.

To see that {u, ω, k} together with the measure µ in the above theorem are a weak
solution of (1.1) and (1.3) in the sense of the Definition 3.1, it suffices to note that (3.4)
and (3.5) follow from (4.6) and (4.7), respectively, by integration by parts of the first
integrals on the left-hand sides.

Before starting the proof it is instructive to check that the above estimates (4.2) to
(4.5) are enough to show that all terms in (4.6) to (3.6) are well defined. For this, we first
recall the classical Gagliardo-Nirenberg estimate and then provide an anisotropic version
that is adjusted to the parabolic problems on Q = [0, T ] × Ω, we use the short-hand
notations

Ls(Lp) := Ls(0, T ;Lp(Ω)) and Jθ(a, b) := a1−θ(a+b
)θ
.

Lemma 4.2 (Gagliardo-Nirenberg estimates). For N ∈ N consider a bounded Lipschitz
domain Ω ⊂ RN .
(A) (Classical isotropic version) Assume 1 ≤ p1 < p <∞, p2 ∈ ]1, N [ and θ ∈ ]0, 1[ such
that

1

p
= (1−θ) 1

p1

+ θ
( 1

p2

− 1

N

)
. (4.11)

Then, there exists a constant C > 0 such that for all ψ ∈ W 1,p2(Σ) we have

‖ψ‖Lp(Ω) ≤ C Jθ
(
‖ψ‖Lp1 (Ω), ‖∇ψ‖Lp2 (Ω)

)
. (4.12)

(B) (Anisotropic version) Consider p, p1, p2, and θ as in (A) and s, s1, and s2 satisfying

1 ≤ s2 ≤ s ≤ s1 and
1

s
= (1−θ) 1

s1

+ θ
1

s2

. (4.13)
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Then, there exists C∗ > 0 such that for all ϕ ∈ Ls2(0, T ;W 1,p2(Ω)) we have

‖ϕ‖Ls(Lp) ≤ C∗Jθ
(
‖ϕ‖Ls1 (Lp1 ), ‖∇ϕ‖Ls2 (Lp2 )

)
. (4.14)

Proof. Part (A) is well-known, see e.g. [Rou13, Thm. 1.24].
To establish Part (B) we apply Part (A) for ψ = ϕ(t) a.a. t ∈ [0, T ]. Thus, we obtain

(abbreviating ‖ψ‖p := ‖ψ‖Lp(Ω))

‖ϕ‖sLs(Lp) =

∫ T

0

‖ϕ(t)‖sp dt
(4.12)

≤ C1

∫ T

0

‖ϕ(t)‖(1−θ)s
p1

(
‖ϕ(t)‖p1+‖∇ϕ(t)‖p2

)θs
dt

Hölder+(4.13)

≤ C1

∥∥ ‖ϕ‖p1

∥∥(1−θ)s
Ls1 (0,T )

∥∥∥ ‖ϕ‖p1+‖∇ϕ‖p2

∥∥∥
θs

Ls2 (0,T )

s1≥s2≤ C1

∥∥ϕ‖(1−θ)s
Ls1 (Lp1 )

(
T 1/s2−1/s1‖ϕ‖Ls1 (Lp1 )+‖∇ϕ‖Ls2 (Lp2 )

)θs

≤ C2

(
Jθ
(
‖ϕ‖Ls1 (Lp1 ), ‖∇ϕ‖Ls2 (Lp2 )

))s
,

which is the desired estimate.

Remark 4.3 (Well-definedness of nonlinear terms). We first show that the second integral
on the left-hand side of the variational identity in (4.6) are well-defined. For the integral
of (u⊗u):∇v we see that (4.3) allows us to use Lemma 4.2 with N = 3, (s1, p1) = (∞, 2)
and (s2, p2) = (2, 2). With θ = 3/4 part (A) gives

‖u‖L4(Ω) ≤ C
(
‖u‖L2(Ω) + ‖u‖1/4

L2(Ω)
‖∇u‖3/4

L2(Ω)

)
, (4.15)

whereas part (B) leads to u ∈ L8/3(0, T ;L4(Ω)), which implies

u⊗u ∈ L4/3(0, T ;L2(Ω)). (4.16)

With σ > 16/5 > 2 we have ∇v ∈ L2(0, T ;L2(Ω)) and
∫
Q

(u⊗u) : ∇v dx dt is well

defined. Using θ = 3/5 in Lemma 4.2(B) we obtain s = p = 10/3 and hence conclude

‖u‖L10/3(Q) ≤ C2J3/5

(
‖u‖L∞(L2), ‖∇u‖L2(L2)

)
. (4.17)

For the integral of k
ω
D(u):D(v) we use ω ≥ ω∗/(1+Tω∗) > 0 from (4.2), k1/2D(u) ∈

L2(Q) from (4.4). Using (4.3) we can apply Lemma 4.2(B) to k with N = 3, (s1, p1) =
(∞, 1), and s2 = p2 ∈ [1, 2[. Choosing θ = 3/4 we obtain s = p = 4p2/3, such that k lies
in L4p2/3(0, T ;L4p2/3(Ω)) = L4p2/3(Q). As p2 ∈ [1, 2[ is arbitrary, we have k1/2 ∈ Lq(Q)
for all q ∈ [1, 16/3[. By Hölder’s inequality we arrive at

kD(u) = k1/2 k1/2D(u) ∈ Lp(Q) for all p ∈ [1, 16/11[. (4.18)

Using D(v) ∈ Lσ(0, T ;Lσ(Ω)) = Lσ(Q) with τ > 16/5 we see that there is always a
p ∈ [1, 16/11[ such that 1

σ
+ 1

p
≤ 1. Hence we conclude

∫

Q

∣∣k
ω
D(u):D(v)

∣∣ dx dt ≤ C‖kD(u)‖Lp(Q)‖D(v)‖Lσ(Q) <∞.

Thus, by a routine argument, (4.16) and (4.18) lead to the existence of the distributional
derivative u′ as in (4.5), see also Sections 5.4–5.6.
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An analogous reasoning applies to the second and the third integral on the left-hand
side of the variational identity in (4.7).

Finally, combining u ∈ L2(Q) and ∇k ∈ Lp(Q) for all p ∈ [1, 2[ (see (4.3)) and
k ∈ L4p/3(Q) from above, Hölder’s inequality gives we find

ku ∈ Lq(Q) and k∇k ∈ Lq(Q) for all q ∈ [1, 8/7[,

i.e., the second and third integral on the left-hand side in (3.6) are well defined.

The estimates (4.2), which will be derived by using suitable comparison arguments,
allow us to deduce the following result (based on the choice α1 = 1).

Corollary 4.4. For a.a. (x, t) ∈ Q, we have the following estimates:

L(x, t) =
k(x, t)1/2

ω(x, t)
≥ k

1/2
∗
ω∗

(1 + tω∗)1−α2/2, (4.19)

1

ω∗
+ t ≤ 1

ω(x, t)
≤ 1

ω∗
+ t. (4.20)

Kolmogorov claimed in [Kol42] that L = L(x, t) “... grows in proportion of t2/7 ...” (see
also [Spa91, p. 215], [Tik91, p. 329]). Clearly, from (4.19) with α2 = 10/7 it follows

L(x, t) ≥ k
1/2
∗
ω∗

(1 + tω∗)2/7 for a.a. (x, t) ∈ Ω× ] t0, T [ .

Of course, Kolmogorov’s claim is compatible with our lower estimate for any choice α2 ≥
10/7. However, it cannot be true for α2 ∈ ]0, 10/7[.

Recalling the energy balance (3.9) we easily obtain the following result.

Corollary 4.5 (Energy equalities and defect measure). Let {u, ω, k} and µ be as in the
theorem and assume that equality holds in (4.10), i.e.,

∫

Ω

(1

2

∣∣u(x, t)
∣∣2 + k(x, t)

)
dx+ α2

∫ t

0

∫

Ω

kω dx ds

=

∫

Ω

(1

2

∣∣u0(x)
∣∣2 + k0(x)

)
dx+

∫ t

0

∫

Ω

f · u dx ds

for a.a. t ∈ [0, T ]. Then the following two statements are equivalent:

(i) µ = 0;

(ii)
1

2

∫

Ω

∣∣u(x, t)
∣∣2 dx+ ν0

∫ t

0

∫

Ω

k

ω

∣∣D(u)
∣∣2 dx ds

=
1

2

∫

Ω

∣∣u0(x)
∣∣2 dx+

∫ t

0

∫

Ω

f · u dx ds for a.a. t ∈ [ 0, T ].

This result shows that inequalities (4.9), (4.10) and the defect measure µ in (3.6)
are related to the deep problem of proving an energy equality for weak solutions of the
Navier-Stokes equations. A similar result for the case of Navier-Stokes equations with
temperature dependent viscosities has been obtained in [Nau08]. Defect measures also
appear in a natural way in the context of weak solutions of other types of nonlinear PDEs
(see, e.g., [AlV02, Har06, LLZ95]).
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5 Proof of the existence theorem

The proof of the main Theorem 4.1 proceeds in several steps. First we regularize the
problem by adding small higher-order dissipation terms of r-Laplacian type and small
coercivity-generating lower order terms. A general result for pseudo-monotone operators,
which is detailed in Appendix A, then provides approximate solutions {uε, ωε, kε}. In
Section 5.2 we provide ε-independent upper and lower bounds for ωε and kε by comparison
arguments. In Section 5.3 we complement the standard energy estimates by improved
integral estimates for kε that allow us to pass to the limit ε↘ 0 in Section 5.5.

5.1 Defining suitable approximate solutions {uε, ωε, kε}
Let be ω∗, ω∗ and k∗ as in (4.1). We introduce the comparison functions

ω(t) =
ω∗

1 + tω∗
, ω(t) =

ω∗

1 + tω∗
, κ(t) =

k∗
(1 + tω∗)α2

for t ∈ [0, T ], (5.1)

which will be the desired bounds for ωε and kε in Q. Subsequently we will use the notion

ξ+ := max{ξ, 0} ≥ 0 and ξ− = min{ξ, 0} ≤ 0

for the positive and negative parts of real numbers or real-valued functions.
We choose a fixed number r ∈ ]3,∞[ and consider for all small ε > 0 the follow-

ing r-Laplacian approximation of (1.1), where we add the coercivity-generating terms

ε
(
ω(t)

)r−1
and ε

(
κ(t)

)r−1
to the right-hand sides of (1.1c) and (1.1d), respectively:

divu = 0, (5.2a)

∂u

∂t
+ (u · ∇)u = ν0 div

( k+

ε+ ω+
D(u)

)
−∇p+ f

+ ε
(

div
(∣∣D(u)

∣∣r−2
D(u)

)
− |u|r−2u

)
,

(5.2b)

∂ω

∂t
+ u · ∇ω = div

( k+

ε+ ω+
∇ω
)
− ω+ω

+ ε
(

div
(
|∇ω|r−2∇ω

)
− |ω|r−2ω

)
+ ε
(
ω(t)

)r−1
,

(5.2c)

∂k

∂t
+ u · ∇k = div

( k+

ε+ω+
∇k
)

+ ν0
k+

ε+ ω++ εk+

∣∣D(u)
∣∣2−α2kω

+

+ ε
(

div
(
|∇k|r−2∇k

)
− |k|r−2k

)
+ ε
(
κ(t)

)r−1
.

(5.2d)

We consider system (5.2) with initial data {u0,ε, ω0,ε, k0,ε} satisfying

{u0,ε, ω0,ε, k0,ε} ∈W 1,r
per,div(Ω)×W 1,r

per(Ω)×W 1,r
per(Ω), (5.3a)

ω∗ ≤ ω0,ε(x) ≤ ω∗ and k0,ε(x) ≥ k∗ a.e. in Ω, (5.3b)

u0,ε −→ u0 in L2(Ω), ω0,ε −→ ω0 a.e. in Ω,

k0,ε −→ k0 in L1(Ω) for ε→ 0.

}
(5.3c)

The existence of a sequence {u0,ε}ε>0 which satisfies (5.3a) follows immediately from
the condition on u0 in (4.1), whereas the existence of sequences {ω0,ε}ε>0 and {k0,ε}ε>0
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satisfying (5.3) can be derived by routine argument from the conditions on ω0 and k0 in
(4.1).

The following lemma states the existence of weak solutions of (5.2) under the pe-
riodic boundary conditions (1.3a) and initial data (5.3). This result, which we derive
in Appendix A by a direct application of existence results for pseudo-monotone evo-
lutionary problems (see Theorem A.1), forms the starting point for our discussion in
Subsections 5.2–5.6.

Proposition 5.1 (Existence of approximate solutions). Let {u0,ε, ω0,ε, k0,ε}ε>0 be as in
(5.3), r > 3, and f ∈ L2(Q). Then, for every ε > 0 there exists a triple {uε, ωε, kε} such
that

uε ∈ C
(
[ 0, T ];L2(Ω)

)
∩ Lr

(
0, T ;W 1,r

per,div(Ω)
)
, (5.4a)

ωε, kε ∈ C
(
[ 0, T ];L2(Ω)

)
∩ Lr

(
0, T ;W 1,r

per(Ω)
)
, (5.4b)

u′ε ∈ Lr
′(

0, T ;
(
W 1,r

per,div(Ω)
)∗)

, ω′ε, k
′
ε ∈ Lr

′(
0, T ;

(
W 1,r

per(Ω)
)∗)

, (5.4c)

and ∫ T

0

〈
u′ε(t),v(t)

〉
W 1,r

per,div

dt+

∫

Q

3∑

i=1

uε,i(∂iuε) · v dx dt

+ ν0

∫

Q

k+
ε

ε+ ω+
ε

D(uε) : D(v) dx dt

+ ε

∫

Q

(∣∣D(uε)
∣∣r−2

D(uε) : D(v) + |uε|r−2uε · v
)

dx dt

=

∫

Q

f · v dx dt for all v ∈ Lr
(
0, T ;W 1,r

per,div(Ω)
)
,





(5.5a)

∫ T

0

〈
ω′ε(t), ϕ(t)

〉
W 1,r

per
dt+

∫

Q

ϕuε · ∇ωε dx dt

+

∫

Q

k+
ε

ε+ ω+
ε

∇ωε · ∇ϕ dx dt+

∫

Q

ω+
ε ωεϕ dx dt

+ ε

∫

Q

(
|∇ωε|r−2∇ωε · ∇ϕ+ |ωε|r−2ωεϕ

)
dx dt

= ε

∫

Q

(
ω(t)

)r−1
ϕ dx dt for all ϕ ∈ Lr

(
0, T ;W 1,r

per(Ω)
)
,





(5.5b)

∫ T

0

〈
k′ε(t), z(t)

〉
W 1,r

per
dt+

∫

Q

zuε · ∇kε dx dt

+

∫

Q

k+
ε

ε+ω+
ε

∇kε·∇z dx dt− ν0

∫

Q

k+
ε

ε+ω+
ε +εk+

ε

∣∣D(uε)
∣∣2z dx dt

+α2

∫

Q

kεω
+
ε z dx dt+ ε

∫

Q

(
|∇kε|r−2∇kε·∇z+|kε|r−2kεz

)
dx dt

= ε

∫

Q

(
κ(t)

)r−1
z dx dt for all z ∈ Lr

(
0, T ;W 1,r

per(Ω)
)
,





(5.5c)

uε(0) = u0,ε, ωε(0) = ω0,ε, kε(0) = k0,ε. (5.6)
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The proof of Proposition 5.1 is the content of Appendix A. Observing the separability
of W 1,r

per,div(Ω) and W 1,r
per(Ω) and using (5.4), a routine argument yields that the system

(5.5) is equivalent to the following conditions for a.a. t ∈ [0, T ]:

〈
u′ε(t),w

〉
W 1,r

per,div

+

∫

Ω

((
uε(t)·∇u(t)

)
·w + ν0

k+
ε (t)

ε+ω+
ε (t)

D
(
uε(t)

)
:D(w)

)
dx

+ ε

∫

Ω

(∣∣D
(
uε(t)

)∣∣r−2
D
(
uε(t)

)
: D(w) +

∣∣uε(t)
∣∣r−2

uε(t) ·w
)

dx

=

∫

Ω

f(t) ·w dx for all w ∈W 1,r
per,div(Ω),





(5.7a)

〈
ω′ε(t), ψ

〉
W 1,r

per
+

∫

Ω

(
ψuε(t) · ∇ωε(t) +

k+
ε (t)

ε+ω+
ε (t)

∇ωε(t)·∇ψ
)

dx

+

∫

Ω

(
ω+
ε (t)ωε(t)ψ + ε

(∣∣∇ωε(t)
∣∣r−2∇ωε(t) · ∇ψ +

∣∣ωε(t)
∣∣r−2

ωε(t)ψ
))

dx

= ε
(
ω(t)

)r−1
∫

Ω

ψ dx for all ψ ∈ W 1,r
per(Ω),





(5.7b)

〈
k′ε(t), z

〉
W 1,r

per
+

∫

Ω

(
zuε(t) · ∇kε(t) +

k+
ε (t)

ε+ ω+
ε (t)

∇kε(t) · ∇z
)

dx

−ν0

∫

Ω

k+
ε (t)

ε+ω+
ε (t)+εk+

ε (t)

∣∣D
(
uε(t)

)∣∣2z dx+ α2

∫

Ω

kε(t)ω
+
ε (t)z dx

+ ε

∫

Ω

(∣∣∇kε(t)
∣∣r−2∇kε(t) · ∇z +

∣∣kε(t)
∣∣r−2

kε(t)z
)

dx

= ε
(
κ(t)

)r−1
∫

Ω

z dx for all z ∈ W 1,r
per(Ω)





(5.7c)

We notice that the set N ⊂ [ 0, T ] of measure zero of those t where (5.7) fails, does not
depend on (w, ψ, z). More specifically, if ε = εm > 0 with lim

m→∞
εm = 0, then N can be

chosen independently of m.

The variational identities in (5.7) are the point of departure for the proof of a series
of the a priori estimates for {uε, ωε, kε} we are going to derive in Subsections 5.2–5.4.

5.2 Upper and lower bounds for {ωε, kε}
Let ω, ω and κ be as in (5.1) and r > 3 as chosen in Section 5.1. The following result
provides pointwise upper and lower bounds that are obtained via classical comparison
arguments for weak solutions of the scalar parabolic equations for ω and k, cf. (1.1c) and
(1.1d), respectively.

Lemma 5.2. Let be {uε, ωε, kε} a triple according to Proposition 5.1 with r > 3. Then,

ω(t) ≤ ωε(x, t) ≤ ω(t) and κ(t) ≤ kε(x, t) (5.8)

for a.a. (x, t) ∈ Q and for all ε > 0.

Proof. For notational simplicity, we set u ≡ uε, ω ≡ ωε and k ≡ kε within this proof.

Step 1: ω ≥ ω. The function ψ =
(
ω(·, t) − ω(t)

)−
is an admissible test function for

(5.7b). Since ω(t) does not depend on x we have 1
2
∇(ψ2) = ψ∇ω and ∇ω ·∇ψ = |∇ψ|2 ≥
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0. Using ω > 0 and the monotonicity of ω 7→ |ω|r−2ω we arrive at

〈
ω′(t),

(
ω(t)− ω(t)

)−〉
W 1,r

per
+

∫

Ω

ω2
(
ω − ω(t)

)−
dx

≤ ε

∫

Ω

((
ω(t)

)r−1 − |ω|r−2ω
)(
ω − ω(t)

)−
dx ≤ 0 (5.9)

for a.a. t ∈ [ 0, T ]. By construction we have ω′(t) = d
dt
ω(t) = −

(
ω(t)

)2
. Identifying ω

with a function in C1
(
[0, T ];W 1,r

per(Ω)
)

the estimate (5.9) leads to

〈
ω′(t)− ω′(t),

(
ω(t)−ω(t)

)−〉
W 1,r

per
≤ −

∫

Ω

(
ω2 −

(
ω(t)

)2)(
ω − ω(t)

)−
dx ≤ 0.

By (5.1) and (5.3b), we have ω(x, 0)− ω(0) ≥ 0, which means ψ(x, 0) = 0 for a.a. x ∈ Ω.
Using a slight modification of [Lio69, pp. 290–291] we find
∫

Ω

1

2
ψ(t)2 dx =

∫

Ω

1

2
ψ(0)2 dx+

∫ t

0

〈ψ′, ψ〉W 1,r
per

dt = 0 +

∫ t

0

〈ω′−ω′, (ω−ω)−〉W 1,r
per

dt ≤ 0.

Hence, we conclude ψ(t) = 0 for all t, which means that

ω(x, t) ≥ ω(t) for a.a. (x, t) ∈ Q. (5.10)

Step 2: ω ≤ ω. Next, we insert ψ =
(
ω(·, t)− ω(t)

)+
into (5.7c) and argue as in Step

1 to find
〈
ω′, (ω−ω)+

〉
W 1,r

per
+

∫

Ω

ω2
(
ω − ω

)+
dx ≤ ε

∫

Ω

(
(ω)r−1−ωr−1

)(
ω−ω

)+
dx ≤ 0.

For the last estimate we used ω ≥ ω, which was obtained in Step 1. Hence, as above,

d

dt

∫

Ω

1

2
ψ(t)2 dx =

〈
ω′(t)− ω̇(t),

(
ω(t)− ω(t)

)+〉
W 1,r

per
≤ −

∫

Ω

(
ω2−ω2

)(
ω−ω

)+
dx ≤ 0

for a.a. t ∈ [ 0, T ]. Again by (5.1) and (5.3b), we have ψ(0) = 0 a.e. in Ω and conclude

ω(x, t) ≤ ω(t) for a.a. (x, t) ∈ Q. (5.11)

Step 3: k ≥ κ. We first insert z = k−(·, t) into (5.7c) and find k ≥ 0 a.e. in Q. Next,

we insert the test function z(x, t) =
(
k(x, t)− κ(t)

)−
and obtain as above

〈
k′(t),

(
k(t)− κ(t)

)−〉
W 1,r

per
+ α2

∫

Ω

k(t)ω(t)
(
k−κ(t)

)−
dx ≤ 0

for a.a. t ∈ [ 0, T ]. By construction κ satisfies κ′(t) = −α2κ(t)ω(t) for all t ∈ [ 0, T ]. It
follows

d

dt

∫

Ω

1

2

((
k(t)−κ(t)

)−)2

dx =
〈
k′(t)− κ̇(t),

(
k(t)− κ(t)

)−〉
W 1,r

per

≤ −α2

∫

Ω

(
k(t)ω(t)− κ(t)ω(t)

)(
k(t)− κ(t)

)−
dx ≤ 0.

To see the last inequality, we use ω ≤ ω a.e. in Q from Step 2, which gives k(x, t)ω(x, t) ≤
κ(t)ω(t) for a.a. x of the set

{
x ∈ Ω ; k(x, t) ≤ κ(t)

}
. Since k(x, 0) ≥ κ(0) for a.a. x ∈ Ω

by (5.1) and (5.3b) we obtain, as above,

k(x, t) ≥ κ(t) for a.a. (x, t) ∈ Q.
Altogether the upper and lower bounds in (5.8) are established.
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5.3 Energy estimates for (uε, ωε) and improved estimates for kε

For the subsequent estimates we fix the data

D = {T, f , ω∗, ω∗, k∗, r}

and will indicate constants that only depend on D by CD. However, depending on the
context the constants CD may be different. We also define the constant

β∗ =
k∗

(1 + ω∗)(1 + Tω∗)α2
,

which according to Lemma 5.2b is a lower bound for kε/(ε+ωε). This will allows us to
derive the standard estimates for uε and ωε.

Lemma 5.3. There exists a constant CD > 0 such for all ε ∈ ]0, 1] and all solutions
{uε, ωε, kε} as in Proposition 5.1 we have the estimates

‖uε‖2
L∞(L2) +

∫

Q

(
β∗ +

kε
ε+ωε

)∣∣D(uε)
∣∣2 dx dt+ ε

∫

Q

(∣∣D(uε)
∣∣r+|uε|r

)
dx dt

≤ CD

(
‖u0,ε‖2

L2 + ‖f‖2
L2

)
,



 (5.12a)

‖ωε‖2
L∞(L2) +

∫

Q

(
β∗ +

kε
ε+ωε

)
|∇ωε|2 dx dt+ ε

∫

Q

(
|∇ωε|r + ωrε

)
dx dt

≤ CD

(
1 + ‖ω0,ε‖2

L2

)
.



 (5.12b)

Proof. We insert the test functions w = uε and ψ = ωε in (5.7a) and (5.7b), respectively.
Integrating over [0, t] and using kε

ε+ωε
≥ β∗ a.e. in Q (cf. (5.8)), the desired estimates (5.12)

are readily obtained by the aid of Gronwall’s lemma.

By (5.3) the approximative initial conditions satisfy sup0<ε≤1

(
‖u0,ε‖L2+‖ω0,ε‖L2

)
<

+∞. Therefore all terms on the left hand sides of (5.12) are bounded independently of
ε ∈ ]0, 1].

Of course, one obtains a trivial bound for kε in L∞(0, T ;L1(Ω)) by testing (5.7c) with
z ≡ 1. We include this result in the following non-trivial estimate that implies uniform
higher integrability of kε as well as suitable bounds for ∇kε. For this we test (5.7c) by
z = 1 − (1+kε)

−δ for δ ∈ ]0, 1[, which is a well-known technique for treating diffusion
equations with an L1 right-hand side, see e.g. [Rak91, BD*97].

Proposition 5.4. For D, p ∈ [1, 2[, and δ ∈ ]0, 1[, there exists Cp,δ
D > 0 such that for all

ε ∈ ]0, 1] and all {uε, ωε, kε} as in Proposition 5.1, we have the estimate

‖kε‖L∞(0,T ;L1(Ω)) +

∫

Q

(
k4p/3
ε + |∇kε|p +

|∇kε|2
(1+kε)δ

)
dx dt

+ ε

∫

Q

( |∇kε|r
(1+kε)1+δ

+ kr−1
ε

)
dx dt

≤ Cp,δ
D

(
1 + ‖u0,ε‖2

L2(Ω)
+ ‖k0,ε‖L1(Ω)

)
.





(5.13)

Proof. Step 1: For 0 < δ < 1 we define Φ : [0,∞[→ [0,∞[ via

Φ(τ) = τ +
1

1− δ
(
1− (1+τ)1−δ), 0 ≤ τ < +∞.
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Hence, Φ is convex and satisfies, for all τ ≥ 0, the estimates

τ

2
− 2

1−δ ≤ Φ(τ) ≤ τ, Φ′(τ) = 1− 1

(1 + τ)δ
∈ [0, 1], Φ′′(τ) =

δ

(1 + τ)1+δ
. (5.14)

From [Rak92, pp. 360–361; cf. also pp. 365–366] (with W 1,p
per(Ω) in place of W 1,p

0 (Ω)) we
have the chain rule

∫ t

0

〈
k′ε(s),Φ

′(kε(s)
)〉

W 1,r
per

ds =

∫

Ω

Φ
(
kε(x, t)

)
dx−

∫

Ω

Φ
(
k0,ε(x)

)
dx

for all t ∈ [ 0, T ]. When inserting z = Φ′
(
kε(·, t)

)
into (5.7c) we obtain

∫

Ω

Φ′
(
kε(·, t)

)
uε(t) · ∇kε(t) dx =

∫

Ω

uε(t) · ∇
(
Φ(kε(·, t)

)
dx = 0 for a.a. t ∈ [0, T ],

where we used divuε = 0. With this we obtain (recall ν0 = 1 = α2)

∫

Ω

Φ
(
kε(x, t)

)
dx+ δ

∫ t

0

∫

Ω

kε
ε+ωε

|∇kε|2
(1+kε)1+δ

dx ds

+

∫ t

0

∫

Ω

(
− kε
ε+ωε+εkε

∣∣D(uε)
∣∣2 + kεωε

)(
1− 1

(1+kε)δ

)
dx ds

+ ε

∫ t

0

∫

Ω

(
δ
|∇kε|r

(1+kε)1+δ
+ kr−1

ε

(
1− 1

(1+kε)δ
))

dx ds

=

∫

Ω

Φ
(
k0,ε(x)

)
dx+ ε

∫ t

0

∫

Ω

(
κ(s)

)r−1
(

1− 1

(1+kε)δ

)
dx ds

for all t ∈ [ 0, T ]. By (5.12a), (5.14), and kε/
(
(ε+ωε)(1+kε)

)
≥ 1/(1+ω(T )) > 0 we find

‖kε‖L∞(0,T ;L1(Ω)) + δ

∫

Q

|∇kε|2
(1+kε)δ

dx dt+ εδ

∫

Q

|∇kε|r
(1+kε)1+δ

dx ds+ ε

∫

Q

kr−1
ε dx dt

≤ c
( 1

1−δ + ‖u0,ε‖2
L2 + ‖k0,ε‖L1 + ‖f‖2

L2 + kr−1
∗

)
, (5.15)

where the constant c is independent of δ and ε. Thus, we have estimated all the term on
the left-hand side of (5.13) except for the second and third.

Step 2: To estimate ∇kε we choose p ∈ ]1, 2[ and δ = (2−p)/p ∈ ]0, 1[. With Hölder’s
inequality we find

∫

Q

|∇kε|p dx dt =

∫

Q

|∇kε|p
(1+kε)pδ/2

(1+kε)
pδ/2 dx dt

≤
(∫

Q

|∇kε|2
(1+kε)δ

dx dt
)p/2(∫

Q

(1+kε)
δp/(2−p) dx dt

)(2−p)/2

≤ 1

δp/2

(
δ

∫

Q

|∇kε|2
(1+kε)δ

dx dt
)p/2

T
(
|Ω|+‖kε‖L∞(0,T ;L1(Ω))

)
.

Using (5.15) this provides the estimate for the third term on the left-hand side of (5.13).
Step 3: To show higher integrability of kε we simply use the Gagliardo–Nirenberg

interpolation from Lemma 4.2 for z ∈ W 1,p(Ω) with Ω ⊂ R3 where p ∈ [1, 2[ as in Step 2:

‖z‖L4p/3(Ω) ≤ CGN‖z‖1/4

L1(Ω)

(
‖z‖L1(Ω) + ‖z‖Lp(Ω)

)3/4
,
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Applying this to z = kε(t), taking the power 4p/3, and integrating t ∈ [0, T ] we obtain

∫

Q

|kε|4p/3 dx dt =

∫ T

0

‖kε(t)‖4p/3

L4p/3(Ω)
dt ≤ C

4p/3
GN

∫ T

0

Kp/3
ε

(
Kε + ‖∇kε(t)‖Lp(Ω)

)p
dt,

where Kε := ‖kε(·)‖L∞(L1(Ω)) ≤ C <∞ by Step 1. Hence, together with Step 2 the second
term on the left-hand side of (5.13)is uniformly bounded by the right-hand side of (5.13).

In summary, the desired a priori estimate (5.13) is established.

5.4 Estimates for {u′ε, ω′ε, k′ε}
We now provide a priori estimates on the time derivative. To obtain estimates that are
independent of ε ∈ ]0, 1] we recall r ≥ 3 and will use σ > r and estimate in the dual space
of W 1,σ(Ω). While for u′ε and ω′ε we obtain estimates in spaces Lq

(
0, T ; ((W 1,σ(Ω))∗

)
,

the time derivate k′ε can only be estimated only for q = 1 because of the source term
kε

ε+ωε+εkε
|D(uε)|2, for which the only ε-independent a priori estimate is in L1(Q) =

L1(0, T ;L1(Ω)). This problem will result in the occurrence of the defect measure µ.
The estimates for u′ε and ω′ε will work for arbitrary r ≥ 3, however, for the estimate of
k′ε we need to restrict r to the small interval [3, 11/3[. Here the upper bound r < 11/3
seems to be critical for N = 3, while 2 < r < 3 might still be considered.

Proposition 5.5. Let D be fixed.
(A) For all r ≥ 3 (implying r′ = r/(r−1) ≤ 3/2) and σ > r there exists a constant
C1 such that for all 0 < ε ≤ 1 the solutions {uε, ωε, kε} of Proposition 5.1 satisfy the
estimates

‖u′ε‖Lr′ (0,T ;(W 1,σ
per,div(Ω))∗) + ‖ω′ε‖Lr′ (0,T ;(W 1,σ

per (Ω))∗) ≤ C1. (5.16)

(B) For all r ∈ [3, 11/3[ and σ > 8r/(11−3r) there exists a constant C2 such that for all
0 < ε ≤ 1 the solutions {uε, ωε, kε} of Proposition 5.1 satisfy

‖k′ε‖L1(0,T ;(W 1,σ
per )∗) ≤ C2. (5.17)

Proof. Step 1. Estimate for u′ε: For w ∈W 1,σ
per,div(Ω), we write (5.7a) in the form

〈
u′ε(t),w

〉
W 1,σ

per,div

=
〈
u′ε(t),w

〉
W 1,r

per,div

=

∫

Ω

(
uε(t)⊗uε(t)

)
:∇w dx− ν0

∫

Ω

kε(t)

ε+ωε(t)
D
(
uε(t)

)
:D(w) dx (5.18)

− ε
∫

Ω

(∣∣D
(
uε(t)

)∣∣r−2
D
(
uε(t)

)
:D(w) +

∣∣uε(t)
∣∣r−2

uε(t)·w
)

dx+

∫

Ω

f(t) ·w dx

=
4∑

m=1

Iε,m(t) for a.a. t ∈ [0, T ].

The aim is to show |Iε,m(t)| ≤ fε,m(t)‖w‖W 1,σ(Ω) with fε,m bounded in Lqm(0, T ) for some

qm ≥ r/(r−1). For this, we proceed as in Remark 4.3, but use now that w ∈W 1,σ
per,div(Ω)

is fixed.
For Iε,1 we use ∇w ∈ Lσ(Ω) and need to bound |uε⊗uε| ≤ |uε|2 in Lσ

′
(Ω), which

means uε ∈ Lp(Ω) with p = 2σ/(σ−1). For this we use the bounds (5.12a) for uε, which
allow us to apply Lemma 4.2(B) with (s1, p1) = (∞, 2), (s2, p2) = (2, 2), N = 3, and
θ = 3/(2σ) < 1/2. This provides the desired p = 2σ/(σ−1) and q1 = s = 4σ/3.
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To estimate Iε,2 we use ε+ ωε(t, x) ≥ ω(T ) > 0 and need to bound

|kεD(uε)| = k1/2
ε |k1/2

ε D(uε)| in Lq2(0, T ;Lσ
′
(Ω)).

By (5.12a) we have a uniform bound for |k1/2
ε D(uε)| in L2(Q) = L2(0, T ;L2(Ω)). More-

over, (5.13) provides uniform bounds for ‖kε‖L∞(0,T ;L1(Ω)) and for ‖∇kε‖Lp(Q) with p ∈
[1, 2[. Hence, restricting to q2 ∈ [1, 2] we proceed as follows:

‖kεD(uε)‖q2

Lq2 (0,T ;Lσ′ (Ω))
≤
∫ T

0

(
‖k1/2

ε ‖L2σ/(σ−2)‖k1/2
ε D(uε)‖L2

)q2 dt

≤
∫ T

0

‖kε‖q2/2

Lσ/(σ−2)‖k1/2
ε D(uε)‖q2

L2 dt
Hölder

≤
(∫ T

0

‖kε‖q2/(2−q2)

Lσ/(σ−2) dt
)(2−q2)/2(∫

Q

kε|D(uε)|2 dt
)q2/2

.

The second term in the last product is already uniformly bounded. To estimate the
first term we apply Lemma 4.2(B) with (s1, p1) = (∞, 1), s2 = p2 ∈ [1, 2[, N = 3, and
θ = 6p2/((4p2−3)σ) ∈ ]0, 1[, where we use σ > r ≥ 3 such that p2 can be chosen close to
2. From the interpolation condition (4.13) we obtain the range of possible q2 via

2

q2

− 1 =
2−q2

q2

=
1

s
= (1−θ) 1

s1

+ θ
1

s2

= 0 + θ
1

p2

=
6

(4p2−3)σ
.

Thus, we are able to choose all q2 ∈ [1, 10σ/(5σ+6)[ by adjusting p2 suitably. As σ > r ≥ 3
we see that q2 = 3/2 is always admissible.

Using σ ≥ r ≥ 3 and Hölder’s inequality, we obtain
∣∣Iε,3(t)

∣∣ ≤ fε,3(t)‖w‖W 1,σ with fε,3(t) = Cε
∥∥uε(t)

∥∥r−1

W 1,r .

By the uniform bound (5.12a) we obtain ‖fε,3‖Lr′ (0,T ) ≤ C∗ε1/(r−1) with a constant C∗
independent of ε. Thus, we can choose q3 = r′ = r/(r−1) ≤ 3/2.

With |Iε,4(t)| ≤ ‖f(t)‖L2‖w(t)‖L2 ≤ C‖f(t)‖L2‖w‖W 1,σ and f ∈ L2(Q) = L2(0, T ;L2(Ω))
we obtain q4 = 2, and conclude that in all cases we have qm ≥ r′ = r/(r−1) and the first
part of (5.16) is established.

Step 2. Estimate for ω′ε: We proceed as in Step 1 by writing (5.7b) in the form

〈
ω′ε(t), ψ

〉
W 1,σ =

5∑

m=1

Jε,m(t) with |Jε,m(t)| ≤ gε,m(t)‖ψ‖W 1,σ ,

where gε,m has to be bounded in Lq̃m(0, T ) for suitable q̃m ≥ r′ = r/(r−1). Exploiting
Lemma 5.2, namely 0 < ω(T ) ≤ ωε(x, t) ≤ ω(0) = ω∗ and (5.12b) and proceeding as in
Step 1 we easily find q̃1 = q̃3 = q̃5 = ∞, q̃2 = 10σ/(5σ+6) ≥ 3/2, and q̃4 = r′ ≤ 3/2.
Thus, the second part of (5.16), and hence all of (5.16), is established.

Step 3. Estimate for k′ε: We again write

〈
k′ε(t), z

〉
= −

∫

Ω

zuε(t) · ∇kε(t) dx−
∫

Ω

kε(t)

ε+ ωε(t)
∇kε(t) · ∇z dx (5.19)

+ ν0

∫

Ω

kε(t)

ε+ ωε(t) + εkε(t)

∣∣D
(
uε(t)

)∣∣2z dx− α2

∫

Ω

kε(t)ωε(t)z dx

− ε
∫

Ω

(∣∣∇kε(t)
∣∣r−2∇kε(t) · ∇z +

∣∣kε(t)
∣∣r−2

kε(t)z
)

dx+ ε
(
κ(t)

)r−1
∫

Ω

z dx

=:
7∑

m=1

Kε,m(t)
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and have to show that Kε,m(t) ≤ hε,m(t)‖z‖W 1,σ , where all hε,m are bounded in L1(0, T )
independently of ε ∈ ]0, 1[ and m = 1, . . . , 7.

Before starting the estimates we note that the condition r ∈ [3, 11/3[ and σ >
8r/(11−3r) implies σ > 12, which will be useful below.

For m = 1 we integrate by parts using divuε = 0 and obtain

|Kε,1(t)| =
∣∣∣
∫

Ω

kεuε·∇z dx
∣∣∣ ≤ hε,1(t)‖z‖W 1,σ with hε,1(t) = ‖kεuε‖Lσ′ .

Using (5.12a) for uε and applying Lemma 4.2 with (s1, p1) = (∞, 2), (s2, p2) = (2, 2),
N = 3, and θ = 3/5 we find (s, p) = (10/3, 10/3) which means that uε is uniformly
bounded in L10/3(Q). Using the uniform bound (5.13) for kε in Lq(Q) for all q ∈ [1, 8/3[
we can use 1

q
+ 3

10
≤ 1σ′ < 1 as σ > 40/13 and obtain

∫ T

0

hε,1(t) dt ≤
∫ T

0

C‖kε(t)‖Lq(Ω)‖uε(t)‖L10/3(Ω) dt ≤ CT‖kε‖Lq(Q)‖uε‖L10/3(Q) ≤ CT,1.

For m = 2 we again use (5.13) and σ > 8. Choosing p ∈ [1, 2[ with 3/(4p)+1/p+1/σ ≤
1 Hölder’s inequality gives

∫ T

0

|Kε,2(t)| dt ≤
∫ T

0

‖kε‖L4p/3‖∇kε‖Lp‖∇z‖Lσ dt ≤ CT,2‖kε‖L4p/3(Q)‖∇kε‖Lp(Q)‖z‖W 1,σ .

The case m = 3 follows easily as ‖z‖L∞(Ω) ≤ C‖z‖W 1,σ because σ > N . Together with
the simple energy estimate (5.12a) (uniform boundedness of the dissipation) we obtain

∫ T

0

|Kε,3(t)| dt ≤ C

∫

Q

kε
ε+ωε

|D(uε)|2 dx dt‖z‖L∞ ≤ C3‖z‖W 1,σ .

The case m = 4 is also trivial, since |Kε,4(t)| ≤ C‖kε(t)‖ω∗‖z‖L∞ .
The most difficult term is Kε,5 because we do not have an a priori bound on ε|∇kε|r.

We adapt the method developed in Step 2 of the proof of Proposition 5.4. Using

|Kε,5(t)| ≤ hε,5(t)‖z‖W 1,σ with hε,5(t) = ε
∥∥|∇kε(t)|r−1

∥∥
Lσ′

we proceed as follows:

∫ T

0

hε,5 dt = ε

∫ T

0

‖∇kε(t)‖r−1
L(r−1)σ′ dt ≤ εT 1/σ‖∇kε‖r−1

L(r−1)σ′ (Q)

≤ εT 1/σ
(∫

Q

|∇kε|(r−1)σ′

(1+kε)ρ
(1+kε)

ρ dx dt
)1/σ′

for a ρ > 0 to be chosen appropriately. Applying Hölder’s inequality with p = r′/σ′ > 1
and using ε = ε1/rε1/(pσ′) we continue

≤ ε1/rT 1/σ
(∫

Q

ε|∇kε|r
(1+kε)pρ

dx dt
)1/(pσ′)(∫

Q

(1+kε)
p′ρ dx dt

)1/(p′σ′)
.

According to (5.13) both integral terms are uniformly bounded if we can choose ρ such
that pρ ∈ ]1, 2] and p′ρ < 8/3. Writing κ = 1/p this means κ < ρ < min{2κ, 8(1−κ)/3},
which has solutions ρ if and only if κ ∈ ]0, 8/11[, i.e. we need p = r′/σ′ > 11/8 which in
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term can only be possible if r′ > 11/8 or r < 11/3. Then, p = r′/σ′ > 11/8 is equivalent
to σ > 8r/(11−3r). This explains the restriction for r and σ in (5.17) and provides the

L1 bound
∫ T

0
|Kε,5(t)| dt ≤ ε1/rCr,σ‖z‖W 1,σ .

The estimate of Kε,6 follows easily from (5.13) using r−1 ∈ [2, 8/3[, which implies
‖kε‖Lr−1(Q) ≤ C and thus

∫ T

0

|Kε,6(t)| dt ≤
∫ T

0

ε‖kε‖r−1
Lr−1 dt ‖z‖L∞ ≤ εC‖z‖W 1,σ .

The case of Kε,7 is trivial.
For later use in the limit passage ε→ 0 we note that

∫ T

0

(
|Kε,5(t)|+ |Kε,6(t)|+ |Kε,7(t)|

)
dt ≤ ε1/rCr,σ‖z‖W 1,σ . (5.20)

Hence, the a priori estimate (5.17) for k′ε is established.

5.5 Convergent subsequences

After having derived a series of a priori estimates we are now able to choose weakly
converging subsequences for ε → 0. Of course the major step is to identify the limits of
the nonlinear terms. For simplicity we now choose one fixed r∗ ∈ [3, 11/3[ and a σ∗ > 12,
which implies that Part (A) and (B) of Proposition 5.5 can be applied. From (5.8), (5.12),
(5.13), (5.16), and (5.17) we obtain a limit triple {u, ω, k} with the properties

ω ≤ ω ≤ ω a.e. on Q,

u ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩W 1,r′∗
(
0, T ; (W 1,σ∗

per,div(Ω))∗
)
,

ω ∈ L∞(Q) ∩ L2(0, T ;W 1,2(Ω)) ∩W 1,r′∗
(
0, T ; (W 1,σ∗

per (Ω))∗
)
,

k ∈ L∞(0, T ;L1(Ω)) ∩ L4p/3(Q) ∩ Lp(0, T ;W 1,p
per(Ω)) ∩ BV(0, T ; (W 1,σ∗

per (Ω))∗
)





(5.21)

for all p ∈ [1, 2[, such that along a suitable subsequence (not relabeled) we have

uε ⇀ u in L2
(
0, T ;W 1,2

per,div(Ω)
)

and weakly∗ in L∞
(
0, T ;L2(Ω)

)
, (5.22a)

u′ε ⇀ u′ in Lr
′
∗
(
0, T ; (W 1,σ∗

per,div(Ω))∗
)
, (5.22b)

ωε ⇀ ω in L2
(
0, T ;W 1,2

per(Ω)
)

and weakly∗ in L∞(Q), (5.22c)

ω′ε ⇀ ω′ in Lr
′
∗
(
0, T ; (W 1,σ∗

per (Ω))∗
)
, (5.22d)

kε ⇀ k in Lp
(
0, T ;W 1,p

per(Ω)
)

and in L4p/3(Q) for all p ∈ [1, 2[. (5.22e)

These weak convergences imply the corresponding properties of the limits u and ω in
(5.21). Moreover, ‖k‖L∞(0,T ;L1(Ω)) ≤ C <∞ follows from (5.13) and (5.22e) by a routine
argument. As in [BaP12, Sec. 1.3.2] the spaceBV (0, T ;X), whereX is a Banach space, de-
notes all functions g : [0, T ]→ X such that VarX(g, [a, b]) := sup

∑N
i=1 ‖g(ti)−g(ti−1)‖X <

∞ where the supremum is taken over all finite partitions a ≤ t0 < t1 < · · · < tN ≤ b.
Clearly, (5.17) implies Var(W 1,σ

per )∗(kε, [0, T ]) = ‖k′ε‖L1(0,T ;(W 1,σ
per )∗) ≤ C2. Since for all parti-

tions we have

N∑

i=1

‖k(ti)−k(ti−1)‖(W 1,σ
per )∗ ≤ lim inf

ε→0

N∑

i=1

‖kε(ti)−kε(ti−1)‖(W 1,σ
per )∗ ≤ C2,
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which provides ‖k‖BV(0,T ;(W 1,σ∗
per (Ω))∗) ≤ C2∞ as stated at the end of (5.21).

We next apply the Aubin-Lions-Simon lemma (see [Sim87, Cor. 4, p. 85], [Lio69,
Th. 5.1, p. 58], or [Rou13, Lem. 7.7]) to obtain strong convergence. By taking a further
subsequence (not relabeled) Vitali’s theorem implies the pointwise convergence almost
everywhere.

uε → u in Ls(Q) for all s ∈ [1, 10/3[ and a.e. in Q, (5.23a)

ωε → ω in Lp(Q) for all p > 1 and a.e. in Q, (5.23b)

kε → k in Lq(Q) for all q ∈ [1, 8/3[ and a.e. in Q, (5.23c)

To obtain the results in (5.23b) and (5.23c) we first derive strong convergence for s =
p = q = 2 and then use the boundedness of the sequence for higher s, p, and q to obtain
strong convergence for intermediate values by Riesz interpolation (use (4.17) for uε).

We are now ready to consider also the limits of the nonlinear terms. We first treat the
diffusive terms.

Lemma 5.6. Along the chosen subsequences for ε→ 0 we have the convergences

kε
ε+ωε

D(uε) ⇀
k

ω
D(u) and

kε
ε+ωε

∇ωε ⇀
k

ω
∇ω in Ls(Q) for all s ∈ [1, 16/11[, (5.24a)

kε
ε+ωε

∇kε ⇀
k

ω
∇k in Lσ(Q) for all σ ∈ [1, 8/7[. (5.24b)

Proof. We first recall the weak convergences of the gradients D(uε), ∇ωε, and ∇kε in
Lp(Q) for all p ∈ [1, 2[, see (5.22). Next we establish the strong convergence

( kε
ε+ωε

)1/2

→
(k
ω

)1/2

in Lq(Q) for all q ∈ [1, 16/3[. (5.25)

To see this we use the explicit estimate

∥∥∥
( kε
ε+ωε

)1/2 −
(k
ω

)1/2
∥∥∥
Lq(Q)

≤
∥∥∥
( kε
ε+ωε

)1/2 −
( k

ε+ωε

)1/2
∥∥∥
Lq(Q)

+
∥∥∥
( k

ε+ωε

)1/2 −
(k
ω

)1/2
∥∥∥
Lq(Q)

≤
‖kε−k‖1/2

Lq/2(Q)

(1+ω(T ))1/2
+

∥∥(ε+ωε − ω) k1/2
∥∥
Lq(Q)

2(1+ω(T ))3/2
.

Clearly, the first term on the right-hand side tends to 0 using (5.23c) and q/2 < 8/3. For
the second term we can still choose q̃ ∈ ]q, 16/3[ and p̃ � 1 such that 1/q = 1/q̃ + 1/p̃.
Then, Hölder’s inequality, k1/2 ∈ Lq̃(Q), and (5.23b) for p = p̃ yield the convergence to
0. Hence, the convergence (5.25) is established.

Now using the weak convergences D(uε) ⇀D(u) and ∇ωε ⇀ ∇ω, and ∇kε ⇀ ∇k in
Lp(Q) for p ∈ [1, 2[ and (5.25) we obtain the weak convergences

(
kε

ε+ωε

)1/2
D(uε) ⇀

(
k
ω

)1/2
D(u),

(
kε

ε+ωε

)1/2∇ωε ⇀
(
k
ω

)1/2∇ω,
(

kε
ε+ωε

)1/2∇kε ⇀
(
k
ω

)1/2∇k

in Lq(Q) for all q ∈ [1, 16/11[.
However, by the standard a priori estimates (5.12) we see that the first two sequences

are bounded in L2(Q) and hence converge weakly in L2(Q) as well. The convergence of
the third term cannot be improved, because we don’t have appropriate a priori bounds.

Multiplying once again by
(
kε/(ε+ωε)

)1/2
, which converges strongly according to

(5.25), we obtain the results in (5.24).
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5.6 Limit passage ε→ 0 and appearance of the defect measure

In this subsection we finalize the proof of Theorem 4.1.

Using the convergences derived above it is now straight forward to perform the limit
passage ε→ 0 in the equation for uε and ωε. In the energy equation for kε we have to be
a little more careful to show the occurrence of the defect measure µ.

In the Steps 1 to 3 the limit ε → 0 will be done with test functions with high inte-
grability s in t ∈ [0, T ] taking values in the Sobolev W 1,τ (Ω) with large τ . This choice
will be independent of the chosen r∗ in the regularization terms. After the artificial r∗
has disappeared in the limit, in Step 4 we discuss which minimal s and τ can be chosen
in the weak form.

Step 1. Limit in the momentum balance for uε; from (5.5a) to (4.6):

We consider a fixed test function v ∈ Ls
(
0, T ;W 1,τ

per,div(Ω))∗
)

with s = 4 and τ ≥
s∗ > 12 and discuss the convergence of the five terms on the left-hand side of (5.5a)
individually.

The first term is linear in u′ε and converges because of (5.22b). The second term can
be rewritten as

∫
Ω

(
uε⊗uε) : ∇v dx dt and converges by (5.23a).

For the third term we use the nonlinear convergences from Lemma 5.6, cf. the first in
(5.24b). Finally, the fourth and fifth terms converge to 0 by the estimate

∫ T
0
|Iε,3(t)| dt ≤

C∗ε1/(r∗−1)‖D(v)‖Lr∗ (Lσ∗ ) ≤ Cε1/(r∗−1)‖v‖Ls(W 1,τ ), see Step 1 of the proof of Proposition
5.5.

Thus, (4.6) is established for test functions v ∈ Ls
(
0, T ;W 1,τ

per,div(Ω))∗
)
.

Step 2. Limit for ωε, from (5.5b) to (4.7):

This case works similar as Step 1.

Step 3. Limit in the energy equation for kε, from (5.5c) to (3.6):

For this limit passage we choose a test function z ∈ C1
per,T (Q), because we want to

take the limit of the dissipation which is bounded only in L1(Q).

The first term of the left-hand side in(5.5c) is integrated by parts in time to obtain

∫ T

0

〈
k′ε(t), z(t)

〉
W 1,r

per
dt =

∫

Ω

k0,εz(·, 0) dx−
∫

Q

kεz
′ dx dt →

∫

Ω

∫

Ω

k0z(·, 0) dx−
∫

Q

kz′ dx dt

by (5.3c) and and (5.22e). For the second term we use (5.23) and conclude

∫

Q

zuε·∇kε dx dt = −
∫

Q

kε∇uε·∇z d dt → −
∫

Q

ku·∇z dx dt.

For the third term Lemma 5.6 can be exploited (cf. (5.24b)) to find

∫

Q

kε
ε+ ωε

∇kε · ∇z dx dt →
∫

Q

k

ω
∇k · ∇z dx dt.

We return to the fourth term at the end and continue with the fifth term. Using (5.23)
and ω+

ε = ωε ≥ ω(·) > 0 we easily find
∫
Q
kεω

+
ε z dx dt→

∫
Q
kωz dx dt.

The sixth and seventh term on the left-hand side and the single term on the right-hand
side converge to 0, which was establish in Step 3 of the proof of Proposition 5.5, see (5.20).
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For the fourth term, it remains to prove the appearance of the defect measure µ ∈
M(Q) such that
∫

Q

ν0kε
ε+ωε+εkε

∣∣D(uε)
∣∣2φ dx dt −→

∫

Q

ν0k

ω

∣∣D(u)
∣∣2φ dx dt+

∫

Q

φ dµ for all φ ∈ C(Q).

(5.26)

Indeed, by the positivity of the integrand and the a priori estimate (5.12a) we can apply
Riesz’ Representation Theorem for linear continuous functionals on C(Q). Hence, there
exist µ̂ ∈M(Q) =

(
C(Q)

)∗
such that

∫

Q

ν0kε
ε+ωε+εkε

∣∣D(uε)
∣∣2φ dx dt →

∫

Q

φ dµ̂ for all φ ∈ C(Q).

As in Lemma 5.6 we can show that
(

kε
ε+ωε+εkε

)1/2
D(uε) converges weakly to (k/ω)1/2D(u)

in L2(Q). Of course, this weak convergence remains true if we multiply by a continuous
function ψ ∈ C(Q). Thus, the lower semi-continuity of the L2 norm yields

∫

Q

ψ2 dµ̂ = lim
ε→0

∫

Q

ν0kε
ε+ ωε + εkε

∣∣D(uε)
∣∣2ψ2 dx dt ≥

∫

Q

ν0k

ω

∣∣D(u)
∣∣2ψ2 dx dt

for all ψ ∈ C(Q). Thus, the linear functional φ 7→
∫
Q
φ dµ̂ −

∫
Q
ν0k
ω

∣∣D(u)
∣∣2φ dx dt is

non-negative and defines the desired defect measure µ ∈M(Q), and
∫

Q

φ dµ̂ =

∫

Q

ν0k

ω

∣∣D(u)
∣∣2φ dx dt+

∫

Q

φ dµ for all φ ∈ C(Q),

which gives the desired convergence (5.26).

Step 4. More test functions:
After having passed to the limit ε→ 0 the regularization terms involving the exponent

r have disappeared. From the a priori estimates (5.21) for {u, ω, k} we know that u⊗u ∈
L5/3(Q) and k

ω
D(u) ∈ Lq(Q) for all q ∈ [1, 16/11[. Thus, by density we can extend the

set of test function v in (4.5) can be chosen in Ls
(
0, T ;W 1,τ

per,div(Ω)
)

for any s > 16/5 and
τ > 16/5. This proves (4.6) and (4.7) for the full set of test functions.

Moreover, we find u′ ∈ Lq
(
(W 1,q′

per,div(Ω))∗
)

for all q ∈ [1, 16/11[, which proves (4.5).

Step 5. Further statements:
To derive (4.4) we define the functional J : (k,u, ω) 7→

∫
Q
k (D(u)|2+|∇ω|2) dx dt and

use the a priori estimate J (kε,uε, ωε) ≤ C, which follows from (5.12) since ωε ≥ ω(T ) > 0.
The functional is convex in u and ω, hence it is lower semicontinuous with respect to strong
convergence in k (see (5.23c)) and weak convergence for (u, ω) (see (5.22a) and (5.22c)),
so that

J (k,u, ω) ≤ lim inf
ε→0

J (kε,uε, ωε) ≤ C,

which is the desired estimate (4.4).
The limit passage ε→ 0 in the pointwise a priori estimates (5.8) leads immediately to

the pointwise estimates (4.2) for ω and k.
By (5.22b) and (5.22d) the functions uε(·) and ωε are uniformly bounded with respect

to ε ∈ ]0, 1] in W 1,r∗
(
0, T ; (W 1,σ∗(Ω))∗

)
⊂ C1/r∗

(
[0, T ]; (W 1,σ∗(Ω))∗

)
. Thus, we have uni-

form convergence and obtain (u, ω) ∈ C1/r∗
(
[0, T ]; (W 1,σ∗(Ω))∗×(W 1,σ∗(Ω))∗

)
. Together

with the essential boundedness of (u, ω) in L2(Ω)×L2(Ω) this implies

(u, ω) ∈ Cw([0, T ];L2(Ω)×L2(Ω)).
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Hence (4.3) is established. Moreover, with (5.3c) and the uniform convergence we deduce
the initial conditions (4.8), i.e. u(·, 0) = u0 and ω(·, 0) = ω0. To obtain inequality (4.9),
we insert w = uε(t) into (5.7a), integrate over the interval [0, t] and let tend ε→ 0.

Finally, we insert z = 1 into (5.7c), integrate over [0, t] and add this identity to the
one just obtained for uε. Using kε

ε+ωε
− kε

ε+ωε+εkε
≥ 0 we can drop the dissipation term

involving |D(uε)|2, and the limit passage ε→ 0 yields (5.8).

With this, the proof of our main existence result in Theorem 4.1 is complete.

A Appendix. Existence of approximate solutions

We now provide the proof of Proposition 5.1, which will be obtained as an application of
a general existence result of evolutionary equations of pseudo-monotone type.

We consider a separable reflexive Banach space V that is continuously and densely
embedded in a Hilbert space H such that V ⊂H ≈H∗ ⊂ V ∗. For U ∈ V and Ξ ∈ V ∗
we denote the dual pairing by 〈Ξ, U〉. Our operator A : V → V ∗ is assumed to satisfy
the following conditions depending on p > 1:

p-boundedness: ∃C1 > 0 : ‖A(U)‖V ∗ ≤ C1

(
1+‖U‖p−1

V

)
for all U ∈ V ; (A.1a)

p-coercivity: ∃C2 > 0 : 〈A(U), U〉 ≥ 1

C2

‖U‖pV − C2 for all U ∈ V ; (A.1b)

pseudo-monotonicity:





if Um ⇀ U in V and lim sup
m→∞

〈A(Um), Um−U〉 ≤ 0, then

〈A(U), U−V 〉 ≤ lim inf
m→∞

〈A(Um), Um−V 〉 for all V ∈ V .




(A.1c)

Under these conditions the following existence result is available.

Theorem A.1 (see e.g. [Rou13, Thm. 8.9]). Let V and H be as above and let the operator
A : V → V ∗ satisfy the assumptions (A.1) with p > 1. Then, for all T > 0, all
u0 ∈H, and all g ∈ Lp′([0, T ];V ∗) there exists a solution u ∈ Lp(0, T ;V )∩C([0, T ];H)∩
W 1,p′(0, T ;V ∗) of the Cauchy problem

u′(t) + A(u(t)) = f(t) in V ∗ for a.a. t ∈ [0, T ] and u(0) = u0. (A.2)

To apply this result we choose p = r > 3, U = (u, ω, k),

H = L2
per,div(Ω)× L2(Ω)× L2(Ω), and V = W 1,r

per,div(Ω)×W 1,r
per(Ω)×W 1,r

per(Ω).

The operator A is defined to make the approximate system (5.5) equivalent to the abstract
Cauchy problem (A.2). We recall that ε > 0 is fixed in Proposition 5.1, so we do not keep
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track of the dependence on ε. With V = (v, ϕ, w) we define A : V → V ∗ by

〈A(U), V 〉 = I(U, V )

:=

∫

Ω

u·∇u · v +

∫

Ω

k+

ε+ ω+
D(u) : D(v) (A.3)

+

∫

Ω

ϕu · ∇ω +

∫

Ω

k+

ε+ ω+
∇ω · ∇ϕ+

∫

Ω

ω+ωϕ

+

∫

Ω

wu · ∇k +

∫

Ω

k+

ε+ω+
∇k · ∇w −

∫

Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2w +

∫

Ω

k+ω+w

+ ε

∫

Ω

(∣∣D(u)
∣∣r−2

D(u) : D(v) + |u|r−2u · v

+ |∇ω|r−2∇ω · ∇ϕ+ |ω|r−2ωϕ+ |∇k|r−2∇k · ∇w + |k|r−2kw
)
.

For the rest of this appendix we continue to omit the measure symbol “ dx” for integration
over Ω. Moreover we have set α2 = ν0 = 1 for notational simplicity, because these
numerical constant have no influence on the analysis.

Proof of Proposition 5.1. It remains to establish the conditions (A.1) on the operator A.

Step 1. r-boundedness (A.1a): Using r > 3 and Hölder’s inequality, it is easily seen
that all integrals in the definition of I(U, V ) are well defined. In particular, we find a
constant c1 > 0 such that

∣∣I(U, V )
∣∣ ≤ c1

(
‖U‖2

V + ‖U‖r−1
V

)
‖V ‖V for all U, V ∈ V . (A.4)

But this implies (A.1a) because of r ≥ 3.

Step 2. r-coercivity (A.1b): For estimating 〈A(U), U〉 = I(U,U) from below we see
that all convective terms disappear because of divu = 0. After dropping the three non-
negative terms arising from the dissipation terms involving k+/(ε+ω+) we find, for all
U ∈ V ,

〈A(U), U〉 = I(U,U) ≥ ε
∥∥(D(u),u,∇ω, ω,∇k, k)

∥∥r
Lr(Ω)

−
∫

Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2k.
(A.5)

By Hölder’s and Young’s inequality and r 	 3 we find c2 > 0 such that

∫

Ω

k+

ε+ω++εk+

∣∣D(u)
∣∣2k ≤ 1

ε

∫

Ω

∣∣D(u)
∣∣2k ≤ ε

2

∫

Ω

∣∣D(u)
∣∣r +

ε

2

∫

Ω

|k|r + c2,

where the constant c2 depends on ε > 0, r > 3, and vol(Ω). Inserting this into (A.5) and
using Korn’s inequality in W 1,r(Ω) we have established (A.1b) for p = r.

Step 3. Strong convergence: In the remaining two steps we consider a sequence Um =
(um, ωm, km) satisfying the assumptions in condition (A.1c), namely

(a) Um ⇀ U in V (b) lim sup
m→∞

〈A(Um), Um−U〉 ≤ 0. (A.6)

In this step we first show that this implies the strong convergence Um → U in V , and in
Step 4 we deduce the liminf estimate for (A.1c).

DOI 10.20347/WIAS.PREPRINT.2545 Berlin 2018



A. Mielke, J. Naumann 28

Combining parts (a) and (b) of (A.6) we immediately obtain

lim sup
m→∞

〈
A(Um)− A(V ) , Um − V

〉
≤ 0 for all V ∈ V . (A.7)

We decompose these duality products into ten separate integrals, namely

〈
A(Um)− A(U), Um − U

〉
=

10∑

j=1

Kj,m (A.8)

:=

∫

Ω

[
um·∇um − u·∇u

]
· (um−u) +

∫

Ω

[ k+
m

ε+ω+
m

D(um)− k+

ε+ω+
D(u)

]
: D(um−u)

+

∫

Ω

(um·∇ωm − u·∇ω) (ωm−ω) +

∫

Ω

[ k+
m

ε+ ω+
m

∇ωm −
k+

ε+ ω+
∇ω
]
· ∇(ωm−ω)

+

∫

Ω

(ω+
mωm − ω+ω)(ωm−ω) +

∫

Ω

(um · ∇km − u · ∇k)(km−k)

+

∫

Ω

[ k+
m

ε+ω+
m

∇km −
k+

ε+ω+
∇k
]
· ∇(km−k) +

∫

Ω

(kmω
+
m − kω+)(km−k)

−
∫

Ω

( k+
m

ε+ω+
m+εk+

m

∣∣D(um)
∣∣2 − k+

ε+ω++εk+

∣∣D(u)
∣∣2
)

(km − k)

+

∫

Ω

ε
((

Φr(D(um))− Φr(D(u))
)
:D(um−u) +

(
Φr(um)− Φr(u)

)
·(um−u)

+
(
Φr(∇ωm)− Φr(∇ω)

)
·∇(ωm−ω) +

(
Φr(ωm)− Φr(ω)

)
(ωm−ω)

+
(
Φr(∇km)− Φr(∇k)

)
· ∇(km−k) +

(
Φr(km)− Φr(k)

)
(km−k)

)
,

where Φr(ξ) := |ξ|r−2ξ. The last term K10,m can be used to control Um − U in the norm
of V by using the estimate

(
Φr(ξ)− Φr(η)

)
· (ξ−η) ≥ 22−r∣∣ξ − η

∣∣r for all ξ,η ∈ RN ,

see [Lin06] for the derivation of the exact constant. In particular, we find

K10,m ≥ ε22−r∥∥Um − U
∥∥r
V
, (A.9)

and the strong convergence Um → U follows if we show lim supm→∞K10,m ≤ 0.
By (A.7) we control the limsup of

∑10
1 Kj,m and hence obtain

lim sup
m→∞

K10,m = lim sup
m→∞

( 10∑

j=1

Kj,m −
9∑

l=1

Kl,m

)

≤ lim sup
m→∞

10∑

j=1

Kj,m − lim inf
m→∞

9∑

l=1

Kl,m

(A.7)

≤ 0 −
9∑

l=1

lim inf
m→∞

Kl,m.

Thus, it suffices to establish lim infm→∞Kl,m ≥ 0 for all l ∈ {1, ..., 9}. To do so, we only
use Um ⇀ U (i.e. (A.6a)), which by r > 3 and the compact embedding W 1,r(Ω) b C0(Ω)
implies

um → u, ωm → ω, km → k uniformly in Ω. (A.10)
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For treating K1,m we use integration by parts and divum = divu = 0 to find

K1,m =

∫

Ω

(
div(um⊗um) : ∇u−u·∇u ·um

)
→
∫

Ω

(
div(u⊗u) : ∇u−u·∇u ·u

)
= 0,

because of the uniform convergence um → u.
Similarly, the other convective terms K3,m and K6.m convergence to 0, as only on factor

converges weakly.
For the second term K2,m we again use the uniform convergence in the decomposition

K2,m =

∫

Ω

( k+
m

ε+ω+
m

− k+

ε+ω+

)
D(um) : D(um−u) +

∫

Ω

k+

ε+ω+
D(um−u) : D(um−u).

The first integral converges to 0 as the two terms involving D are bounded in Lr(Ω) ⊂
L2(Ω) while the prefactor converges to 0 uniformly. The second integral is non-negative,
hence lim infm→∞K2,m ≥ 0 follows. Analogously, the lim inf

m→∞
of K4,m and K7,m is non-

negative.
By uniform convergence of the integrands we easily obtain K5,m → 0 and K8,m → 0.
In K9,m the integrand is a product of a function bounded uniformly in Lr/2(Ω) and

km−k, which converges uniformly to 0; hence K9,m → 0 as well.
This finishes the proof of Step 3 guaranteeing Um → U in V .

Step 4. A is pseudo-monotone: For the sequence Um satisfying (A.6) we have to show

〈A(U), U−V 〉 ≤ lim inf
m→∞

〈A(Um), Um−V 〉 for all V = (v, ϕ, w) ∈ V (A.11)

Again we split the duality-product term into ten parts and treat the parts separately,
where we are now able to use the strong convergence Um → U :

〈
A(Um), Um − V

〉
=

10∑

j=1

Gj,m (A.12)

=:

∫

Ω

um·∇um · (um−v) +

∫

Ω

k+
m

ε+ω+
m

D(um) : D(um−v)

+

∫

Ω

um·∇ωm (ωm−ϕ) +

∫

Ω

k+
m

ε+ω+
m

∇ωm · ∇(ωm−ϕ)

+

∫

Ω

ω+
mωm(ωm−ϕ) +

∫

Ω

um·∇km (km−w) +

∫

Ω

k+
m

ε+ω+
m

∇km · ∇(km−w)

+

∫

Ω

kmω
+
m(km−w)−

∫

Ω

k+
m

ε+ω+
m+εk+

m

∣∣D(um)
∣∣2(km−w)

+

∫

Ω

ε
(

Φr(D(um)) : D(um−v) + Φr(um) · (um−v) + Φr(∇ωm) · ∇(ωm−ϕ)

+ Φr(ωm)(ωm−ϕ) + Φr(∇km) · ∇(km−w) + Φr(km)(km−w)
)
.

Using the uniform convergence of Um (see (A.10)) and the strong convergence in Lr(Ω) of
the derivatives ∇Um it is straight forward to see that the integrals Gj,m for j ∈ {1, ..., 9}
converge to their respective limits. For G10,m we can use the estimate

∣∣Φr(ξ)− Φr(η)
∣∣ ≤ 3r

(
|ξ|+ |η|

)r−1∣∣ξ − η
∣∣ for all ξ,η ∈ RN ,

see [Bou65, exerc. 10.a, p. 257]. Thus, we conclude that (A.11) holds, even with equality.
Hence, all the assumptions in (A.1) are established, Theorem A.1 is applicable, and

the proof of Proposition 5.1 is complete.
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Remark A.2. An alternative proof for Proposition 5.1 is given in the first draft [MiN18]
of the present work. That proof is based on the method of elliptic regularization of abstract
evolution equations, cf. [Lio69, Ch. 3, Thm. 1.2].
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