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Pressure-induced locking in mixed methods for time-dependent
(Navier–)Stokes equations

Alexander Linke, Leo G. Rebholz

Abstract

We consider inf-sup stable mixed methods for the time-dependent incompressible Stokes and
Navier–Stokes equations, extending earlier work on the steady (Navier-)Stokes Problem. A lock-
ing phenomenon is identified for classical inf-sup stable methods like the Taylor-Hood or the
Crouzeix-Raviart elements by a novel, elegant and simple numerical analysis and correspond-
ing numerical experiments, whenever the momentum balance is dominated by forces of a gradi-
ent type. More precisely, a reduction of the L2 convergence order for high order methods, and
even a complete stall of the L2 convergence order for lowest-order methods on preasymptotic
meshes is predicted by the analysis and practically observed. On the other hand, it is also shown
that (structure-preserving) pressure-robust mixed methods do not suffer from this locking phe-
nomenon, even if they are of lowest-order. A connection to well-balanced schemes for (vectorial)
hyperbolic conservation laws like the shallow water or the compressible Euler equations is made.

1 Introduction

We consider inf-sup stable mixed methods for the time-dependent incompressible Stokes and Navier–
Stokes equations, extending earlier work on the steady (Navier–)Stokes problem [7]. A locking phe-
nomenon is identified for classical inf-sup stable methods like the Taylor–Hood or the Crouzeix–Raviart
elements by a novel, elegant and simple numerical analysis and corresponding numerical experi-
ments, whenever the momentum balance is dominated by forces of a gradient type. More precisely, a
reduction of the L2 convergence order for high order methods, and even a complete stall of the L2 con-
vergence order for lowest-order methods on preasymptotic meshes is predicted by the analysis and
practically observed. On the other hand, it is also shown that (structure-preserving) pressure-robust
mixed methods do not suffer from this locking phenomenon, even if they are of lowest-order.

The short note contributes to the recent scholarly debate on the accuracy of low-order structure-
preserving space discretizations, e.g. with respect to the treatment of gradient fields in the momen-
tum balance by well-balanced schemes for the shallow water or compressible Euler equations, and
the accuracy of (non-structure-preserving) high-order space discretizations [5]. It demonstrates that
the structure-preserving, well-balanced property can be achieved in our setting, if certain discretely
divergence-free velocity test functions are even weakly divergence-free in the sense of L2 [7] — with-
out needing to know the exact form of the equilibrium solution, which is a typical disadvantage of well-
balanced schemes for hyperbolic conservation laws [5]. Thus, the short note builds a bridge between
inf-sup stable mixed finite elements for the Navier–Stokes (NS) equations and well-balanced schemes
for hyperbolic conservation laws, which have traditionally not too much exchange of knowledge.
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2 Time dependent Stokes and the finite element space discretiza-
tion

Consider the time-dependent incompressible Stokes equations with homogoneous Dirichlet boundary
conditions in (0, T ]× Ω: find (u, p) satisfying

ut − ν∆u +∇p = f ,

∇ · u = 0,
(1)

with pressure assumed to be normalized, and the divergence-free initial value is prescribed asu(0,x) =
u0(x). For simplicity, the domain Ω is assumed as convex to guarantee elliptic regularity. Further, the
discussion is restricted to smooth solutions (u, p).

We denote the L2(Ω) inner product by (·, ·), the Hk(Ω) norm by ‖ · ‖k, and assume that conforming
finite element velocity-pressure spaces (Vh, Qh) satisfy the Babuska–Brezzi condition [2] (extension
of our analysis to stable nonconforming methods is straight-forward but requires significant extra nota-
tion). The discretely divergence free velocity space is defined by V0

h := {vh ∈ Vh, (∇ · vh, qh) =
0 ∀qh ∈ Qh}.
The standard finite element spatial discretization on shape-regular triangulations is given as follows:
for all t ∈ (0, T ] search for (uh, ph) ∈ (Vh, Qh) such that

(u̇h,vh)− ν(∇uh,∇vh)− (ph,∇ · vh) + (∇ · uh, qh) = (f ,vh), (2)

for all (vh, qh) ∈ (Vh, Qh). The discrete initial value is prescribed as uh(0) := Ph(u0), where Ph is
a discrete Helmholtz–Hodge projection [7] into the discretely divergence-free space, defined by: Given
w ∈ L2(Ω), Ph(w) ∈ V0

h satisfies

(Ph(w),vh) = (w,vh) ∀vh ∈ V0
h.

We will also utilize a H1
0(Ω) projection onto V0

h, which is called the discrete Stokes projection, and is
denoted Sh and defined by: Given w ∈ H1(Ω), find Sh(w) ∈ V0

h satisfying

(∇Sh(w),∇vh) = (∇w,∇vh) ∀vh ∈ V0
h.

We note that due to the elliptic regularity, i.e., the convexity of the domain Ω, and due to the Babuska–
Brezzi condition both Ph and Sh have optimal approximation properties on divergence-free vector
fields in both the L2 and the H1 norms [1].

3 A new a-priori error analysis for flows with gradient-dominated
momentum balances

We now present a new a-priori error analysis that reveals precisely how locking and suboptimal conver-
gence can occur in flows where gradient forces dominate the momentum balance (e.g. when ν � 1).
To begin the analysis, for the discrete velocity solution uh, we make the ansatz uh := eh + Ph(u),
since we will derive a supercloseness result. Note that it holds eh ∈ V0

h. Testing (2) by eh yields

(u̇h, eh) + ν(∇uh,∇eh) = (f , eh)

= (ut − ν∆u +∇p, eh)
= (Ph(ut), eh) + ν(∇Sh(u),∇eh) + (Ph(∇p), eh).
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Exploiting (Ph(ut), eh) =
(

d
dt
Ph(u), eh

)
, and uh = eh + Ph(u), we obtain

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 = ν(∇(Sh(u)− Ph(u)),∇eh) + (Ph(∇p), eh).

Now using Cauchy–Schwarz and Young inequalities for the first right hand side term, we estimate

d

dt
‖eh‖20 + ν‖∇eh‖20 ≤ ν‖∇(Sh(u)− Ph(u))‖20 + 2(Ph(∇p), eh). (3)

It is fundamental to observe that pressure-robust and classical mixed methods differ qualitatively in
how the term (∇p, eh) can be treated. Even though it holds for the continuous Helmholtz–Hodge pro-
jector P(∇p) = 0, i.e., the divergence-free part of∇p vanishes exactly [7], the expression (∇p, eh)
may represent a certain consistency error of an appropriate discrete Helmholtz–Hodge projector for
non-pressure-robust (i.e., non structure-preserving) space discretizations [7]. Since∇p balances the
sum of all gradient parts in f −ut + ν∆u in the sense of the Helmholtz–Hodge decomposition, differ-
ent behaviors of different space discretizations reflect their ability to deal with dominant gradient fields
in the momentum balance, bulding a connection to certain well-balanced schemes for (vector-valued)
hyperbolic conservation laws [5]. Note that ‖∇(Sh(u) − Ph(u))‖L2 converges to 0 with the optimal
rate for an H1 norm.

We consider below the two cases separately: the pressure-robust case (here, divergence-free Scott–
Vogelius elements) for which it holds

(∇p, eh) = −(p,∇ · eh) = 0, (4)

and the non-pressure-robust case. We consider the pressure-robust case first, and combining (4) with
(3) immediately implies the following result.

Theorem 1. For conforming, pressure-robust, inf-sup stable space discretizations (2) of (1), it holds
for all T > 0

‖eh(T )‖20 + ν‖∇eh‖2L2((0,T );L2)
≤ ν‖∇(S(u)− Ph(u))‖2L2((0,T );L2)

.

Remark 1. Theorem 1 reveals a remarkable robustness of pressure-robust space discretizations with
respect to small viscosities ν � 1. Indeed, for ν → 0 and for all 0 < t < T one obtains that uh(t)→
Ph(u)(t), i.e., for smaller and smaller viscosities, uh(t) converges to the (discretely divergence-free)
best approximation of u(t, ·) in the L2 sense, yielding optimal L2 convergence on preasymptotic
meshes. Moreover, for fixed ν the error ‖∇eh‖2L2((0,T );L2)

will converge optimally on resolved meshes,

leading to optimal L2 convergence by duality.

For the case of non-pressure-robust inf-sup stable discretizations, which includes the Taylor–Hood
element, the term (Ph(∇p), eh) can only be estimated. Standard estimates for the time-dependent
Stokes problem apply a discrete H−1 estimate

(∇p, eh) = −(p,∇ · eh) = −(p− πh(p),∇ · eh) ≤ ‖p− πh(p)‖0 · ‖∇eh‖0,

where πh(p) denotes the L2 best approximation of the pressure p in the discrete pressure space.
While this term goes to zero with the optimal (pressure) convergence rate in L2, one can reasonably
bound this term in the time-dependent setting only by something like

‖p− πh(p)‖0 · ‖∇eh‖0 ≤
1

ν
‖p− πh(p)‖20 + ν‖∇eh‖20, (5)
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in order to hide it in the left hand side of (3). However, such a standard estimate can be terribly
pessimistic for small viscosities ν � 1.

In order to derive a sharper estimate in the case of finite time intervals (0, T ] and small viscosities
ν, we will now estimate the term (Ph(∇p), eh) directly in L2. Therefore, we will assume that the
discrete pressureQh space contains aH1-conforming subspace, which is elementwise at least affine.
Denoting the Langrange interpolation in this discrete pressure space by Lh, it holds

(∇p, eh) = (∇p−∇Lhp, eh) ≤ ‖∇(p− Lhp)‖0 · ‖eh‖0,

since eh is discretely divergence-free. Now, this term can be estimated by

(∇p, eh) ≤
T

2
‖∇p−∇(Lhp)‖20 +

1

2T
‖eh‖20.

Combining this with the above estimates, we obtain

d

dt
‖eh‖20 + ν‖∇eh‖20 ≤ ν‖∇(Sh(u)− Ph(u))‖20 + T‖∇(p− Lhp)‖20 +

1

T
‖eh‖20, (6)

which is amenable for the Gronwall inequality, because only the (harmless) exponential term
exp

∫ t
0

1
T
ds ≤ e will arise from an application of the inequality. We have proven the following result.

Theorem 2. For conforming, inf-sup stable space discretizations (2) of (1), it holds for all T > 0

‖eh(T )‖20 + ν‖∇eh‖2L2((0,T );L2)
≤ eν‖∇(S(u)− Ph(u))‖2L2((0,T );L2)

+ eT‖∇(p− Lhp)‖20.

Remark 2. For small ν � 1 and a fixed time interval (0, T ] one gets now an L2 convergence
order for the discrete velocities equal to the approximation order of the discrete pressure space (or
appropriate subspace) in the H1 (!) norm. i) Therefore, one does not get any convergence order
for elements with P0 discrete pressures such as in the Bernardi–Raugel or Crouzeix–Raviart finite
element methods. Then, the classical estimate (5) shows merely some asymptotic convergence rates
for very fine meshes. ii) For the Taylor–Hood element this estimate predicts a (suboptimal) first-order
convergence in the L2 norm, losing two orders of convergence. iii) For the mini element one loses one
order of convergence in L2, since it approximates velocities with first order in the H1 norm and the
discrete pressures with second order in the L2 norm.

Thus, classical (i.e. non-pressure-robust) inf-sup stable mixed methods for incompressible flows re-
quire high-order discrete pressure (!) approximations, in order to get accurate (although still subop-
timal) discrete velocities, since the discrete Helmholtz–Hodge projector Ph(∇p) of classical mixed
methods does not exactly vanish and couples pressure and velocity errors via the pressure-dependent
(!) definition of the space of discretely divergence-free vector field V0

h. Similarly, the authors of [5] ar-
gue that well-balanced schemes allow to reduce the approximation order of the space discretization
in hyperbolic conservation laws.

4 Numerical Experiments

We give results here for two numerical tests: time dependent Stokes approximation of a problem with
known analytical solution, and time dependent NS approximation of the Chorin vortex decay problem.
In both tests we use small and large viscosity, and varying element choices. For ν = 1 we observe the
expected optimal convergence, but when ν � 1 we observe precisely the behavior predicted by our
(time dependent Stokes) analysis: pressure-robust methods converge optimally, while non-pressure-
robust methods converge suboptimally or even lock.
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4.1 Suboptimal convergence and locking when ν � 1

TH (P2, P1) SV (P2, P disc1 ) Mini (P b1 , P1) CR (Pnc1 , P0)
ν h ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate
1 1/8 1.260e-4 - 9.064e-5 - 5.655e-3 - 3.039e-3 -
1 1/16 1.532e-5 3.00 1.134e-5 3.00 1.409e-3 2.00 1.317e-3 1.21
1 1/32 1.891e-6 3.00 1.418e-6 3.00 3.517e-4 2.00 4.188e-4 1.65
1 1/64 2.354e-7 3.00 1.772e-7 3.00 8.787e-5 2.00 1.111e-4 1.92
1 1/128 2.938e-8 2.99 2.229e-8 2.99 2.196e-5 2.00 2.835e-5 1.97

TH (P2, P1) SV (P2, P disc1 ) Mini (P b1 , P1) CR (Pnc1 , P0)
ν h ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate

10−6 1/8 1.062e-3 - 9.046e-5 - 5.448e-3 - 5.294e-3 -
10−6 1/16 5.566e-4 0.93 1.132e-5 3.00 1.427e-3 1.93 5.074e-3 0.06
10−6 1/32 2.822e-4 0.98 1.417e-6 3.00 4.176e-4 1.77 5.106e-3 -0.01
10−6 1/64 1.416e-4 0.99 1.772e-7 3.00 1.508e-4 1.47 5.126e-3 0.01
10−6 1/128 7.079e-5 1.00 2.215e-8 3.00 6.615e-5 1.19 5.135e-3 0.00

Table 1: L2 velocity errors and rates for the Stokes test problem with ν = 1 (top) and ν = 10−6

(bottom).

The first test we consider is on Ω = (0, 1)2, with analytical solution

u(x, y, t) = 〈cos(y), sin(x)〉T (1 + t), p(x, y, t) = sin(x+ y).

The forcing function f is calculated from (1) for a given ν, and inhomogeneous Dirichlet boundary
conditions are enforced nodally. To illustrate our theory, we compute on successively refined uniform
triangular meshes that are additionally refined with an Alfeld split [4], and compute with (P2, P1)
Taylor–Hood (TH), (P2, P

disc
1 ) Scott–Vogelius (SV), (Pbub

1 , P1) mini, and (Pnc
1 , P0) Crouzeix–Raviart

(CR) elements. To isolate the spatial error, we use BDF3 time stepping with ∆t =1e-3 and end time of
T = 0.01 (using initial conditions taken to be the nodal interpolant of the true solution at 0, ∆t, 2∆t).

For each element choice, L2 velocity errors and rates are computed for two viscosities, ν = 1 and
ν = 10−6, see table 1. For ν = 1, we observe optimal convergence for all elements as predicted by
the classical theory [6]. However, we observe very different behavior with ν = 10−6. Here, only the
pressure-robust Scott–Vogelius elements provide optimal convergence, and all other element choices
lose one (mini element) or two convergence orders on preasymptotic meshes, as is predicted by our
novel analysis above.

4.2 Chorin vortex decay for time dependent Navier-Stokes

For a second test, we choose the Chorin problem for incompressible NS [3]. Although our analysis is
for time dependent Stokes, NS is still relevant since the same kind of dominant pressure term exists
(however an analysis would be more complex due to the nonlinear term), since the Chorin problem is
a so-called Beltrami flow, i.e., here the nonlinear term (u · ∇)u = 1

2
∇(|u|2) is a gradient balanced

by the pressure gradient. The domain is taken to be the unit square Ω = (0, 1)× (0, 1), and the true
NSE solution is taken to be

u(x, y, t) = 〈− cos(nπx) sin(nπy), sin(nπx) cos(nπy)〉T e−2n2π2νt, p(x, y, t) = −
1

4
(cos(2nπx) + cos(2nπy))e−2n2π2νt,

with n = 2. This system is an exact solution to the incompressible NS equations with forcing f = 0
and u0 = 〈u1(x, y, 0), u2(x, y, 0)〉T . We use the same spatial and temporal discretizations as in the
first example, and again test with ν = 1 and ν = 10−6. Inhomogenous Dirichlet boundary conditions
are enforced nodally.

Results for this test are shown in table 2, and we observe very similar results to the Stokes test problem
above. For large ν, all tests show optimal convergence. For ν = 10−6, SV error appears to converge
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with second order, while CR error locks, and both mini and TH element solutions converge with just
first order.

TH (P2, P1) SV (P2, P disc1 ) Mini (P b1 , P1) CR (Pnc1 , P0)
ν h ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate
1 1/8 1.751e-2 - 4.696e-2 - 2.004e-1 - 5.956e-2 -
1 1/16 2.203e-2 2.99 6.475e-3 2.85 7.683e-2 1.38 1.607e-2 1.89
1 1/32 2.846e-4 2.96 8.423e-4 2.94 2.175e-2 1.82 4.094e-3 1.97
1 1/64 3.634e-5 2.97 1.063e-4 2.99 5.594e-3 1.96 1.031e-3 1.99
1 1/128 4.572e-6 2.99 1.451e-5 2.87 1.401e-3 2.00 2.610e-4 1.98

TH (P2, P1) SV (P2, P disc1 ) Mini (P b1 , P1) CR (Pnc1 , P0)
ν h ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate ‖(u− uh)(T )‖0 Rate

10−6 1/8 2.470e-2 - 7.242e-2 - 1.310e-1 - 9.357e-2 -
10−6 1/16 8.441e-3 1.55 1.083e-2 2.74 3.792e-2 1.81 2.920e-2 1.68
10−6 1/32 3.899e-3 1.11 1.682e-3 2.69 1.077e-2 1.79 1.836e-2 0.67
10−6 1/64 1.879e-3 1.05 2.677e-4 2.65 3.555e-3 1.60 1.753e-2 0.07
10−6 1/128 8.481e-4 1.15 5.004e-5 2.42 1.416e-3 1.33 1.759e-2 0.00

Table 2: L2 velocity errors and rates for the Chorin test with ν = 1 (top) and ν = 10−6 (bottom).

5 Conclusions

While it is well known that ‘optimal’ theoretical convergence rates are often not observed when ν � 1
except on very fine meshes, little seems known about how error behaves on computable meshes. We
gave herein a new and sharp numerical analysis for the L2 velocity error in the time-dependent Stokes
equations, emphasizing the role gradient forces for the error evolution. In particular, two cases arise: if
classical (non-pressure-robust) elements are used, suboptimal convergence (by two orders for TH-like
element families, or one order by equal-order elements) and locking will occur, but if pressure-robust
elements are used, optimal L2 convergence can be maintained. Note that no a-priori knowledge of
the equilibrium solution is required, which is a typical disadvantage of well-balanced schemes for hy-
perbolic conservation laws [5]; the L2-orthogonality of certain velocity test functions against arbitrary
gradient fields suffices [7].
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DMS 1522191.
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