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The fractional p-Laplacian emerging from
homogenization of the random conductance model with
degenerate ergodic weights and unbounded-range jumps

Franziska Flegel and Martin Heida

Abstract

We study a general class of discrete p-Laplace operators in the random conductance
model with long-range jumps and ergodic weights. Using a variational formulation of the
problem, we show that under the assumption of bounded first moments and a suitable
lower moment condition on the weights, the homogenized limit operator is a fractional
p-Laplace operator.

Under strengthened lower moment conditions, we can apply our insights also to the
spectral homogenization of the discrete Lapalace operator to the continuous fractional
Laplace operator.

1 Introduction

In a recent work [9], the authors together with Slowik studied homogenization of a discrete
Laplace operator on Z? := ¢Z® with long range jumps of the form

Loufa) == 37w (uly) — u(w)) (1
yezZI\{x}

The operator was studied on a bounded domain under proper rescaling with Dirichlet bound-
ary conditions. The coefficients w, , being random and positive with w, , = w, ., the operator
L. acts on functions Z¢ — R, and the corresponding linear equation in [9] reads

L.ou(z) = f(z), u(z) = 0 on ZN\Q. (2)

The assumptions on w,, imposed in [9] are ergodicity and stationarity in z, together with a
first moment condition of the form

E (Z Wo - |z|2) < 00, (3)

zeZ4

and a lower moment condition of the form

d
d _ _
dq > 3 E <; wO,gi + Wo,q—ei> < 00, (4)
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F. Flegel, M. Heida 2

where e; is the i-th unit vector in Z¢. Under these assumptions, it could be shown that
in the limit ¢ — 0 the homogenized operator on L*(Q) is a second order elliptic operator
V - (AhomVe) on @ with Dirichlet boundary conditions, where Apo, € R4 is symmetric
and positive definite.

In the present work, we generalize the findings of [9] to the case of fractional Laplacians.
More precisely, we study the operator

Lou(x) :=e" Y c§gw (5)

5 d+2s
yeezd\{z} @ —y7

where c is stationary ergodic on Z2? and relates to w through

Coy = Way |T — y]d+25 )

2 2s

Note that the prefactor ¢ balances |z — y|* and e~
oz —y[*

One might expect in this case that the limit operator is no longer a second order elliptic
operator but rather a nonlocal fractional operator of the form

(=A)* u(z) = PV/ uly) = ul@) 4

e |z — g7

is changed into €7°, respectively into

where PV stands for principle value of the integral. We refer to [15] for a list of equivalent
characterizations, among which the most common is the Fourier-symbol |£].

In this work, we study the above homogenization problem in a more general setting. Our
focus lies on energy functionals which take the form

bpoe) =Y Y enV )dm £ Y Glu() - 3 (@) fo(w),

(w,y)ez2d y’ z€L x€ZY

where we will study both the convergence behavior on the whole of R? and on the restriction
u(x) =0 for € Q, where Q C R? is a bounded domain. The corresponding limit functional
(in the sense of I'-convergence) will turn out to be

//R2d |x d+p(sy)) + ¢ /Rd G(u(x))dz — /Rd u(z)f(z).

Thus, in some sense, we will partially generalize previous work by Neukamm, Schéiffner
and Schlomerkemper[I6] on the homogenization of discrete non-convex functionals with finite
range. In case V(£) = |£|P this functional generates the fractional p-Laplace equation (see
[11] and reference therein). In what follows, we will shortly recall the relation between the
homogenization problem for the linear equation and the homogenization of convex function-
als.

In order to understand our way to approach this problem, note that the weak formulation
of ([2) with £, given by () reads

YAy gg—d@w(y)—v(asnzzf(x)v(x) (6)

T€ZZ yezd T€ZZ
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Fractional p-Laplacian emerging from homogenization 3

and in a variational formulation, u is the minimizer of the energy potential

2
ux
2d E /‘ E d§
5235 f% d+23

:::EZd yeLE y| zEeZd

We will also look at the constraint u(z) = 0 on ZA\Q.
In the continuum, a corresponding functional is known for the solutions of the fractional
Laplace equation (—A)2S uw= f and on Q = R? it reads

Sr(u //R MZ)Q _ /]R (@) f(z).

The minimizers of & lie in the space W*P(R?), which we will introduce in Section

r . ) ..
Hence, a I'-convergence result for & . — &, implies homogenization of (@) to

(=A)°u:=PV Mdy:f,
rd |z —y[T

see Section 2.3

On bounded domains Q C R, there is a problem though. This problem is related to the
choice of boundary conditions. It is known that the notion of boundary conditions in spaces
W=P(Q) does not make sense in case s < % and hence the minimizers of & , are not unique

up to solutions of the homogeneous equation (—A)* u = 0.
We take this into account by studying two different types of functionals which are a bit
more oriented at the definition of W*P(Q)-seminorms in [§]. They read

ca) = E 5 enr D e T G = TS

(2.9)€Q° X QF |2 veQ° rEQ®

where Q° = Q N Z%.From the analytical point of view, it then makes sense to consider
the restriction of &, . ¢ to functions with zero boundary conditions and zero mean value
conditions. In order to formulate discrete Dirichlet conditions, let

0" ={zeZ!:0Qn (z+[-¢e") #0}. (7)

In every of the above mentioned cases, the corresponding I'-limit functional will turn out to

- s | LHO0) ot i [ oo

However, as we will see below, we even obtain a kind of Mosco convergence in suitable
spaces L"(Q). Mosco convergence means that the lim inf-estimate can be obtained for weakly
converging sequences while the recovery sequence can be constructud with respect to strong
convergence.

Our convergence results rest upon a well-balanced interplay between p, s, ¢ and d, which
we formulate in the following condition on the coefficients:
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F. Flegel, M. Heida 4

Assumption 1. We assume that the random variable c is ergodic in Z¢ x 74 with E(c) < oo
and given s € (0,1), p > 1 we assume that there exists q € (1%, —1—00} and r € (1,p) such that
E(c™) < o0 and q > - > 4,

p ps

T
In the hypothetical case s = 1 and p = 2, the last assumption reduces to q > <. Hence
Assumption [I]is in accordance with the assumptions in [9], which we recalled in (3)—({).
In view of [9] one could get the idea that our setting corresponds to a relaxation of
condition to, say

E Zwo,zyz\25> <oo, s€(0,1). (8)

2€7Z4

However, our first moment condition is not equivalent with but corresponds to (see Lemma

)
(S i) ==

2€7Z4

As discussed in Remark (36| below, the proof of our Lemma |35 suggests that leads to
a localization of L. in the limit ¢ — 0, indicating that the limit is different from a fractional,
nonlocal operator. Recent results like in [16] suggest that in this case, the limit problem
reduces to a “cell-problem”, i.e. a linear problem for the first order corrector.

Remark 2. As we will see in Theorems , sequences u. with bounded &, s - (u.) or &%, q(u.)
are bounded in L"(ZZ) or L"(Q%) if r € [1,p}) for

o= dpq
T 2d+dq—spq

In particular, it turns out that q > ;—‘j is a sufficient condition to have boundedness of wu.

in LP(Q°). In order to obtain suitable bounds on u. in L"(Q), we ask that V satisfies the

following assumption.

The notation py is related to the fractional critical exponent p* in the classical theory of
fractional Sobolev spaces, which is introduced in Theorem [17. However, we will see that the
random weights ¢ will force us to lower the value of the classical p* with decreasing .

We finally introduce our assumptions on V. These assumptions are a natural general-
ization of the fractional p-Laplace potential and are also natural in the context of Sobolev
spaces which we will use.

Assumption 3. We assume that V : R™ — R s convex, lower semi continuous and there
exists a, 8,c > 0 such that

alglP <V(E) <c+ B¢,
& |E]TPV(E) s continuous in 0.

The study of discrete elliptic operators has some history starting from works by Kiinne-
mann[I4] and Kozlov[I3]. The interest in this topic has been tremendous both from the
physical point of view, e.g. as a model for Brownian motion (see |3, [5]), or from mathematical
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Fractional p-Laplacian emerging from homogenization bt

point of view when studying numerical scemes (see |3, [13] or [10] for a numerical application).
The current research particularly focuses on higher order corrector estimates, see e.g. [2] and
references therein. However, the above works where on finite range jumps while models
for long-range jumps are not related to the above mentioned methods or applications. In
particular, the situation studied in this paper leaves the realm of Brownian motion as it
accounts for Levi-flights, such as are used to model the movement of bacteria.

The homogenization of the fractional Laplace operator seems to be only recent and rather
unexplored. However, there are a few results in the literature: Most of them are focused on
the periodic homogenization of the continuous fractional Laplace operator (—A)?®, starting
from a work by Piatnitskii and Zhizhina [18]. A first result on the stochastic homogenization
of the (continuum) fractional Laplace operator with uniformly bounded c¢ is given in [19]. We
will not investigate the relation between [I9] and the present work, but we expect that the
methods developed below could help to generalize [19] to non-uniformly bounded coefficients
with bounded moment conditions.

From the point of view of discrete operators, our work is of course related to our previous
result [9] but also to a recent result by Chen, Kumagai and Wang [6]. These authors show
homogenization of the discrete fractional Laplace on Z¢ in case d > 4 — 4s and under the
assumption E(w?) + E(w™) < oo where p > Cy, > 1 and ¢ > 29422, Note that the authors
of [6] also allow for percolation, which we exclude for simplicity. Hence these results are
complementing each other.

The outline of the paper is as follows: In the next section we first provide Mosco con-
vergence of &, . and &,,. 0 to &, and &, 5 g respectively. Recall that Mosco convergence
is slightly stronger than weak or strong I'-convergence. Based on these results, we formu-
late our homogenization results for the fractional Laplace operator, including also spectral
homogenization in case q > 2—?. In Section we a provide basic knowledge on fractional
Sobolev spaces and generalize these to the discrete setting. Lemma [30] in Section can
be considered as the heart of our homogenization results. Finally, in Section [4] we prove the
main theorems from Section 2] For readability of Section [3] we shift some standard proofs
to the appendix.

2 Main results
The discrete space, on which our functionals &, . and &, ;. o are defined, are denoted
Ho={u:Z! >R}, resp. H(Q):={ueH :VagQ: u(zx)=0}.

However, the limit functionals are defined on the measurable functions on R¢ and in order to
compare discrete solutions with continuous functions we introduce the operators R} through

d
Riu(zr) = u(z;) ifx; € Zg and x € x; + [—g’ %) )

As observed in [9], the operator R is the dual of the operator
d
(Reu) (x) = gd/ ; u(y)dy if x; € Zg and z € x; + [_57 f) _
zi+[~5.5) 272
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F. Flegel, M. Heida 6

2.1 Homogenization of the global energy &, ;.

On bounded domains @ C R? we find the following convergence behavior of &, ;..

Theorem 4. Let Q C R? be a bounded domain. Let c, s, p, q and V satisfy Assumptions
(md@ G : R — R be non-negative and conver with G(§) < al§|™, a > 0, m < p;, and
let f. € H. be such that R:f. — f in L™ (Q), where Ti* + PLE < 1. Then the sequence &, .
restricted to H.(Q) Mosco-converges almost surely to &, s in the following sense:

1. Forr = = there exists C' > 0 such that

r*—1

Vu. € He(Q) : el prgey < Cépse(us)  foralle >0.

For every sequence u. € H.(Q) such that sup, &, (u:) < 0o there exists u € W*P(Q),

u =0 on R\Q, and a subsequence R*u. — u pointwise a.e. with Riu. — u strongly
in L"(Q), and

hran_}glf gp,s,s(us) > ézp,s(“) )

2. For everyu € W*P(Q) and r = rIi1 there exists a sequence u. € H. such that Riu® —
u strongly in L"(Q) and
limsup &, s (us) = &,5(u) . 9)
e—0

Note that for q > 2¢ we can choose r = p.
ps

Theorem 5. Let ¢, s, p, q and V satisfy Assumptions[]] and[3, and let the sequence f. and
the function G : R — R satisfy either one of the following conditions:

1. G is non-negative and convex and there exists a bounded C*' domain Q@ C R? such
that every f. has support in Q. Furthermore R:f. — f in L" (Q), where Ti + z% < 1.
q

2. G(&) = alé|" + G, G is non-negative and conver and r,r* > 1 with  + L = 1.
Furthermore, R:f. — f in L™ (Q).

Then the sequence &, . restricted to H. Mosco-converges to &, in the following sense:

1. For every sequence u. € H. such that sup, &,s.(u:) < oo there exists u € W*P(R?),
and a subsequence €' — 0 such that Rius — u pointwise almost everywhere and

liminf &, (u:) > &, 4(u),

e—0

2. For every u € W*P(R?) there exists a sequence u. € H. such that R*u® — u pointwise
almost everywhere and

limsup &, s (us) = &,5(u) . (10)

e—0

DOIT 10.20347/WIAS.PREPRINT.2541 Berlin 2018



Fractional p-Laplacian emerging from homogenization 7

2.2 Homogenization of the local energy &, ;. g

The following two theorems deal with the homogenization of the functional &, . q. In this
work, we will study &, ;. with boundary conditions u.|sg: = 0, mean value conditions or
with suitable conditions on G. In a first step, we define the following spaces similar to the
continuum case:

Heo(Q) :={u e H(Q) : Vo € 0Q° u(z) =0},
H.0)(Q) := {u EHAQ) = > ulw) = 0} .

reQ®

Theorem 6. Let Q C RY be a bounded C*'-domain.Let c, s, p, q and V satisfy Assumptions

and@ sp>1, G: R = R non-negative and convexr with G(§) < al§|™,a >0, m < p;, and

let f. € H. be such that R:f. — f in L (Q), where Ti + :z% < 1. Then the sequence &, ;. .q
q

restricted to H.o(Q) Mosco-converges to &, restricted to WP (Q) in the following sense:

1. For every sequence u. € H. such that sup, &, -(u:) < oo there exists u € W' (Q),
u =0 on R\Q, and a subsequence Riu. — u pointwise a.e. with Riu. — u strongly
in L"(Q) for r = = and

hIgl_}lglf éap’s,g,Q (us) Z éap,s(u) )

2. For every u € WiP(Q) there exists a sequence u. € H. such that Riu® — u strongly in
L"(Q) forr= h and
limsup &, ;- (u:) = &, 5(u) . (11)

e—0

If we do not consider zero Dirichlet boundary conditions, we have to find a suitable
replacement that guarantees that the necessary (compact) embeddings hold. We use the
concept of uniform extension domains introduced in Definition [15]

Theorem 7. Let ¢, s, p, q and V satisfy Assumptions[l] and[3, G : R — R non-negative and
conver with G(§) < alé|™,a >0, m < p}, and let f. € H. be such that R:f. — f in L (Q),
where Ti* + z% < 1. Then the sequence &, . q restricted to H. o) (Q) Mosco-converges to &,

q
restricted to W(So’f(Q) in the following sense:

1. For every sequence u. € H. such that sup, &,s.(u.) < oo there exists u € WP(Q),
u =0 on R\Q, and a subsequence R*u. — u pointwise a.e. with Riu. — u strongly

in L'(Q) forr = =~ and

71

liminf &, ;. (u:) > &,5(u),

e—0

2. For every u € W*P(Q) there exists a sequence u. € H. such that Riu. — u strongly in
L"(Q) forr = -~ and

P

limsup &, s (u:) = &,5(u) . (12)

e—0

DOIT 10.20347/WIAS.PREPRINT.2541 Berlin 2018



F. Flegel, M. Heida 8

2.3 Application to the (spectral) homogenization of the fractional
Laplace operator

It is a standard and well-known observation that I'-convergence of & . for V(§) = 3[¢J?
implies strong convergence of minimizers R u. — u in L?*(Q) where u is the minimizer of the
limiting functional &, ;. Hence, solutions of L.u. = f converge to solutions of the fractional

equation
[ M=) - gy
R |z —y|

We recall the proof in the context of the following result.

Theorem 8. Let the assumptions of Theorem[] hold with p = 2. For every e > 0 there exists
a unique solution u. € H.(Q) such that for every v € H.(Q) it holds

Zd = Z ;f‘” () = v(0) = 3 ()

and as € — 0 we find Riu. — u strongly in L"(Q) and u € W*%(R?) is the unique solution
to the equation

o € W(RY) / / d+28<<y>—v<m>>dmdy= fo.
Rd JRd |:)3 R4

where u = 0 outside of Q.

Proof. Let u be the unique minimizer of & ; and let u? be a sequence such that Riul — u
strongly in L"(Q) and (9) holds. Furthermore, let u. € #.(Q) be the minimizer of &, and
let 4 = lim._,o Riu. according to Theorem [4] Then

£2,s< ) - llméaQSE( ) > hmlnfg?ss(us> > 52 s( ) Z gZ,s(”) .

where we used in the last inequality that u is the minimizer of &5,. Since the minimizer of
&5 1s unique, we obtain 4 = u and the Theorem is proved. O

In a similar way, we prove the following theorems.

Theorem 9. Let the assumptions of Theorem[J hold with p = 2. For every e > 0 there exists
a unique solution u. € H. such that for every v € H. it holds

Sy gg—;;@(v(y)—v(xnzzf(x)v(x)

z€Z8 yeZs y| T€ZZ

and as € — 0 we find Riu. — u pointwise where u € W**(R?) is the unique solution to the
equation

o € WoA(RY) - / / d+28<<y>—v<x>>dxdy= fo.
Rd JRd |:L‘ R4

DOIT 10.20347/WIAS.PREPRINT.2541 Berlin 2018



Fractional p-Laplacian emerging from homogenization 9

Theorem 10. Let the assumptions of Theorem [0 hold with p = 2. For every ¢ > 0 there
exists a unique solution u. € H.o(Q) such that for every v € H.o(Q) it holds

POERDIN %ffﬂ@ (w(y) — () = Y fla)o(). (13)

zeQ® yeQ* r€Q®

m\H
m\u.

and as € — 0 we find Riu. — u strongly in L"(Q) and u € WS’Q(Q) is the unique solution
to the equation

Yo € W*(Q) / /Q P d+28 (v(y) —v(x))dady = /va. (14)

Theorem 11. Let the assumptions of Theorem [7 hold with p = 2. For every ¢ > 0 there
exists a unique solution u. € H. 0)(Q) such that for every v € H. 0)(Q) it holds

S Y e ;““) () —v(@) = I Fla)

€Q°  yeQ® —yl reQ®

and as € — 0 we find Riu. — u strongly in L"(Q) and u € W(‘B’)Q(Q) is the unique solution
to the equation

VUGWS2 : //Q P d+2s (y)—v(x))dﬂcdy:/va.

We finally take a look on the topic of spectral homogenization. Theorem 31| together with
Remark [2] and Theorem [f] shows that the operators BS : H.(Q) — H.o(Q), where BE(f)
solves , are uniformly compact with respect to the norm LP(Q°). Furthermore, Theorem
0] yields that

IREB.f* —ullgy — 0 ase—0,

if R:f¢ — f where u is the solution to (14). Furthermore, the solution operator B to (14)
is compact by the compact embedding W*?(Q) — L*(Q). Hence, we obtain the following
result from [I2], Theorem 11.4 and 11.5 following the argumentation in Section 8 of [9).

Theorem 12. Under the assumptions of Theorem@ let 115 be the k-th eigenvalue (i.e. u5 >
ps > ... ) and 5, the k-th eigenfunction of BS. Furthermore, let py be the k-th eigenvalue
and . the k-th eigenfunction of B. Then the following holds.

o Let k € N and let €, be a null sequence. Then there P-a.s. exists a family {w;-]}]_gjgk
of eigenvectors of B and a subsequence still indexed by e, such that

(R* e RE 6’”") — (w?, o ,2/12) strongly in L*(Q) .
o If the multiplicity of ug is equal to s, i.e.

Pr—1 > Pk = Pk1 = = = Uk4s > Ph+s+1
then for j =1,...,s there P-a.s. exists a sequence 1° € H(Q) such that

: *, /€ _
21_1}(1) [k — R HL2(Q) =0

where 1° is a linear combination of the eigenfunctions of the operator B. corresponding
L0 Uiy - vy Mg

DOIT 10.20347/WIAS.PREPRINT.2541 Berlin 2018



F. Flegel, M. Heida 10

3 Preliminaries

We first fix some convenient notation for discrete integrals (i.e. higher dimensional sums)
and function spaces. For A C R we write |A|, := e’ {ANZ¢} and note that |A]. — |A|
as € — oo for every open set A C R%. Moreover, for A C Z¢ and a function f : A — R we

define
S f(@) ==Y fa)

€A €A

Then, for every function f € C.(R?) we find

e fz) =

zezd

Hence, Eis a discrete equivalent of the integral f .

3.1 Discrete and continuous Sobolev—Slobodeckij spaces

We introduce the Sobolev—Slobodeckij space W*P(R?) as the closure of C°(R?) with respect
to the norm

. lu(e) ~ uly)P
W1y = [y + 0 e o= [ [ O away

is the Gagliardo seminorm. This family of spaces is discussed in detail for example in [8] 21].
In general, they can be constructed as the interpolation of W'P(RY) and LP(R?), see e.g.
[1L 21], but in this work, we follow the outline of [8]. We also consider Sobolev-Slobodeckij
spaces W”’(Q) on Lipschitz bounded domains Q@ C R? These are defined by the norm

[ullg @ = llullfrq) + [u), o Where the semi-norm [u o is given through

|u(zx
SPQ<_¥/QJ/ d+w d dy

As can be found for example in Theorem 5.4 of [§],
the extention operator W*?(Q) < W*P(R%) is continuous for every s € (0, 1] (15)

if 0Q is bounded and of class C%!. Property is called the W#*P-extension property of
domains @ and it is used to prove compactness of embeddings W“’(Q) — W*P(Q) for
0<s <s<1and W*(Q) — LYQ) for every 1>5 > 0 and § + = —Il) > 0. If 0Q is

bounded and of class C%! and sp > 1, it makes sense to consider
W (Q) == {u e W*(Q) : uloq =0} ,
as in this case the trace is well defined.

DOIT 10.20347/WIAS.PREPRINT.2541 Berlin 2018



Fractional p-Laplacian emerging from homogenization 11

Remark 13. In general, the space
Weh(Q) = (L"(Q). W, "(Q))

is the interpolate of Wy ”(Q) and LP(Q) and hence the extension by 0 to Wi*(Q) < W*?(Q)
is continuous and well defined (see [1, VIL.7.17]). Interestingly, (16) is well defined also in
case sp < 1 but on the whole W*?(Q) — W*P(R?). Heuristically, this stems from the fact
that sp < 1 implies that functions might have jumps across Lipschitz manifolds. Thus, we

may formally identify W5 (Q) = W5?(Q) for sp < 1.

A further space we will use is

(16)

S

wir@ = fucwo@ s [u-o}.

On R? we do not have compact embedding but it holds that W#?(RY) < L?(R?) continuously
for every ¢ € [p,p*], where p* = dp/(d — sp) for sp < d. Furthermore, the set C>(RY) is
dense in W*P(R%). We finally need the following approximation result.

Lemma 14. Let n € C(B1(0)) withn > 0 and [n =1 and for k € N denote n(z) :=
n(kx). Denoting f * ng the convolution of a measurable function f and ny we find for every
u € WP(R?) that

We shift the proof to the appendix, as it is standard.

In this work, we will need a discrete notion of Sobolev-Slobodeckij spaces and general-
izations of the above embedding results to the discrete setting. To this aim, we consider the
following normed subspaces of H.. First, let Q° := Z¢ N Q for a bounded domain Q C R? to

define
||U||Lp zd) *= Z|u(m)|p and ||u||LP(Q ZW

z€Z¢ reQ*

and let W*P(Z2) be the closure of C2°(R?%) with respect to the norm

]u
ull?, 2 o= Nl g0 + (], where  [uf? = Yo S ISt

xGZdyEZd

p

When restricted to a bounded domain @ C R, we define [Jul? _, = [ullzogey + (W, e

the norm of the space W*P(Q°), where
|u
[U]SPSQ Z Z d+8p ) (17)
zEQ YEQ*

For some of the proofs below, we need a discrete version of the continuous extension property
(15) which holds uniformly in e. As announced in the introduction we formulate this condition
in a definition.
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F. Flegel, M. Heida 12

Definition 15. A bounded domain Q C R? s called a uniform extension domain if there ex-
ists C' > 0 such that for every ¢ > 0 there exists a linear extension operator & : WP (Q°) —
Wep(Z4) with ||E.]| < C.

Remark 16. We may assume for a uniform extension domain @ that there exists a further
bounded domain Q O Q and such that the extensions have compact support in Q We prove
this in the appendix.

We will not go into details on this point but note that being a uniform extension domain
is immediate for rectangular boxes Q = H?Zl(ai, b;), where —oo < a; < b; < +oo for every
¢t = 1,...d. This can be checked by reflection at the boundaries. Furthermore, Theorem
suggests that every C%! domain should be a uniform extension domain. However, the proof
of such a statement is beyond the scope of this work.

In the following, we formulate the four most important results of this subsection. The
proofs are technical and either standard ( and hence shifted to the appendix ) or will be
presented in Section [3.2] below.

Theorem 17 (Discrete Sobolev inequality on Z2). Let s € (0,1) and p € [1,00) be such that
sp < d and let p* := dp/(d — sp). Then, for every q € [p,p*], there exists a constant C,, > 0
depending only on d, p, q and s such that for every € > 0 and every u € W*P(Z2) it holds

HUHLQ(Zg) < G, (18)

Jull

s,p,e *
The exponent p* is called the fractional critical exponent. As a corollary, the last result
extends to bounded domains.

Theorem 18. Let Q C R? be a bounded uniform extension domain and let s € (0,1) and
p € [1,00) be such that sp < d and let p* := dp/(d — sp). Then, for every q € [p, p*], there
exists a constant Cp, > 0 depending only on d, p, q, s and Q such that for every e > 0 and

every u € WP(Q°) it holds
||uHLq(szg) < Cpyq ”u”s,p,g,Q :
Furthermore, we obtain the following compactness result on bounded domains.

Theorem 19. Let Q C R? be a bounded uniform extension domain and let s € (0,1) and
p € [1,00). Let p* := dp/(d — sp) if sp < d, and p* = oo else. For every ¢ > 0 let
u. € WHP(QF) such that sup..gllucl,,.q < oo. Then, for every q € [p,p*) the family
(Riuc).oq is precompact in LI(Q°).

The proofs of Theorems [17] and [19] are very technical and mostly follow the outline of
proofs from [8]. Hence, for better readability of the paper, we shift them to the appendix.

Finally, we turn to Poincaré-type inequalities on bounded domains with Dirichlet bound-
ary conditions or zero mean value. We hence define the spaces

WP (QF) = {u e W*P(QF) : ulogs =0},

Weh(@°) == {u EW™(Q°) : Deu= o} .

reQ®

The corresponding embedding theorems are the following.
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Fractional p-Laplacian emerging from homogenization 13

Theorem 20. Let Q C R? be a bounded domain with C%' boundary, letp € (1,00), s € (0,1).
Identifying every function u € W3 (Q°) with its extension by 0 outside Q°, there exists C' > 0
independent from ¢ such that

Vu € WS7P(QE) : [u]s,p,g S C [u}s,p@,Q ’ (19)

For every q € [p,p*], there exists a constant C,, > 0 depending only on d, p, q, s and Q
such that for every ¢ > 0 it holds

Vu € Wy (QF) HuHLq(szg) < Cpg [U]I;p,g,Q (20)

Finally, let p* := dp/(d — sp) if sp < d, and p* = oo else. For every e > 0 let u. €
WP(QF) such that sup..g |u.|,,. o < 0. Then, for every q € [p,p*) the family (R}u.)
is precompact in L(QF).

e>0

Furthermore, we have a similar result in case W (Q°) is replaced by W(sdf (Q°).

Theorem 21. Let Q C R? be a bounded uniform extension domain with C%' boundary, let
p € (1,00), s € (0,1). For every q € [p,p*], there exists a constant C,, > 0 depending only
ond, p, q, s and Q such that for every € > 0 it holds

Vu € W(So’?(QE) : HUHLq(szg) < Cpqlulf, .0 (21)

Finally, let p* = dp/(d — sp) if sp < d, and p* = oo else. For every ¢ > 0 let u. €
WUP(QF) such that sup,.g [uc],, .o < 00. Then, for every q € [p,p*) the family (Riu.)
is precompact in L1(QF).

e>0

The proof of Theorems [20| and [21}is given in the following subsection. It will be based on
the fact that W*P(Z%) embeds into W#?(R?) via a finite element interpolation operator.

3.2 Proof of Theorems and

We first study an interesting connection between W*P(R%) and W*P(Z2). Let

T k=1

P: [0,1] x{0,1} = R, LK) — ) ,
0.1 % {0.1} (z,%) {1_50 o

we define for x = (v;),_, ,and K = (k;),_; , € {0,1}? and ¢ € H.:
@aw= 5 o[+ I ({2)m)
7 | ke{0,1}4 ' ¢ J=1 e J7/
the finite element interpolation of . Our first corollary on the operator Q. is the following.

Corollary 22. Let p € [1,00). There ezists a constant C' > 0 for every ¢ € H.

c ”‘PHLP(@) < ”QESOHLP(Zz) <C HSOHLP(Zéi) : (22)
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F. Flegel, M. Heida 14

This corollary is straight forward to prove from the definition of Q.. Moreover, we obtain
the following natural property.

Lemma 23. Let p € [1,00) and s € (0,1). Then there exists C' > 0 such that for everye > 0
V(IO E H5 : [QSQP]SZ) - C [gp]ip@ (23)

Proof. For € {0,1}¢ we write £*° and k' for the vectors where the i-th entry of & is
replaced by 0 and 1 respectively. In order to reduce notation, we write

G5) (@, 0) = (2| 2] + o) = (£ | 2] 4+ 2x)

and hence obtain
0;Q.p = é Z %((55@) (x, K)HP({%},/@) : (24)
ke{0,1}4 i

For every z € R? let |z]_ € Z? be the unique element such that = € C.(z) := |z]_+ [0,¢)".
We denote 7. the center of C.(x) and define

A(z) :=7%n <5 FJ + [—€,€]d>

€

as well as B.(z) = T. + [—3¢, 3¢]? and Bt(z) := R?\ B.(z). We then find for 3 = Q.

o < Z/ - (/Bs(m) WS)_;?E,?' dy+/3c<x> ’wlf)_;lﬁgg‘ dy) . (29)

Now, observe that with it holds

‘95(37) - @(y)|p p—sp—d
d+s > ||V90||cvo Be( |$ - y| dy
/€<x> |z —y|*"P B J g )
< CIVelGo By e

coem Yy Y wltill
z€Ac(x) =1 ge{0,1}4

<ot Y |90|( )= d£p3|P7

y2€Be(z) 17T |

where C pchanges in each line but is independent from ¢ and ¢. Furthermore, estimating
% over each cell C.(y) it is easy to verify (see also the proof of Lemma |40| in the
appendix) that we have

|o(z) — o) Ivm‘pm( ) — o)’
/Bs(x) |z — y|*P W= 2 2 e

vl 2€7¢N(Te+(—e.)4) yeZg\(Eg—i-(—e,e)d) |z~
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Fractional p-Laplacian emerging from homogenization 15

Hence the term in brackets on the right hand side of is independent from x € z + (0, ¢)¢
and we find

p(y)”

e ol D S

2€L? \ yezd\(To+(—c.2)) l yEA:(2) |:17 N y|
Since C does not depend on ¢ or ¢, this finally yields (23). O

Proof of Theorem[20. Let u € Wi(Q%). Due to and we know that Q.u € WP (Q).
We can now extend v° := Q.u to R? by 0 and obtain v* € W*?(R?) with [[v*], , < C'[|v°[l,, o
where C' > 0 depends on s, p and Q. This follows from Remark [I3]

We now show |lull,,,. < C [|v°[|,,,. Since [[v7[|, , < C|u]| by Lemma this in turn
implies the Theorem by virtue of Theorems [I7] and

It only remains to show that

OIS

zeZA\Q yEQf\aQE

S7pa€)Q

|d+p8 < C ||UE||s7p : (26)

To this reason, let z € Zd\Q and y € Q‘E\(?QE Then by definition of 0Q° in it holds
|v —y| > 2¢. Let € . + [ 55 5} yeEy+ [ 5 2] In order to provide an upper bound on
|Z — §| in terms of | — y| assume that = € y + [—2¢,2¢]. It then holds ¢ < |Z — §| < 3dae.

Hence we can conclude that 3da |z — y| > |Z — §|. In case z & y+[—2¢, 2¢] the ratio between
|z — y| and |Z — §| becomes smaller. Furthermore, since u > 0, we have Q.u(g) > 2 %(y)
and
|Qs DI" s
/ 1> 8 / € 8 T 77 d+p3d dm
v+ [~ 53] 3 5 —
—d—ps p
> 27 (3a4) / ) / ) %dg di .
e+[-55]" Jur[-5.5]" lo —
Summing up the last inequality over z and y yields (26)). O

Proof of Theorem [21. Let us first verify that holds. Assume that was wrong. With-
out loss of generality, we might assume that ¢ > p. In particular, we use HuEkHLq(Q%) <

C'||te, || o (gery- Then there exists a sequence (ex)yey, €k > 0, and a sequence of functions
Ug, € Hgkj(o)(Q) such that

HuEkHLq (Qk) — =1 > k [ugk]spgk Q"

and we find R} u., — u strongly in L¢(Q) by Theorem . But then u = 0 since R? u., — 0
weakly in L(Q). This is a contradiction. The compactness follows from Theorem (19} O
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3.3 Dynamical systems

Throughout this paper, we follow the setting of Papanicolaou and Varadhan [17] and make
the following assumptions.

Assumption 24. Let D € N and let (Q,.%,P) be a probability space with a given family
(Tz)zezp of measurable bijective mappings T, : Q — Q, having the properties of a dynamical
system on (Q, . #,P), i.e. they satisfy (i)-(iii):

(i) To © Ty = Tuty , To = td (Group property)
(ii) P(r_.B) =P(B) Vxe€ZP, Be . (Measure preserving)
(iii) A: Z4x Q—Q (z,w) — Tw is measurable (Measurability of evaluation)
Let the system (7,),ezp be ergodic i.e. for every F-measurable set B C ) holds
[P ((7.(B) U B)\(.(B)N B)) =0 Vz € Z] = [P(B) € {0,1}]. (27)

Theorem 25 (Ergodic Theorem [7] Theorem 10.2.11 and also [20]). Let (A,), oy be a family
of conver sets in ZP such that A, C A, and such that there exists a sequence T, with
rn — 00 as n — oo such that B, (0) NZP C A,. If (wy),cpp is a stationary ergodic random
variable with finite expectation, then almost surely

1
7 An

Z w; = E(w). (28)

T€EA,
The last theorem has an important consequence for our work:

Lemma 26. Let (An)neN be a family of convex sets in RP such that A1 C A, and such
that there erists a sequence ry, with r, — 0o as n — 0o such that B, (0) C A,. If (¢z),cpp
is a stationary ergodic random variable with finite expectation, then almost surely

c::supg— Z cz < 00. (29)

" z€A,NZP
Proof. Defining ¢, . 1= % erAsz cz we observe that Theorem 1) implies
Ve>0: ¢, > E(¢) as n — oo, and  Vn: ¢, > E(c)ase — 0. (30)

Assume that was wrong. Then there exists a sequence (ng, 5k>neN such that ¢,, ., — 00
as k — oo. If we assume n; was bounded by N, then the second part of implies existence
of C' > 0 such that

SUp Cpy e < SUPSUPC, < C < 00,

Ek,MNk n<N ¢
which is a contradiction to the assumption that was wrong. Hence we can w.l.o.g.
assume ny T 0o.

By the same argument, we can assume €, | 0. But then, the Ergodic Theorem [2§| implies

Cnpe, — E(E), a contradiction with ¢, ., — co. Hence holds. O
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Fractional p-Laplacian emerging from homogenization 17

A further important consequence is the following:

Lemma 27. Let ¢ be a random variable on Z¢ x 72 satisfying Assumption . Then for every
bounded conver domain Q C RY and every a, & > 0 it holds

et 3 Y ey la -yl < C

0
= T€Q® [z—y[<€
yezs

where C only depends on Q and d.
Proof. We consider

|Q| Z Z sulr =yl e Z ,Q| Z Z Ce,u o =y

TEQC |z—y|<€ er 1e<ok|a—y|<t

yEZg xEZ yEZd
oo
-~ —d
< 2(2 fe)" |Q| Z (27 Z €.t
k=0 z€Q $6<2k|z—y|<g
rEZLE yGZg
e SRR SRCEEC R S
k=0 |Q| re2kQ sE<lz—y|<¢ o
xezgk YELY,
(o)
—d
25 ZO kg de’Q’ Zk Z CT%'
ze2kQ |x—y|<§

d d
:):EZQ,CS yeZQkE

ReplaCing 0= 2k87 Qk = 2kQ> gk = (1 + k>€ and Qk = {(.1'7y) RS Qka ’.CE - y’ < fk} we
obtain

|Q|Z > caulr—yl” d+a<2dz (1—|—k) Y. oca v

7€Q° |o—y|<¢ ’f' (z,9)€Q;
y€Le (z,y)€ZIX L

By Lemma [26] the sequence

§2d
C:=8Ssup — Z Cz vy <00
8,k -
(zy)€zdx7d

is bounded. Hence we observe

oo

\Q\ DI S ]

r€Q® |z—y|<¢ k=0
yezd

and since Y ;- 27Fa¢d is bounded, the lemma is proved. O
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We will need to test the convergence with a pointwise converging sequence of func-
tions. The following necessary result by Flegel, Heida and Slowik is a generalization of |4,
Theorem 3].

Theorem 28 (Extended ergodic Theorem [9, Theorem 5.2|). Let Q C ZP be a convex set
containing 0 and let f be a stationary random ergodic variable on ZP with finite expectation.
Furthermore, let u. : ZP — R a sequence of functions such that Riu. — u pointwise a.e.
and sup, |luc||,, < oco. Then

£ wegmjzgf(g)ug(x)—>E(f)/Qu(x)d:v ase — 0.

As a direct consequence of the above ergodic theorems we obtain the following result on
our coefficients w and c.

Lemma 29. Let 0 < E(c) < 0o and let ¢py = wey—o | — y|" . Then

E (Z Wo, |z|p5) =00
z€Z4

Proof. For every R > 0 and every k < R we have

Rd > D welr IpS—Rd > D, cxdeJr > Z( I )Wx,z|2’ps

z€Z*  zeZ? z€Zd yezd z€Z%  zeZ?
z|<R/2 |z|<R z|<R/2 z|<R z|<R/2 |z|<R
Iy I<
kE—1
= D Z otz D DL g waslel”
R g’ R o g k
xre xTEe zE
|z[<R/2 \y|<R/2 ||<R/2 |2|<RKk—1/d

Hence, passing to the limit R — oo on both sides we obtain
[STHE D w2 ) > [S4TPE (o) + Ewd—lm > w2
2€74 ’ k 2€74 7

where |S?7!| is the surface of the d-dimensional unit ball in R%. Since the last inequality
holds for arbitrary k € N we find [S!E (3, za wo,- |2["*) = oo.
O

3.4 Weighted discrete Sobolev—Slobodeckij spaces

This section is concerned with the (compact) embedding of discrete weighted Sobolev—
Slobodeckij spaces into the discrete Sobolev—Slobodeckij spaces from Section [3.I, More
precisely, the heart of this section (and of the whole article) is the inequality

(ZZ'“ ) (ZZ —‘”) B1)

2€QYcQ*® T€EQYeQ®
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Fractional p-Laplacian emerging from homogenization 19

for suitable r > 1 and s’ € (0,s), where C' should depend on s, s, p and r but not on e.
Let us first establish some conditions on ¢, ,, s € (0,1) and p € (1, 00], under which we can
expect existence of suitable r and s’. For simplicity of notation, we establish the following
semi-norm corresponding to (17)):

reQyeQ*
We can use Holder’s inequality and observe that

B =

() I = o)l |, as-arros
D D D D e L

veQiyeqs 1T T y| r€QyeQ® ( cz, g)
— rp ’ p;T
S [u];p757Q7c E E <C§,%) P ’x — y’_d<1_d(;ﬂf'r') (s—s ))
r€QyYeQ*
(32)

In order to obtain , it is necessary to show that the second factor on the right hand side
of is uniformly bounded in € > 0. We have to distinguish two cases.
In the first case, we assume that 1 — %(s — s') <0, which is equivalent to

r d
p—rzp@—y) (33)

and can be fulfilled for a suitable s" € (0, s) if and only if = > i. In this case, the factor

|z — \_ ( i (=) stays bounded since Q° is bounded It follows that the right-hand
side of ([32) exists — provided that E(¢ ) < 0.

In the second case, we assume that 1 — d( )(s —s') > 0. Here, we choose a suitable q and
apply once more Holder’s inequality to obtain that the right-hand side of is bounded by

—r
qg—1

e | (XX (e2) ) (52 oy tsimeonit) )

TEQYEQ*® z€EQyYeQ®

where G := q%* > 1. The limit € — 0 of the right-hand side exists if and only if E(c™") < oo
and

Tp N 4 d
G L e R

Hence, we infer the following Lemma.

Lemma 30. Let p € (1,00) and let s € (0,1). If ¢ satisfies Assumption 1| for some q €
(ps,—i-oo} then for all r > 1 such that q > - there exists s € (0,s) such that holds
uniformly in € > 0.
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d .
Proof. Let us first assume that = > = Tt follows that there exists s’ € (0, s) such that

is fulfilled and therefore the right-hand side of stays bounded if E(¢ 7 ) < oo. This,
however, is clearly the case due to Assumption [I] and since q > pL.

-7
Let us now assume that ~= < p%. In this case, there exists s’ € (0,s) such that 1 —

d(;f 3 (s — ') > 0 and therefore the claim of the lemma follows by the second case that we

have considered above. O

Combined with Theorem [I8] we obtain the following result as a consequence of Lemma

Theorem 31. Let p € (1,00), let s € (0,1) and let ¢ satisfy Assumption [1] for some q €

dpq

2dtdq—spq there

(ps, —l—oo] If Q C RY is a uniform extesion domain, then for every r* < Py =
exists C' > 0, which does not depend on €, such that

N
full <C<ZZ #)

TeQyeqQ®

Moreover, for every sequence ue € W*P(Q°, ¢) such that sup,q [|ucll, . g . < o0, the sequence
Rru. is precompact in L (Q).

Finally, if Q is a bounded C*'-domain and u. € WP (QF, ¢) such that sup,.. ||uc||
00, the sequence Riu. is precompact in L™ (Q).

87p787Q7c <

Proof. Note that Theorem E and Lemma [30] imply that for every r» > 1 such that q > o

and s’ € (0,s) such that q > and r* := dr/(d — s'r) there exists a constant C' > 0,
which does not depend on ¢, such tilat

el (@e) < (Z Z'“ ) (Z = ez, —”') ,

zeQycQ*® z€QycQ*

=

m\&

and the claimed compactness holds. It only remains to verify that »* can take any value up
to dpq/(2d 4+ dq — spq). Let us note the following equivalences

q> d & "< d
p(s = 5') pa’

r rq
> & <
9 p—r : 1+q

and that we can chose s’ and r arbitrarily close to their upper bounds. Hence, we obtain

from ™ = dr/(d — s'r) that
d -1
o+ v (d_ g (S_i»
T+q 1+q P

and r* can take any value between 1 and the right-hand side. A short calculation shows that
this is the claim.

]
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Fractional p-Laplacian emerging from homogenization 21

4 Proof of Theorems 4 to [T

4.1 Auxiliary Lemmas

We recall the following useful Lemma.

Lemma 32. Let Q C R? be a bounded domain and let v : R — R be non-negative and
convez. Let u. : Z¢ — R a sequence of functions having support in Q° such that Riu. — u
pointwise a.e.. Then

lim inf £¢ v(ue) > v(u(x))dz .
Y )2 [ v(uie)

e—0
zeQNZE

The proof is standard. However, we recall it here as a preparation for the more involved
proofs that will follow.

Proof. Without loss of generality, we may assume

E. := liminf £ Z v(u.) < +00.

e—0
rEQNZE

For M € N we denote u := max {—M, min {u., M}}, the function u. cut to values in the
interval [—M, M]. We then note that Rfu} — u™ pointwise a.e.. Using this insight and
continuity , we obtain

. . d M
Ey, > llgglglf Inge, where Ipy.=c¢ Z v(ul’).

zeQNZE

From Continuity of v and the Lebesgue’s dominated convergence theorem, we infer I, —
[, v QY ))dz as € — 0. Now, we infer from the Fatou lemma that

/Qv(u(x))dx = /Qliminfv(uM(x))da: < Ey

M—o0
and hence the lemma is proved. O
A related lemma is the following.

Lemma 33. Let Q C R? be a bounded domain and let v : R — R be non-negative and convex
such that for some a > 0 and v’ > 1 we have v(§) < alé|”. Let u. : Z¢ — R a sequence of
functions having support in Q° such that for some v > 1’ it holds sup. ||tel| ;- (ge) < 00 and
Riu. — u pointwise a.e.. Then

li_l}(l)gd Z v(ue):/v(u(x))dx.

zeQNZe Q

Proof. We have for some positive constant C' that

lim sup £ E v(ue) <CsupHugHLr(Qg < +00.
e—0
TEQNZZ
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Let 6 > 0. By Egorov’s theorem there exists Qs C Q with QE = Q\Qy, |Q;| < 0 and such
that R u. — u uniformly on Qg. Hence we have

lmet S o) — /Q o(u(z))dz = /Q (v(u(z)) — (R uu(z))) da

e—0
TEQNZE

< QSup/ a |Riu ()] dz
Qs

e>0

<2 T%Tlozsu Ue|| rr(oe
< 2[Qy| 6>g” llr (Q°)

and hence the lemma is proved as § becomes arbitrary small. O]
Another important result connected with convex functions is the following.

Lemma 34. Let G R — R be non-negative and convez, let u : R* — R be measurable and
such that [, G (u(z)) dz < oo and let (ny),cy be as in Lemma Then

lim G(nk*u):/RdG(u).

k—oco Rd

Proof. We note that n,(z — 2)dz induces a probability measure on R? for every k& € N and
every x € R% Hence we infer in a first step by Jensen’s inequality

/Rd Gy * u) = /Rd G </Rd N (T — Z)U(z)dz) dz
<[] mie =26 ) dzds
< [ Gl

On the other hand, Fatou’s Lemma yields

G (u(z))dz < liminf | G ((u*xn)(2))dz.

Rd k—o0 R4
L]

The following lemma is new to our knowledge. It is the basis for the proofs of our main
results.

Lemma 35. Let Q C R? be a bounded domain and let ¢, s, p, q and V : R — R satisfy
Assumptions |1 and @ Furthermore, let u. : Z% — R a sequence of functions having support
in Q° such that Riu. — u pointwise a.e. and sup, ||uc||, < oo. Then

e 2 u(y))
lllgilglf £ ZZ y +ps // Nz dzdy . (34)

(IE y EZQd y’

.. - ua ))
lllgl_gglf g Z Z Trps // d+ps dazdy . (35)

(2,9)€Q° xQ° y’

m\H
m\@
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Furthermore, if

sup sup CL < (36)
e>0 m7yEZg |CC - y|

resp.  sup sup [us(7) = u=(y) =: (L < 00, (37)
>0 ayeqc T — Y|

and u € CL(RY), resp. u € Wl’OO(Q) then we have

fim ey D ez |d+ps // d+ps uw) dody. (38)

(w,y)€z2d

. d ) — ue(y u(y))
fimett 357 e // ey ()

(2,9)€Q° X Q° yl

Proof. We only prove and and shortly discuss how to generalize the calculations to
and ([39). Without loss of generality, we assume that the liminf of the left hand side of
(34) is bounded. For each 0 < £ < R < oo the sum

QdZ Z —d f;(y))

(x y)EZQd y|

can be split into the three sums over (z,y) € Z2¢ x Z<¢ such that either {|z —y| < &},
{§ <l|r—yl <R} or {|xr—y| > R}. We denote the corresponding sums by If, I{p and
I%. In what follows, we prove in three steps that

. — u:(y) — u(y))
D i I e D
(zy)ez2? {<[z—y|<R

E<|z—y|<R

I}E% _ 2dzz _df’;s(y)) N O(R_ps)7 (41)

(,y)€Z2? 4l

lz—y|>R

=Y S e yy_dfify” = 0(&™). (42)

(z,y)eZ2?

lz—y|<§

where we show only in case holds. Without loss of generality, we will thereby
assume that R > 2diam(Q). In what follows, we prove (40)-(42) in 3 steps. This provides

on observing that

// - d+psy>)s||w||oo // 'x_ifps o(gr)

|lz—yl<€ (z,y) 62Q><2Q

lz—yl<§
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and

hmsupezdz ch y — u=(y)) < limsup (IgR + I + 1) .

d+ps
e—0 (wg)e Zz‘i y‘ e—0

Inequality (34]) can be proved on noting that

T . 2d _ua(y))
Veo : = liminfe ZZC:Z 7o

1. y EZQd y|
—u(y))
> sup E(c // d+ps
(<|z—y|<R

and applying the Beppo Levi monotone convergence theorem as £ — 0 and R — oo.
We note that and can be proved in the same way using some slight modification.
In particular, we replace V (u.(x) — u.(y)) by

V (2, y, uc(2) = uc(y)) = xQ()x@)V (u(z) — uc(y))
and study

£y = ZZ gg (z, y,u_s( >d+_psu€( // (z y, |)d+psu(y)) 7

(z,y)€B x B¢ vl

(z,y)e BxB
gsle—yl é<|z—y|
a £2d ZZ I yvua( ) - Ua(y)) N O(é-p—ps)
L, ? d+ps ’

(z,y)€B x B —l

lz—y|<§

where B = B(O) is an open ball around 0 that contains Q and _B6 = B Zg
Vi(ue(x)—ue
max{‘(ac—(y|?i 257(53)25

to the set |z —y| < R. Moreover, since R > 2diam(Q), it holds V (u.(z) — u.(y)) = 0 if
|z| > 2R or |y| > 2R. Hence, the support of g. is a compact convex subset of |z —y| < R
and we infer from Theorem 28] that

> euaen =B [ gy

(zy)ez2 lz—yl<R

Step 1: We consider the lower semi-continuous extension g.(z,y) :=

lz—y|<R

V(u(z)—u(y))
max{\xfy\d"'%, §d+28} :
the limit holds.

Step 2: Due to our assumption on R, we find |x —y| > R implies that at most one of

the points z,y lies in Q. Since u vanishes outside @, we obtain by a symmetrization

1
Qd
I5 < ||V (u(-) ZZ(%% ’;§>|x_ d+ps *

Y|

where g(z,y) := Since the same arguments hold on the set |z —y| < &,

R<|z—y|
zeQnZd
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For simplicity of notation, we write Czy = Cey+Cys which is an ergodic variable with
<z

E(¢) = 2E(c). We denote Rj, p := {z € Zd kR < | < 2" R} and reformulate 1§, as

oo
1
€ 2d j: j:
IR_g E:E:C%% d+ps gg’ﬂ?— d+ps ’

— Yl
R<|z—y| zeQNZ4 k=0 yERk rte
reQNZd
which we estimate as
o0
e Ps 2d kp)—d ~
RSE E: (QR) E: Cz,2
k=0 z€(1+k)QNZY |z—y|<2Ft1R

-1

—\Q\Z (28R) ™ (1+ k) e [Bou.r

(z,y)€B Q kR
where Bgr = {(z,y) eR?|z € (1+k)Q, [z —y| <2"'R} and B, p = Bouxr N ZL.
Defining cp . = €2 |Borr| ™ Z(w)e%’m ¢z v we infer from Lemma an estimate cp :=
SUp, j CRke < 00 and boundedness of
E
IE < g R ps/2 |Q‘ ( ) sup (2—kps/2(1+k)d) )
1—2-ps/2 7

Step 3: Now let sup..osup, yczq w =: (' < c0. In order to treat the remaining
term £, note that Assumption [3|implies uniform boundedness and lower semi-continuity of
the function V.(z,y) := % Furthermore, if either dist(z, Q) > ¢ or dist(y, Q) > &
then |z — y| < & implies V.(z,y) = 0. Hence we obtain

g7 o X el

z€(2Q)NZ¢
le—y| <€
<c, HVH 2 ZZ Geu o — —dtp(=s)
ze(2Q)NZ4
lz—y|<¢
and follows from Lemma O

Remark 36. Having a look on the proof of Lemma|35/and assuming (§)) we obtain the following
estimates using the relation ¢, == wy o |z — y|" ™"

2d od
2.2 i d+ps— > X vl

lo—y|>€ zeQNZE ze7¢

|z |>£/6
zeQnZd

o

e Z &35 Z ’lelps

xeQnNZé 2€722
|z |>£/ €
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and the last expression converges to 0 as € — 0. On the other side, we obtain

2d d ps
2.2t d+ps— > o 2wl

lr—y| <& reQNZd z€Z¢
|21<€/e
reQnzd

and hence the left expression is bounded from below and away from 0. This suggests that the
“natural” guess for a discrete fractional Laplacian leads to a local operator in the limit
e — 0.

4.2 Proof of Theorems 4 and [6-7]

We will only prove Theorem [4 Theorems can be proved in the same way replacing
Theorem [I9 by the Embedding Theorems [20] and [21]

Proof of Part 1. Since R:f. — f weakly in L (Q), we find sup, || fc| - (g ) < 0. Thus,
we find from the scaled young inequality for every ¢ > 0 some Cj such that

e fel@)ue(z

zeQ”

< Nll ey Iell e g,y < 8 lull?rigey + Cs I fell7e )

where 1 —I— —=1andr= . Since r < pg, we find from Theorem [31| that

lellZgey < sup | € ey D cxn _df; +e? ) Glu

(z,y)ez2d yl z€Zd

< sup & s (ue) +0 HquT(Qf) + Cs Hszpr*(Q )
3

implying (for suitable choice of 0) boundedness of

In particular, we obtain that

2d - ue(y>>
Foo _hr€n_>1nf5 ZZC < 400

d
ZQd y | e

is bounded.

From Assumption [I] and Theorems [19] and [31] it follows that sup,., [|Ruc||,» < oo and
the existence of u € L"(Q) such that Rfu. — u strongly in L"(Q) and pointwise a.e. along a
subsequence & — 0. Furthermore, for M € N we denote u! := max {—M, min {u., M}}, the
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Fractional p-Laplacian emerging from homogenization 27

function w. cut to values in the interval [—M, M]. We then note that R:u? — u™ strongly
in L"(Q) and pointwise a.e.. Using this insight, we obtain using Lemma [35| that

) —ul(y))
Eo > hren_}nf Z Zcé % p
ZQd

— 9|

oM
// dfps (y)) dz dy
RdxRd y|

Since the above considerations hold for every M, we apply Fatous Lemma (resp. the mono-
tone convergence theorem by Beppo-Levi) and find

oM
// d+ ))dx dy < hmlnfE // du (y)) drdy < E.
pe R x R4 y| tps

Moreover, we have from Lemma [32] that

fimipf =’ 3 Glu(a) - Y wla)file) 2 & [ Glu)ds - [ ule)f(@),
zeZd zeZd Re R
Proof of Part 2

We first consider u € C}(Q). In this case, we set u(v) = u(x) for x € Z¢. From Lemma [35]
we infer

9 ) — us(y u( )
lim 53 e s el =k [ sy,

m y)EZQd y|

Now, let &,,(u) < oo with u(z) = 0 outside of Q, set go = 1. By Assumption [3 we find
u € W*P(R?) and in particular, there exists a sequence u; € C}(Q) such that u, — u in
W#P(R?). Moreover, since m < p; < p* the Lemma 33| yields [,,G(ur) — [pa G(u) and
hence

lim &, s(ug) = &, 5(u) .

k—o0

From the above calculation, there exists € > 0such that for all e < e, |&,5(ur) — &, s(ug)| <
|&,.s(u) — & (ng * u)| and in total

|Eps.c(r) = Eps(W)] < 2[ 65 (w) = &y * u)] -

Setting u® := uy, for all € € [g441,¢), (O holds.

4.3 Proof of Theorem [5

The proof mostly follows the lines of Section [4.2 However, as there are a few modifications
due to the non-boundedness of the domain, we provide the full proof for completeness.
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Proof of Part 1. Since f € C.(R%), we chose some bounded domain @ such that f has its
support in Q. From here, we may follow the lines of Section to obtain boundedness of

S DI 5 Gt

(z,y)ez2? y’ x€ZY

In particular, we obtain that

By o= liminf @ S, , LD — W)

e—0

is bounded.

Now, let m € N and consider B, := {z € R? : |z| <m}. From Assumption [l and
Theorem 31]it follows that sup..g [ RZucl|}-(5,,) < o0 and the existence of un, € L"(B,,) and
a subsequence &, such that R? u., — un, as &, — 0 strongly in L"(B,,) and pointwise a.e.
in B,,. Furthermore, for M € N we denote u} := max {—M, min {u., M}} and obtain using
Lemma B3] that

uM _ .M
Eoo Z lim inf Z Z % % Em (.flf) Em (y))

e—0
(z,y)€BE, x BE,

//mme )y’dfp]\j<y)> dz dy

Since the above considerations hold for every M, we apply Fatous Lemma (resp. the mono-
tone convergence theorem by Beppo-Levi) and find

oM
// (tm () d+s< ))dxdy<hm1nfE // (@) dfs(y))d$dy<E
'm X Bm y| b 'm X Bm y| P

Using a Cantor argument, we infer the existence of a measurable u : R? — R such that
R:u., — u pointwise a.e.. along a subsequence ¢’ — 0 and the Fatou Lemma yields

// df(s ))dmdy<hm1nfE // (um (2 ) d—i—s( ))d dy < E.,
RIXR! |fff y[*? o0 X B —y[7

Moreover, we have from Lemma [32] that

fimipte! 3 Glula) = 3 wlo) o) 2 & [ Glulode = [ @),

z€Z2 z€Z2

Proof of Part 2

We first consider u € C}(Q). In this case, we set u.(z) = u(z) for x € Z2. From Lemma
we infer

2 ) —ue(y u(y))
}jli%g ZZ A d+ps //Rded |d+PS drdy.

I y)€Z2d y|
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Now, let &, ,(u) < oo with u(z) = 0 outside of @, set go = 1. By Assumption [3 we find
u € WP(R?) and in particular, by Lemma (14| we infer uy := mp * u — u in WP(RY).
Moreover, Lemma [34] yields [, G(ny * u) = [p. G(u) and hence

klim &y s(ug) = &y s(u) .

From the above calculation, there exists € > 0such that for alle < ey, |&),5.c(ur) — &, s(ug)| <
|6ps(u) — & (n * w)| and in total

|Ep.s.e(ur) = Eps(u)] < 2[Eps(u) = & s (e x w)] -

Setting u® := uy, for all £ € [g441,¢), (9 holds.

A Proofs of Auxiliary results

A.1 Proof of Lemma
Lemma 37. Let u € W*P(R?). Then

lim [[u(-) —u(- = h)],,, = 0. (43)

h—0

Proof. 1t is well known that the

lim [lu(-) = u(- =) o gay = 0

and it only remains to show

lim [u(-) —u(- —h)],, = 0.

h—0

Suppose u € C®°(R?) and let B be a ball that contains the support of u. We write uy(x) :=
u(z — h) as well as f(x,y) = u(zr) — u(y) and similarly f,(z,y). Since, for small h, f(z,y) =
frn(z,y) = 0if both 2,y € 2B, we observe that

— fu(x, y)”
/Rd/Rd d+§p dx dy
p
//Ifl"y d+(spy ddy+2// xy szgp,y)l de dy
Rd\2B Y|

—Uh ) u(y) + un(y)l”
<2/ /]Rd y|d+sp drdy.

For every 0 > 0 the right-hand side can be split into an integral over
As={(z,y) : x€2B, [z —y[ <&}
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and the complement. We find
- "+ Ju(z) —u(y)l”
o) = a1, <2 [ () = un(y)|
[u(-) = u(- = h)],, N

|ZL‘ . y|d+sp
_ _ p
rof o uE) ) ruoly,,

R24\ 4, jz —y|™
The first integral can be estimated by
1

PRV, [y = 2 [Vl [2B] 5 .

5 | =yl

The second integral converges to 0 as h — 0 as it is bounded by
P4 ||lu — uy|| — 0.

Hence, we have shown that limy, o [u(-) — u(- — h)], , < C6P~*F for every 6 > 0, implying .
For arbitrary u € W*P(R?) the lemma follows from a standard approximation argument. [

Remark 38. Via the triangle inequality, the last Lemma implies that & — [[u(-) —u(- = h)|l,,,
is continuous:

) = (- = )l = ) = u(- = Al | < - = b) = u(- = Ra)l,,
Proof of Lemma[1j]. First note that it is well known that
e oy < Il oy and T s g — gy = 0
and it only remains to show

[weml,, <lul,, — and  lim fusn,—u] =0,

The inequality can be easily verified from the fact that

/‘/ | fra (i (2) x—d—wM@My—@ﬁmeﬂy

| y|d+sp

p
u(lr —z) —uly — z
<anuL1Rd / (2 / / =2 g a
Rd JRd — |

W) dx dy
rd JRd d+sp :

The limit behavior follows from Lemma 7, Remark [38 and the following calculation:

// [ s Oz m—z)—u( ) =ml2) (uly =) @)l

y,d-‘r&p

wlx —2) —u(x) —uly — 2) + u(y))”
< el / n | / (@)~ uly. " g dy dz
R? JRd — |

@
< Il [ ) ) = = )], 2

—0 ask — 0.

]
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A.2 Proof of Remark

The Remark is a consequence of the following Lemma.

Lemma 39. Let ¢ € CH(RY). Then for everye >0, p € (1,00), s € (0,1) and u € W*P(Z2)
it holds pu € W*P(Z2) and there exists some C' > 0 which does not depend on e such that

lpullspe < Cllull e lolloymay - (44)

Proof. Writing d; (x,y) == |f(x) — f(y)|, we first observe that

u )| 9, ( 0w (@, -
52 Do e < 32 S M o P,

IEZdyGZd mEZdyEZd y‘
Let B(z) :== {y € R : |z —y| < 1} with complement B%(x). Then, for every z € ZZ we find
Sy (2,y)" IVells lell5
Z ‘I _ ‘ders < Z ’[L’ _ ’dﬂ?sfp T E ’[B _ ’dﬂns
yezd1* Y veB@nz ¥ Y yestnzd " Y

< C(IVels + lI#l) -

Furthermore, note that

52 5o 5, o,

xEZdyEZd
1 p=1
0o (@, 9)" N [ =l (w )
< e fu@)] | Do i D
$€Zg yEZg |x - y| EZd ‘ - y‘
p—1
|5u rcy
C IVl + llelZ) lull oz, ZZ =
xEZdyEZd
as well as
p—1
(z.9) le()] s [0up (2, 9"\
y u
ZZ = e (B < el [ ZZ =
x€Zlycz mEZdyEZd
Hence we obtain (44]). ]

A.3 Proof of Theorem

We prove Theorem after three auxiliary lemmas. The first Lemma is an equivalent to
Lemma 6.1 in [§].
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Lemma 40. Let 1 < p < 0o, s € (0,1). There ezists C' depending only on s, p and d such

that
d

3
- Z C E —sp/d
: : T — y’d-‘rsp | |

yeEbnzd ’

for every e > 0, every x € Z% and every measurable set E C RY with finite measure.

1

Proof. Let p := 2di (|E|.)%, where |E|, = % {ENZ2}, see the beginning of Section
Then, for every p > p we find |Bj;(x)|. > |E|, and hence
|BE 01 By(@)| = |Bs(@), — 1B By(@)], = |BL. — |EN By(a)l,

> ‘EﬂBg(x)

£

Hence, we infer that

1 1 1
Dy t—mw = ) i oww T 0L oo

yeESnzd |2 =yl yeESNB;(x) |2~y yeE®nBY(z) [z =]

‘EE N Bﬁ(:c)|E E 1

S el
|EN Bg(l')‘s Z 1

S e
yeENB(z) yeE*NBL(x)

S Y ———
o) iz — y|d+sp

Next, we consider cells C.(2) := z+¢e(—3, 1), z € Z2\{0}. On each of these cells, we want to
estimate the ratio between the maximal and the minimal value of the function f(y) = |y|~¢75.

Due to the polynomial decay of this function, the closer one of the cells C.(2) lies next to 0,
the higher will be the ratio in f. The biggest value that f can attain on R¥\C.(0) is e~¢775,
Furthermore, all neighboring cells to C.(0) lie within the cube (—%5, %5) and the minimal

—d—sp
value of f is on this domain is the value of f is (gcﬁa) . Hence we obtain

1 —d—
- N atsp (3 " ~d-sp
inf inf |y " sup |y 2 <§> (_dég) - <3d%> ’
2€Z\{0} y€Ce(2) y€Ce(2) 2 2

and we conclude that

1 1 1\ —d—sp 1
D O ==
d+sp d+sp yeBg(z) |:L‘ d+sp

yeENzZd |x N y| yEBE(m) |x - y'

Now the theorem follows from integration using polar coordinates. O]
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Lemma 41 ([8, Lemma 6.2]). Let s € (0,1) and p € [1,00) be such that sp < d. Fiz T > 1
and let N € Z, and

ay be a non-increasing sequence such that ap =0 for every k > N .

Then,
Z a’id—sp)/di <C Z CLk+1CL];Sp/di :

kEZ kEZ, a£0
for a suitable constant C = C(d, s,p,T), independent of N.

We are now in the position to prove the following variant of [8], Lemma 6.3.

Lemma 42. Let s € (0,1) and p € [1,00) be such that sp < d. Let f € L>®(Z%) be compactly
supported. For any k € 7 let

= |{IF1 > 2"} .
Then,
f(z I
zz‘ s 03 wrop o
r€ZyecZ? ar#0

for some suitable constant C' = C’(d, s,p) > 0, which depends not on ¢.

Proof. We first emphasize that ||f(z)| — |f(y)|| < |f(xz) — f(y)| and hence we only consider
f >0, possibly replacing f by |f].
We define

Ap={f>2"} with Az C A,
ay ::‘{f>2k}} with a1 < ag.
We define
Dy = A\Apy1 = {27 > f > 2"} and  dy:=|Dy| with
dy and a; are bounded and they become zero when k is large enough,

since f is bounded. We define D_,, = {f = 0} and further observe that the sets Dy are
mutually disjoint and

DU |J D=4, U D=4 (45)

As a consequence, we have

ak:Zdl, dk:ak—Zdl. (46)
=k

I=k+1

The first equality implies that the series ) ,., d; are convergent. For convenience of notation,
in the following we write for arbitrary expressions g(y)

S )= 3 e+ S Soel)

Jj=—o0oyeD; yeD_ l€Z yeD;
1<i—2
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Now, we fix i € Z and « € D;. For every j € Z, j <1 — 2 and every y € D; we have
[f(2) = fly)l =2 =27 > 20 =27 =2
and hence by the first equality in (45]) it holds

f 7 1
zz'dw_<zz s

j=—ococyeD; j=—o0 yGD
: 1
>0 NS
- ’ . y’d—O—sp
yeA’L 1

Therefore, by Lemma there exists a constant ¢y such that for every ¢ € Z and every
x € D; it holds

i—2
|f(x) = fy)I p—
Ziiiﬂ:fmrzwf%f7

and Z Z Z |f d+sp 2 o2 a /g, |

j=—occyeDjzeD;

Summing up the last inequahty over ¢ € Z we have on one side

Z Z Z Z ’f d+sp Z Co Z 2 a; Sf/ddl =: C()S, (47)

1€Z j=—ocoyeD;zeD; l€Z,a;_1#0
a;—17#0

implying S to be bounded, and on the other hand, using , we have

zzszww

1€L j=—ooyeDjxeD;

Aq—1
>o Y (2’” a; e =y 2ma;ff/ddz> , (48)

l=i+1

where we estimate the second sum by S through

Z Z 2pz —sp/d _ Z Z 2p7, Sp/d

1€Z IEZ 1€EZ IEZ
a;—17£01>i+1 a;i—17#0 [>i+1
a;—1d1#0

< Z Z 2p2 —sp/d

i€Z €L
1>it1
a;—17#0

- Z Z 2piai_ff/ddl

€7 1€Z
a;_17£0i<l-1

Y vt < s

I€Z i€l
aj_1#£0i<l—1
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Using the last estimate in (48)), we obtain

|f i —sp/d
g E g E d+sp Z Co E 2Pa, 7" a; — cpS
i€Z j=—o0yED;xED; - i€Z
@j— 17&0 ai717é0

and using estimate (47)) we find upon relabeling ¢, that

DI DP D) LSS SR

i€Z j=—ooyeD;xeD; 1E€EL
a; 170 a;—17#0

On the other hand, it clearly holds that

B zzzz'f

yGZdweZd €L 0]——00 yeD;xeD;
a;—1

and hence the lemma follows. O

We are now in the position to prove the first Sobolev theorem.

Proof of Theorem [I7. It suffices to prove the claim for

sps_zz‘f d+ps <OO

x€Z%yecz?

and for f € L>*(Z%). Indeed, for arbitrary f € W*P(Z%), with fy := max{—N,min {N, f}}

we obtain that
. f f
]\ll—{noo Z Z | : d+p5 Z Z | d+ps

JJEZdyEZd xEZdyEZd

due to the dominated convergence theorem and pointwise convergence fy — f.
We recall the definitions

A = {’f| > 2k} with Ak+1 C A
ay ::H|f|>2k}‘ with  apy < ag
from the proof of Lemma [42] and obtain
HfHIZp*(zg) — Z E f(2)) < Z E |2k+1‘1’ < 22(k+1)p*a
keZ weAk\Ak+1 keZ xGAk\Ak+1 keZ

Using p/p* = (d — sp)/d =1 — sp/d < 1 we can conclude with Lemma 41| that

b
*

P
* d—sp)/d
Wy <2 (S20) <2 Sampe

keZ kEZ

—sp

SCE 2" a0,
kEZ
arp7#0
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It only remains to apply Lemma[42] and relabeling the constant C' to find in case ¢ = p*.
In case ¢ = Op+ (1 —0)p*, 0 € (0,1), we obtain from Holder’s inequality and the case ¢ = p*
that

0 1-6
S @)= e [F@IP [f@) 7 < | D @] | e 1 @)
zezd zezd zezd zeZd
= 1% iy NS oy < LI 2y LIS 27 < NS, IS, 27 = AN -

A.4 Proof of Theorem 19

Proof. Since Q is a uniform extension domain, the family RIu® is precompact if and only
it R:E.u® is compact, where we recall the operator & from Definition We will apply
the Frechet-Kolmogorov(-Riesz) theorem to prove compactness of RXE.us. More precisely, it
suffices to verify the following three properties:

Sup IREEu || pagay < 00, lim Sup IREEA| pagga Broy) = 0 (49)
lim sup [|RZEu(+) — RiEu (- + h)|| poray = 0. (50)
|h|=0 >0

Note that the conditions in (49)) are satisfied due to Theorem [I7 and Remark [16 Thus, it
only remains to show (50)).
For h € RY we write 7,u(x) := u(z + h), whenever this is well defined. Moreover, for
every € > () we define
1/p

lullye = | D= lu(@)”

x€Zd

We first prove the Theorem in case ¢ = p. Let h € Z¢ and n := 10h. We define B, . :=
{yeZ: |y <|nl} and B, := {y e R : |y| <|n|}. Since h € Z we always have n > 10e
and hence we have

By, 1B,
Cp:= 1 <
B S“p<|B| 1B, S

and
Cp = sup E |y|(d+198)/(p—1) / </ |y|(d+p8)/(p—1) dy) < 400
en YyEDBy < By

We find

-1
= il < 1Byl D (llu =l + llmwe = myull,. )
YEBy e
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In order to estimate the right-hand side, we apply Hélder’s inequality and obtain

p—1

p

[l = Tyully .
| |d+ps

E ’y‘(dJrPS)/(pfl)

YEBn,e

e, lu=mull, < | D

YEBy e yEBy,¢

<3 pepet) o (]

y€By,c zenzd

= Cllullwenza 1Byl W

3 |

p—1

|y|(d+p8)/(p—1) dy)

n

Also with By, (h) :={y € Z2 : |y — h| < 2|n|} we get from Hélder’s inequality

|mhu — yul|? v e
U —
O M=yl < | 32 = s || De e
YyEDBy ¢ YyEBy « ’y - ‘ yeB .
p—1
P
<l | 32 Iy /0
yEBZU,E(h)
— 9d+ps HUHWS»P(Zg) ’Bnl ’77‘8
This implies
lu = Thull, . < Cllullyoniga 12 (51)

Now, let C. := [—¢,e]? be the cube of size ¢ and let . € RN\C.. Further, let Z¢, :=
{zeZi: (24+C)N(h+C.) # 0} and forevery z € Z¢, let V(z,h) = |(z + C.) N (h + C)|.
Then we find

IRz = T REul| gy < D V(2. h) [|REu = 7R 1y

zGZih
= Z V(z, h)HU—TzU”LP(zg)
zEZih
s
< C YV h) [ullyen 2]
zEZgh
<C Y V(D) [ullyerg 1201
zEZih

< Cllullyenzg 1B
Now, let h € C.. Like above, we obtain

IRw — TRl oy < C Y V() sz 121°

d
zeZ&h
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However, this time we find V(z, h) — 0 uniformly and linearly in |h| — 0. Hence, we have

h|* if h € RO\C.

R* _ R* » < C
IRZu — T REul| o ray < {\h\ it heC.

Since C' does not depend on e, we infer

B° i |B] > 1

. 52
n| if b <1 (52)

[Rzu — ThR;uHLP(Rd) <C {

This implies in case p = q. i
In case ¢ < p, we use Remark 16/ and let @ denote the common support of £.u®. We then
obtain by Holder’s inequality
pP—q
p
|

- q
HR:gsuE _ ThR:gEUEHLq(Rd) < ‘Q ’R:gsue _ ThR:85u€”zp(Rd) ’

and hence compactness by .
In case ¢ € (p,p*) we use the same trick as in the proof of Theorem we have for
f=u—mu and for ¢ = 0p + (1 — 0)p* that

0 1—8)p*
e 1w —mnu) (2)|7 < Jlu— 7l g llu — ThuH(LP*(gE) :
TEQ*®
and hence follows from Theorem [17] and (52)). -
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