
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Optimal stopping via deeply boosted backward regression

Denis Belomestny1, John G. M. Schoenmakers2, Vladimir Spokoiny2, Yuri Tavyrikov3

submitted: August 9, 2018

1 Duisburg-Essen University
Thea-Leymann-Str. 9
45127 Essen
Germany
E-Mail: denis.belomestny@uni-due.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: john.schoenmakers@wias-berlin.de

vladimir.spokoiny@wias-berlin.de

3 Higher School of Economics
Moscow
Russia
E-Mail: tavyrikov@gmail.com

No. 2530

Berlin 2018

2010 Mathematics Subject Classification. 60G40, 65C05, 62J02.

Key words and phrases. Optimal stopping, nonlinear regression, deep learning.

J. S. and V. S. acknowledge support by Research Center MATHEON “Mathematics for Key Technologies” in Berlin.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Optimal stopping via deeply boosted backward regression
Denis Belomestny, John G. M. Schoenmakers, Vladimir Spokoiny, Yuri Tavyrikov

Abstract

In this note we propose a new approach towards solving numerically optimal stopping prob-
lems via boosted regression based Monte Carlo algorithms. The main idea of the method is to
boost standard linear regression algorithms in each backward induction step by adding new ba-
sis functions based on previously estimated continuation values. The proposed methodology is
illustrated by several numerical examples from finance.

1 Introduction

An optimal stopping problem, in finance virtually synonym with the pricing problem of an American
style derivative, can be efficiently solved in low dimensions, for instance by tree methods or using
deterministic numerical methods for the corresponding partial differential equation. However, many
American options in practice (see e.g. [7]) involve high dimensional underlying processes and this
made it necessary to develop Monte Carlo methods for pricing such options. Pricing American deriva-
tives, hence solving optimal stopping problems via Monte Carlo is a challenging task, because this
typically requires backward dynamic programming that for long time was thought to be incompatible
with forward structure of the Monte Carlo methods. In recent years much research was focused on the
development of efficient methods to compute approximations to the value functions or optimal exercise
policy. Eminent examples include the functional optimization approach of [1], the mesh method of [4],
the regression-based approaches of [5], [8], [9], [6] and [3]. The most popular type of algorithms are
with no doubt the regression ones. In fact, in many practical pricing problems, the low-degree polyno-
mials are typically used for regression (see [7]). The resulting least squares problem has a relatively
small number of unknown parameters. However, this approach has an important disadvantage - it may
exhibit too little flexibility for modeling highly non-linear behaviour of the exercise boundary. Higher-
degree polynomials can be used, but they may contain too many parameters and, therefore, either
over-fit the Monte Carlo sample or prohibit parameter estimation because the number of parameters
is too large. One possible approach for controlling the complexity of a regression model is subset se-
lection. The goal of subset selection is to find a subset, from a fixed full predetermined dictionary of
basis functions, that corresponds to a model of the best predictive performance. Before performing the
actual subset selection, one must first predefine the dictionary that will provide the basis functions for
model generation. This is usually done by setting the maximum degree of a full polynomial and taking
the set of its basis functions. By using subset selection, one implicitly assumes that the predefined
fixed finite dictionary of basis functions contains a subset that is sufficient for a model to describe the
target relation sufficiently well. The problem is that generally the required maximum degree is unknown
beforehand and, since it may differ from one backward step to another, it needs to be either guessed
or found by additional meta-search over the whole subset selection process.

In this paper a regression based Monte Carlo approach is developed for building sparse regression
models at each backward step of the dynamic programming algorithm. This enables estimating the

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



D. Belomestny, J. G. M. Schoenmakers, V. Spokoiny, Y. Tavyrikov 2

value function with virtually the same cost as the standard regression algorithms based on low degree
polinomials but with higher precision. The additional basis functions are constructed specifically for
the optimal stopping problem at hand without using a fixed predefined finite dictionary. Specifically, the
new basis functions are learned during the backward induction via incorporating information from the
preceding backward induction step. Our algorithm may be viewed as a method of constructing sparse
nonlinear approximations of the underlying value function and in this sense it extends the literature on
deep learning type algorithms for optimal stopping problems, see, for example, the recent paper [2]
and references therein.

The structure of the paper is as follows. After recalling basic facts on American options and settling the
main setup in Section 2, the boosting procedure is presented in Section 3. The numerical performance
is studied in Section 4.

2 Main setup

An American option grants its holder the right to select the time at which she exercises the option,
i.e calls a pre-specified reward or cash-flow. This is in contrast to a European option that may be
exercised only at a fixed date. A general class of American option pricing problems, i.e. optimal stop-
ping problems respectively, can be formulated with respect to an underlying Rd-valued Markov pro-
cess {Xt, 0 ≤ t ≤ T} defined on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P). The process
(Xt) is assumed to be adapted to a filtration (Ft)0≤t≤T in the sense that each Xt is Ft measur-
able. Recall that each Ft is a σ -algebra of subsets of Ω such that Fs ⊆ Ft ⊆: F for s ≤ t.
Henceforth we restrict our selves to the case where only a finite number of exercise opportunities
0 < t1 < t2 < . . . < tJ = T are allowed (the Bermudan case in financial terms, where for
notational convenience exercise at t0 := 0 is excluded). (In this respect it should be noted that a
continuous exercise (American) option can be approximated by such a Bermudan option with arbitrary
accuracy, and so this is not a huge restriction). We now consider the pre-specified reward gj(Zj) in
terms of the Markov chain

Zj := Xtj , j = 1, . . . ,J ,
for some given functions g1, . . . , gJ mapping Rd into [0,∞). In a financial context we may and
will assume that the reward gj(Zj) is expressed in units of some (tradable) pricing numéraire that
has initial value 1 Euro, say. That is, if exercised at time tj, j = 1, . . . ,J , the option pays cash
equivalent with gj(Zj) units of the numéraire. Let Tj denote the set of stopping times taking values in
{j, j + 1, . . . ,J }. A standard result in the theory of contingent claims states that a fair price Vj(x)
of the Bermudan option at time tj in state x, given that the option was not exercised prior to tj , is its
value under the optimal exercise policy,

Vj(x) = sup
τ∈Tj

E[gτ (Zτ )|Zj = x], x ∈ Rd, (1)

due to a corresponding martingale measure, hence the solution to an optimal stopping problem. In
(1) we have to read T0 := T1 for j = 0. Note that any tradable expressed in units of the numéraire
is a martingale under this measure. A common feature of many approximation algorithms is that they
deliver estimates CN,1(x), . . . , CN,J−1(x) for the so-called continuation values:

Cj(x) := E[Vj+1(Zj+1)|Zj = x], j = 1, . . . ,J − 1. (2)

Here the index N indicates that the above estimates are based on a set of N independent “training”
trajectories

(Z
(i)
1 , . . . , Z

(i)
J ), i = 1, . . . , N, (3)

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



Optimal stopping via deeply boosted backward regression 3

all starting from one point. In the case of the so-called regression methods, the estimates for (1) and
(2) are obtained via the Dynamic Programming Principle:

VJ (x) = gJ (x), CJ (x) = 0, (4)

Cj(x) = E[Vj+1(Zj+1)|Zj = x], 1 ≤ j < J ,
Vj(x) = max (gj(x), Cj(x)) , 1 ≤ j ≤ J ,

combined with Monte Carlo. These regression algorithms can be described as follows. Suppose that
for some 1 ≤ j < J , an estimate CN,j+1(x) for Cj+1(x) is already constructed. Then in the jth
step one needs to estimate the conditional expectation

E[VN,j+1(Zj+1))|Zj = x], (5)

where VN,j+1(x) = max (gj+1(x), CN,j+1(x)) . This can be done by performing regression (linear
or nonlinear) on the set of paths

(Z
(i)
j , VN,j+1(Z

(i)
j+1)), i = 1, . . . , N.

The whole backward procedure is trivially initialized by setting CN,J (x) = 0. Given the estimates
CN,1(x), . . . , CN,J−1(x), we next may construct a lower bound (low biased estimate) for V0 using
the (generally suboptimal) stopping rule:

τN = min
{

1 ≤ j ≤ J : gj(Zj) ≥ CN,j(Zj)
}
,

with CN,J ≡ 0 by definition. Indeed, fix a natural number Ntest and simulate Ntest new independent
trajectories of the process Z. A low-biased estimate for V0 can be then defined as

V Ntest,N
0 =

1

Ntest

Ntest∑
r=1

g
τ
(r)
N

(
Z

(r)

τ
(r)
k

)
(6)

with
τ
(r)
N = inf

{
1 ≤ j ≤ J : gj(Z

(r)
j ) ≥ CN,j(Z

(r)
j )
}
. (7)

3 Adaptive regression algorithms

In this section we outline our methodology for estimating the solution to (1) at time t = 0, based
on a set of training trajectories (3). In this respect, as a novel ingredient, we will boost the standard
regression procedures by learning and incorporating new basis functions on the backward fly. As a
canonical example one may consider the incorporation of VN,j as a basis function in the regression
step of estimating Cj−1. Other possibilities are, for example, certain (spatial) derivatives of Vj, or
functions directly related to the underlying exercise boundary at time j, for example 1{gj−CN,j}. In

general one may choose a (typically small) number of suitable boosting basis functions at each step.

3.1 Enhancing basis on the fly

Let us suppose that we have at hand some fixed and a computationally cheep system of basis func-
tions (ψ1(x), . . . , ψK(x)) . We now extend this basis at each backward regression step j − 1 with
an additional and sparse set of new functions vN,j−11 , . . . , vN,j−1b that are constructed in the preced-
ing backward step j, on the given training paths. The main idea is that the so boosted basis delivers
more accurate regression estimateCN,j−1 of the continuation functionCj−1, compared to the original
basis, and at the same time remains cheap.

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



D. Belomestny, J. G. M. Schoenmakers, V. Spokoiny, Y. Tavyrikov 4

3.2 Backward boosted regression algorithm

Based on the training sample (3), we propose a boosted backward algorithm that in pseudo-algorithmic
terms works as follows.

At time J we initialize as CN,J (x) = 0. Suppose that for j < J , CN,j is already constructed in the
form

CN,j(x) =
K∑
k=1

γN,jk ψk(x) +
b∑

k=1

γN,jk+Kν
N,j
k (x) for some γN,j ∈ RK+b.

For going from j > 0 down to j − 1, define the new boosted regression basis via

ΨN,j−1(x) :=
(
ψ1(x), . . . , ψK(x), νN,j−11 (x), . . . , νN,j−1b (x)

)
(8)

(as a row vector) due to a choice of the set of functions (νN,j−11 , . . . , νN,j−1b ) based on the previously
estimated continuation value CN,j . For example, we might take b = 2 and consider functions of the
form

νN,j−11 (x) = max(gj(x), CN,j(x)), νN,j−12 (x) = 1{gj(x)−CN,j(x)>0}. (9)

Then consider the N × (K + b) design matrixMj−1 with entries.

Mj−1
mk := ΨN,j−1

k (Z
(m)
j−1), m = 1, . . . , N, k = 1, . . . , K + b, (10)

and the (column) vector

Vj =
(
VN,j(Z

(1)
j ), . . . , VN,j(Z

(N)
j )

)>
(11)

=
(

max(gj(Z
(1)
j ), CN,j(Z

(1)
j )), . . . ,max(gj(Z

(N)
j ), CN,j(Z

(N)
j ))

)>
.

Next compute and store

γN,j−1 :=
((
Mj−1)>Mj−1

)−1 (
Mj−1)> Vj, (12)

and then set

CN,j−1(x) = ΨN,j−1(x)γN,j−1 (13)

=
K∑
k=1

γN,j−1k ψk(x) +
b∑

k=1

γN,j−1k+K νN,j−1k (x).

3.3 Spelling out the algorithm

Let us spell out the above pseudo-algorithm under the choice (9) of boosting functions in more details.
In a pre-computation step we first generate and save for m = 1, . . . , N, the values

ψk(Z
(m)
j ), gi(Z

(m)
j ), 1 ≤ j ≤ i ≤ J , 1 ≤ k ≤ K. (14)

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



Optimal stopping via deeply boosted backward regression 5

Backward procedure For a generic backward step j we assume that the quantities

CN,j(Z
(m)
l ), 0 ≤ l ≤ j, m = 1, ..., N, (15)

are already constructed and stored by using the functional approximations

CN,j(x) =
K∑
k=1

γN,jk ψk(x) + γN,jK+1ν
N,j
1 (x) + γN,jK+2ν

N,j
2 (x) (16)

with

νN,j1 = max(gj+1, CN,j+1), νN,j2 = 1{gj+1−CN,j+1>0},

where for j < J , γN,j ∈ RK+2 are constructed and stored.

At the initial time j = J , we set CN,J := 0. Let us now assume that 0 < j ≤ J , and proceed to
time j−1.We first compute (10) and (11). The latter one, Vj, is directly obtained by (15) for l = j and

the pre-computed values (14). To compute (10), we need ΨN,j−1
K+k (Z

(m)
j−1) = νN,j−1k (Z

(m)
j−1), k = 1, 2,

m = 1, . . . , N. Hence, we set

νN,j−11 (Z
(m)
j−1) = max(gj(Z

(m)
j−1), CN,j(Z

(m)
j−1)),

νN,j−12 (Z
(m)
j−1) = 1{

gj(Z
(m)
j−1)−CN,j(Z

(m)
j−1)≥0

}
for m = 1, . . . , N, using (15) for l = j − 1. Next we may compute (and store) the coefficients vector
(12), i.e., γN,j−1, using (10) and (11), and formally establish (16). In order to complete the generic
backward step, we now need to evaluate

CN,j−1(Z
(m)
l ) =

K∑
k=1

γN,j−1k ψk(Z
(m)
l ) (17)

+ γN,j−1K+1 νN,j−11 (Z
(m)
l ) + γN,j−1K+2 νN,j−12 (Z

(m)
l ), (18)

form = 1, ..., N, 0 ≤ l ≤ j−1. The first part (17) is directly obtained from the pre-computation (14)
and the coefficients (12) computed in this step. For the second part (18) we have that

νN,j−11 (Z
(m)
l ) = max(gj(Z

(m)
l ), CN,j(Z

(m)
l )),

νN,j−12 (Z
(m)
l ) = 1{

gj(Z
(m)
l )−CN,j(Z

(m)
l )≥0

},
for m = 1, . . . , N, and 0 ≤ l ≤ j − 1. Thus the terms (18) are directly obtained from (14), the
coefficients (12), and (15).

Remark 1. As can be seen, each approximation CN,j−1 nonlinearly depends on all previously esti-

mated continuation functionsCN,j, . . . , CN,J−1 and hence on all “features” (gl(Z
(m)
l ), ψk(Z

(m)
l ), k =

1, . . . , K, m = 1, . . . , N, l = j, j + 1, . . . ,J ). In this sense our procedure tries to find a sparse
deep network type approximation (with indicator or maximum as activation functions) for the continu-
ation functions based on simulated “features”. Compared to other deep learning type algorithms (see,
e.g., [2]), our procedure doesn’t require any type of time-consuming nonlinear optimisation over high-
dimensional parameter spaces.

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



D. Belomestny, J. G. M. Schoenmakers, V. Spokoiny, Y. Tavyrikov 6

Cost estimation The total cost needed to perform the pre-computation (14) is about 1
2
NJ 2cf +

NJKcf , where cf denotes the maximal cost of evaluating each function gj, j = 0, . . . ,J and ψk,
k = 1, . . . , K, at a given point. The cost of one backward step from j to j− 1 can be then estimated
from above by

NK2c∗ due to computation of (12)

NKjc∗ due to the construction of (17)+(18),

where c∗ denotes the sum of costs due to the addition and multiplication of two reals. Hence the total
cost of the above algorithm can be upper bounded by

1

2
NJ 2cf +NJKcf +NJK2c∗ +

1

2
NJ 2Kc∗ (19)

including the pre-computation.

Remark 2. In the above cost estimation the cost of determining the maximum of two numbers is
neglected.

3.4 Lower estimate based on a new realization

Suppose that the backward algorithm of Section 3.2 has been carried out, and that we now have an
independent set of realizations (Z̃

(m)
j , j = 0, ...,J ) with Z̃(m)

0 = X0, m = 1, ..., Ntest. In view of
(6) and (7), let us introduce the stopping rule

τN = inf {j : 1 ≤ j ≤ J , gj(Zj) ≥ CN,j(Zj)} . (20)

A lower estimate of V0 is then obtained via

V0 :=
1

Ntest

Ntest∑
m=1

g
τ
(m)
N

(Z̃
(m)

τ
(m)
N

). (21)

Here the indexN in the CN,j indicates that these objects are constructed using the simulation sample
used in (3.2). As a result, (20) is a suboptimal stopping time and (21) is a lower biased estimate. Let us
consider the computation of (20). The coefficient vectors γN,j, 1 ≤ j ≤ J , were already computed in
the backward algorithm above. We now have to consider the computation of CN,j(Z) for an arbitrary

point Z ∈ {Z̃(m)
j , m = 1, . . . , Ntest} at a particular time j, for 1 ≤ j ≤ J . For this we propose the

following backward procedure.

Procedure for computing CN,j(Z) for arbitrary state Z.

1 We first (pre-)compute ψk(Z) for 1 ≤ k ≤ K, and gl(Z) for j < l ≤ J , leading to the cost
of order (K + (J − j)) cf .

2 Next compute CN,j(Z) recursively as follows:

2.1 Initialize CN,J (Z) := 0. Once CN,l(Z) with j < l ≤ J , is computed and saved,
evaluate νN,l−11 (Z) and νN,l−12 (Z) using (9).

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



Optimal stopping via deeply boosted backward regression 7

2.2 Compute

CN,l−1(Z) =
K∑
k=1

γN,l−1k ψk(Z) + γN,l−1K+1 ν
N,l−1
1 (Z) + γN,l−1K+2 ν

N,l−1
2 (Z)

at a cost of order Kc∗. In this way we proceed all the way down to CN,j(Z), at a total
cost of (K + (J − j)) cf +K (J − j) c∗ including the pre-computation step.

Due to the procedure described above, the costs of evaluating (21), based on the worst case costs of
computing (20), will be of order

NtestJKcf +
1

2
J 2Ntestcf +

1

2
NtestKJ 2c∗.

Obviously, (for Ntest = N ) this is the same order as for the regression base backward induction
procedure described in Section 3.2.

Remark 3. From the cost analysis of the boosted regression algorithm it is obviously inferable that the
standard regression procedure, i.e. the regression procedure due to a fixed basis ψ1, . . . , ψK without
boosting, would require a computational cost of order

NJKcf +NJK2c∗

for computing the regression coefficients. Hence the cost ratio due to the boosting procedure is ap-
proximately,

Cost for coefficients of the boosted regression

Cost for coefficients of the standard regression
= 1 +

J
2K

A subsequent lower estimate based on a new realization in the standard case would require about
NtestJKcf , yielding a cost ratio

1 +
J
2

1 +Kc∗/cf
K

≈ 1 +
J
2
c∗/cf

accordingly (assuming K is large). From this we conclude that the boosted regression is not much
more expensive than the standard one as long as J

2K
is small (i.e. K large), while the lower bound

construction due to the boosted basis is not substantially more expensive as long as J c∗ < cf .

4 Numerical examples

In this section we illustrate the performance of boosted regression based Monte Carlo algorithms by
considering two option pricing problems in finance.

4.1 Bermudan cancelable swap

We first test our algorithm in the case of the so-called complex structured asset based cancelable
swap. In particular, we demonstrate how to achieve a trade-off between accuracy and computational
complexity by choosing the number of basis functions.

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



D. Belomestny, J. G. M. Schoenmakers, V. Spokoiny, Y. Tavyrikov 8

We consider a multi-dimensional Black-Scholes model, that is, we define the dynamic of d assets Xl,
l = 1, . . . , d, under the risk-neutral measure via a system of SDEs

dXl(t) = (ρ− δ)Xl(t)dt+ σlXl(t)dWl(t), 0 ≤ t ≤ T, l = 1, . . . , d.

HereW1(t), . . . ,Wd(t) are correlated d-dimensional Brownian motions with time independent corre-
lations ρlm = t−1E[Wl(t)Wm(t)], 1 ≤ l,m ≤ d. The continuously compounded interest rate r and
a dividend rate δ are assumed to be constant.

Define the asset based cancelable coupon swap. Let t1, . . . , tJ be a sequence of exercise dates. Fix
a quantile α, 0 < α < 1, numbers 1 ≤ n1 < n2 ≤ d (we assume d ≥ 2), and three rates s1, s2, s3.
Let

N(i) = #{l : 1 ≤ l ≤ d, Xl(ti) ≤ (1− α)Xl(0)},
i.e., N(i) is the number of assets which at time ti are below 1 − α percents of the initial value. We
then introduce the random rate

a(i) = s11{N(i)≤n1} + s21{n1<N(i)≤n2} + s31{n2<N(i)}

and specify the ti-coupon to be
C(i) = a(i)(ti − ti−1).

For pricing this structured product, we need to compare the coupons C(i) with risk free coupons over
the period [ti−1, ti] and thus to consider the discounted net coupon process

C(i) = e−rti(er(ti−ti−1) − 1− C(i)), i = 1, . . . ,J .

The product value at time zero may then be represented as the solution of an optimal stopping problem
with respect to the adapted discounted cash-flow, obtained as the aggregated net coupon process,

V0 = sup
τ∈{1,...,J}

E[Zτ ], Zj :=

j∑
i=1

C(i).

For our experiments, we choose a five-year option with semiannual exercise possibility, that is, we
have

J = 10, ti − ti−1 = 0.5, 1 ≤ i ≤ 10,

on a basket of d = 20 assets. In detail, we take the following values for the parameters,

d = 20, r = 0.05, δ = 0, σl = 0.2, Xl(0) = 100, 1 ≤ l,m ≤ 20,

d1 = 5, d2 = 10, α = 0.05, s1 = 0.09, s2 = 0.03, s3 = 0,

and

ρlm =

{
ρ, l 6= m,

1, l = m.

As to the basis functions, we used a constant, the discounted net coupon process C(i) and the order
statistics X(1) ≤ X(2) ≤ . . . ≤ X(n). Table 4.1 shows the results of the numerical experiment
comparing the lower and the corresponding dual upper bounds by the standard linear regression
method with fixed basis (the second column of Table 4.1) and by the boosted approach described
in Section 3.3 with one additional basis function (νN,j1 ). The main conclusion is that the boosted
regression algorithm delivers estimates of the same quality as the standard least squares approach
by using much less basis functions (sparse basis). As a result the new algorithm turns out to be
computationally cheaper.

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



Optimal stopping via deeply boosted backward regression 9

ρ Basis functions
Linear regression

Low Estimation High Estimation

0
1, C, X(i) 171.59(0.037) 177.24(0.061)
1, C, X(i), X(i)X(j) 173.62(0.044) 177.33(0.062)

0.2
1, C, X(i) 180.0(0.060) 199.62(0.125)
1, C, X(i), X(i)X(j) 188.01(0.055) 197.02(0.143)

0.5
1, C, X(i) 176.43(0.073) 201.21(0.189)
1, C, X(i), X(i)X(j) 183.41(0.033) 196.58(0.147)

0.8
1, C, X(i) 133.29(0.065) 158.12(0.197)
1, C, X(i), X(i)X(j) 140.17(0.061) 153.49(0.106)

ρ Basis functions
Linear regression & νN,l1

Low Estimation High Estimation

0
1, C, X(i) 173.28(0.031) 177.32(0.091)
1, C, X(i), X(i)X(j) 174.33(0.036) 176.58(0.057)

0.2
1, C, X(i) 187.57(0.057) 195.09(0.121)
1, C, X(i), X(i)X(j) 188.07(0.046) 195.95(0.108)

0.5
1, C, X(i) 181.98(0.047) 194.04(0.088)
1, C, X(i), X(i)X(j) 182.93(0.057) 194.97(0.127)

0.8
1, C, X(i) 138.41(0.087) 153.08(0.106)
1, C, X(i), X(i)X(j) 139.62(0.035) 152.57(0.096)

Table 1: Comparison of the standard linear regression method and the boosted regression algorithm
for the problem of pricing cancelable swaps

4.2 Bermudan MaxCal option

To illustrate the impact of including the additional basis functions, such as the indicator ν2(x), we
consider Bermudan option on the maximum of d underlying assets, each modeled by the geometric
Brownian motion,

Zk
j = zk0 exp

{
(r − δk − σ2

k/2)tj + σkW
k
tj

}
, k = 1, . . . , d,

with equal initial values z10 = z20 = . . . = zd0 = z0, interest rate r = 5%, dividend yields δ1 = δ2 =
. . . = δd = 10%, volatilities σk = 0.1 + k/(2d), k = 1, . . . , d, and d-dimensional Brownian motion
W with independent components. The discounted payoff upon exercise at time tj is the defined as

gj(x) =
[

max
1≤j≤d

xj −K
]+

exp(−rtj),

where we take K = 100.

Table 2 shows a significant overall increase of the lower bound (and corresponding decrease of upper
bound), for d ≤ 30, when the indicator functions (νN,j2 ) are added to the set of basis functions. On
the other hand, it turned out that the addition of this single basis function did not lead to an appreciable
increase of computation times (see also cost analysis in Remark 3).

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018



D. Belomestny, J. G. M. Schoenmakers, V. Spokoiny, Y. Tavyrikov 10

d z0
With indicator Without indicator

Lower Upper Lower Upper
10 90 85.219 86.636 85.001 86.895
10 100 103.881 105.790 103.617 106.022
10 110 122.793 125.141 122.612 125.176
20 90 125.433 127.280 125.250 127.542
20 100 149.047 151.062 148.877 151.099
20 110 172.652 174.889 172.455 175.121
30 90 154.070 156.109 153.968 156.007
30 100 180.954 182.957 180.686 183.102
30 110 207.656 210.214 207.339 210.266
50 90 195.838 197.683 195.623 197.962
50 100 227.052 229.356 227.042 229.535
50 110 258.449 261.392 258.446 261.152
100 90 263.192 265.571 263.157 265.542
100 100 301.979 304.500 302.014 304.148
100 110 340.745 343.917 340.831 343.470

Table 2: Comparison of boosted regression algorithms with and without indicator basis functions for
the Bermudan maxcall option.

References

[1] Leif B.G. Andersen. A simple approach to the pricing of bermudan swaptions in the multi-factor
libor market model. Journal of Computational Finance, 3:5–32, 1999.

[2] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping. arXiv preprint
arXiv:1804.05394, 2018.

[3] Denis Belomestny. Pricing bermudan options by nonparametric regression: optimal rates of con-
vergence for lower estimates. Finance and Stochastics, 15(4):655–683, 2011.

[4] Mark Broadie and Paul Glasserman. Pricing american-style securities using simulation. Journal
of Economic Dynamics and Control, 21(8):1323–1352, 1997.

[5] Jacques F. Carriere. Valuation of the early-exercise price for options using simulations and non-
parametric regression. Insurance: mathematics and Economics, 19(1):19–30, 1996.

[6] Daniel Egloff et al. Monte carlo algorithms for optimal stopping and statistical learning. The Annals
of Applied Probability, 15(2):1396–1432, 2005.

[7] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science &
Business Media, 2003.

[8] Francis A. Longstaff and Eduardo S. Schwartz. Valuing american options by simulation: a simple
least-squares approach. Review of Financial Studies, 14(1):113–147, 2001.

[9] John N. Tsitsiklis and Benjamin Van Roy. Regression methods for pricing complex american style
options. IEEE Trans. Neural. Net., 12(14):694–703, 2001.

DOI 10.20347/WIAS.PREPRINT.2530 Berlin 2018


