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On probabilistic capacity maximization in a
stationary gas network

Holger Heitsch

Abstract

The question for the capacity of a given gas network, i.e., determining the maximal amount of
gas that can be transported by a given network, appears as an essential question that network
operators and political administrations are regularly faced with. In that context we present a novel
mathematical approach to assist gas network operators in managing uncertainty with respect to
the demand and in exposing free network capacities while increasing reliability of transmission
and supply. The approach is based on the rigorous examination of optimization problems with
nonlinear probabilistic constraints. As consequence we deal with solving an optimization problem
with joint probabilistic constraints over an infinite system of random inequalities. We will show that
the inequality system can be reduced to a finite one in the situation of considering a tree network
topology. A detailed study of the problem of maximizing free booked capacities in a stationary gas
network is presented that comes up with an algebraic model involving Kirchhoff’s first and second
laws. The focus will be on both the theoretical and numerical side. We are going to validate a kind
of rank two constraint qualification implying the differentiability of the considered capacity problem.
At the numerical side we are going to solve the problem using a projected gradient decent method,
where the function and gradient evaluations of the probabilistic constraints are performed by the
approach of spheric-radial decomposition applied for multivariate Gaussian random variables and
more general distributions.

1 Introduction

In the context of the liberalization paradigm, regulatory authorities have separated the natural gas trans-
mission from production and services. Accordingly, the network operators are solely responsible for the
transportation of gas, and gas traders only need to specify or nominate where they want to inject gas,
at so-called entry points, or extract gas (loads), at so-called exit points. As a consequence, new math-
ematical challenges for the gas network operators have been introduced.

Presently, the reliability of the gas network operator depends on the accuracy of calculating the transport
capacity and on the security of supply. This concern is called nomination validation, i.e., determine
whether the given nominations of all entry and exit flows are technically and physical feasible under the
available infrastructure [11]. This challenge is further complicated by the uncertainty in the feasibility
check due to the coverage of future load. When ensuring security of gas supply for end consumers,
network operators have to quantify the coverage of uncertain future loads. The amount of gas that
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H. Heitsch 2

enters the network depends on volatile prices, and the amount of gas that exits is influenced by ambient
temperature changes. Nevertheless, it is possible to model the amount of future load by means of a
stochastic distribution based on historical data.

In the research literature, there is a more in-depth study of nomination validation in [14]. The robustness
of natural gas flows is examined in [5], and [10] gives a explicit characterization of gas flow feasibility and
considers the stochastic nature of exit loads. The present paper develops a novel algorithm to enable
a network operator to both locating and maximizing free available network capacities while keeping a
high probability to satisfy the demands.

We consider a passive stationary gas network, which for simplicity will be assumed to be a tree. It is
supposed that there exists one entry point coinciding with the root of the tree and supplying a set of exit
points with random loads. Exits can nominate their loads only according to given booked capacities. In
principle, the network owner has to make sure that all nominations complying with the booked capacities
can be satisfied by a feasible flow through the network satisfying given lower and upper pressure bounds
at its nodes. Since several nomination patterns may turn out to be highly unlikely, he may content himself
with guaranteeing this feasibility only with a certain high probability p, being aware that rare infeasibilities
in the stationary model can be compensated for by appropriate measures in the dispatch mode such as
exploiting interruptible contracts (for details see [11]). This probabilistic relaxation of an originally worst-
case-type requirement for feasibility, gives the network owner the chance of offering significantly larger
booked capacities. For the given values, it may be the case that the probability of nominations being
technically feasible is larger than the value p desired by the network owner. This degree of freedom
can be used then, in order to extend the currently booked capacities by a value which still allows one to
keep the desired probability level p no matter what additional nominations in the extended range have
been chosen. The resulting optimization problem for the network owner will be presented in Sect. 3.
The problem turns out to be of a new class of joint probabilistic/robust optimization models that has
been introduced in [9] first. A proper substitution of the robust part allows to rewrite the problem of
maximizing booked capacities as a stochastic optimization problem with probabilistic constraints.

The paper is organized as follows. A brief discussion of probabilistic problems is given in the following
Sect. 2. After representation of the booked capacity problem in Sect. 3 the structure and analytical
properties of the resulting optimization model, in particular, the validation of some constraint qualifica-
tion is in focus of Sect. 4. What follows is Sect. 5 concerning all computational questions, namely, how
to compute function values and gradients of the involved probability function (see below), where the
approach of spheric-radial decomposition is applied. The final Sect. 6 concludes the theoretical part by
a numerical study that includes solving the booked capacity problem for a reasonable large sized gas
net adapted from real gas transportation networks under Gaussian-like random demand.

2 Optimization problems with probabilistic constraints

Data uncertainty prevails in many real world optimization models, where it typically enters the inequality
constraints describing the set of feasible decisions

gi(x, z) ≥ 0 (i = 1, . . . , k) . (1)
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Here x ∈ Rn is a decision vector, z ∈ Rm is an uncertain parameter and g : Rn × Rm → Rk

refers to a constraint mapping. Overlooking the aspect of uncertainty would result in optimal decisions
which are notoriously non-robust with respect to deviations from the assumed deterministic data. When
modeling uncertainty two situations typically occur: in the first one, access to historical observations is
given such that uncertainty can be modeled by means of a random vector ξ obeying a certain estimated
multivariate distribution. This allows one to turn (1) into a so-called (joint) probabilistic constraint

P
(
g(x, ξ) ≥ 0

)
≥ p ∈ (0, 1) (2)

(note that the first ’≥’ sign is to be understood component-wise). The meaning of (2) is as follows: a
decision x is declared to be feasible if and only if the original random inequality system (1) is satisfied
with at least probability p, a level usually chosen close to but not identical to one in order to guarantee
sufficient robustness without excessive costs. For a standard reference on probabilistic (or chance)
constraints we refer to the monograph [15] by Prékopa.

A general optimization problem using the probabilistic constraints can be formulated as a generic, in
general nonsmooth, optimization problem of the form{

f(x)
∣∣ϕ(x) ≥ p

}
, (3)

where ϕ(x) := P(g(x, ξ) ≥ 0) is the so-called probability function. Both numerical and analytical
properties of the optimization problem with probabilistic constraints strongly depend on the smoothness
properties of the probability function ϕ(·). Unfortunately, simple examples show that even if the right
hand side g(·, ·) in (3) is nice, i.e. smooth, we cannot expect smoothness of the probability function.
However, under certain regularity assumptions sub-gradients (in the sense of Clarke or Mordukhovich)
and even gradients of the probability function might be available [2]. Therefore, the validation of con-
straint qualifications in the context of gas transportation problems, and, in particular, for the problem of
maximizing booked capacity is considered in Sect. 4.

3 The problem of maximizing booked capacity

In this section we want to describe the optimization problem of maximizing booking capacities under
uncertain demand that comes up as a highly relevant optimization challenge for network operators.
The presented approach of rigorous examination of the underlying optimization problem with nonlinear
probabilistic constraints is novel in that context and it focuses on the booking capacities on the exit side
in a classic exit-entry model. Alongside, in [4] the authors of that article pick up the booked capacity
problem but they do without deeper justification, they rather try to extend the model to the entry side as
well. Such extensions do not allow to reduce the mixed probabilistic and robust optimization model to a
probabilistic one, in general. Such reductions we will discuss here.

3.1 General formulation as probabilistic/robust problem

As noted in the introduction, we consider a passive and stationary gas network with tree structure. The
root of the tree refers to a single entry node, labeled by zero, supplying the remaining nodes, the exit
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nodes, labeled by 1, . . . , |V|, with gas. Let G = (V+, E) represent the tree network graph, trivially a
spanning tree of itself, where V+ denotes the set of both exit points and entry. Without loss of generality
we direct all edges in E away from the root. Using depth-first search, number the nodes so that numbers
increase along any path from the root to one of the leaves. For k, ` ∈ V , denote k � ` if, in G, the
unique directed path from the root to k, denoted Π(k), passes through `. Moreover, let π(e) denote
the head of edge e, i.e., π(e) := ` for e = (k, `).

According to [10, Corollary 2], a vector of exit loads z in this configuration is technically feasible, when-
ever the inequality system

min
k=1,...,|V|

{
(pmaxk )2 + hk(z)

}
− (pmin0 )2 ≥ 0

(pmax0 )2 − max
k=1,...,|V|

{
(pmink )2 + hk(z)

}
≥ 0 (4)

min
k=1,...,|V|

{
(pmaxk )2 + hk(z)

}
− max

k=1,...,|V|

{
(pmink )2 + hk(z)

}
≥ 0

is satisfied, where the functions hk(·) are given by

hk(z) :=


∑

e∈Π(k)

φe

( ∑
t�π(e)

zt

)2

if k ≥ 1 ,

0 if k = 0 .

(5)

Here, pmink and pmaxk refer to lower and upper pressure limits at the nodes of the network and represent,
as well as certain positive roughness coefficients φe along edges e ∈ E , fixed net parameters. By
elimination of minima and maxima, the inequality system (4) can be represented equivalently in closed
form by a number of |V|2 + |V| constraints of the form

gk,l(z) :=
(

(pmaxk )2 + hk(z)
)
−
(

(pminl )2 + hl(z)
)
≥ 0 , (6)

for all k, l = 0, . . . , |V| and k 6= l. Note, the number of inequalities reduces significantly in the event of
considering constant upper and constant lower pressure limits at all nodes. In that case, if pmaxk ≡ pmax

and pmink ≡ pmin for all k = 0, . . . , |V|, by eliminating all redundant inequalities from (6), we obtain a
system of only |V| inequalities

(pmax)2 − (pmin)2 − hk(z) ≥ 0 , (7)

k = 1, . . . , |V|, to describe technical feasibility in a tree network.

According to the capacity problem we actually focus on, a particular nomination vector of certain exit
demand is assumed to be given as the sum ξ + y, for a random demand ξ ≥ 0 satisfying existing
current capacities, and, a second vector y ∈ [0, x], where the values xk can be viewed as additional
free booking capacities, say for new customers at the exit nodes k, k = 1, . . . , |V|. The motivation
for modeling ξ as a random vector comes from the fact that a sufficiently large data basis for load
nominations according to former booked capacities may be given, which would allow one to approximate
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On probabilistic capacity maximization in a stationary gas network 5

a multivariate distribution of ξ (see [11]). While this stochastic information enables the network owner
to relax the technical feasibility of exit nominations in a probabilistic sense, nothing is known in contrast
about the future nomination pattern of the new customer, so that one has to be prepared principally for
every possible nomination y ∈ [0, x]. This constellation leads the network owner to define a capacity
extension x as feasible, whenever the constraint

P
(
gk,l (ξ + y) ≥ 0 ∀y ∈ [0, x] ∀k, l = 0, . . . , |V|

)
≥ p (8)

is satisfied with that x. The meaning of this constraint is as follows. The capacity extension x is feasible
if and only if, with probability larger than p ∈ [0, 1), the sum ξ + y of the original random nomination
vector and of a new nomination vector can be technically realized for every such new nomination vector
in the limits [0, x]. By its structure, (8) is a probabilistic constraint, but it is a nonstandard one in that it
contains a robust (worst case) ingredient which makes the given random inequality system an infinite
one. As mentioned in the introduction, such joint probabilistic/robust constraints have been considered
first in the context of gas networks in [9].

By regulatory law, the network owner is invited to maximize the capacity which can be booked. This
leads him to the consideration of the following optimization problem

maximize cTx subject to (8), (9)

where c is a weighted preference vector for capacity maximization, for example, c = (1, . . . , 1) in the
case of no preferences among exit nodes.

3.2 Reformulation of the problem by probabilistic constraints only

In order to apply theory and methodology of optimization problems with probabilistic (chance) con-
straints, it might be essential to reduce the infinite system of constraints in (8) to a finite one. To this end
we make use of the equivalence

gk,l(z + y) ≥ 0 ∀y ∈ [0, x] ⇔ min
y∈[0,x]

gk,l(z + y) ≥ 0 , (10)

where k, l = 0, . . . , |V| and k 6= l. Let be

g̃k,l(x, z) := min
y∈[0,x]

gk,l(z + y) , k, l = 0, . . . , |V|, (11)

the minimum function depending on both x and z. An explicit representation of the minimum function
g̃k,l(x, z) can be obtained by taking a closer look to the constraint functions gk,l(·). Inserting equation
(5) into formula (6) leads to

gk,l(z) =
(

(pmaxk )2 + hk(z)
)
−
(

(pminl )2 + hl(z)
)

= (pmaxk )2 +
∑

e∈Π(k)\Π(l)

φe

( ∑
t�π(e)

zt

)2

− (pminl )2 −
∑

e∈Π(l)\Π(k)

φe

( ∑
t�π(e)

zt

)2

. (12)
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Hence, the minimum of (11) is observed as the minimum of the latter equation (12) with respect to y
after replacing z by z + y. We have

g̃k,l(x, z) = min
y∈[0,x]

gk,l(z + y)

= min
y∈[0,x]

(pmaxk )2 +
∑

e∈Π(k)\Π(l)

φe

( ∑
t�π(e)

zt + yt

)2

− (pminl )2 −
∑

e∈Π(l)\Π(k)

φe

( ∑
t�π(e)

zt + yt

)2


= (pmaxk )2 +
∑

e∈Π(k)\Π(l)

φe

( ∑
t�π(e)

zt

)2

− (pminl )2 −
∑

e∈Π(l)\Π(k)

φe

( ∑
t�π(e)

zt + xt

)2

, (13)

where k, l = 0, . . . , |V| and k 6= l. Note, the latter equation is due to the fact that all edges
e ∈ Π(k) \ Π(l) and e′ ∈ Π(l) \ Π(k) are pairwise disjoint. Therefore, the optimization problem
of maximizing booking capacities turns into a classical probabilistic problem with a finite number of
probabilistic constraints. The reformulation of (9) reads

maximize cTx subject to

P
(
g̃k,l(x, ξ) ≥ 0 ∀ k, l = 0, . . . , |V|

)
≥ p ,

(14)

where for all k, l = 0, . . . , |V| with k 6= l the constraint mappings g̃k,l(·, ·) are obtained by the
analytical representation given in (13).

4 The validation of constraint qualifications

The analytical properties of an optimization problem strongly depend on whether it satisfies certain
regularity conditions which are given by different types of constraint qualifications. We follow the ap-
proach of considering the Rank 2 constraint qualification (R2CQ) (cf. [2]) as a sufficient criterion for
differentiability of the probability function of the probabilistic constraints.

To discus the constraint qualification for the constraint mappings in the context of gas transmission
we start with the general inequality system gk,l(z) for k, l = 0, . . . , |V| and k 6= l. To simplify the
representation we are going to introduce the following definitions and notations.

Definition 1. For some given pair of nodes k, l ∈ V we set:

(i) Π+
kl := Π(k) \ Π(l) and Π−kl := Π(l) \ Π(k),

the disjunctive subpaths w.r.t. Π(k) and Π(l),

(ii) bkl :=

{
max

{
π(e)

∣∣ e ∈ Π(k) ∩ Π(l)
}

if Π(k) ∩ Π(l) 6= ∅ ,
0 otherwise ,

the bifurcation node of paths Π(k) and Π(l), and,

(iii) d+
kl := min

{
π(e)

∣∣ e ∈ Π+
kl

}
, d−kl := min

{
π(e)

∣∣ e ∈ Π−kl
}

,

the first direction nodes for nonempty subpaths Π+
kl and Π−kl, respectively.
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On probabilistic capacity maximization in a stationary gas network 7

To verify the constraint qualification (R2QC), we have to pairwise compare gradients of active con-
straints. The following Lemma displays the analytical representations in order to compute the gradients
of the constraint mappings.

Lemma 1. For the constraint mappings gk,l(·) in (6) we obtain that

[∇zgk,l(z)]i =


∑

e∈Π+
kl∩Π(i)

2φe
∑

t�π(e)

zt if Π+
kl ∩ Π(i) 6= ∅,

−
∑

e∈Π−kl∩Π(i)

2φe
∑

t�π(e)

zt if Π−kl ∩ Π(i) 6= ∅,

0 otherwise.

(15)

for all k, l = 0, . . . , |V| with k 6= l, for all i = 1, . . . , |V|, and, any z.

Proof: For any fixed k, l with k 6= l and arbitrary i ∈ V from (12) we observe

[∇zgk,l(z)]i =
∑

e∈Π+
kl∩Π(i)

2φe
∑
t�π(e)

zt −
∑

e∈Π−kl∩Π(i)

2φe
∑
t�π(e)

zt

for any z. Hence, the gradient value of the ith component of gk,l(z) depends on the relation between
the unique path Π(i) with respect to the positive and negative subpaths Π+

kl and Π−kl, respectively. But
both paths are disjoint, and therefore, path Π(i) can only intersect either the positive or negative path.
Thus, for any fixed i, k, l gradient formula (15) is a consequence of the above equation. �

Another structural result is given by the following observation for active constraints.

Lemma 2. Let be k, l with k 6= l and z ≥ 0 given such that gk,l(z) = 0. If pmax
k > pmin

l then it holds

a) Π−kl 6= ∅ , b) d−kl 6= 0 , c) [∇zgk,l(z)]d−kl
< 0 .

Proof: Due to the assumption pmax
k > pmin

l , and, due to gk,l(·) is active constraint in z, by (12) we
obtain that path Π−kl is nonempty. The latter implies d−kl 6= 0 (see Definition 1 (iii) above). Moreover, the
path Π(d−kl) intersects the nonempty path Π−kl by the arc

(
bkl, d

−
kl

)
∈ E , and, by applying Lemma 1 we

conclude with z ≥ 0 that

[∇zgk,l(z)]d−kl
= −

∑
e∈Π−kl∩Π(d−kl)

2φe
∑
t�π(e)

zt = −2φ(
bkl,d

−
kl

) ∑
t�d−kl

zt < 0 ,

where bkl is the bifurcation node w.r.t. Π(k) and Π(l) (see Definition 1 (ii)). �

The following structural results focus on the connection between the constraints describing feasibility of
gas flows in general (6) and the ones involved in the capacity problem (13).

Definition 2. For every k, l ∈ V with k 6= l and any x ≥ 0 we define a mapping ϕk,l : RV → RV

ϕk,l(x) :=

{
xt if t � d−kl ,
0 otherwise .
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The functionals ϕk,l(·) represent the solution mappings for the generalized constraints in the capacity
problem, as shown next.

Lemma 3. For any k, l ∈ V (k 6= l) and any x, z ≥ 0 we have

min
y∈[0,x]

gk,l(z + y) = gk,l(z + ϕk,l(x)) .

Proof: The result is a direct consequence of formula (13). �

Now we are prepared to state the first main result concerning the constraint mapping involved by the
problem of maximizing booked capacities in a stationary gas transport network, in order to derive con-
straint qualifications for this type of problem.

Theorem 1. For given x ≥ 0, z ≥ 0 let be α := ϕk,l(x), β = ϕm,n(x), k 6= l and m 6= n. If it holds
gk,l(z + α) = gm,n(z + β) = 0 and if pmax

s > pmin
t for all s, t ∈ V+, then we have that (at least) one

of the following statements is satisfied:

(1) The gradients∇zgk,l(z + α) and∇zgm,n(z + β) are linear independent.

(2) It exist indices i, j ∈ V with zi = zj = 0 and i 6= j.

(3) There is redundancy, i.e., gk,l(z) ≥ gm,n(z) or gm,n(z) ≥ gk,l(z) for all z ≥ 0.

Proof: We want to prove the statement by a case study with respect to the bifurcation nodes observed
from the paths with respect to the index pairs (k, l) and (m,n), respectively.

1) Case bkl 6= bmn:

If the bifurcation nodes do not coincide at least one of the relations bkl 6� bmn or bmn 6� bkl must be
satisfied. Without loss of generality we assume bkl 6� bmn. We consider the negative path Π−kl and its
first direction node d−kl. Clearly, that node can now either be the bifurcation node bmn itself, or it is even
not involved in the paths Π+

mn and Π−mn. However, in both cases it follows that we have

Π+
mn ∩ Π(d−kl) = ∅ and Π−mn ∩ Π(d−kl) = ∅ .

Thus, due to (15) we obtain
[∇zgm,n(z + β)]d−kl

= 0 .

On the other hand, due to the assumptions gkl(z + α) = 0, gmn(z + β) = 0 and pmax
k > pmin

l , by
Lemma 2 we have that

[∇zgk,l(z + α)]d−kl
< 0 and [∇zgm,n(z + β)]d−mn < 0 .

Thus, the gradients∇zgk,l(z + α) and∇zgm,n(z + β) are linear independent.

2) Case bkl = bmn:

In the case of same bifurcation nodes we first want to consider the event that
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On probabilistic capacity maximization in a stationary gas network 9

a) Π−kl ∩
(
Π+
mn ∪ Π−mn

)
= ∅ or Π−mn ∩

(
Π+
kl ∪ Π−kl

)
= ∅ :

Assuming the first expression, completely analog to 1) it follows that

[∇zgm,n(z + β)]d−kl
= 0, [∇zgk,l(z + α)]d−kl

< 0 and [∇zgm,n(z + β)]d−mn < 0 ,

which implies linear independence of the considered gradients. Clearly, the same result we obtain for
the second expression just by interchanging the role of α, β and indices (k, l), (m,n).
The next case we want to consider is

b) Π−kl ∩ Π−mn 6= ∅ :

Because of same bifurcation node we observe d−kl = d−mn. Note that (bkl, d
−
kl) ∈ Π−kl ∩Π−mn here, and

thus, due to formula (15) we further obtain

[∇zgk,l(z + α)]d−kl
= [∇zgm,n(z + β)]d−kl

= −2φ(
bkl,d

−
kl

) ∑
t�d−kl

(zt + xt) < 0 ,

because αt = βt = xt for all t � d−kl (see Definition 2). It follows that the gradients are co-linear, if
and only if, all their components coincide. Let’s assume co-linearity: In that case , by (15) again, on the
one hand we have

[∇zgk,l(z + α)−∇zgm,n(z + β)]k = 2
∑

e∈Π+
kl\Π

+
mn

φe
∑
t�π(e)

zt = 0 , (16)

[∇zgk,l(z + α)−∇zgm,n(z + β)]m = 2
∑

e∈Π+
mn\Π+

kl

φe
∑
t�π(e)

zt = 0 , (17)

on the other hand we obtain that

[∇zgk,l(z + α)−∇zgm,n(z + β)]l = −2
∑

e∈Π−kl\Π
−
mn

φe
∑
t�π(e)

(zt + xt) = 0 , (18)

[∇zgk,l(z + α)−∇zgm,n(z + β)]n = 2
∑

e∈Π−mn\Π−kl

φe
∑
t�π(e)

(zt + xt) = 0 . (19)

What follows is, in all cases two indices i, j ∈ {k, l,m, n} with zi = zj = 0 and i 6= j can be
identified, unless k = m and l � n (n � l), or, l = n and k � m (m � k), respectively. The
latter exception appears if three of the above sums vanish due to cancellation of paths. However, if we
assume k = m and l � n (the other cases are analog) we might compute the difference of the active
constraints gk,l(z + α)− gm,n(z + β) and by using (12) we obtain

−(pmin
l )2 + (pmin

n )2 −
∑

e∈Π−kl\Π
−
mn

φe

( ∑
t�π(e)

(zt + xt)

)2

= 0 .

Due to (18) the involving sum needs to equal zero, hence, we have (pmin
l )2 = (pmin

n )2. But, as conse-
quence of that observation from (12) it follows with m = k that

gm,n(z) ≥ gk,l(z) ∀z ≥ 0 ,
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and, hence, inequality gm,n is redundant.

Finally, it remains to show the claim of the theorem for the final case

c) Π−kl ∩ Π+
mn 6= ∅ and Π+

kl ∩ Π−mn 6= ∅ :

In this case, first of all, we define non-negative numbers

a := 2Φ(bkl,d
+
kl)

∑
t�d+kl

zt ≥ 0 , c := 2Φ(bkl,d
+
kl)

∑
t�d+kl

xt ≥ 0 ,

b := 2Φ(bkl,d
−
kl)

∑
t�d−kl

zt ≥ 0 , d := 2Φ(bkl,d
−
kl)

∑
t�d−kl

xt ≥ 0 .

Assuming c) the numbers are well-defined. Moreover, we observe d+
kl = d−mn and d−kl = d+

mn. By (15)
combined with Definition 2 it is easy to show that

[∇zgk,l(z + α)]d+kl
= a , [∇zgm,n(z + β)]d+kl

= −a− c ,
[∇zgk,l(z + α)]d−kl

= −b− d , [∇zgm,n(z + β)]d−kl
= b .

From Lemma 2 we conclude that a + c > 0 and b + d > 0. Thus, if a = 0 or b = 0 the considered
gradients are linear independent. Let’s assume ab 6= 0. Considering the ratio equation

a

b+ d
=
a+ c

b

shows that the gradients are linear independent as d > 0 and c > 0, respectively. It remains to show
linear independence for the event that c = d = 0. The latter implies that xt = 0 for all t � d−kl
as well as for all t � d−mn. It is sufficient to show that there is one component t0 ∈ V such that
[∇zgk,l(z + α)]t0 + [∇zgm,n(z + β)]t0 6= 0. To this end we compute the sum of the constraints
gk,l(z + α) and gm,n(z + β) which results, by using (12) and the assumption that the constraints are
active, in

0 = (pmax
k )2 + (pmax

m )2 − (pmin
l )2 + (pmin

n )2

+
∑

e∈Π+
kl\Π

−
mn

φe

( ∑
t�π(e)

zt

)2

+
∑

e∈Π+
mn\Π−kl

φe

( ∑
t�π(e)

zt

)2

−
∑

e∈Π−kl\Π
+
mn

φe

( ∑
t�π(e)

zt

)2

−
∑

e∈Π−mn\Π+
kl

φe

( ∑
t�π(e)

zt

)2

.

Note, joint paths disappear by canceling out here, due to the fact that xt = 0 along the involved paths.
In particular, it follows that

∑
e∈Π−kl\Π

+
mn

φe

( ∑
t�π(e)

zt

)2

+
∑

e∈Π−mn\Π+
kl

φe

( ∑
t�π(e)

zt

)2

> 0 , (20)
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On probabilistic capacity maximization in a stationary gas network 11

i.e., there exist ê with ê ∈ Π−kl \ Π+
mn or ê ∈ Π−mn \ Π+

kl, respectively, and t̂ with t̂ � t0 := π(ê) such
that zt̂ > 0. However, in both cases with (15) we conclude that∣∣ [∇zgk,l(z)]t0 + [∇zgm,n(z)]t0

∣∣ ≥ 2φê
∑
t�t0

zt ≥ 2φêzt̂ > 0 .

Thus, in case c) the gradients of the constraints are always linear independent.
In any cases we have proven that either two active constraints have linear independent gradients, or
there exist at least two distinct indices i, j with zi = zj = 0, or one of the two active constraints is
redundant at all. �

In fact, property (3) of Theorem 1 does not appear if we remove all redundant inequalities from the
inequality system g(z) ≥ 0 first. However, contained redundant inequalities do not affect the feasibility
set and the analytical properties of the probability function. Of a somewhat different nature is property
(2) of the Theorem. The following example shows that this property actually can appear even in a small
network.

Example 1. We consider a gas network consisting of one entry and three exit nodes as displayed in
Figure 1. From the system of feasibility constraints gk,l(·) in (6) we select g1,3(·) and g2,3(·) only. For

Exit 1

Exit 2

Exit 3

Entry

Figure 1: Small example network.

any x ∈ R3 with x ≥ 0, according to Definition 2, we have for z ∈ R3

g1,3(z + ϕ1,3(x)) = (pmax1 )2 − (pmin3 )2 + φ(0,1)z
2
1 − φ(0,3)(z3 + x3)2 ≥ 0 ,

g2,3(z + ϕ2,3(x)) = (pmax2 )2 − (pmin3 )2 + φ(0,2)z
2
2 − φ(0,3)(z3 + x3)2 ≥ 0 .

As gradients we obtain

∇zg1,3(z+ϕ1,3(x)) =

 2φ(0,1)z1

0
−2φ(0,3)(z3 + x3)

 , ∇zg2,3(z+ϕ2,3(x)) =

 0
2φ(0,2)z2

−2φ(0,3)(z3 + x3)

 .

In particular, assuming active constraints, both gradients are co-linear, if and only if, z1 = 0 and z2 = 0.
In that case it must hold pmax1 = pmax2 and we observe that x3 has to be small enough and z3 = z∗ :=
(((pmax1 )2− (pmin3 )2)/φ(0,3)−x3)1/2. But as shown in the Theorem above, active constraints and co-
linearity of the gradients, this fact implies that we can identify components being zero, here as shown,
z1 and z2.
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H. Heitsch 12

Before proving the next result, we are going to simplify the notation. With respect to the formulation of
the problem of maximizing booking capacities (14) let be

J := {j = (k, l) | k, l = 1, . . . , |V|; k 6= l}

the index set of the feasibility constraints. We make use of the notation g̃j(·, ·) ≡ g̃k,l(·, ·) for j ∈ J
and j = (k, l). Moreover, let be J ∗ ⊆ J the index set of all nonredundant constraints (cf. Theorem 1,
item (3)). With this notation, Theorem 1 implies the following Corollary.

Corollary 1. For given x, z ≥ 0 and i, j ∈ J ∗ let be g̃i(x, z) = g̃j(x, z) = 0 and i 6= j, where
g̃(·, ·) given due to (13). Under the assumptions of Theorem 1, i.e., if pmax

s > pmin
t for all s, t ∈ V+,

then one of the following statements is satisfied:

(1) The gradient vectors∇zg̃i(x, z) and∇zg̃j(x, z) are linear independent.

(2) It exist indices k, l ∈ V with zk = zl = 0 and k 6= l.

The derived constraint qualifications for the considered feasibility constraints turn out to be sufficient to
guarantee differentiability of the involved probability function, as we will show in the following. To this
and, we first state the following Lemma.

Lemma 4. For any fixed x ≥ 0 we define

Sj(x) := {z ∈ R|V| | g̃j(x, z) = 0, g̃i(x, z) ≥ 0 for all i ∈ J ∗} j ∈ J ∗ .

Then it holds for all i 6= j
mes|V|−1 (Si(x) ∩ Sj(x)) = 0 ,

where mes|V|−1(·) denotes the surface Lebesgue measure in R|V|.

Proof: Due to Corallary 1 we can decompose the intersection of two active constraints into two subsets
A,B ⊆ Si(x) ∩ Sj(x), where A ∪ B = Si(x) ∩ Sj(x), and, where we have that z ∈ A implies
rank {∇zg̃i(x, z),∇zg̃j(x, z)} = 2; z ∈ B implies that there exist zero components zk = zl = 0
(k 6= l). Clearly, it is evidently sufficient to show mes|V|−1(A) = 0 and mes|V|−1(B) = 0.

For the first equation, given x, we define a mapping F (·) such that

F (z) :=

(
g̃i(x, z)
g̃j(x, z)

)
∈ R2, z ∈ R|V|.

Hence, F (·) is continuously differentiable, and, for arbitrary z̄ ∈ A we obtain F (z̄) = 0. Moreover, due
to the linear independence of the gradients, the Jacobian matrix DF has rank 2 in z̄. Thus, there exist
indices k, l (k 6= l) such that the according Jacobian sub-matrix is invertible. Without loss of generality
let assume k = 1 and l = 2. By the Implicit Function Theorem the equation F (z) = 0 can be resolved
in a neighbourhood Uz̄ of z̄ equivalently as

z1 = f1(z3, . . . , z|V|) and z2 = f2(z3, . . . , z|V|) ∀(z3, . . . , z|V|) ∈ Vz̄, (21)
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On probabilistic capacity maximization in a stationary gas network 13

where Vz̄ is a well-defined neighbourhood of (z̄3, . . . , z̄|V|). Moreover, the mapping

Xz(t2, . . . , t|V|) :=
(
f1(t3, . . . , t|V|) + t2, f2(t3, . . . , t|V|) + t2, t3, . . . , t|V|

)
,

where Xz̄ : R × Vz̄ → R|V|, defines a parametrization of some surface S in R|V|. Clearly, the set
{z ∈ Uz̄ |F (z) = 0} is a subset of the surface S and due to (21) we conclude that it holds

X−1
z̄ ({z ∈ Uz̄ |F (z) = 0}) = {0} × Vz̄ and λ|V|−1({0} × Vz̄) = 0 ,

where λ|V|−1 is the Lebesgue measure in space R|V|−1. In particular, for the according surface measure
we obtain that mes|V|−1({z ∈ Uz̄ |F (z) = 0}) is zero. On the other hand, the union of the family of
open sets {Uz̄}z̄∈A covers A. Because R|V| is separable, a countable selection (z̄n)n∈N in A exists,
where we obtain

A =
⋃
n∈N

Uz̄n ∩ A.

Due to the fact that mes|V|−1(Uz̄n ∩ A) = 0 (n ∈ N), we found a union of countable many subsets
of S of surface measure zero that covers A. Therefore, from [13, Proposition 4.32] we conclude that
mes|V|−1(A) = 0.

It remains to show that B has surface measure zero. But, subset B is included in the finite union of
linear subspaces Ukl := {z ∈ R|V| | zk = 0, zl = 0}, k 6= l, of co-dimension 2 (k, l = 1, . . . , |V|).
As a consequence, as well as subset A, also subset B has surface measure zero. This completes the
proof. �

Note that Lemma 4 does not make use of the special structure of the constraints of the capacity prob-
lem and also remains valid in a more general context. It just requires a finite systems of continuously
differentiable inequalities, where the claim of Corollary 1 is satisfied. The property, having surface mea-
sure zero of the intersection with respect to two active constraints, turns out to be the essential property
when asking for differentiability of the probability function, as shown in [12]. Hence, with Lemma 4 we
are prepared for the main result of this section, the differentiability of the capacity problem.

Theorem 2. Let be given x̄ ≥ 0 such that g̃j(x̄, 0) > 0 for all j ∈ J . Then, the probability function
ϕ(x) := Pξ≥0 (g̃j(x, ξ) ≥ 0 , j ∈ J ) of the problem of maximizing booked capacities (14) is differen-
tiable on some neighbourhood U of x̄, if the distribution P of the random vector ξ has a continuous and
bounded density on R|V|.

Proof: To prove the result of the Theorem we want to apply a general result regarding differentiability
of probability functions in [12]. To this end, we first discuss the gradients of the constraints g̃j(x, ·).
The special structure of the constraints allows to derive the following property. With the notation of
Definition 1 and by applying Lemma 1 it is easy to show that for any j ∈ J the equation g̃j(x̄, z̄) = 0
implies that

‖∇zg̃j(x̄, z̄)‖ ≥
∣∣ [∇zg̃j(x̄, z̄)]d−j

∣∣ ≥ 2φmin
(

∆p

|V|φmax

) 1
2

=: γ,
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H. Heitsch 14

where φmax := max{φe | e ∈ E}, φmin := min{φe | e ∈ E} denote maximal and minimal roughness
coefficients, respectively, and ∆p := min{(pmaxk )2 − (pminl )2 | k, l ∈ V+} denotes the minimal
quadratic pressure difference. As consequence, due to continuity, we observe that

‖∇zg̃j(x, z)‖ ≥
γ

2
> 0

on some neighbourhood U of x̄ and V of z̄ for any j ∈ J . Secondly, we state that

Pξ≥0 (g̃j(x, ξ) ≥ 0 , j ∈ J ) ≡ P (g̃j(x, ξ) ≥ 0 , j ∈ J ; ξk ≥ 0, k ∈ V)

and mention that the additional inequalities ξk ≥ 0 (k ∈ V) are compatible with the constraint
g̃(x, ξ) ≥ 0 in the sense that they do not destroy the recent properties. In particular, due to the
assumption g̃j(x̄, 0) > 0, in fact, ξk = 0 and g̃j(x̄, ξ) = 0 implies that g̃j(·, ·) depends on some
ξl 6= 0 and, therefore, the gradients of both constraints are linear independent. Moreover, the additional
non-negative constraints also satisfy the constraint qualifications of Corollary 1 and the norm of the
gradients each equals one, no matter what ξ. As consequence, we apply Lemma 4 for the total system
of inequalities, and, all requirements of [12, Theorem 2.4] are satisfied. We conclude that the probability
function ϕ(x) is differentiable for all x ∈ U . �

We want to complete this section by discussing Example 1 again. Therefore, we illustrate the con-
straint qualifications of Corollary 1 and the resulting surface measure condition for the intersection of
the boundary of both involved constraints for special instances.

Figure 2: Boundary of the feasibility region obtained by a special instance (below) of Example 1.

As a special instance of the constraints in Example 1 we consider

g̃1(x̄, z) = 1 + z2
1 − (z3 + x̄3)2 ≥ 0 ,

g̃2(x̄, z) = 1 + z2
2 − (z3 + x̄3)2 ≥ 0 ,

DOI 10.20347/WIAS.PREPRINT.2540 Berlin 2018



On probabilistic capacity maximization in a stationary gas network 15

where x̄3 = 1
2
, i.e., for example x̄ = (1

2
, 1

2
, 1

2
), and z ∈ R3. Particularly, as gradients we observe

∇zg̃1(x̄, z) =

 2z1

0
−2z3 − 1

 , ∇zg̃2(x̄, z) =

 0
2z2

−2z3 − 1

 .

The intersection S := S1(x̄) ∩ S2(x̄) of the surfaces Sj(x̄) = {z | g̃j(x̄, z) = 0}, where j = 1, 2,
decomposes into two subsets, A = {z ∈ S | rank 2 condition satisfied} and the set of singularities
B = {z ∈ S | rank 2 condition violated}. In that example, for the latter set we obtain the singleton
B =

{(
0, 0, 1

2

)}
. This set is included in the subspace L = {z ∈ R3 | z1 = 0; z2 = 0} of co-

dimension 2 (cf. Proof of Lemma 4). However, we have that A ∪ B = S. Figure 2 shows the surfaces
S1 and S2, defined by the active inequalities, as well as the intersection curve S represented by the
subsets A and B. As shown in Lemma 4, it turns out that the 2-dimensional surface measure of S is
zero. Indeed, we obtain mes2(S) = 0.

5 Algorithmic approach to solving the capacity problem

In this section we want to provide an algorithmic solution for the problem of maximizing booked ca-
pacities. In the previous sections we have shown that the capacity problem under weak conditions to
the distribution of the random exit demand is differentiable with respect to the probabilistic constraints.
Therefore, in principle any algorithm of nonlinear optimization that uses derivative information could be
applied in order to solve the problem numerically. However, an efficient numerical solution is linked to
an efficient computation of the involved probability function and its gradients.

Returning to the capacity problem (14), for any fixed decision x the set of feasible nominations is given
by

Mx :=
{
ξ ∈ R|V|

∣∣ g̃k,l(x, ξ) ≥ 0; k, l = 0, . . . , |V|
}
, (22)

where g̃k,l(·, ·) taken form (13). Now, that we are given an explicit description of the set Mx, we could
use this finite inequality system in (22) in order to test the feasibility of simulated outcomes of the
random demand ξ according to the given continuous distribution. The averaged number of feasible
simulations would yield the Monte Carlo estimate for the desired probability P (ξ ∈Mx). Such Monte
Carlo approach has two drawbacks: first it may come with a comparatively large variance for the ob-
tained probability estimation and, second, it does not provide us with information about the sensitivity
of this probability with respect to changes of x. For this reason, we will alternatively make use of the
so-called spheric-radial decomposition of Gaussian random vectors. In general, for a random vector
ξ(ω) on some probability space (Ω,A,P) the computation of the probability

P {ω ∈ Ω | ξ(ω) ∈Mx} (23)

amounts to the solution of a possibly high dimensional (number of exit nodes) multiple integral. A favor-
able situation to carry out this computation under Gaussian distribution occurs for polyhedral sets. For
details, we refer to [8], which not only gives an excellent overview on this topic but also presents a very
efficient algorithm developed by the author himself. Unfortunately, in our setting we cannot expect the
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feasible set Mx to be polyhedral, not even convex. Therefore, recourse to the mentioned algorithm is
not possible.

5.1 Spheric-radial decomposition under Gaussian distribution

We shall rather propose here the so-called spheric-radial decomposition of a Gaussian distribution
(e.g., [6]) as a promising alternative which not only may significantly reduce the variance of estimating
(23) but, moreover, it offers the possibility of efficiently approximating gradients of (23) with respect to
the external parameter x. The main variation of exit load data is temperature driven. However, even at
fixed temperature, considerable random variation remains. That is why the exit demand may be char-
acterized by a finite family of multivariate distributions, each of them referring to some (rather narrow)
range of temperature and reflecting the joint distribution of loads at the given set of exit points, see [11,
Chapter 13]. As recorded in the same reference [11, Table 13.3], these distributions are most likely to be
Gaussian (possibly truncated) or lognormal. Our assumption to consider a multivariate Gaussian distri-
bution for ξ can therefore be seen as a prototype setting which, using the spheric-radial decomposition
presented next, maybe adapted without much effort to more realistic settings (multivariate log-normal
distributions, probabilities with respect to several temperature classes simultaneously, etc.). The follow-
ing result is well-known:

Theorem 3 (spheric-radial decomposition). Let ξ ∼ N (µ,Σ) be somem-dimensional Gaussian distri-
bution with mean vector µ and covariance matrix Σ. Then, for any Borel measurable subset M ⊆ Rm

it holds that

P(ξ ∈M) =

∫
Sm−1

µχ{r ≥ 0 | rLv + µ ∈M}dµη(v),

where Sm−1 is the (m − 1)-dimensional sphere in Rm, µη is the uniform distribution on Sm−1, µχ
denotes the χ-distribution with m degrees of freedom and L is such that Σ = LLT (e.g., Cholesky
decomposition).

In order to evaluate the integrand in the spheric integral above, one has to be able to compute, for any
fixed direction v ∈ Sm−1, the χ-probability of the one-dimensional set

{r ≥ 0 | (rLv + µ) ∈M}.

Since we are interested in the probability of the set Mx, this amounts by (22) to characterizing the set

{r ≥ 0 | g̃k,l(x, rLv + µ) ≥ 0; k, l = 0, . . . , |V|} (v ∈ S|V|−1). (24)

Using the idea of spheric-radial decomposition presented in Theorem 3, we propose the following algo-
rithm for computing the probability P(ξ ∈Mx) for a fixed value x.

Algorithm 1 (Function evaluation). Let be x ≥ 0, ξ ∼ N (µ,Σ) and L such that Σ = LLT :

1 Sample N points {v1, v2, . . . , vN} uniformly distributed on the sphere S|V|−1.
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On probabilistic capacity maximization in a stationary gas network 17

2 i := 0;S := 0.

3 i := i+ 1. Find the zero’s of the one-dimensional function (in r for x fixed)

θix(r) := min
k,l=0,...,|V|

g̃k,l(x, rLv
i + µ)

with g̃k,l(·, ·) defined in (13) and represent the set M i
x := {r ≥ 0 | θix(r) ≥ 0} corresponding

to (24) as a disjoint union of intervals: M i
x = ∪tj=1[αj(x), βj(x)], where αj(x), βj(x) are the

zero’s obtained before and ordered appropriately.

4 Compute the χ-probability of M i
x according to

µχ(M i
x) =

∑
j

Fχ (βj(x))− Fχ (αj(x)) , (25)

where Fχ refers to the cumulative distribution function of the one-dimensional χ-distribution with
|V| degrees of freedom. Put S := S + µχ(M i

x).

5 Continue, if i < N , with step 3.

6 Finally, set P (ξ ∈Mx) := S/N .

The above algorithm clearly provides an approximation to the spheric integral in Theorem 3 by means
of a finite sum based on sampling of the sphere, and then, averaging the values of the integrand over
all samples. Of course, this approximation will improve with the sampling size which may be large
depending on the dimension |V| of the problem (i.e., exit nodes in the network) and on the desired
precision for the probability.

Computing the zero’s of the one-dimensional function θix(r) (step 3 of the algorithm) can be done
analytically. As disclosed in formula (13) the constraint mappings g̃k,l(·, ·) provide a particular quadratic
structure such that θix(r), i = 1, . . . , N , turn out to be a piecewise quadratic functions as well.

Finally, we recall that the uniform distribution on the sphere S|V|−1 can be represented as the distribution
of η/‖η‖ (Euclidean norm), where η has a standard Gaussian distribution in R|V|, i.e., η ∼ N (0, I).
Then, the simplest idea to sample points vi on the sphere as in step 1 of the algorithm would be
to independently sample |V| values wj of a one-dimensional standard normal distribution by using
standard random generators and then putting vi := w/‖w‖ for w := (w1, . . . , w|V|). When replacing
such Monte Carlo sampling of the normal distribution (based on random number generators) by Quasi-
Monte Carlo sampling (based on deterministic low discrepancy sequences), one observes a dramatic
improvement in the precision of the result. For the problem of nomination validation in gas networks,
this first was revealed in [10].

5.2 Computing gradients of the probability function

As well as the function evaluations also gradient computations in view of the probabilistic constraints
within the capacity problem are needed in order to solve the problem efficiently. The above spheric-
radial decomposition approach has the advantage that in many situations derivatives with respect to
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involved parameters can be computed without additional effort by using nearly the same approximation
scheme. As shown in [1, 2], gradients can be represented as spheric integrals as well, just with different
integrands. The basis for computing derivatives is the gradient formula for the probability function

ϕ(x) := P (g(x, ξ) ≥ 0)

(see Sect. 2) formulated in [2, Theorem 4.1]. With the notation of Theorem 3 and under some regularity
conditions, requiring differentiability in both and convexity in the second argument for the constraint
mapping g(·, ·), if g(x, µ) ≥ 0, and, in the Gaussian case ξ ∼ N (µ,Σ), then the gradient of ϕ(·) can
be represented in the form

∇ϕ(x) =

∫
v∈Sm−1

#J(x,v)=1

− χ(ρ(x, v))

〈∇ξgj(v)(x, ρ(x, v)Lv + µ), Lv〉
∇xgj(v)(x, ρ(x, v)Lv + µ)dµη(v), (26)

where χ denotes the density of the χ-distribution, ρ(x, v) := max{r ≥ 0 | g(x, rLv + µ) ≥ 0} and
J(x, v) := {j ∈ {1, . . . , k} | gj(x, ρ(x, v)Lv + µ) = 0}. Moreover, the index j(v) is the unique
index j ∈ {1, . . . , k} satisfying gj(x, ρ(x, v)Lv+ µ) = 0. Unfortunately, we cannot expect convexity
in connection with the capacity problem. Anyway, we are going to use gradient formula (26) in order to
provide an algorithmic computation of the gradient similar to Algorithm 1. One reason for doing so is
that in our case we consider bounded feasibility setsMx only, i.e., the above convexity condition is quite
strong condition just to ensure that the radius function ρ(x, v) is well-defined for any radial v ∈ Sm−1.
What follows, the same gradient formula can be achieved by replacing the convexity condition by a much
weaker requirement of starshapeness with respect to the feasibility set. Even though starshapeness
of feasibility sets is hardly to verify, nevertheless, it is a reasonable condition in the context of gas
transportation networks.

However, by applying formula (26) in a more general case we want to adapt Algorithm 1 in order to
compute the gradient of the probability function, approximately. Therefore, the zero’s αj(x), βj(x) of
the functional θix(r) in Algorithm 1 play the role of the radius function ρ(x, v) in (26) for any direction
v = vi, i = 1, . . . , N . By inclusion of the partial derivatives (gradients) of the constraints g̃k,l(·, ·) we
provide the following algorithm.

Algorithm 2 (Gradient evaluation). Let be x ≥ 0, ξ ∼ N (µ,Σ) and L such that Σ = LLT :

1 Sample N points {v1, v2, . . . , vN} uniformly distributed on the sphere S|V|−1.

2 i := 0;S ′ := 0.

3 i := i+ 1. Find the zero’s of the one-dimensional function (in r for x fixed)

θix(r) := min
k,l=0,...,|V|

g̃k,l(x, rLv
i + µ)

with g̃k,l(·, ·) defined in (13) and represent the set M i
x := {r ≥ 0 | θix(r) ≥ 0} corresponding

to (24) as a disjoint union of intervals: M i
x = ∪tj=1[αj(x), βj(x)], where αj(x), βj(x) are the

zero’s obtained before and ordered appropriately.
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4 To any of the zero’s αj(x), βj(x) select the active constraints, i.e., assign index mappings
τα(j), τβ(j) ∈ {0, . . . , |V|}2 such that

g̃τα(j)(x, αj(x)Lv + µ) = 0 and g̃τβ(j)(x, βj(x)Lv + µ) = 0. (27)

Compute the derivative of the χ-probability of M i
x according to

Dα
j (x) =

fχ (αj(x))

〈∇ξgτα(j)(x, αj(x)Lvi + µ), Lvi〉
∇xgτα(j)(x, αj(x)Lvi + µ),

Dβ
j (x) =

fχ (βj(x))

〈∇ξgτβ(j)(x, βj(x)Lvi + µ), Lvi〉
∇xgτβ(j)(x, βj(x)Lvi + µ),

∇x

(
µχ(M i

x)
)

=
∑
j

Dα
j (x)−Dβ

j (x), (28)

where fχ refers to the probability density function of the one-dimensional χ-distribution with |V|
degrees of freedom. Put S ′ := S ′ +∇x (µχ(M i

x)).

5 Continue, if i < N , with step 3.

6 Finally, set∇x (P (ξ ∈Mx)) := S ′/N .

Before concluding this section some remarks to the stated Algorithm 1 and 2 are appropriate. The
update formula (28) for the derivative of the probability function with respect to the parameter x in step
4 of Algorithm 2 can be considered as rigorous differentiation of the respective formula for the probability
(25) within step 4 of Algorithm 1. Since we have

∇x (Fχ (βj(x))− Fχ (αj(x))) = fχ (βj(x))∇xβj(x)− fχ (αj(x))∇xαj(x),

formula (28) in Algorithm 2 appears when inserting the gradients∇xαj(x) and∇xβj(x) which are ob-
tained by total differentiation of the equations in (27) with respect to x and resolving them for∇xαj(x)
and ∇xβj(x), respectively. Moreover, note that both algorithm are compatible in a sense that, after
computing the sampling scheme on the unique sphere, one and the same sample vi can be employed
in order to update values and gradients of the involved probability function. Also the needed zero’s
αj(x) and βj(x) are the same here. In general, determining these zero’s corresponds to the most
expensive parts. On the other hand, due to the analytical representation (13) the partial derivatives of
the mappings g̃k,l(·, ·) can easily determined analytically (similar to Lemma 1). Therefore, in order to
compute both function end gradient evaluations, almost no additional effort for computing gradients is
needed when computing function values and performing Algorithm 1 and 2 simultaneously.

The strategy of computating function values and gradients of the probabilistic constraints of the capacity
problem by Algorithms 1 and 2 can be embedded into a simple projected gradient method. Clearly, due
to the non-convexity of the model, performing a projected gradient method causes a termination at
local minima, in general. Therefore, the accuracy strongly depend on finding reasonable starting points
heuristically. However, the practicability of the approach is shown in the next section, where a numerical
study related to realistic network data is presented.
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6 Numerical study

In this section we finally want to test the performance of the presented methodology for solving the
problem of maximizing booked capacities. Clearly, here we use the reformulation in terms of the clas-
sical probabilistic constrained optimization problem obtained in (14). In order to solve the underlying
non-linear optimization problem we designed a straight forward decent method based on projected gra-
dients. The core of the method consists in local linearizations of the feasibility set and the projection of
the negative objective gradient onto these linearizations. Whenever this projection is non-zero a new
decent step can be performed which results in a feasible point with improved objective. Because the
decent direction could point away from the feasibility set, if necessary, a redirection back to the feasibil-
ity set must be performed, where the gradient information of the constraints may be used. The method
terminates in a stationary point, where the projected objective gradient is zero.

The described decent method actually aims to solve a minimum problem that can be obtained just by
switching the sign of the objective function in (14). All needed to perform this method are function and
gradient evaluations for both the objective and constraint function. Function values and derivatives of
the objective are computed analytically. Because we do not assume any preferences in the allocation
of new capacities, the weight vector in the objective of problem (14) is chosen just as cT = (1, . . . , 1).

For the probabilistic constraint, represented by the probability function, the spheric-radial decomposition
is applied. More precisely, Algorithm 1 and Algorithm 2 from the previous section are used in order to
compute function values and gradients. Therefore, we employed Quasi-Monte Carlo (QMC) sampling on
the bases of Sobol sequences as a special case of low-discrepancy sequences that are included in the
category of (t,m, d)-nets and (t, d) sequences [7]. A QMC sample of 10 000 scenarios was created
according to a standard Gaussian distribution (zero mean and identity covariance matrix). Normalizing
each scenario to unit length provides a sample of the uniform distribution on the sphere as required in
the simultaneous update of values and gradients of the probability function within Algorithm 1 and 2.

The appropriate choice of model parameters is a crucial step in numerical experiments. In the view
of exit load nominations, as already mentioned [11, Chapter 13] provides a wide study concerning
the statistical analysis of gas demand data in real gas networks. The approach is based on analyzing
historical data with respect to different temperature classes and in identifying multivariate distributions
coming up into consideration. According to the results, random gas demand can often be described
by combinations of Gaussian-like multivariate distributions (Gaussian, truncated Gaussian, lognormal).
Distribution parameters like mean, standard deviation and correlations can be estimated statistically
from historical data, where the network owner may benefit from a long term data record.

6.1 Multivariate Gaussian distribution

We start our numerical experiences with the an example wherein assuming a multivariate Gaussian
distributed exit demand as in Theorem 3 with parameters (mean µ, covariance Σ) chosen in a way to
represent real-life data. The parameters are in fact slightly modified distribution parameters obtained
from a real gas networks and adapted to a artificial example network containing one entry node, a
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number of 26 exit nodes and representing a tree. All remaining net parameters, particularly roughness,
lower and upper pressure bounds are chosen in range of typical values for existing gas networks.

Probability Average demand [kW] Free capacity [kW] Decent steps Computing time [s]

0.95 27 797.76 541.37 27 45.92
0.90 27 797.76 1 495.01 44 159.48
0.85 27 797.76 2 130.38 63 210.96
0.80 27 797.76 2 631.46 78 252.78

Table 1: Results for the network example of medium size. Displayed are the obtained free booked
capacities (total sum for all exits) compared to the average of the total gas demand at all exits computed
by solving problem (14) for different chosen probability levels and fixed underlying multivariate normal
distribution for the exit demand.

Results for solving the problem of maximizing booked capacities (14) for Gaussian distributed exit de-
mand are displayed in Table 1. In addition, Fig. 3 visualizes the network topology and the allocated free
capacities at the exit nodes for the selected probability levels p = 0.90 and p = 0.80, respectively.
Clearly, a decreasing probability level for technical feasibility of random demand yields an increasing
free capacity left in the network.

In Fig. 4 we perform a posterior check of the computed solution for the probability level p = 0.80. By
a simulation of 4 sets of exit loads situations according to the chosen Gaussian distribution we check
the feasibility of the computed solution of allocated capacities against the particular exit demand in the
robust sense of (10). Feasibility is displayed by green circles indicating that the computed capacity as
solution of (14) could even increased by upscaling while remaining feasible with respect to the simulated
scenario. On the other hand, if the allocated capacity exceeds the possible technical feasibility in the
simulated situation, this is displayed by red circles according to a needed downscale of the solution in
order to become feasible with respect to the robust condition (10). As seen in Fig. 4, three out of four
simulated exit demand situations turn out to be feasible whereas in one case the solution do not satisfy
the simulated demand. However, when simulating a large set of such scenarios, say 1 000, it would
turn out that according to the probability level p = 0.80 approximately 800 are feasible, while 200 are
infeasible.

6.2 Extension to more general distributions

As discussed, according to [11] Gaussian and Gaussian-like distributions are mostly relevant for de-
scribing random demand in gas transportation networks. But in fact, the described methodology to treat
optimization problems with probabilistic constraints via spheric-radial decomposition can be extended
even to more general distributions. In [3] the class of elliptical distributions is considered, where the
approach is used for the investigation of probability functions acting on nonlinear systems wherein the
random vector can follow an elliptically symmetric distribution. Beside the Gaussian distribution the
Student’s distribution would be another example for an elliptically symmetric distribution.
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Figure 3: Network topology of a medium sized network for the example of Gaussian exit demand.
Illustration of the solution of the capacity maximization problem at exit points for different probability
levels p = 0.90 (left) and p = 0.80 (right). The entry and exit points are displayed in black (entry)
and white (exit), respectively. A decreasing probability level allows for a higher allocation of capacity in
certain regions of the network highlighted by colored circles of different size.

Figure 4: Four simulated exit demand realizations according to the chosen multivariate Gaussian dis-
tribution and the respective available free capacity compared to the allocated capacity provided by the
numerical solution for the medium network for the probability level p = 0.80. Feasible and infeasible
situations are displayed in green and red, respectively.
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In the context of capacity optimization in a gas transportation network, we want to discuss a slightly
more realistic situation, where gas nominations are in fact regulated by contracts between the network
owner and the customers. Such contracts usually provide upper limits for the quantity of gas that could
be delivered to the customers. Therefore, in the second numerical example for the problem of maxi-
mizing booked capacities we will suppose that the stochastic exit demand vector ξ follows a truncated
multivariate Gaussian distribution

ξ ∼ T N (µ,Σ, [0, L]). (29)

More precisely, the distribution of ξ is obtained by truncating a |V|-dimensional Gaussian distribution
with mean µ and covariance matrix Σ to an |V|-dimensional rectangle [0, L] with upper limits Lk at
exit node k. Therefore, the vector L represents booking limits given by former contracts. Clearly, the
network owner is aiming to extend these limits by the allocation of free network capacities according to
the solution of (14).

We want to proceed with the same methodology from Sec. 5, in particular, we want to apply Algorithm 1
and 2 based on spheric-radial decomposition in order to solve the capacity problem (14), but under
truncated instead of Gaussian distribution. Therefore, a transformation back to a normal distribution
can be discovered as follows. By definition of the truncated normal distribution, (29) is equivalent to the
property

P (ξ ∈ A) =
P
(
ξ̃ ∈ A ∩ [0, L]

)
P
(
ξ̃ ∈ [0, L]

)
for all Borel measurable subsets A of R|V|, and, where ξ̃ is the associated Gaussian random vector
with ξ̃ ∼ N (µ,Σ). Hence, in order to determine probabilities under a truncated Gaussian distribution,
it is sufficient to be able to determine probabilities under the Gaussian distribution itself. Applying this
observation to the probabilistic constraint of the capacity problem, the equivalent representation to the
reformulation (14) of the problem of maximizing booked capacities with truncated Gaussian exit load
distribution T N (µ,Σ, [0, L]) reads

maximize cTx subject to

P


g̃k,l(x, ξ̃) ≥ 0 (k, l = 0, . . . ,V)

ξ̃k ≥ 0 (k = 1, . . . ,V)

ξ̃k ≤ Lk (k = 1, . . . ,V)


 ≥ p · P

(
ξ̃ ∈ [0, L]

)
,

(30)

where ξ̃ ∼ N (µ,Σ) is the Gaussian distribution with mean µ and covariance matrix Σ and g̃k.l(·, ·)
corresponds to the system of inequalities obtained in (13). Hence, the modified problem formulation (30)
arises from (14) only by adding additional box constraints to the system of random inequalities, and,
by scaling the given probability accordingly. The probability value P

(
ξ̃ ∈ [0, L]

)
can easily computed

by the spheric-radial decomposition, or alternatively, by other efficient computation schemes for the
probability of rectangles when dealing with multivariate normal distributions [8].

The following numerical results are obtained for a larger example network containing 1 entry and 43
exit nodes. The more realistic sized network could be viewed as topological extension of the medium
size network before. Although this network is academical constructed as well, the network parameters
are adapted from real networks in the same way as before. The initial multivariate truncated Gaussian
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distribution again involves correlations between the exit points and the truncation limits are chosen in a
way that one obtains an initial probability level of approximately p = 0.98 for the technical feasibility of
the random demand (with no capacity extension). The truncation probability in (30), i.e., the Gaussian
probability of the rectangle [0, L], turns out to be P(ξ̃ ∈ [0, L]) = 0.71. However, the high initial prob-
ability level allows for allocating free capacities when decreasing the prescribed probability as shown in
Table 2.

Probability Average demand [kW] Free capacity [kW] Decent steps Computing time [s]

0.95 28 870.74 727.08 20 212.66
0.90 28 870.74 1 271.07 32 277.58
0.85 28 870.74 1 654.31 53 362.09
0.80 28 870.74 1 941.04 45 363.83

Table 2: Numerical results for the network example of large size. Displayed are the obtained free booked
capacities (total sum for all exits) compared to the average of the total gas demand at all exits computed
by solving problem (14) for different chosen probability levels and fixed underlying multivariate truncated
normal distribution for the exit demand.

Figure 5: Network topology of the large sized network for the example of truncated Gaussian exit de-
mand. Illustration of the solution of the capacity maximization problem at exit points for the probability
level of p = 0.80. The entry and exit points are displayed as before. The picture shows the allocated
free capacities obtained at the particular exit nodes of the network. Quantities are highlighted by colored
circles of different size.

In Fig. 5, a visualization of the network topology and the allocated free capacities at the exit nodes
for the second example under truncated Gaussian distribution and for a selected probability levels of
p = 0.80 is given. It turns out that, although no preferences such as certain weights are assigned to the
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different exit points, the total amount of allocated free capacity is not uniformly distributed at the whole
network. In fact, network and distribution specifics play the major role when answering the question of
maximizing free booked capacities.

References

[1] W. van Ackooij, R. Henrion: Gradient formulae for nonlinear probabilistic constraints with Gaussian
and Gaussian-like distributions, SIAM Journal on Optimization, 24 (2014), 1864–1889.

[2] W. van Ackooij, R. Henrion: (Sub-) Gradient formulae for probability functions of random inequality
systems under Gaussian distribution, SIAM/ASA J. Uncertainty Quantification, 2017, 63–87.

[3] W. van Ackooij, I. Aleksovska, M. Munoz-Zuniga: (Sub-)Differentiability of Probability Functions
with Elliptical Distributions, M. Set-Valued Var. Anal (2017), 1–24.

[4] D. Adelhütte, D. Aßmann, T. Gonzàlez Grandòn, M. Gugat, H. Heitsch, R. Henrion, F. Liers,
S. Nitsche, R. Schultz, M. Stingl, D. Wintergerst: Joint model of probabilistic-robust (probust) con-
straints with application to gas network optimization, WIAS Preprint, 2018 (submitted).

[5] M. Chertkov, S. Misra, M. Vuffray: Monotonicity of Dissipative Flow Networks Renders Robust
Maximum Profit Problem Tractable: General Analysis and Application to Natural Gas Flows, Math-
ematics: Optimization and Control, 2015.

[6] I. Deák: Subroutines for Computing Normal Probabilities of Sets - Computer Experiences, Ann.
Oper. Res., 100 (2000), 103-122.

[7] J. Dick, F. Pillichshammer: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte
Carlo Integration, Cambridge University Press, 2010.

[8] A. Genz, F. Bretz: Computation of Multivariate Normal and t-Probabilities, Lecture Notes in Statis-
tics, vol. 195, Springer, Heidelberg, 2009.

[9] T. González Grandón, H. Heitsch, R. Henrion: A joint model of probabilistic /robust constraints
for gas transport management in stationary networks, Computational Management Science, 14
(2017), 443–460.

[10] C. Gotzes, H. Heitsch, R. Henrion, R. Schultz: On the quantification of nomination feasibility in
stationary gas networks with random load, Mathematical Methods of Operations Research, 84
(2016), 427–457.

[11] T. Koch, B. Hiller, M. Pfetsch, L. Schewe (eds.): Evaluating gas network capacities, MOS-SIAM
Series on Optimization vol. 21, 2015.

[12] A.I. Kibzun, S. Uryasev: Differentiability of probability function, Stochastic Analysis and Application,
16 (1998), 1101–1128.

DOI 10.20347/WIAS.PREPRINT.2540 Berlin 2018



H. Heitsch 26

[13] S. Montiel, A. Ros: Curves and Surfaces, Graduate Studies in Mathematics vol. 69, Second Edi-
tion, 2009.

[14] M.E. Pfetsch, A. Fügenschuh, B. Geißler, N. Geißler, R. Gollmer, B. Hiller, J. Humpola, T. Koch,
T. Lehmann, A. Martin, A. Morsi, J. Rövekamp, L. Schewe, M. Schmidt, R. Schultz, R. Schwarz,
J. Schweiger, C. Stangl, M.C. Steinbach, S. Vigerske, B.N. Willert: Validation of nominations in
gas network optimization: models, methods, and solutions, Optimization Methods and Software,
30 (2015), 15–53.

[15] A. Prékopa: Stochastic Programming, Kluwer, Dordrecht (1995).

DOI 10.20347/WIAS.PREPRINT.2540 Berlin 2018


