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A Bayesian approach to parameter identification in gas networks
Soheil Hajian, Michael Hintermüller, Claudia Schillings, Nikolai Strogies

Abstract

The inverse problem of identifying the friction coefficient in an isothermal semilinear Euler
system is considered. Adopting a Bayesian approach, the goal is to identify the distribution of
the quantity of interest based on a finite number of noisy measurements of the pressure at the
boundaries of the domain. First well-posedness of the underlying non-linear PDE system is shown
using semigroup theory, and then Lipschitz continuity of the solution operator with respect to the
friction coefficient is established. Based on the Lipschitz property, well-posedness of the resulting
Bayesian inverse problem for the identification of the friction coefficient is inferred. Numerical tests
for scalar and distributed parameters are performed to validate the theoretical results.

1 Introduction

In many countries, the turnaround in energy policy is one of the main focus areas of political decision
making and public opinion in the energy sector. In particular, the shift away from nuclear energy supply
will only be possible by exploring new sustainable resources. During the transition from the current
energy portfolio to one which has an emphasis on renewable energies and other energy carriers such
as hydrogen, it is widely believed that an optimized use of natural gas will play a key role. This is in
particular plausible when considering the currently known available gas resources, the transportability
of gas over long distances, its storage capacity, and the fact that it can be traded on markets which
helps an efficient distribution.

The transport of natural gas is typically achieved through a complex system of pipelines emanating at
production sites or storage facilities and ending at customer locations. Mathematically and generally
speaking, the gas transport in pipes is described by the compressible Euler equations, a system of
hyperbolic partial differential equations (PDEs). It provides the dynamics of the density, momentum
and energy of the underlying gas. As in our target application the diameter of a pipe is much smaller
than the length, the study of a one-dimensional version of the PDE model is sufficient. Moreover,
since the flow in pipes is usually assumed to start at a stationary state and to evolve smoothly due to
industry regulations (thus preventing shock formation), the one-dimensional Euler system simplifies to
isothermal equations where the unknowns are density and momentum. Now, under the assumption
that the speed of the gas is significantly smaller than the speed of sound, we arrive at the following
semi-linear PDE system describing the gas dynamics in a single pipe:

∂tp(x, t) + c2∂xq(x, t) = 0 in Ω× (0, T ),
∂tq(x, t) + ∂xp(x, t) = λa(p(x, t), q(x, t)) in Ω× (0, T ),

(1)

where Ω is the physical domain, which is–without loss of generality–assumed to be Ω := (0, 1),
T > 0 is some finite time horizon, p(x, t) is the pressure of the gas in the pipe at location x ∈ Ω and
time t ∈ [0, T ], and q(x, t) is the momentum density. The parameter c > 0 relates to the speed of
sound. In (1), a(·, ·) : R × R → R is the friction function and λ ∈ L∞(Ω) denotes the friction coef-
ficient. Loosely speaking, λa describes the roughness of the interior walls of the pipes and influences
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the transport in a decisive way. While a scalar value for λ is typically provided for newly produced
pipes by manufacturers, its value and in particular its spatial distribution during operation (over time) is
neither accessible to direct measurements nor known in general. For specific settings (see [DHLT17]),
however, approximation formulas for scalar λ are known from the engineering literature. Under a reg-
ular operating mode and assuming usual manufacturing and quality conditions in the production of
pipeline tubes, a(·, ·) can be assumed Lipschitz continuous with respect to each argument. According
to the application in mind, system (1) is completed by the following initial and boundary conditions:

p(x, 0) = p0(x), q(x, 0) = q0(x) ∀x ∈ Ω, (2a)

q(0, t) = gL(t), q(1, t) = gR(t) ∀t > 0, (2b)

where p0, q0, gL, and gR are given quantities. Combining (1) and (2) provides our overall model of gas
flow. We refer to [DHLT17, LeV02] for more on this and further details on the model reduction process.

Motivated by the simulation or optimization of the aforementioned gas pipeline network, we are inter-
ested in the inverse problem of identifying the friction coefficient of a gas pipe from a finite set of noisy
observations of the pressure drop at both ends of the pipe. Here, the pressure drop is given by

δp(t) :=
∣∣‖p(·, t)‖L2(0,ε) − ‖p(·, t)‖L2(1−ε,1)

∣∣ ∀t ∈ [0, T ],

for 0 < ε� 1, which accommodates the L1-regularity of p with the latter preventing the evaluation of
the pressure precisely at the endpoints of the pipe. For a classical inverse problem for the conditional
identification of a friction law for the isothermal Euler equations we refer to the work [EKS17] which
relies on regularity of the solution and differentiability of the underlying solution operator.

Important questions in the optimization of gas networks are related to robust control of the system
[ALS17] or the study of probabilistic constraints [GHH17], both involving the friction coefficient which,
as highlighted above, is uncertain during operation. The pertinent mathematical formulations indeed
depend on statistical properties of the associated uncertain quantities such as the mean value, stan-
dard deviation or even the entire distribution. As a consequence, this paper addresses the aforemen-
tioned inverse problem by employing a Bayesian approach [KS05, Stu, Tar05]. Here we consider both,
a finite dimensional and an infinite dimensional friction coefficient, thus necessitating the application of
the respectively associated version of Bayes’ rule. Adapting the infinite dimensional approach (rather
than considering discretized versions of the friction coefficient only) is beneficial as it provides us with
algorithms which are robust with respect to discretization refinements.

For setting up the Bayesian framework in our context, next we introduce the uncertainty-to-observation
operator G, which maps the underlying unknown (i.e., the friction coefficient) onto the data y. It is the
composition of the solution operator of the forward problem (1) applied to the friction function λ and a
data formation operator. Measuring δp at finitely many time instances tj ∈ [0, T ], j = 1, . . . , K , we
have here

G(λ) = (δp(t1), . . . , δp(tK))>.

As observations are inevitably noisy we arrive at

y = G(λ) + η,

where η ∈ RK represents Gaussian noise with mean zero and associated covariance matrix Γ∈ RK×K .
The pertinent probability density function (PDF) is denoted by ρ(·).

Then, the probability of obtaining y for a given friction coefficient λ is P(y|λ) = ρ(y−G(λ)), which is
the likelihood of the data. Moreover, using Bayes’ theorem, we can incorporate our “prior” knowledge
on λ and provide its probability given the data y by

P(λ|y) ∝ P(y|λ)P(λ). (3)
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Our knowledge on λ, i.e., P(λ), is called prior and the probability of the function λ given the data y, i.e.,
P(λ|y), is called posterior. In an infinite dimensional setting, e.g., when λ ∈ L∞(Ω), then there is no
density with respect to the Lebesgue measure and Bayes’ rule is understood as the Radon-Nikodym
derivative of the posterior measure µy(dλ) with respect to the prior measure µ0(dλ), i.e.,

dµy

dµ0

(λ) ∝ ρ(y − G(λ)). (4)

For an overview on the Bayesian approach to statistics in finite dimensions we refer the reader to
[BS94]. Bayesian inverse problems with an emphasis on modelling and computation are addressed
in [KS05]. We also mention that the Bayesian inversion methods that will be used in this paper have
been successfully applied to linear elliptic problems such as Darcy’s flow in [DS11] and viscous in-
compressible flow on a two-dimensional torus in [CDRS09].

Uncertainty quantification for inverse problems has become a very active field of research over the re-
cent years. Adopting, in this context, the Bayesian viewpoint leads to a complete characterisation of the
uncertainty via the posterior distribution; see, e.g., [DS16, KS05, Stu]. In a general inverse problem
setting, the goal is to recover unknown parameters from noisy measurements of system quantities.
Bayesian inversion, however, interprets the unknown as a random variable and computes the con-
ditional distribution of the unknown parameters given noisy measurements and prior distribution. It
is known [Stu] that the latter approach is well defined in the infinite-dimensional setting. Thus, it is
suitable for the identification of parameter functions belonging to some infinite dimensional Banach
space.

Under certain regularity assumptions on the forward problem describing the underlying physics, well-
posedness and stability results can be established for the Bayesian problem. In particular, robustness
with respect to numerical approximations of the forward problem is of interest to ensure a stable
inversion of the problem; see [DS16]. However, computational challenges arise due to the complex
structure of probability measures in high or infinite dimensional settings. In order to circumvent the
curse of dimensionality, there is substantial interest in the development of dimension independent
methods, i.e., algorithms which are robust with respect to the dimension of the parameter space and
thus, applicable to high-dimensional real-world problems; see, e.g., [CRSW13, DGGS16, EMM12,
MZRL16, SST17, SS13].

In this paper, we will focus on Markov-Chain-Monte-Carlo (MCMC) methods formulated in function
spaces. For our focus application, the identification of the friction coefficient in an isothermal Euler
system, it represents a suitable choice due to the low requirements on the regularity of the forward
problem. It is well known that, in general, solutions of hyperbolic systems develop discontinuities in
finite time and therefore pose additional difficulties in the efficient treatment of uncertainties due to the
lack of smoothness with respect to uncertain inputs.

As our forward (or state) system is hyperbolic, we mention that the uncertainty quantification for hy-
perbolic differential equations with random data has been a very active field of research over the
recent past; see [AM17, BLMS13] and the references therein. In the data assimilation context, espe-
cially for weather forecasting applications, efficient methods for state estimation have received partic-
ular attention in recent years [AHSV07, HOT11, MH12]. However, the quantification of uncertainties
in the inverse setting has been the subject of only a very small number of publications; compare
[BPL14, CDRS09]. None of these is related to our work.

The rest of this paper is organized as follows. In section 2 the PDE system is studied with respect
to existence and Lipschitz stability. Prior modelling and the Bayesian framework are the subjects of
section 3. The numerical realisation of the forward problem is considered in section 4, and numerical
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results are provided in section 5.

2 Properties of the underlying PDE system

In order to establish well-posedness of the Baysian inverse problem, it is sufficient to show that the
underlying PDE is well-posed and that the solution operator is Lipschitz continuous with respect to the
friction coefficient.

It is convenient to reformulate the PDE (1) such that the flux function q(x, t) has vanishing traces.
For this purpose, let us define q = q̃ + q̂ where q̃(x, t) := xgL(t) + (1 − x)gR(t). Then, since
q̂(0, t) = q̂(1, t) = 0, we can write the underlying PDE (1) in the following abstract form of a
dynamical system:

u′(t) + Au(t) = f(λ,u(t), t) (t > 0),
u(0) = u0,

(5)

where u(t) := (p(·, t), q̂(·, t))> and u0 := (p0(·), q0(·)− q̃(·, 0))>. Here, A : V → L is given by

A :=

[
0 c2∂x
∂x 0

]
, (6)

where V := H1(Ω)× H1
0(Ω), L := L2

w(Ω)× L2(Ω) with the weighted L2-space Lw defined by

L2
w(Ω) :=

{
v : Ω→ R :

∫
Ω

v2(x)

c2
dx <∞

}
.

The right-hand side f : X × L× [0, T ]→ L, where X := L∞(Ω), is given by

f(λ,u, t) :=

(
−c2(gL(t)− gR(t))

λ a(p, q̂ + q̃)− xg′L(t)− (1− x)g′R(t)

)
. (7)

Note that properties of boundary conditions as well as the friction function a(·, ·) have an impact on
f(·, ·, ·). In the following lemma we state continuity properties of f .

Lemma 2.1. Let gL(t), gR(t) ∈ C1([0, T ]), and suppose that a(·, ·) : R × R → R is Lipschitz
continuous with respect to its arguments. Then f : X × L × [0, T ] → L is continuous in time and
Lipschitz continuous in L for a fixed λ ∈ X . Moreover, if g′L and g′R are Lipschitz continuous on [0, T ],
then f is Lipschitz continuous in both variables.

Proof. We first prove Lipschitz continuity with respect to u. Note that for a fixed time t and λ we have

f(λ,u1, t)− f(λ,u2, t) =

(
0

λ[a(p1, q̂1 + q̃)− a(p2, q̂2 + q̃)]

)
,

for all u1 = (p1, q̂1) ∈ L and u2 = (p2, q̂2) ∈ L. Therefore we get

‖f(λ,u1, t)− f(λ,u2, t)‖L = ‖λ[a(p1, q̂1 + q̃)− a(p2, q̂2 + q̃)]‖L2(Ω)

≤ CL‖λ‖L2(Ω)‖u1 − u2‖L,

where CL is the Lipschitz constant of a(·, ·). Similarly, continuity in time follows from

‖f(λ,u, t1)− f(λ,u, t2)‖L ≤ max(1, CL‖λ‖L2(Ω))
(
|gL(t1)− gL(t2)|+ |g′L(t1)− g′L(t2)|

+|g′R(t1)− g′R(t2)|+ |gR(t1)− gR(t2)|
)
,
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with t1, t2 ∈ [0, T ]. Since gL and gR are continuously differentiable we conclude that f is continuous
in time. Finally, if both g′L(t) and g′R(t) are Lipschitz continuous, then we conclude that f is Lipschitz
continuous in both variables.

From the definition of the dynamical system in (5), it is natural to look for solutionsu ∈ C1([0, T ];L)∩
C0([0, T ];V ) which are called classical solutions in the context of semigroup theory; see [Paz83,
Definition 4.2.1]. There are, however, two other notions of solution associated with (5): strong solutions
([Paz83, Definition 4.2.8]) and mild solutions ([Paz83, Definition 4.2.3]). We will work in this paper with
strong solutions of (5):

Definition 2.2 (strong solutions). A function u which is differentiable almost everywhere on [0, T ]
such that u′ ∈ L1(0, T ;L) is called a strong solution of the initial value problem (5) if u(0) = u0

and u′ + Au(t) = f(λ,u(t), t) almost everywhere (a.e). on (0, T ].

For the moment consider that the right-hand side is fixed, i.e.,

u′(t) + Au(t) = f(t) (t > 0),
u(0) = u0,

(8)

for a given f(t). We then seek u(t) ∈ C([0, T ];L) ∩ L1(0, T ;V ) with u′ ∈ L1(0, T ;L) such that
(8) is satisfied a.e. in [0, T ]. Semigroup theory is used to establish existence and uniqueness of the
solution as A is non-coercive. For this purpose, recall the following definition (see [EG04, Chapter
6.3]):

Definition 2.3 (Monotone and maximal operator). The operator A : V → L is said to be monotone if
and only if for all u ∈ V , (Au, u)L ≥ 0. Moreover, A is said to be maximal if and only if for all f̂ ∈ L,
there exists u ∈ V such that u+ Au = f̂ . If A is monotone, L is reflexive, and

‖Au‖L ≥ c1‖u‖V − c2‖u‖L ∀u ∈ V, (9)

for some c1, c2 > 0 then we can conclude that A is maximal.

Note that from the definition of A, as well as the spaces L and V , we have

(Av, v)L =

∫
Ω

p ∂xq + q ∂xp = (p q)|∂Ω = 0.

SinceA is monotone,L is reflexive and (9) holds trivially due to the definition ofL and V , we conclude
thatA is also maximal. For what follows, letD(A) denote the domain ofA. Note thatD(A) is a linear
subspace of L. Now, if the operator A : D(A) ⊂ L→ L is maximal and monotone then it holds that

1 D(A) is dense in L;

2 the graph of A is closed;

3 ∀η > 0, I + ηA ∈ L(D(A);L) is bijective and ‖(I + ηA)−1‖L(L;L) ≤ 1;

see [EG04, Lemma 6.51] and the references therein. The properties 1.-3. enable us to apply the Hille-
Yosida theorem to show that A generates a C0-semigroup of contractions T(t), for t > 0. Then the
function u ∈ C([0, T ];L) is a mild solution of (5) for u0 ∈ L and f(λ,u(t), t) ∈ L1((0, T );L) if it
satisfies

u(t) = T(t)u0 +

∫ t

0

T(t− s)f(λ,u(s), s)ds ∀t ∈ [0, T ]. (10)

The following theorem states existence and uniqueness of a mild solution which will be used later on
to establish the analogous result for strong solutions. See [Paz83, Theorem 1.2, Chapter 6] for a proof.
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Theorem 2.4. Let f : X × L × [0, T ] → L be continuous in t on [0, T ] and uniformly Lipschitz
continuous on L. Then, for every u0 ∈ L there exists a unique mild solution u ∈ C([0, T ];L)
satisfying (10).

We now establish uniqueness and existence of a strong solution to (5) as well as boundedness and
Lipschitz continuity of the solution with respect to the friction coefficient.

Theorem 2.5. Let f : X × L× [0, T ] → L be uniformly Lipschitz continuous in time, and on L for
a given λ ∈ X , i.e., for some C > 0 depending on λ we have

‖f(λ,v1, t1)− f(λ,v2, t2)‖L ≤ C(‖λ‖X)(|t1 − t2|+ ‖v1 − v2‖L) ∀t1, t2 ∈ [0, T ],

for all v1,v2 ∈ L. Then, for u0 ∈ D(A) there exists a unique strong solution u ∈ L1(0, T ;V ) ∩
C([0, T ];L) and u′ ∈ L1(0, T ;L) satisfying (5) a.e. in time and

‖u(t)‖L ≤ C(T,u0, λ) ∀t ∈ [0, T ]. (11)

Moreover, if ‖λ‖X ≤ c for λ ∈ X and f is (locally) Lipschitz continuous with respect to λ, then we
have

‖p1(t)− p2(t)‖L2(Ω) ≤ C‖λ1 − λ2‖X ∀t ∈ [0, T ]. (12)

Proof. Let u ∈ C([0, T ];L) be a mild solution of (5), ‖T(t)‖L ≤ M and ‖f(λ,u(t), t)‖L ≤ N for
t ∈ [0, T ]. For h ∈ [0, t] we obtain

u(t+ h)− u(t) = T(t+ h)u0 − T(t)u0

+
∫ t

0
T(t− s)[f(λ,u(s+ h), s+ h)− f(λ,u(s), s)]ds

+
∫ h

0
T(t+ h− s)f(λ,u(s), s)ds.

Taking norms on both sides, applying the triangle inequality and estimating yield

‖u(t+ h)− u(t)‖L ≤ hM‖Au0‖L +MC
∫ t

0
‖u(s+ h)− u(s)‖Lds+ hMN

≤ C ′h+MC
∫ t

0
‖u(s+ h)− u(s)‖Lds,

where we have used that T(t+ h)u0 − T(t)u0 =
∫ t+h
t

T(s)Au0ds (see [Paz83, Theorem 1.2.4]).
Then Grönwall’s inequality implies

‖u(t+ h)− u(t)‖L ≤ C ′′ exp(T M C)h,

which shows that u(t) is Lipschitz continuous (and it also proves (11)). This, combined with Lipschitz
continuity of f , implies that t 7→ f(λ,u(t), t) is Lipschitz continuous on [0, T ]. Since L is reflexive,
u0 ∈ D(A), and f(λ,u(t), t) is Lipschitz continuous, [Paz83, Corollary 4.2.11] implies the existence
of a unique strong solution on [0, T ] for the following problemĚ

v′(t) + Av(t) = f(λ,u(t), t) (t ≥ 0),
v(0) = u0.

Since a strong solution is a mild solution, we have

v(t) = T(t)u0 +

∫ t

0

T(t− s)f(λ,u(s), s)ds = u(t),
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and, thus, u(t) is a strong solution to (5). Then by [Paz83, Theorem 4.2.9], we have u ∈ L1(0, T ;V )
and u′ ∈ L1(0, T ;L).

Suppose u1 and u2 are solutions obtained from two friction coefficients, λ1 and λ2, respectively.
Then, using the definition of mild solutions, we have for their difference

‖u1(t)− u2(t)‖L ≤ M
∫ t

0
‖f(λ1,u1(s), s)− f(λ2,u2(s), s)‖L ds

≤ M‖λ1 − λ2‖XC(u1(t)) + ‖λ2‖X
∫ T

0
‖u1(s)− u2(s)‖L ds

≤ c1‖λ1 − λ2‖X + c2

∫ t
0
‖u1(s)− u2(s)‖Lds.

An application of Grönwall inequality yields Lipschitz continuity of the pressure difference with respect
to the friction coefficient, i.e.,

‖p1(t)− p2(t)‖L2(Ω) ≤ ‖u1(t)− u2(t)‖L ≤ c3‖λ1 − λ2‖X ,

which completes the proof.

From the definition of f in (7), Lemma 2.1 and Theorem 2.5, we obtain the following sufficient condi-
tions on the boundary data gL, gR and the friction function such that the PDE in (1) admits a unique
strong solution and the Lipschitz continuity result.

Corollary 2.6. Let gL(t), gR(t) ∈ C1([0, T ]) and g′L, g
′
R be Lipschitz continuous on [0, T ]. Moreover,

suppose that a(·, ·) is uniformly Lipschitz continuous with respect to its arguments. Then, for every
(p0, q0) ∈ V , there exists a unique strong solution (p, q) ∈ C([0, T ];L)∩L1(0, T ;V ) with (p′, q′) ∈
L1(0, T ;L) to (1). Further, we have

‖(p(t), q(t))‖L ≤ C(T ) ∀t ∈ [0, T ],

and if ‖λ‖X ≤ C ′ uniformly, then it holds that

‖p1(t)− p2(t)‖L2(Ω) ≤ C‖λ1 − λ2‖X ∀t ∈ [0, T ].

3 Prior modelling and Bayesian inverse problem

Next we construct probability measures on a function space. It is natural to use separable Banach
spaces to define random functions using a countable infinite sequence in a Banach space. For this
purpose, let {φj}∞j=1 denote an infinite sequence in a Banach spaceX with the norm ‖·‖X associated
with a bounded domain Ω ⊂ R. The functions are assumed to be normalized, i.e., ‖φj‖X = 1. We
then define the randomized function

λ = m0 +
∞∑
j=1

λjφj, (13)

wherem0 ∈ X (not necessarily normalized) and {λj}∞j=1 are random numbers defined by λj = γjξj .
Here {γj}∞j=1 is a deterministic sequence, {ξj}∞j=1 is an independent and identically distributed (i.i.d.)
random sequence, and we assume that ξj has mean zero for all j ∈ N. For N ∈ N, we also define
the truncated series

λN = m0 +
N∑
j=1

λjφj. (14)

DOI 10.20347/WIAS.PREPRINT.2537 Berlin 2018



S. Hajian, M. Hintermüller, C. Schillings, N. Strogies 8

As before, we choose X = L∞(Ω), γ = {γj}∞j=1 ∈ `1, and ξj ∼ U([−1, 1]) for all j ∈ N.
Moreover, we assume that there exist positive constants mmin ≤ mmax and δ > 0 such that

ess infx∈Ω m0(x) ≥ mmin, ess supx∈Ωm0(x) ≤ mmax, ‖γ‖`1 = δ
1+δ

mmin.

Since X is not separable, we work with the closure of the linear span of functions (m0, {φj}∞j=1) with
respect to ‖ · ‖X . The resulting space is denoted by X in what follows. The next result, taken from
[DS16, Theorem 2.1], states that (X , ‖ · ‖X) is a Banach space.

Theorem 3.1. The following holds P-almost surely: The sequence of functions {λN}∞N=1 given by
(14) is Cauchy in X and the limiting function λ given by (13) satisfies

1

1 + δ
mmin ≤ λ(x) ≤ mmax +

δ

1 + δ
mmin for almost every x ∈ Ω.

3.1 Bayesian inverse problem

According to our assumptions we have noisy observations of the pressure drop at our disposition,
here denoted by y = {yj}Kj=1 ∈ RK , for K ∈ N, at times tj ∈ (0, T ] for j = 1, . . . , K . Now,
let Y := RK , with norm | · |, and X from above. Then the uncertainty-to-observation operator G is
defined by

G : X → Y , G(λ) := (δp(t1), . . . , δp(tK))>. (15)

Note that Corollary 2.6 implies that

|G(λ1)− G(λ2)| ≤ C‖λ1 − λ2‖L∞(Ω). (16)

Moreover, Theorem 2.5 and Theorem 3.1 provide a constant C ′ > 0 such that

|G(λ)| ≤ C ′K1/2. (17)

We use an additive linear noise model in our observations, i.e.,

y = G(λ) + η,

where η = {ηj}Kj=1 is Gaussian observation noise with mean zero and positive definite covariance
matrix Γ ∈ RK×K . In general, the observation operator is a map G : X → Y , where we consider
X either finite-dimensional (X = RM ,M ∈ N) or infinite dimensional (X = X ), and Y = RK .
In the case where X is finite dimensional, the posterior distribution is obtained from (3). For infinite-
dimensional X the relation (4) between the posterior measure and the prior measure based on the
Radon-Nikodym derivative yields

dµy

dµ0

(λ) =
1

Z
exp

(
− Φ(λ, y)

)
, (18a)

Z(y) =

∫
X

exp
(
− Φ(λ, y)

)
dµ0(λ), (18b)

where Z = Z(y) is a normalization constant, Φ(λ, y) := 1
2

∣∣Γ−1/2
(
y−G(λ)

)∣∣2, and | · | is the usual
Euclidean norm.

The following, rather general conditions on a function Ψ and the prior µ0 are sufficient to guarantee
that µy is a well-defined probability measure on X if Ψ replaces Φ in (18). The conditions furthermore
guarantee well-posedness of the posterior distribution with respect to perturbations of the data. We
first state the conditions and then check whether they are satisfied by our Φ.
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A Bayesian approach to parameter identification in gas networks 9

Assumption 3.2. Let Λ and Y be Banach spaces. The function Ψ : Λ × Y → R satisfies the
following conditions.

(i) For every ε > 0 and r > 0 there is M = M(ε, r) ∈ R, such that for all λ ∈ Λ, and for all
y ∈ Y with ‖y‖Y < r, it holds that

Ψ(λ, y) ≥M− ε‖λ‖2
Λ.

(ii) For every r > 0 there exists K = K(r) > 0 such that for all λ ∈ Λ, y ∈ Y with
max{‖λ‖Λ, ‖y‖Y } < r

Ψ(λ, y) ≤ K.

(iii) For every r > 0 there exists R = R(r) > 0 such that for all λ1, λ2 ∈ Λ and y ∈ Y with
max{‖λ1‖Λ, ‖λ2‖Λ, ‖y‖Y } < r

|Ψ(λ1, y)−Ψ(λ2, y)| ≤ R‖λ1 − λ2‖Λ.

(iv) For every ε > 0 and r > 0, there is C = C(ε, r) ∈ R such that for all y1, y2 ∈ Y with
max{‖y1‖Y , ‖y2‖Y } < r and for every λ ∈ Λ

|Ψ(λ, y1)−Ψ(λ, y2)| ≤ exp(ε‖λ‖2
Λ + C)‖y1 − y2‖Y .

Using Corollary 2.6, we show in the following proposition that

Φ : X× Y → R, with Φ(λ, y) =
1

2
|Γ−1/2(y − G(λ))|2 (19)

indeed satisfies Assumption 3.2.

Proposition 3.3. Let u = (p, q) be the strong solution of (5), given u0 ∈ V and λ ∈ X such that
‖λ‖X ≤ C for some C > 0. Moreover, let the observation operator G be defined as in (15). Then the
likelihood function Φ as defined in (19) satisfies Assumption 3.2.

Proof. In view of Assumption 3.2 we set Λ := X, Y := Y , and Ψ ≡ Φ. Assumption (i) is satisfied
trivially since Φ(λ, y) ≥ 0. For assumption (ii), using (17), we have

Φ(λ, y) ≤ 1

2
‖Γ−1‖L(Y;Y)(‖y‖Y + ‖G(λ)‖Y)2 ≤ C.

for all y ∈ Y and λ ∈ X satisfying max{‖y‖Y , ‖λ‖X} ≤ R. Assumption (iii) is fulfilled by the
Lipschitz continuity of the pressure drop, i.e.,

|Φ(λ1, y)− Φ(λ2, y)| =
∣∣ 〈G(λ1)− G(λ2), 2y + G(λ1) + G(λ2)〉Γ−1

∣∣
≤ ‖Γ−1‖L(Y;Y)‖G(λ1)−G(λ2)‖Y‖2y + G(λ1) + G(λ2)‖Y
≤ C‖Γ−1‖L(Y;Y)‖G(λ1)−G(λ2)‖Y
≤ C ′‖Γ−1‖L(Y;Y)‖λ1 − λ2‖X.

where 〈·, ·〉Γ−1 is the Euclidean inner product induced by matrix Γ−1. The proof of assumption (iv) is
similar to the one of assumption (iii).
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We remark that in the uniform setting, boundedness of the potential follows directly from the model
(13) and the properties of the forward problem. The existence and well-posedness results presented
in this section are not limited to the uniform case and can be shown for rather general prior distri-
butions provided that the conditions in Assumption 3.2 are satisfied. The following theorem asserts
well-posedness of the posterior measure in our setting. It rests on the results in [DS16, Sul15].

Theorem 3.4. Let u = (p, q) be the strong solution of (5), given u0 ∈ V and the prior measure µ0

according to (13). The uncertainty-to-observation map G is as in (15). Then, the posterior measure µy

satisfying (18) with (19) is a well-defined probability measure on X for each observation y ∈ Y = RK .
Furthermore, the inference is well-posed with respect to perturbations in the data, i.e., there exists a
constant C ≥ 0 such that

dH(µy, µỹ) ≤ C|y − ỹ|, ∀y, ỹ ∈ Y ,

where

dH(µy, µỹ) =
[ ∫

X

(√dµy

dµ0

(λ)−

√
dµỹ

dµ0

(λ)
)2

dµ0(λ)
]1/2

denotes the Hellinger distance of the measures µy, µỹ.

Proof. By Proposition 3.3, the likelihood function Φ satisfies Assumption 3.2. The local Lipschitz conti-
nuity of the potential implies the measurability of Φ with respect to the product measure ν0(dy, dλ) =
ρ(dy)µ0(dλ), where ρ = N (0,Γ), i.e., η ∼ ρ. The boundedness of Φ further implies thatZ(y) > 0.
By [DS16, Theorem 3.4], the posterior µy is well-defined and fulfills (18). The boundedness of the po-
tential implies exp(−M + ε‖λ‖2

X)(1 + exp(ε‖λ‖2
X + C)2) ∈ L1

µ0
(X,R) for every r, ε > 0, with

constants M,C given in Assumption 3.2. Here, L1
µ0

(X,R) denotes the Bochner space of all mea-
surable functions f : X → R with

∫
X |f(λ)|dµ0(λ) < ∞. By [DS16, Theorem 4.5], the Lipschitz

continuity of the posterior follows.

4 Discretization of the forward problem and sampling

The statistical inverse problem posed in Section 1 is now solved by using a discretization of the forward
problem and the MCMC algorithm. More specifically, our goal is to reconstruct the friction coefficient
λ(x) from noisy observations of the pressure drop.

As motivated above, we model the truncated friction coefficient according to (14) yielding

λN(x) = m0(x) +
N∑

k=−N

λkφk(x),

where m0 ∈ L∞(Ω) and φk(x) are scaled Fourier coefficients, i.e.,

φk(x) = ak exp(i kx) for all k ∈ Z,

{λk} are complex coefficients that satisfy λ∗k = λ−k and {ak} are real coefficients. Here and below
λ∗k denotes the complex conjugate of λk. In order to ensure that λN(x) ≥ ν > 0 for all x ∈ Ω, we
choose ak with ∑

k∈Z

|ak| <∞,
∑

k∈Z,|k|>j

|ak| < C j−ν , (20)
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for some C > 0 and ν > 0; see [HSS13, SS12]. In particular, we use ak := ā|k|2 in order to ensure
that (20) is satisfied. Then the mean function m0(x) can be chosen to ensure positivity of λN .

For the convenience of implementation, we reformulate the prior model as

λN(x) = m0(x) +
N∑
k=0

ak

(
αk sin(2πkx) + βk cos(2πkx)

)
, (21)

where we have the following relation between {λk} and {αk, βk}

λk =


1
2
(βk − iαk) for k > 0,

β0 for k = 0,

λ∗−k for k < 0.

The truncation λN converges towards λ ∈ X at rate ν, i.e. there exists C > 0 such that for all N and
every λ ∈ X, there holds

‖λ− λN‖X ≤ CN−ν .

The Lipschitz continuity of the forward operator then leads to the estimate

|G(λ)− G(λN)| ≤ CN−ν

with a possibly different constant C > 0. Instead of a fixed N -term truncation, random truncation
leads to a variable dimension formulation. We refer to [CRSW13] for more details. By choosing a
sufficiently large, but finite numberN of terms, the truncated friction coefficient can be represented by
using its degrees of freedoms (DOFs), i.e., we replace λN(x) by

λN = (β0, α1, β1, . . . , αN , βN)> ∈ X.
where in our finite dimensional setting, X is defined by X = {λ ∈ R2N+1 : ‖λ‖∞ ≤ C} for a
uniform positive constant C .

We seek an algorithm that finds the statistical properties of the components of λN . In other words,
providing a prior distribution for λN (for a fixedN ) and a finite number of observations on the pressure
drop, the MCMC algorithm aims to find a posterior probability distribution for the components of λN .
The method requires to solve the forward problem (1)–(2) frequently.

In order to discretize the forward problem, we first partition the domain Ω into Nh elements of non-
overlapping intervals Ij := (xj−1/2, xj+1/2], where xj−1/2 < xj+1/2 for j = 1, . . . , Nh. Denoting
the semi-discrete approximation of p(x, t) and q(x, t) at time t by

p(t) :=
(
p1(t), p2(t), . . . , pNh

(t)
)
, q(t) :=

(
q1(t), q2(t), . . . , qNh

(t)
)
,

respectively, where

pj(t) ≈
1

hj

∫ xj+1/2

xj−1/2

p(x, t) dx, qj(t) ≈
1

hj

∫ xj+1/2

xj−1/2

q(x, t) dx ∀j = 1, . . . , Nh,

with hj = xj+1/2− xj−1/2, we utilize the following semi-discrete scheme for the forward problem (1):

d
dt
pj(t)−

1

2∆t

(
pj+1(t)−2pj(t) + pj−1(t)

)
+

1

c2 hj

(
qj+1(t)− qj−1(t)

)
=

1

2c2

(
λj−1a(pj−1(t), qj−1(t))− λj−1a(pj+1(t), qj+1(t))

)
,

d
dt
qj(t)−

1

2∆t

(
qj+1(t)−2qj(t) + qj−1(t)

)
+
c2

hj

(
pj+1(t)− pj−1(t)

)
=

1

2

(
λj−1a(pj−1(t), qj−1(t)) + λj−1a(pj+1(t), qj+1(t))

)
,

(22)
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for all j = 1, . . . , Nh. In order to discretize in time and obtain the full discrete scheme, we partition
the time direction into time slabs tn for n ∈ Z+, where tn < tn+1. For simplicity we assume a uniform
time-step, i.e., tn+1 − tn = ∆t for all n ∈ Z+ and similarly a uniform mesh-size, i.e., hj = h for all
j ∈ Z. Then the time derivatives are approximated by

d
dt
pj(tn) ≈ 1

∆t

[
pn+1
j − pnj

]
, (23)

and analogously for q. In fact, substituting (23) into (22) provides the well known Lax-Friedrichs
scheme for nonlinear conservation laws (see, e.g., [HHU17, HS17a]) combined with a special handling
of the source term that in particular preserves steady states of (1) better than the usual techniques
like splitting (see [Tor09]) or direct incorporation (see [Ulb01]). The exact derivation is based on the
nature of broad solutions to semilinear systems of balance laws and can be found in [HS17b] where
also a comparison of different strategies to incorporate source terms is provided. The initial conditions
are imposed weakly through

p0
j =

1

hj

∫ xj+1/2

xj−1/2

p0(x) dx, q0
j =

1

hj

∫ xj+1/2

xj−1/2

q0(x) dx ∀j = 1, . . . , Nh,

and the boundary conditions are realized through ghost cells yielding

qn0 = gL(tn), qnNh+1 = gR(tn) for all tn.

Since the boundary conditions merely prescribe q, the boundary values of p have to be computed.
Here the flow into the ghost cells based on characteristic lines is utilized again, providing

pn+1
0/Nh+1 = pn1/Nh

∓ 1
c
qn1/Nh

± 1
c
qn+1

0/Nh+1 ∓
∆t
c
λ1/Nh

a(qn1/Nh
, pn1/Nh

).

We again refer to [HS17b] for details. The discrete pressure drop at time tn is defined by

δpnh :=
∣∣∣‖pnh‖L2(0,ε) − ‖pnh‖L2(1−ε,1)

∣∣∣,
where pnh ∈ L2(Ω) and qnh ∈ L2(Ω) are piecewise approximate solutions of the form

pnh(x) =

Nh∑
j=1

pnj 1Ij(x), qnh(x) =

Nh∑
j=1

qnj 1Ij(x) ∀x ∈ Ω.

Here 1Ij(x) is the characteristic function of the interval Ij = (xj−1/2, xj+1/2]. When discretizing the
infinite-dimensional setting, the discrete uncertainty-to-observation operator Gh : R2N+1 → RK is
defined by

Gh(λN) :=
(
δpn1

h , δp
n2
h , . . . , δp

nK
h

)
.

4.1 Markov Chain Monte Carlo

Following the discretization of the forward problem and representing the friction function by a truncated
series we can use the Bayesian framework (3) and obtain the posterior density function by

π(λN |y) =
1

Z
exp

(
− 1

2
|y − Gh(λN)|2Γ

)
π0(λN), (24)

where Z > 0 is the normalization constant and π0(·) is the prior density function. MCMC is a method
to sample from a given distribution whose normalization constant is unknown or intractable to compute.
In our context, we use the MCMC algorithm as stated in Algorithm 4.1.
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Algorithm 4.1 (Metropolis-Hastings). 1: Given λ(0) ∈ R2N+1, a proposal distribution q(λ′|λ), y ∈
RK and M ∈ N.

2: Define πy(λ) := exp
(
− 1

2
|y − Gh(λ)|2Γ

)
π0(λ).

3: Define an empty list output = [ ].
4: for 0 ≤ i ≤M do
5: Draw a proposal λ′ from the proposal distribution function, i.e., q(λ′|λ(i)).
6: Compute

α = min
{

1,
πy(λ

′) q(λ(i)|λ′)
πy(λ(i)) q(λ′|λ(i))

}
.

7: Set λ(i+1) := λ′ with probability α and λ(i+1) := λ(i) with probability 1− α.
8: Append λ′ into output.
9: i← i+ 1.

10: end for
11: return output

Algorithm 4.1 generates a Markov chain with stationary distribution π(λ|y) (under additional assump-
tions on the proposal kernel). The first few samples are usually discarded for inference and are called
burn-in samples. The Metropolis Hastings algorithm will be used in the following with two different
proposal kernels, the Gaussian random walk proposal and the preconditioned Crank Nicolson variant.
For the Gaussian random walk proposal function and throughout this paper (when referring to MCMC)
we use

q(λ|λ′) = exp(−|λ− λ′|2/2σ2)/
√

2πσ2. (25)

4.2 Preconditioned Crank-Nicolson

Since the Gaussian random walk is known not to be robust with respect to the dimension of the
underlying friction coefficient, we use a robust variant of the Metropolis-Hastings algorithm called
preconditioned Crank-Nicolson. Already in its basic form pCN is suitable for centered Gaussian priors,
i.e., π0 ∼ N (0, C) where C is the covariance matrix. Algorithm 4.2 describes this method; see
[CDPS18].

Algorithm 4.2 (pCN with Gaussian prior). 1: Given λ(0) ∈ R2N+1, β ∈ (0, 1], y ∈ RK and M ∈
N.

2: Define Φ(λ; y) := 1
2
|y − Gh(λ)|2Γ.

3: Define an empty list output = [ ].
4: for 0 ≤ i ≤M do
5: Propose λ′ = (1− β2)

1
2λ(i) + βζ(i) with ζ(i) ∼ N (0, I).

6: Compute

α = min
{

1, exp
(
Φ(λ(i); y)− Φ(λ′; y)

)}
7: Set λ(i+1) := λ′ with probability α and λ(i+1) := λ(i) with probability 1− α.
8: Append λ′ into output.
9: i← i+ 1.

10: end for
11: return output
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In order to use pCN in our setting, i.e., with a uniform prior instead of a Gaussian prior, we need to
rewrite the random representation of λ(x) in a way suitable for Algorithm 4.2. Recall that the truncated
random friction function is defined by

λN(x) = m0 +
N∑
j=1

λjφj(x),

where λj = γjξj . Here {γj}Nj=1 is a deterministic sequence and {ξj}Nj=1 is an i.i.d. random sequence
where ξj ∼ U([−1, 1]). We now represent ξj by ξj = G(ζj) with

G(ζj) := 2F (ζj)− 1, ζj ∼ N (0, I),

and F (z) is the cumulative distribution function of a standard normal distribution. Therefore λN can
be represented using random numbers with normal distribution, i.e.,

λN = m0 +
N∑
j=1

γjG(ζj)φj.

This enables us to define Algorithm 4.2 using uniform priors which we describe in Algorithm 4.3.

Algorithm 4.3 (pCN with uniform prior). 1: Given λ(0) ∈ R2N+1, β ∈ (0, 1], y ∈ RK and M ∈ N.
2: Define Φ(λ; y) := 1

2
|y − Gh(λ)|2Γ.

3: Define an empty list output = [ ].
4: for 0 ≤ i ≤M do
5: Define ζ̂(i) := (G−1(λ(i),0), . . . , G−1(λ(i),2N+1))>.

6: Propose ζ ′ = (1− β2)
1
2 ζ̂(i) + βζ(i) with ζ(i) ∼ N (0, I).

7: Define λ′ := (G(ζ ′0), . . . , G(ζ ′2N+1))>

8: Compute

α = min
{

1, exp
(
Φ(λ(i); y)− Φ(λ′; y)

)}
9: Set λ(i+1) := λ′ with probability α and λ(i+1) := λ(i) with probability 1− α.

10: Append λ′ into output.
11: i← i+ 1.
12: end for
13: return output

5 Numerical experiments

In this section we report on numerical experiments using the forward scheme and the MCMC algorithm
as described in Section 4. The forward solver is implemented in C++ in order to perform fast numerical
computation while the MCMC algorithm is implemented in Python scripting language with calls to the
C++ code. The software package can be downloaded from http://github.com/fg8/UQ for
academic purposes.

In the first numerical experiment we choose the truncation parameter in the friction coefficient to be
N = 0 and choose m0 = 0. This yields a scalar friction coefficient, i.e., λ0(x) = β0. As the prior we
choose a uniform one, i.e.,

π0(λ) :=
1

Z
1[λ,λ](λ),
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Figure 1: Pressure drop for a scalar friction coefficient with λtrue = 0.075 (left) and its corresponding
histogram of the samples obtained from MCMC algorithm (right).

where λ < λ are two fixed constants and Z= λ− λ is the normalization constant. We choose the
boundary conditions for q(x, t) on ∂Ω as

q(0, t) = q(1, t) = 10− sin(2πt),

and the initial conditions as

p(x, 0) = q(x, 0) = 10 + sin(2πx).

The model problem is completed by choosing the friction function a(·, ·) as

a(p, q) = −q|q|.

In order to validate the forward and the MCMC solvers, we set Γ = I and ytrue = G(λtrue), with λtrue =
0.075. Then we choose λ = 0 and λ = 0.5 to fix the prior distribution. We fix the number of cells
for the forward solver to be Nh = 200 and measure the pressure drop at tn`

for ` = 1, ..., 20, which
are distributed uniformly in the interval t ∈ [0, 5] (see Figure 1). We then run the MCMC of Algorithm
4.1 with 10,000 iterations to generate the Markov chain and we let 1,000 burn-in iterations. For the
proposal function q(λ|λ′), see (25), we choose σ = 0.25 throughout this section. The histogram of
the Markov Chain is plotted in Figure 1 (right). Observe that the samples cluster around the true value,
i.e., λtrue = 0.075 while the starting point of the Markov Chain was set to be λ(0) = 0.45, i.e., far from
the true value.

We then add a mean zero Gaussian noise η ∈ RK to y with covariance Γ = 0.25 × IK , where IK
is the identity matrix of size K = 20; see Figure 2 (left) for the comparison between true and noisy
pressure drop. More precisely we set y = Gh(λtrue) + η, and use MCMC to sample from the posterior
distribution. The settings are the same as in the previous example. In Figure 2 (right) we see that the
posterior distribution clusters around the true friction constant, i.e., λtrue = 0.075, despite the initial
sample of MCMC to be λ = 0.45.

We finish this experiment by numerically checking for posterior consistency, i.e., the noise level in the
observation will be reduced. In Figure 3, the histogram of the identified friction constant is plotted for
different noise levels, i.e., η = N (0, σ · IK) for σ = 0.05, . . . , 0.15. Observe that the maximum of
the posterior density function approaches the true value λtrue = 0.075 as the noise tends to zero.

In the next numerical example, we consider λ(x) to be a function of the type (21) with N = 3. We set
the true friction coefficient to be

λtrue(x) = 0.075 +
N∑
k=1

ak

(
αk sin(2πkx) + βk cos(2πkx)

)
,
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Figure 2: True and noisy pressure drop for a scalar friction coefficient with λtrue = 0.075 (left) and its
corresponding histogram of the samples obtained from MCMC algorithm (right).
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Figure 3: Effect of the noise in the observation on the posterior distribution.
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where

α1 =
15

1000
, β1 =

35

1000
, α2 =

25

1000
, β2 =

35

1000
, α3 =

1

1000
, β3 =

30

1000
.

The prior distribution function is then defined as

π0(λ) := 1[0.0,0.5]×[0.0,0.05]4(λ),

and the starting point of MCMC λ(0) = (0.45, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04)>. In Figure 4 (left)
we observe the samples drawn from the MCMC. Note that the initial starting point of the MCMC is
far from the true friction coefficient and as the Markov Chain grows we converge to the true friction
coefficient. In Figure 4 (right) we observe the pointwise mean friction coefficient obtained from the
samples.

5.1 A double bump friction function

In this section we perform experiments with a true friction coefficient that can be approximated only in
the limit by the truncated prior model (21). Throughout this section we use the following double bump
friction function:

λtrue(x) =
1

10
+ 1[ 1

8
, 3
8

](x)
(1

8
−
∣∣∣x− 1

4

∣∣∣)+ 4× 1[ 5
8
, 7
8

](x)
(1

8
−
∣∣∣x− 3

4

∣∣∣). (26)

In Figure 5 (left) we have plotted its approximation by the prior model (21) for N = 0, . . . , 20.

The discretization settings are defined as in the previous section. We choose at first N = 4 and set
the prior distribution function to

π0(λ) :=
1

Z
1[0.0,0.45]×[−0.025,0.025]4×[−0.01,0.01]4(λ),

where Z > 0 is the normalization constant and the starting point of the Markov chain is chosen as

λ(0) = (0.25, 0, 0, 0, 0, 0, 0, 0, 0)>.

We fix Γ = I , ytrue := G(λtrue) and run the MCMC to sample from the posterior distribution function.

In Figure 5, we plot the value of the posterior distribution function (upto a constant) evaluated at sam-
ples of the Markov chain obtained from Algorithm 4.1. Observe that there are three distinctive regions
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Figure 5: Fourier approximations of (26) (left) and posterior density function (upto a constant) for the
Markov chain obtained from MCMC (right).

where the posterior density function is maximized, i.e., for i in [7500, 15000], [22000, 27000] and
[30000, 34685]. This observation may hint that there are multiple friction functions that maximize the
posterior distribution. In other words, for a given pressure drop, there might exists multiple friction func-
tions, i.e., the uncertainty-to-observation operator is not injective. In such situations, the conditional
mean might lead to unlikely estimates of the unknown parameters and to a poor fit of the measure-
ment data, which is usually indicated by a wider variance. Thus, we propose a different strategy which
is based on identifying regions in which the posterior is maximized.

In order to identify these friction functions we use a clustering algorithm to categorize friction functions
that maximize the posterior distribution. Recall that given the truncation constant N we have for each
sample in the Markov chain that λ(i) ∈ R2N+1. We first select the samples in the Markov chain that
maximize the posterior distribution upto a threshold. Let us denote the number of such samples by
Nmax. Then, we concatenate the maximizing samples to form a feature matrix F ∈ RNmax×(2N+1), i.e.,

F := (λ(i0),λ(i1), . . . ,λ(iNmax ))
>. (27)

Using the feature matrix F and a clustering algorithm, e.g., k-means, we can classify samples that
maximize the posterior distribution. We summarize the above post-processing step in the following
algorithm:

Algorithm 5.1 (Post-processing). 1: Given the Markov chain {λ(i)}Nsamples

i=0 , number of clusters, i.e.,
ncluster, and a threshold threshold < 1.

2: Compute maximizing samples: {λ(ij)}Nmax
j=0 such that

λ(ij) > threshold×
(

max
i=1,...,Nsamples

πy(λ(i))
)
.

3: Set the feature matrix F using (27).
4: Compute the clusters using k-means:

{Λ1,Λ2, · · · ,Λncluster} = KMeans(F, ncluster),

where Λ` contains samples that form the `th cluster.
5: return {Λ`}ncluster

`=1

We apply Algorithm 5.1 to our Markov chain with threshold = 0.95 and ncluster = 3. In Figure 6, we
plot the mean function obtained from samples of each of the three clusters. Note that all three mean
functions maximize the posterior density function. However the first mean function, i.e., E(Λ1)(x),
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Figure 6: Mean functions of the three clusters obtained from Algorithm 5.1 (N = 4).
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Figure 7: True pressure drop and the pressure drop associated to mean functions of the three clusters
obtained from Algorithm 5.1 (N = 4).

captures the true friction function in the sense that it captures the right position of the bumps. In Figure
7, the pressure drops from the above mean functions are plotted against the true pressure drop. Note
that all pressure drops are a good approximation of the true one which shows that the uncertainty-to-
observation is not injective.

Adding noise

In this section we add noise to the observation, i.e., we consider y = G(λ)+η where η is a Gaussian
noise centered at zero with standard deviation 10−4. Therefore Γ = 10−4×I . The setting is the same
as in the noise-free experiment and Algorithm 4.1 is used for sampling along with the post-processing
step of Algorithm 5.1 with ncluster = 3. The result is depicted in Figure 8.
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Figure 8: Mean functions of the three clusters obtained from Algorithm 5.1 when noise is present
(N = 4).
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Figure 9: Mean functions of the four clusters obtained from Algorithm 5.1 (N = 5).

Increasing the truncation parameter

We now increase the truncation parameter N in the prior model (21). Observe that in Figure 9, the
approximation has improved in the sense that we can capture the second bump located at x = 0.75
more accurately, and the gap between the first and second gap in the interval [0.25, 0.75] is better
approximated compare to Figure 6 (where N = 4). Similar results can be obtained for N = 6, which
we plot in Figure 10. For the last experiment, we have chosen the number of clusters to be ncluster = 6
and plotted the first four clusters.

Finally, we investigate the dimension robust behavior of the pCN (in comparison to the Gaussian
random walk). The same setting as in the previous section with N = 5, Γ = 5 × 10−2 and 2500 is
used. In Figure 11 we show the result obtained from pCN as a solver and the post-processing step of
Algorithm 5.1. Note that pCN captures the right peak locations but with fewer iterations.

In Table 5.1, the number of accepted proposals (out of 10 000 proposals) for both Gaussian random
walk and pCN algorithms is presented. For these numerical experiments, we letN = 0, . . . , 7 and we
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Figure 10: Mean functions of the four clusters obtained from Algorithm 5.1 (N = 6).
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Figure 11: Mean functions of the four clusters obtained from pCN with N = 5.
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Table 1: Number of accepted proposals for different N (total number of samples are 10 000).
N 0 1 2 3 4 5 6 7

MCMC 582 175 65 27 13 5 0 1
pCN 1802 2148 2022 1902 2127 2046 1907 2150

choose β = 0.1 for pCN. Observe that the acceptance rate for the Gaussian random walk decreases
as N grows while pCN is robust with respect to N .

6 Conclusion and outlook

In this paper we considered a semi-linear isothermal Euler equation for the modelling of the gas flow
in pipes and showed well-posedness of the underlying PDE as well as continuous dependence of the
unknowns with respect to the friction function. More precisely, provided that the friction function is of
Lipschitz class, the underlying PDE has a strong solution (Definition 2.2) and is Lipschitz continuous
with respect to the friction function. We then focused on the Bayesian inverse problem of the identifi-
cation of the friction coefficient using finite (noisy) observations of the pressure drop along the pipe.
We showed that the underlying Bayesian inverse problem is well-posed. This enabled us to have a
well-posed formulation of the MCMC algorithm both at the continuous and the discrete level. We then
discretized the underlying friction coefficient and the PDE in order to identify numerically the friction
function using MCMC. The numerical results revealed that the uncertainty-to-observation operator
lacks injectivity which leads to multiple friction functions that maximize the likelihood function. Finally,
in order to characterize these friction coefficients, we have used a clustering algorithm.

The results of this paper builds a foundation for problems arising from gas networks. As a natural ex-
tension of this work, we are working towards Bayesian inverse problems related to leakage detection
in gas pipes. Moreover, our results will be used to provide a robust friction function as an input parame-
ter for gas pipe models within the collaborative research center SFB-TRR 154 on Modelling, Simulation
and Optimization at the Example of Gas Networks (see https://trr154.fau.de/index.php/en/)
for projects which relate to real applications. We would like to finish this conclusion by mentioning that
the convergence of the overall numerical method, i.e., discretization of the forward problem, friction
coefficient, MCMC and the post-processing step, is an interesting question on its own.
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