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The point charge oscillator: Qualitative and analytical
investigations
Klaus R. Schneider

Abstract

We determine the global phase portrait of a mathematical model describing the point charge
oscillator. It shows that the family of closed orbits describing the point charge oscillations has two
envelopes: an equilibrium point and a homoclinic orbit to an equilibrium point at infinity. We derive
an expression for the growth rate of the primitive period Ta of the oscillation with the amplitude
a as a tends to infinity. Finally, we determine an exact relation between period and amplitude by
means of the Jacobi elliptic function cn.

1 Introduction

Consider a uniformly charged ring with a conducting wire placed along the axis of the ring. Assume
that a point charge q whose sign is opposite to the sign of the chargeQ of the ring, is confined with the
wire. Under the assumption that the loss of energy per oscillation due to radiation is negligibly small,
the oscillations of this point charge can be modeled by the following dimensionless scalar nonlinear
autonomous differential equation (see e.g. [2, 5])

d2x

dt2
+

x
√

1 + x2
3 = 0. (1.1)

Since (1.1) is a conservative system, the initial value problem

x(0) = a,
dx

dt
(0) = 0 (1.2)

has to any a, 0 < a < +∞, a unique solution x(t, a) defined ∀t which represents a periodic
solution with (positive) primitive period Ta. The parameter a can be interpreted as the amplitude of the
periodic solution x(t, a). In [3] the authors apply the method of harmonic balance to derive analytic
approximations for the periodic solution x(t, a) and for the corresponding frequency ωa = 2π/Ta in
the cases of first and second order approximations.
For the first-order harmonic balance approximation x̃(t, a) = a cos ω̃at, the authors derive in [1] the
relation

ω̃a =
2

a
√
π

√
K(−a2)− E(−a2)

1 + a2
,

which implies for the corresponding approximate period T̃a the relation

T̃a =
aπ3/2√

K(−a2)− E(−a2)
1+a2

,
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively,
defined by

K(k) :=

∫ π/2

0

dϕ√
1− k sin2 ϕ

, E(k) :=

∫ π/2

0

√
1− k sin2 ϕ dϕ. (1.3)

Further investigations to derive approximations of the relationship between the amplitude a and the
corresponding frequency ωa can be found in [6, 7, 8].
The goal of our contribution is to describe the global phase portrait of equation (1.1) and to determine
the dependence of the primitive period on the amplitude a, especially for large a.

2 Global phase portrait of the trajectories of equation (1.1)

For the sequel we represent equation (1.1) as the system

dx

dt
= y,

dy

dt
= − x
√

1 + x2
3

(2.1)

in the (x, y)-phase plane. The following properties of system (2.1) can be easily verified.

Lemma 2.1. The origin is the unique equilibrium point E of system (2.1) in the finite part of the phase
plane.

Lemma 2.2. System (2.1) has the first integral

H(x, y) :=
y2

2
− 1√

1 + x2
= c, c ≥ −1. (2.2)

From Lemma 2.2 we get

Corollary 2.3. The phase portrait of system (2.1) is symmetric with respect to the x-axis as well as
with respect to the y-axis.

Corollary 2.4. System (2.1) can be rewritten in the form

dx

dt
=
∂H

∂y
,

dy

dt
= −∂H

∂x

(2.3)

that is, (2.1) is a Hamiltonian system.

Lemma 2.5. The family of orbits {Oc} of system (2.3) defined by

{Oc} := {(x, y) ∈ R2 : H(x, y) = c}

consists for −1 < c < 0 of closed orbits located in the finite part of the phase plane. This family of
closed orbits has two envelopes, the equilibrium point E = O−1 and the curve O0 defined by

O0 :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
= 0

}
.
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Figure 1: Selected orbits of system (2.1) in a finite part of the phase plane

For c > 0, the family {Oc} consists of the curves

Oc :=

{
(x, y) ∈ R2 : y = ±

√
2c+

2√
1 + x2

}
,

where |y(x)| takes its maximum
√

2(1 + c) at x = 0 and satisfies

lim
x→±∞

|y(x)| =
√

2c

(see Fig. 1).

Lemma 2.5 implies

Corollary 2.6. The equilibrium point E of system (2.1) is a center.

If we consider the velocity vc(x, y) of a point moving along the closed orbit {Oc} at the point (xc, 0),
then we get from (2.1)

v2c (xc, 0) =
x2c

(1 + x2c)
3
. (2.4)

From (2.2) we obtain

x2c =
1− c2

c2
. (2.5)

By (2.4) and (2.5) we have
v2c (xc, 0) = c4(1− c2).

Therefore, it holds
v2c (xc, 0)→ 0 as c→ 0
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and we expect that O0 is a heteroclinic cycle. To give an answer to this conjecture we have to study
the equilibria of system (2.1) at infinity. For this purpose we apply transformations mapping the phase
plane onto planes tangent to the Poincaré sphere at the equator. By means of the transformation

x =
v

z
, y =

1

z

we can study the existence of equilibria on the equator located at the “ends” of the y-axis. We obtain
the system

dz

dt
=

z4v
√
z2 + v2

3 ,

dv

dt
= 1 +

v2z3
√
z2 + v2

3 .

(2.6)

From (2.6) we get immediately

Lemma 2.7. There is no equilibrium of system (2.1) at infinity located on the equator of the Poincaré
sphere at the ”ends” of the y-axis.

Using the transformation

x =
1

z
, y =

u

z

we are looking for equilibria located on the equator of the Poincaré sphere not located at the “ends” of
the y-axis. We obtain the system

du

dt
= − z3
√
z2 + 1

3 − u
2,

dz

dt
= −uz

(2.7)

having the unique equilibrium point u = z = 0 which is represented in the Poincaré disc as the
equilibrium point E−1 (see Fig. 2). We note that this equilibrium point coincides with the equilibrium
point E+1. The existence of a unique equilibrium point at infinity implies that the orbit O0 is a homoclinic
orbit and not a heteroclinic orbit as expected.
Taking into account our qualitative results described in Lemma 2.5 we get the following result:

Theorem 2.8. The orbits {Oc} of system (2.3) defined for c ≥ −1 represent in the Poincaré disc

� for c = −1 the equilibrium point E at the origin,

� for −1 < c < 0 closed orbits with finite period,

� for c ≥ 0 homoclinic orbits to the unique equilibrium point at infinity.

The corresponding global phase portrait of system (2.1) is represented in Fig. 2.

In the following section we study the closed orbits of the family Oc which are periodic solutions. Espe-
cially, we are interested in the dependence of the primitive period on the amplitude.
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Figure 2: Global phase portrait of system (2.1) in the Poincaré disc

3 Periodic orbits and their period

We denote by Γa the orbit of system (2.1) passing the point (x = a, y = 0). Without loss of generality
we may assume a ≥ 0. Γa has the representation

Γa :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
+

1√
1 + a2

= 0

}
. (3.1)

From (3.1) it follows that Γa is a closed orbit for any a, 0 < a < +∞. Since the parameter a
can be interpreted as the amplitude of the closed orbit Γa, we can conclude that the point charge
oscillator (2.1) has to any amplitude a unique periodic solution. But from the property that the function

x/
√

1 + x2
3

arising in equation (1.1) does not tend to +∞ as |x| tend to +∞, we cannot conclude
that the family of closed orbits {Γa}a≥0 covers the full phase plane.
For the sequel we denote by Ta the (positive) primitive period of Γa. By the symmetry properties of
the closed orbit Γa, for the determination of Ta it is sufficient to calculate the time for running along the
part of Γa located in the positive orthant. Using the relation dt = dx/y in (2.1) and the representation
of Γa

Γa :=

{
(x, y) ∈ R2 : y =

√
2

√
1√

1 + x2
− 1√

1 + a2

}
(3.2)

which follows from (3.1), we get

Lemma 3.1.

Ta =
4√
2

∫ a

0

dx√
1√

1+x2
− 1√

1+a2

= 2
√

2a

∫ 1

0

ds√
1√

1+a2s2
− 1√

1+a2

. (3.3)

Taking into account the relations∫ 1

0

ds√
1√

1+a2s2
− 1√

1+a2

=
√
a

∫ 1

0

ds√
1√

1/a2+s2
− 1√

1/a2+1

and

lim
a→∞

∫ 1

0

ds√
1√

1/a2+s2
− 1√

1/a2+1

=

∫ 1

0

√
s

1− s
ds = 2

we obtain the result:
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Lemma 3.2. The primitive period Ta satisfies the relation

Ta = O(a
√
a) as a→∞.

From Lemma 3.2 we get

Corollary 3.3. The origin is not an isochronous center of system (2.1).

Another representation of the period can be obtained as follows. We denote by Γb the trajectory of
system (2.1) passing the point (0, b). Without loss of generality we may assume b ≥ 0. From (2.2) we
obtain for Γb the representation

Γb :=

{
(x, y) ∈ R2 :

y2

2
− 1√

1 + x2
+ 1− b2

2
= 0

}
. (3.4)

The expression (3.4) implies that Γb is a closed orbit as long as b satisfies 0 < b2 < 2. Since the
parameter b can be interpreted as the maximum velocity on the closed orbit Γb, we can conclude that√

2 is the maximum velocity on all periodic solutions of (2.1). Taking into account that the closed orbit

Γa intersects the positive y-axis at the point
(

0,
√

2(1− 1√
1+a2

)
)

, we can conclude that the closed

orbits Γa and Γb coincide if it holds

b = b̃(a) :=

√
2

(
1− 1√

1 + a2

)
for a > 0, (3.5)

which is equivalent to

a = ã(b) :=

√
4− (2− b2)2

2− b2
for 1 < b2 < 2.

For the determination of the (positive) primitive period T b of Γb we can restrict ourselves to the part of
Γb located in the positive orthant. For its representation we use the relation

x =

√
4− (y2 − b2 + 2)2

y2 − b2 + 2
=: f(y, b) (3.6)

which follows from (3.4). According to (2.1) and (3.6) we have

−
√

1 + f(y, b)2
3

f(y, b)
dy = dt. (3.7)

Taking into account the relation√
1 + f(y, b)2

3

f(y, b)
=

8

(y2 − b2 + 2)2
√

4− (y2 − b2 + 2)2

we get from (3.7)

T b = 32b

∫ 1

0

ds

(y2 − b2 + 2)2
√

4− (b2s2 − b2 + 2)2
. (3.8)

The advantage of this representation of the period of the closed curves of system (2.1) consists in the
fact that the right hand side of (3.8) is an elliptic integral. In the following section we derive an explicit
expression for T b by means of the Jacobi elliptic functions cn.
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4 Analytic relation between amplitude and period of the point
charge oscillations by using Jacobi’s elliptic function cn

The expression (3.8) for T b can be rewritten in the form

T b = 32b

∫ 1

0

ds

(b2s2 − b2 + 2)2
√

4− (b2s2 − b2 + 2)2

=
32

b5

∫ 1

0

ds

(s2 + 2−b2
b2

)2
√

(4−b
2

b2
+ s2)(1− s2)

.
(4.1)

In [4] we find on page 49 in the relation (213.13) the formula∫ β

γ

R(s2)ds√
α2 + s2)(β2 − s2)

= g

∫ u1

0

R(β2cn2u)du, (4.2)

whereR is any rational function, cn is one of the three Jacobi’s elliptic functions sn, cn and dn, β and
γ are constants satisfying β > γ ≥ 0, g and u1 are defined by the relations

g =
1√

α2 + β2
, u1 = F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2sin2θ

, (4.3)

where

ϕ = arccos(γ/β), k2 =
β2

α2 + β2
. (4.4)

It is clear that the integral in (4.1) is a special case of the integral (4.2). From (4.1) - (4.3) we get

γ = 0, β = 1, α2 =
4− b2

b2
, R(s2) =

1

(s2 + 2−b2
b2

)2
,

g =
b√

4− b2
, k =

b

2
, ϕ = arccos 0 =

π

2
u1 = F (

π

2
, k),

(4.5)

where F (π
2
, k) coincides with the complete elliptic integral of the first kind K(k) introduced in (1.3).

From (4.1), (4.2) and (4.5) we obtain the representation

T b =
32

b4
√

4− b2

∫ K(b/2)

0

du

(cn2u+ 2−b2
b2

)2
.

Using the relation (3.5), we arrive at the result:

Theorem 4.1. To given a, 0 < a < +∞, the closed orbit Γa with the amplitude a has the primitive
period

Ta =
32

(b̃(a))4
√

4− (b̃(a))2

∫ K(b̃(a)/2)

0

du(
cn2u+ 2−(b̃(a))2

(b̃(a))2

)2 ,
where the functions b̃ and K are defined in (3.5) and (1.3), respectively.
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5 Conclusions

The global phase portrait of system (2.1) implies that the closed orbits Oc describing the point charge
oscillations tend to a homoclinic orbit as c tends to 0. Thus, the period Ta of the corresponding oscil-
lation with the amplitude a grows unboundedly as a tends to∞. By means of analytical investigations
we are able to determine the growth rate of Ta as a tends to∞ and to derive an exact relation between
the period Ta and the corresponding amplitude a using the Jacobi elliptic function cn.
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