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Abstract 

We give a review on the rigorous results concerning the storage capacity of 
the Hopfield model. We distinguish between two different concepts of storage 
both of them guided by the idea that the retrieval dynamics is a Monte-Carlo 
dynamics (possibly at zero temperature). We recall the results of McEliece et 
al. [MPRV87] as well as those by Newman [N88] for the storage capacity of 
the Hopfield model with unbiased i.i.d. patterns and comprehend some recent 
development concerning the Hopfield model with semantically correlated or 
biased patterns. 
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1 Introduction and 
Two Concepts of Storage Capacity 

Let us recall that one of the most important motivations to study the Hopfield model 
has always been that it can be regarded as one of the central and easiest models 
of a neural network and that it exhibits certain phenomena considered as the most 
important advantages of neural networks over ordinary computers. Especially, when 
considering the memory aspects of the Hopfield model the memory is diffused (in 
contrast to the localized computer memory) and content-addressable such that even 
strongly noised data can be successfully retrieved. Hence we may regard the Hopfield 
model as a toy model for modelling brain functions. 
In this context the most natural question to ask is how many patterns the Hopfield 
model can store and how the maximum number of stored patterns scales with the 
number of neurons N. Already numerical investigations by Hopfield [Ho82] suggest 
that there is a critical value ac '"'"' 0.14 such that the Hopfield model can store less 
than acN patterns, if small errors are tolerated. This finding has been supported 
(with a similar value for ac) by the non-rigorous analysis in [AGS87]. 
Before we give a mathematical analysis of the storage capacity of the Hopfield model 
we first have to briefly explain the two different concepts of storage we are dealing 
with on a technical level. 
To this end let us first recall the definition of the Hopfield Hamiltonian with M := 
M ( N) patterns 

N 

HN( (}') == - L JijO'iO'j (1) 
i,j=l 

where 
l M(N) 

1ij = N L ~r~r 
µ=1 

and O'i E {-1, l}. 
The idea behind the first notion of storage capacity is that a possible retrieval dy-
namics is a Monte-Carlo dynamics at zero temperature working as follows: Choose 
a site i at random. Flip the spin ai, if flipping lowers the energy (the Hamiltonian) 
and stay with ai otherwise. On a more formal level we define the gradient dynamics 
T on the energy landscape given by H N via 

N 

T : O"i f-1- sgn(L ajlij) 
j=l 

(where sgn is the sign function) and call a configuration a = (ai)i<N stable if it is 
a fixed point of T, i.e. 

N 

O"i = sgn(L O"jJij) for all i = 1, ... , N 
j=l 

which means that a is a local minimum of the Hamiltonian. The storage capacity 
in this concept is defined as the greatest number of patterns M := M(N) such that 
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all the patterns ev are stable in the above sense (almost surely or with probability 
converging to one). 

The other approach to storage capacity is due to Newman [N88]. It takes into 
consideration the small errors (mentioned above) we are willing to accept in the 
restoration of the patterns. So we are satisfied, if the retrieval dynamics converges 
to a configuration which is not too far away from the original patterns. Thus in 
this concept a pattern ~v is called stable, if it is close to a local minimum of the 
Hamiltonian or in other words if it is surrounded by a sufficiently high energy barrier. 
Technically speaking we will call ~v stable if there exist c > 0 and 8 > 0 such that 

(2) 

Here the set Sc5(ev) the infimum is taken over is the Hamming sphere of radius 8N 
centered in ~v. Again we will use the notion of storage capacity for the maximal 
number M(N) of patterns such that (2) holds true for all ev almost surely. 

2 Results in the Case of Unbiased 1.1.D. Patterns 
In this section we will review the results in the case of unbiased i.i.d. patterns. Most 
of them go back already to the papers of McEliece et al. [MPRV87] and Newman 
[N88] and are well-known nowadays. So we will only briefly indicate the basic ideas 
of the proofs here and refer the interested reader to the original papers or the review 
article by Petritis [P95] for more detailed informations. 
With the definitions introduced above the following results can be proved in the case 
that the ef are i.i.d. and P(~f = 1) = ~ (and until otherwise stated we will assume 
that the patterns are unbiased and i.i.d.). 

Theorem 1 Assume that M ( N) = 11~ N. 

Then the fallowing assertions hold true: 

1. If 7 > 6 

i. e. the patterns are almost surely stable. 

3. If 7 > 2 for every fixed v = 1, ... , M 
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Part one of the theorem is contained e.g. in [P95]. Part two of this result first was 
stated in [MPRV87] and proved in [M92]. Part three has already been proved in 
[MPRV87]. 
The idea of the proof is fairly simple. It mainly consists of the observation that 
according to the definition of the dynamics T the pattern ev is stable if and only if 

N M(N) 

L L er e;ere: ~ o 
j=l µ=1 

for all i = 1, ... , N (with the convention sgn(O) = 1), an application of the ex-
ponential Chebyshev-Markov inequality, a computation of the moment generating 
function 

( 

N M(N) ) l 
E exp(-t(~ ~ ~r~.i~i~f)) = cosh(t)N M(N) ::::; exp(:t N M(N)) 

µ#v 

(by the independence of the ef) and a final application of the Borel-Cantelli Lemma. 
We will give a more explicit proof of a more general statement when proving 
Theorem 5. 

Theorem 1 in other words states that the patterns are fixed points of the gradient 
dynamics and hence are recognized if one starts with them. But just recalling 
patterns if they are presented without errors can hardly be called an associative 
memory. What we would like to have is that even if a pattern is corrupted by a 
certain percentage of noise the gradient dynamics is able to retrieve this pattern. The 
following theorem shows that also noised patterns can be successfully reconstructed. 

Theorem 2 {see [KP88},[P95}) Let r E [O, V and for each v = 1, ... , M(N) let 
(v be an element of the Hamming sphere of radius r N centered at ev. Assume that 
M(N) = (1 - 2r)2 _!!_. 1log N 
Then: 

1. If 'Y > 6 
P(liNminf(n~{>r[v = ev)) = 1 

-+oo 

i. e. the noised patterns are almost surely attracted. 

with lim RN= 0. 
N-+oo 

3. If 'Y > 2 for every fixed v = 1, ... , M 

with lim RN= 0. 
N-+oo 
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The proof of this Theorem follows the same steps as the proof of Theorem 1. 

Observe that Theorem 2 basically deals with the case of the so-called "direct con-
vergence" error-correcting power of the Hopfield model, i.e. the convergence to the 
stored patterns in one iteration. Much more interesting (and technically more in-
volved) is, of course, the question of non-direct convergence, i.e. the number of 
patterns that can be stored such that the retrieval dynamics starting in a noised 
pattern eventually converges to the corresponding stored pattern. Already the re-
sults in [MPRV87] motivated the authors to conjecture a storage capacity of 1~ N 

with again 7 = 2, 4 or 6 depending on whether we concentrate on storing a 'Yfo~ed 
pattern or all patterns and whether we want convergence in probability or almost 
surely. This conjecture actually could be proved by [Bu94]. 

Let us now turn to the second notion of storage capacity. We will see, that if small 
errors are tolerated, the Hopfield model indeed can store a number of patterns M 
proportional to the number of neurons N - in agreement with the non-rigorous 
results of Hopfield [Ho82] and Amit et al. [AGS87] (although the critical ac is 
somewhat smaller than what could be expected from the numerical analysis and 
different concepts of storage capacity are used). 

Theorem 3 There exists an ac > 0 such that if M ( N) :::; acN, then there are c > 0 
and 0 < 8 < 1/2 such that 

p (1~~f(n~{) nuESoW) (HN(a) 2: HN(C) + cN))) = 1 

where S8 (~v) is the Hamming sphere of radius 8N centered in ~v. 

The first proof of this theorem can be found in [N88]. Refined estimates have been 
obtained in [Lou94] and [T96]. The basic idea is to compute the energy differences 
between the energy of a fixed pattern ev and some element in S0 (ev), to use the ex-
ponential Chebyshev-Markov inequality and to replace the variables in the moment 
generating function by independent N(O, 1)- Gaussian random variables. The value 
of the critical a obtained by this theorem has increased from ac = 0.056 (Newman, 
[N88]), over ac = 0.071 (Loukianova, [Lou94]) to ac = 0.08 recently proved by Ta-
lagrand ([T96]). Again we will see how these ideas are realized in a more explicit 
proof of a more general statement at the end of this article. 

3 The Storage Capacity of The Hopfield Model 
with Semantically Correlated Patterns 

In this section we are going to drop the independence assumption of the previous 
section. Basically there are two reasonable ways to introduce correlations between 
the patterns. 
One is to consider spatially correlated patterns, i.e. to consider a correlation between 
ei and ej even if i -=/= j, but to leave the ei and ej independent for µ -=/= v. This model 
may be of interest when storing e.g. images that can be considered to come from a 
Markov random field. The other type of dependency one may assume is semantical 
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or sequential dependency among the patterns. That means that we consider random 
variables er such that er and er still are independent if i =I- j' but that we may have 
correlations between er and er even if µ =f. v. Such sequences may be interesting if 
non deterministic sequences of patterns have to be learned, and in some sense every 
type of human behavior is such a sequence. 

Here we will concentrate on the case of semantically correlated patterns as in [Lo96a]. 
More precisely we assume that the correlation comes from a homogeneous Markov 
chain and that the patterns er are correlated in µ but still are independent in i. Such 
a result is, of course, interesting in its own right, since most realistic situations do not 
produce independent information. Moreover, one may regard results concerning the 
Hopfield model with correlated patterns as a step towards showing the universality 
of the Hopfield model. 

So let us assume that the ( eniEN,vEN form a Markov chain with initial distribution 

P(ef = xi, i = 1, ... , N) = 2-N for all x} E {-1, 1} and all i = 1, ... , N. (3) 

and transition probabilities 

P(ef = xrlef = x~,j = 1, ... , N, µ = 1, ... , v -1) 
P(ef = xrlef-1 = xr-1

) = Q(xr-1
, xr). 

Here Q denotes a symmetric 2 x 2 matrix with entries 

Q=( p 1-p) 
1-p p 

where 0 < p < 1 (note that p = ~ is the case of independent patterns). 

(4) 

With this definition our first result concerning correlated patterns reads as follows: 

Theorem 4 Assume the random patterns ev fulfill {3} and (4) <;Lnd M(N) = ,,i~N· 
Then for the following assertions hold true: 

1. ]+ 'Y > 3(p2+(1-p)2) 
J p(l-p) 

i. e. the patterns are almost surely stable. 

2 fr+ 'Y > 2(p2+(1-p)2) 
• J - p(l-p) 

with limN-+oo RN = 0. 

fr+ P2+(1-p)2 + fi d ( ) 3. J 'Y > p(l-p) Jor every xe v = 1, ... , M N 

with limN-+oo RN= 0. 
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Let us only sketch the proof here. For a complete proof we refer the reader to [1696]: 

Sketch of the Proof: Fix 1 ::; v ::; M ( N). As has been mentioned above the 
pattern ev is stable if and only if 

N M(N) 

L L ef e;etef ~ o 
j=l µ=1 

for all i == 1, ... , N. 
Hence for by the identical distribution of the ef for different i and the exponential 
Chebyshev-inequality we obtain all t ~ 0 

N M(N) 

P(C is not stable) ::; NP(L L ere;erer::; -N) 
j=l µ=1 

µ=f.v 

Now putting Yµ :==ere~ and calculating the expectation in (5) leads to 

where 

M(N) 

E(exp(-t L YµYv)) 

Y1=-l,l, 
YM=-1,1 

(IhY = IIR, and A.1 is the largest eigenvalues of II£. Observe that 

A.1 = q cosh(t) + J 1 - 2q + q2 cosh2 (t) 

Hence we arrive at 

P( ev is not stable ) ::; N e-tN .x.iM(N)-l)N. 

(6) 

Moreover, expanding the root in (6) using .J(l + x) ::; 1 +~and approximating the 
hyperbolic functions contained in ( 6) by their leading two terms yields 

)'l::; 1 +t2 ( q ) + O(t4)::; exp(t2 
( q ))(1 + O(t4

)). 21-q 21-q 
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Choosing t = qit:(~) gives 

1-q N ) P(ev is not stable)~ N exp(-2:q M(N) )(1 + O(t4 ))M(N N_ 

So if M ( N) = , 1~ N the last factor on the right hand side can be bounded by 
exp( const. (Iot~)

4

) which is converging to one. Hence the right hand side of the 
1 (l-q)-y 2q p 2+(1 p) 2 

inequality is bounded by const. N -~ which, for 'Y > l-q = p(l-~) , converges 
to zero and therefore yields part three of the theorem. 

For the other two parts observe that the bounds o~tained above do not depend on 
v. Thus 

1-q N 
P(3v : ev is not stable ) ~ M(N)N exp(-°2q M(N) )0(1) 

So putting again M(N) = ;I~N this time with 'Y > 16!.q = 3(p:r1(~;) )
2

) leads to the 
converging series I: NK'. I~g N for an /'\, > 1 and thus proves part one of the theorem 
by the Borel-Cantelli Lemma. The choice of 'Y 2:: 14:.q = 2(p:r1(~;))

2

) yields 

p (3v : ev is not stable ) -+ 0 

and therefore part two of the theorem. D 

Observe that the bounds obtained in Theorem 4 are decreasing functions of the 
correlation. This in a way reflects the idea that the basic reason why the Hopfield 
model works well as an associative memory in the case of i.i.d. patterns is that 
such patterns tend to be "nearly orthogonal" which more precisely means that the 
overlap 1 :Lf:1 eter forµ-:/= v if of order N-~ (and it is e.g. quickly checked that the 
Hopfield model indeed can store N orthogonal patterns). For sequences of correlated 
patterns such a behavior cannot be expected. However, since Markov chains have 
exponentially decreasing correlation the dependencies do not influence the storage 
capacities too heavily in our case. 

Let us also mention that there is, of course, a version of Theorem 2 for the case 
of patterns fulfilling (3) and ( 4). The value of 'Y there is the one which could be 
expected from Theorems 2 and 4 (also see [Lo96a]). 

With the second notion of storage capacity we obtain the following result 

Theorem 5 Suppose that the random patterns fulfill ( 3) and ( 4). There exists an 
ac > 0 {depending on p) such that if M ( N) ~ acN, then there are c > 0 and 
0 < 8 < 1/2 such that 

p (1w:!~f(n~r) nuESo(~v) (HN(a) 2:: HN(ev) + cN))) = 1 

where 80 (,v) is the Hamming sphere of radius 8N centered in ,v. 
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We present the proof as given in [L696a]. 

Proof: 
The main steps of the proof consist of a centering of the patterns and by replacing 
them by appropriate Gaussian random variables. Although this basic idea is fairly 
standard in the context of storage capacity estimates (see e.g. [N88], [BG92]) in our 
situation the computations become technically quite involved. 

We set 

First of all observe that 

P ( {n;;!gn(hN(ev, 8) 2: HN(ev) + c:N)Y) 
M(N) 

< L L p (HN(e1.J) - HN(ev) ::; eN) 
J:IJl=<>N v=l 

where e1 denotes a configuration differing from ev exactly in the coordinates J and 
8 is chosen in such a way that 8 N is an integer. 
Let us keep v fixed in the sequel and note that 

HN(€J) - HNW) = ~ L L €i€j€fgf + 25(1 - 5). 
µ=j:.v iEJ,jfl.J 

Thus by the exponential Chebyshev-Markov inequality for any t 2: 0 

where we have set c:' = -c:/2 + 8(1 - 8). 
Let us moreover assume that er= 1 for all i = 1, ... , N (this can be done without 
loss of generality since the initial situation is completely symmetric). Then the sum 
in the exponent of the moment generating function can be split into two parts: 

(7) 
µ=f.v iEJ,jf=J µ>v iEJ,j(/.J µ<11 iEJ,jfl.J 

which, conditioned on er= 1 for all i = 1, ... , N, are independent. Introducing 

er= er - (2p - 1)er-1
. (8) 

we can express the first sum on the right hand side of (7) as 

M 

L Ler~r 
iEJ,jr/;J µ>v 

L ( t aµi,µ2€f' €f2 + t aµ,v(€f + €f) + Mf 1 (2p - 1)2n) ' 
iEJ,jr/;J µ1,µ2>v µ>11 n=O 
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where 

(9) 
n=O 

for µ1 , µ2 ~ v, (µ1 , µ2 ) =/:- (v, v). Note that aµ1 ,µ2 = aµ2 ,µ1 -

For the second sum in (7) we observe that reversing the chains (~f)µ<v (i = 1, ... , N) 
does not change their distribution. So applying the same transformation as above 
to the reversed Markov chains (~f)µ<v (i = 1, ... , N) yields 

.M-v-1 v-1 
E(exp(-; L Le;m) =exp(-; L ( L (2p- I) 2

n + L(2p-1)2n)) 
iEJ,jr/:.J µ-::f.v iEJ,jrj;J n=O n=O 

x E (exp(-; L (Laµ,v(~f+~f)+ Laµ,v(~f+~f)+ 
iEJ,j~J µ>v µ<v 

where 
v-l-min{v-µ1,v-µ2} 

aµ1,µ2 := L (2p - i)2n+1µ1-µ21_ (10) 
n=O 

Using the independence of the initial part and the tail part of the Markov chains 
mentioned above together with Holder's inequality to split up the moment generating 
function of the linear part from the moment generating function of the genuine 
quadratic form we obtain for all A > 1 

E (exp (-; L L er er ere:)) 
µ-:j:.v iEJ,jr£J 

.M-v-1 v-1 
< exp(-tNo(l - o)( L (2p- 1)2n + L(2p- 1)2n)) (11) 

n=O n=O 
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We now have to estimate the factors on the right hand side of (11). Note that for 
M large enough 

M-v-1 v-1 

( ~ (2p-1)2n + ~(2p - 1)2n)) ?: C'(l - (~p-1)2). 

for any C' > 1 
To treat the other terms let us agree on the following notation: With Ef (where 
I c {1, ... , N} and I' C {1, ... , M}) we denote the integration with respect to 
those random variables er with i E I and µ E I'. Especially, if we drop the upper or 
lower indices we will usually mean the expectation with respect to all the random 
variables occuring in the argument of the integral. By the independence of the co-
ordinate processes and the identical distribution of the er we obtain for the moment 
generating function of the linear part 

E (exp (-~ >. ~ 1 2:,aµ,v 2:, (€f Hf))) 
µ>v iEJ,i<;.J 

[ E (exp( -~). ~ 1 ~ aµ,vW)] 5(1-0)N' 

The expectation above can now be estimated as follows 

where we have used lef4"-1 I = 1 , 

pexp(-2(1 - p)t) + (1 - p) exp(2pt) :::;; cosh((l + j2p - ll)t) 
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for all 0 < p < 1 and all t E lR and finally 

cosh(x) ~ exp(x2 /2). 

Integrating the other variables in the same way gives 

( 
1 t

2 
,:\ 2 1)2 1 ) < exp 2 N2 (A - 1) (1 + l2p - 1 (1 - (2p - 1)2)3 . 

So altogether we arrive at 

E (exp (-;>.~ 1 L,aµ,v L (ef+m)) 
µ>v iEJ,jr;_J 

< exp Gt2b"(l - 5)(). >. /(1+12p- 11)2 (l - (2; _ l)2)3) 

Thus applying the same techniques to the second linear term on the right hand side 
of (11) we obtain 

>..-1 

(
E (exp (-; >. ~ 1 "L, aµ,v . "L, (ef Hf)) ) )-,- x 

µ>v ~eJ,ir;.J 

>..-1 

x (E (exp (-; >. ~ 1 °'L,i'iµ,v. L (ef + m)) )-x-
µ<v iEJ,J~J 

< exp (t2J(l - 5)( >. ~ 1 )(l+ l2p- 11)2 (l _ (2; _ l)2)3 ) 

We will see that due to our final choice oft this factor will have a negligible con-
tribution to the final estimate (which might have been expected by just counting 
the number of linear terms and comparing it to the number of terms in the genuine 
quadratic form. 

The moment generating function of the quadratic form is treated similarly using the 
independence of the ~f for different i to replace them by Gaussian random variables: 
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Ev<µ1,µ25:M-1EM (exp (-!_A '°' ~~a tJ!'i cJ!2) Jc N L-,; L-,; L-,; µ1,µ2 ~i ~1 
iEJ,jrf;.J µ2>v µ1>1.1 

E:/ (exp(-> L ~ff t aM,µ2~12 )) ) 
iEJ,jrf;.J µ2=v+l 

Ev<µ1,µ25:M-1 EM (exp (-!_A '°' ~~a cf;L1 c~2) .Jc N L-,; L-,; L-,; µ1,µ2~i 1.:,3 
iEJ,jrf;.J µ2>v µ1>1.1 

11 Et} (exp(- ~>.~ff L t aM,µ2~12 ))) 
iEJ jrf;.J µ2=v+l 

< Ev<µ1,µ25:M-
1 

E::;! (exp (-> L '£ ~ a"""2~f' ~t) ) x 
iEJ,jrf;.J µ2>v µ1>1.1 

(
1 t2 M ) 

x 11 exp 2 N2.A2(1 + j2p-11)2(E L aM,µ2ef2)2 
iEJ #J µ2=v+l 

_ Ev<µ1,µ25:M-
1 

E::;! (exp (- ~>. L '£ ~ aµ,,µ2~;'1 ~1') ) x 
iEJ,jrf.J µ2>v µ1>v 

x 11 Ezr exp (zfl ~>.(1 + l2p - 11) L '£ aM,µ2~1') 
iEJ iEJ,jrf;.J µ2=v+l 

Ev<µ1,µ25:M-l E::;! (exp (- ~). L t ~ aµ,,µ2~f' ~12)) x 
iEJ,jrf;.J µ2>v µ1>1.1 

x Ez1f exp (>(1 + l2p - 11) L t aM,µ2zfl ~12) 
iEJ,jrf;.J µ2=v+l 

where zf1 are Gaussian random variables with expectation 0 and identity covariance 
matrix independent of the er, Ezf1 denotes the expectation with respect to zf-1, and 
finally EzM denotes the expectation with respect to the vector (zf'1)iEJ· Here we 

J 
have used the well known identity 

1 1 100 

1 exp(-x2 ) = rn= exp(xy - -y2 )dy. 
2 v 21f -oo 2 

Interchanging the order of integration and using the above technique on every er 
we are now able to consecutively replace all the variables er by Gaussian random 
variables zf with expectation zero and identity covariance matrix. This leads to 
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< Ez (exp (~A(l+ l2p-11)2 L L aµ,,µ,zf'zj')) 
iEJ,j~J µi,µ2>v 

< Ez (exp (tA.(1 + l2p- ll)2J8(1- 8) L aµ1 ,µ2Zµ1 zµ2)) 
µi,µ2>v 

- E. (exp~ (t>.(l + l2p- ll)\/.5(1- <l)(z, Az))) 
where (by normalizing) (zµ)µ=v+I, ... ,M and (#)µ=v+I, ... ,M are now Gaussian random 
variables with expectation 0 and identity covariance matrix, z denotes the vector 
of the (zµ, #) and Ez is integration with respect to z. Finally A is an 2(M - v) x 
2(M - v)-matrix with entries 

and the (M - v) x (M - v)-matrix A is given by 

A= (Aµ1 ,µ2) = (aµ1 -v,µ2-v)· 

Observe that the above integral only exists if t is small enough (i.e. if 
Id - tA.(l + l2p- ll)2J8(1 - 8)A is positive definite) and in this case it equals the 
inverse of the square-root of the determinant of Id - tA.(1 + l2p - 11)2 J8(1- 8).A. 
On the other hand this determinant can be estimated since trivially the identity 
matrix commutes with .A. Thus 

2(M-v) 

det(I d - tA.(1 + l2p - 11)2 J(8(1 - 8)A) = II fli 
i=l 

2(M-v) 

II (1 - tA.(l + l2p - 11)2 J8(1 - 8)ai) 
i=l 

where the fli are the eigenvalues of Id - tA.(l + l2p - ll)2 J8(1- 8)A and the ai 
are the eigenvalues of A. Moreover note that A has a symmetric spectrum, i.e. if 
ai is an eigenvalue of A then so is -ai (which can be seen from the fact that if 
v = (v1, ... ,VM-v,VM-v+I,···V2(M-v)) is an eigenvector for the eigenvalue ai then 
v = (-v1, ... , -VM-v, VM-v+1, ... V2(M-v)) is an eigenvector for -ai)· Therefore 

M-v 

det(Id- tA.(l + l2p-11)2J(8(1- 8)A) = II (1- t2A.2(1+l2p-11)48(1- 8)a;) 
i=l 

where the product is taken over all non-negative eigenvalues and amax denotes the 
maximum eigenvalue of A. This maximum eigenvalue by Gershgorin's theorem can 
be bounded by the maximum row sum, i.e. 

1 2 
a < max "°' la I < · max_ µi L,; µi,µ2 -1-(2p-1)21-l2p-ll 

µ2 
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Plugging that into our estimates gives 

Ez (exp (~.A(l + j2p- lj)\/8(1- 8) :E aµ,,µ2 zµ'z"2
)) 

µ1,µ2>v. 

< ( .j1 - t2_A2(1 + j2p - 11)4;(1 - 8)(1-(2!-1)' l-liP-11)2) M-v. 

where we have assumed that t is so small that the latter quantity is real. 
Thus repeating the estimate for the moment generating function of the second 
quadratic form and setting M = aN 

P (HN(~]) - HN(~v.) ::; cN) 

< inf exp (-tc:'N - tN8(1- 8) C ( / )2)) 
t*;:::t;:::O I 1 - 2p - 1 

( ( 
2 2 8(1 - 8) 4(1 + l2p - 11)4

) M - v) 
x exp - log 1 - t .A (1 - (2p - 1)2)2 (1 - l2p - 11)2 2 

( ( 
2 2 8(1-8) 4(l+l2p-11)4

) 1/) 
x exp - log 1 - t .A (1 - (2p - 1)2)2 (1 - l2p - 11)2 2 

x exp (t28(1 - 8)( .A~ 1 )(1+j2p-11)2 (l _ (2; _ l)2)3 ) 

inf exp (-tc:' N - tN8(l - 8) C ( (~ )2)) t* ;:::t;:::O I 1 - p - 1 

( ( 
2 2 8(1-8) 4(1+l2p-11)4

) M) 
x exp -log l-t .A (1- (2p-1)2)2 (1- l2p- ll)2 2 

x exp (t28(1 - 8)( .A~ 1 )(1 + j2p - lj)2 (l _ (2; _ l)2)3 ) 

h t* (1-(2p-1) 2 )(1-l2p-11) ~ 
w ere = 2>.(i+l2p-ll)2 y 8(1-8) · 

Finally by Stirling's formula (to bound the binomial coefficient) and the above esti-
mate 

M(N) 

:E :E P (HN(~7J) - HN(~v.) ::; cN) 
J:IJl=8N v.=1 

< M(N) ( 8r:.v) exp (-tc:' N - tN8(1 - 8) C'(l - (~p- l)2)) x 

( 
2 2 8(1 - 8) 4(1 + l2p - 11)4 a ) 

x exp - log(l - t .A (l _ (2p _ l)2)2 (l _ 12P _ ll)2 )2N 

x exp (t28(1 - 8)( .A~ 1 )(1 + j2p - 11)2 (l _ (2; _ l)2)3 ) 

< aN inf exp ((-8 log 8 - (1 - 8) log(l - 8))N) x 
t* ;:::t;:::o 

x exp (-tc:' N - tN8(1 - 8) C'(l _ (~p _ l)2)) 
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( 
2 2 8(1 - 8) 4(1 + l2p - 11)4 a ) 

x exp -log(l - t A (l _ (2p _ l) 2) 2 (l _ 12p _ ll)2 )2N 

(
2 ;\ 2 1 ) x exp t 8(1 - 8)(A _ 1 )(1 + l2p - 11) (l _ (2p _ l)2)3 

and we have to find an admissible t (i.e. 0 :::; t :::; t*) and values of 8 and a such 
that the above exponent becomes negative. To this end first of all note that for all 
admissible t 

and therefore this term does not influence the convergence (as promised above). 

M "f 2, 2 a(l-a) 4(l+l2p-ll)4 < 3; 4 oreover i t A (l-{2p-l)2)2 (l-l2p-ll) _ 

1 

1 _ t2 A2 a(l-a) 4(l+l2p-ll)4 

{1-(2p-1)2)2 (1-l2p-11)2 

( 
2 2 8(1-8) (l+l2p-ll)4) 

< exp 4t A (1 - (2p - 1)2)2 (1- l2p - 11)2 . 

and hence up to terms of order one l:J:IJl=oN I::~{) P (HN(e).) - HN(e11
) :::; cN) 

can be bounded by 

exp ( (-81og8 - (1 - 8) log(l - 8))N - tc'N - tN8(l - 8) C'(l _ (~p _ l)2 ) 

- l ( _ t2.A2 8(1- 8) 4(1+l2p-11)4 )a N) 
og 1 (1 - (2p - 1)2)2 (1 - j2p - 11)2 2 

< exp ((-81og8 - (1- 8) log(l - 8))N - tc'N - tN8(1- 8) C'(l - (~p- l)2) 

4t2 A2 8(1 - 8) (1 + l2p - 11)4 aN) 
+ (1 - (2p - 1)2) 2 (1 - l2p - 11)2 

if 
t < t** ·= (1 - (2p - 1)2)(1 - l2p - 11) /3. 

- . 4.A(l+ l2p-ll)2 v ~ 
Choosing c very small the exponent is minimized by at which is close to 

tmin = ! g>._2(l + ~p _ ll)4 ((1 - (2p - 1)2
) + ~I )(1- (2p - 1)2)(1- l2p - 11)2

. 

0 bserve that tmin :::; t** if 

a> .J8(1- 8) v'3 1 
(1- (2p- 1)2 + cl )(1- l2p - 11). (12) 

- 3.A(l + l2p - 11)2 ' 

On the other hand inserting tmin into the essential part of the exponent and choosing 
c sufficiently small gives (for the exponent) 
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(-o logo - (1 - 8) log(l - 8))N ~ t · c' N - t · N 8(1 - 8) 1 
mm mm C'(l - (2p - 1)2) 

+ 4t 2. A.2 8(1- o) (1 + l2p - 11)4 aN 
mm 1- (2p-1)2 1- l2p-ll (13) 

< (-olo o-(1-8)10 (l-8))N- 8(1-8)(1-12p-ll)2(1-(2p-1)2+b)21N 
g g 'Y 16A.2(1 + l2p - 11)4 a 

with 'Y < 1 and close to 1 (as c becomes small). The right hand side of this inequality 
becomes negative when 8 and a become small appropriately. To check whether this 
can be done in agreement with (12) we insert 

1 1 
a= Jo(l - o) v'3 (1- (2p - 1)2 + c )(1 - l2p- 11) 

3A(l + l2p - 11)2 I 

into the right hand side of (13) and obtain 

( 
v'3'Y(l - (2p - 1)2 + .1... ) 

16A.(1 + l2p- ll)2 C' (1- l2p- ll)Jo(l - 8) - ologo - (1- 8) log(l - 8) N. 

(14) 
As it is quickly checked that for each positive constant C there is an interval [O, r] 
(depending on C, of course) such that 

cJo(l - c5) ~ -ologc5 - (1- c5) log(l - c5) 

for all 8 E [ 0, r], the above exponent becomes negative if we choose o small enough 
and e.g. a as the right hand side of (12). This completes the proof of the theorem. 
D 

Let us finally comment a little on the result of Theorem 5. Observe that the bound 
on the moment generating function in (14) as well as the bound on a in (13) depends 
on p mainly via the factor (l - l2p - 11) (the other terms containing pare bounded 
from above and away from 0) which converges to zero for p close to one or close 
to zero and therefore can only deteriorate the bounds for a (allowing smaller a' s 
only) for large correlations. Due to the many estimates in the proof of Theorem 
5 this is, of course, in no way a proof that the storage capacity decreases with an 
increasing correlation (only our bounds do), but it might either indicate that the 
Hopfield model has problems to store patterns with large correlations or it just 
shows that our estimates get worse for large p (which is probably true). However, 
as already mentioned after Theorem 4, a decrease of storage capacity (when the 
correlation increases) would not be totally unexpected due to the way the Hopfield 
model is assumed to work. On the other hand from the point of view of information 
theory, sequence of correlated data contains less information than an independent 
sequence (e.g. in the extreme case that all patterns agree it suffices to know the 
first patterns to reconstruct them all). Hence one could expect a reasonable neural 
network to be able to store more correlated patterns than uncorrelated ones. Indeed, 
as shown in [L696a], provided we know the p of our Markov chain and therefore the 
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covariance of the patterns in advance (note that we do not impose to know the 
empirical correlations), there exists a variant of the Hopfield model that can store a 
larger number of correlated data than the number of independent patterns one can 
store in the standard Hopfield model provided the first notion of storage capacity 
is used. With the second notion of storage capacity a bound of aN with a not 
depending on p is obtained. 

4 The Storage Capacity of the Hopfield Model 
with Biased Patterns 

Finally we will briefly report on some recent results on the storage capacity for the 
Hopfield model with biased patterns obtained in [L696b]. More precisely we will 
assume that the patterns are i.i.d. as in Section 2 but have a uniform bias, i.e. 

P(ef = 1) = p and P(ef = -1) = 1- p. (15) 

As already pointed out several times in the physical literature (see e.g [HK91]) the 
standard Hopfield model as introduced above cannot store any increasing amount 
of such patterns, simply because the local field associated with the Hopfield Hamil-
tonian hr at site i and for a pattern µ 

hr ==et+ Lerere; 
v;f::µ. 
j;f::i 

quickly gets dominated by the bias from the second term for M--+ oo. To overcome 
this difficulty we center the patterns in the Hamiltonian, i.e. we consider synaptic 
efficacies of the form 

M(N) 
1ij = L ere;, 

v=l 

where 
The er are the centered patterns er, i.e. 

er = er - (2p - 1). 

This leads to the Hamiltonian of the biased Hopfield model 

l N l N M(N) __ 
HN((j) = - 2N ~ (ji(jj1ij = - 2N ~ L (ji(jjer er 

i,3=1 i,3=1 v=l 

For this variant of the Hopfield model we have the following results 

Theorem 6 Assume the random patterns ev fulfill {15} and M(N) = -yl~N· 
Then for the Hopfield model {16} the following assertions hold true: 

1. If 1' > sp2d-p)2 

i. e. the patterns are almost surely stable. 
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2. If 'Y > 4P2ci-p)2 

with limN-+oo RN= 0. 

3. If"(> spz(i_p)2 for every fixed 11 = 1, ... , M 

with limN-+oo RN = 0. 

Here, of course, T is the gradient dynamics defined as in Section 1 for the 
Hamiltonian { 16). 

Note that the estimates of the above Theorems for p = ~ (the unbiased case) agree 
with the results in the standard Hopfield model. I may of course be true that the 
estimates can be improved in some respects. Note however, that our bound on the 
storage capacity of the Hopfield model with biased patterns is (similar to the case 
of correlated patterns) a decreasing function in the bias of the patterns. 

We now give a result on the storage capacity of the Hopfield model with biased 
patterns provided that Newman's concept of storage is used. It turns out that a 
bias does not destroy the storage abilities of the Hopfield model and that it can 
store "extensively many" patterns (i.e. M(N) grows like a.N), although the critical 
a. decreases to zero when the bias gets large. 

Theorem 7 Suppose that the random patterns fulfill { 15). There exists an a.c > 0 
{depending on p) such that if M(N) ~ a.cN, then there are c > 0 and 0 < 8 < 1/2 
such that for the standard Hop field model ( 16) 

p (liminf(n~r) nuES<S(e"') (HN(o-)?:: HN(ev) + cN))) = 1 
N-+oo 

where S8(ev) is the Hamming sphere of radius 8N centered in ev. 

Note that these results resemble the results of the Hopfield model with correlated 
patterns obtained in [Lo96a]. 

A proof of the above theorems can be carried out along the ideas introduced in the 
proofs of Theorems 4 and 5 (and uses nearly the same inequalities). The interested 
reader may consult [Lo96b] for details. 
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