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I. Introduction

Twenty years ago, Pastur and Figotin [FP1,FP2] �rst introduced

and studied what has become known to be the Hop�eld model and

which turned out, over the years, as one of the more successful and

important models of a disordered system. This is also reected in the

fact that several contributions in this book are devoted to it. The Hop-

�eld model is quite versatile and models various situations: Pastur and

Figotin introduced it as a simple model for a spin glass, while Hop�eld,

in 1982, independently considered it as a model for associative memo-

ry. The �rst viewpoint naturally put it in the context of equilibrium

statistical mechanics, while Hop�eld's main interest was its dynamics.

But the great success of what became known as the Hop�eld model

came from the realization, mainly in the work of Amit, Gutfreund,

and Sompolinsky [AGS] that a more complicated version of this model

is reminiscent to a spin glass, and that the (then) recently developed

methods of spin-glass theory, in particular the replica trick and Parisi's

replica symmetry breaking scheme could be adapted to this model and

allowed a \complete" analysis of the equilibrium statistical mechanics

of the model and to recover some of the most prominent \experimen-

tally" observed features of the model like the \storage capacity", and

\loss of memory" in a precise analytical way. This observation sparked

a surge of interest by theoretical physicists into neural network theory

in general that has led to considerable progress in the �eld (the litera-

ture on the subject is extremely rich, and there are a great number of

good review papers. See for example [A,HKP,GM,MR,DHS]). We will
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2 Bovier and Gayrard

not review this development here. In spite of their success, the method-

s used in the analysis by theoretical physicist were of heuristic nature

and involved mathematically unjusti�ed procedures and it may not be

too unfair to say that they do not really provide a deeper understand-

ing for what is really going on in these systems. Mathematicians and

mathematical physicists were only late entering this �eld; as a matter

of fact, spin glass theory was (and is) considered a �eld di�cult, if not

impossible, to access by rigorous mathematical techniques.

As is demonstrated in this book, in the course of the last decade the

attitude of at least some mathematicians and mathematical physicists

towards this �eld has changed, and some now consider it as a major

challenge to be faced rather than a nuisance to be avoided. And already,

substantial progress in a rigorous mathematical sense has begun to be

made. The Hop�eld model has been for us the focal point of attention in

this respect over the last �ve years and in this article we will review the

results obtained by us in this spirit. Our approach to the model may be

called \generalized random mean �eld models", and is in spirit close to

large deviation theory. We will give a precise outlay of this general set-

ting in the next section. Historically, our basic approach can be traced

back even to the original papers by Pastur and Figotin. In this setting,

the \number of patterns", M , or rather its relation to the system size

N , is a crucial parameter and the larger it is, the more di�cult things

are getting. The case where M is is strictly bounded could be termed

\standard disordered mean �eld", and it is this type of models that

were studied by Pastur and Figotin in 1977, the case of two patterns

having been introduced by Luttinger [Lut] shortly before that. Such

\site-disorder" models were studied again intensely some years later by

a number of people, emphasizing applications of large deviation meth-

ods [vHvEC,vH1,GK,vHGHK,vH2,AGS2,JK,vEvHP]. A general large

deviation theory for such systems was obtained by Comets [Co] some-

what later. This was far from the \physically" interesting case where

the ratio between M and N , traditionally called �, is a �nite posi-

tive number [Ho, AGS]. The approach of Grensing and K�uhn [GK],

that could be described as the most straightforward generalization of

the large deviation analysis of the Curie-Weiss model by combinatorial

computation of the entropy (see Ellis' book [El] for a detailed expo-

sition), was the �rst to be generalized to unbounded M by Koch and

Piasko [KP] (but see also [vHvE]). Although their condition on M ,

namely M < lnN
ln 2

, was quite strong, until 1992 this remained the only

rigorous result on the thermodynamics of the model with an unbound-

ed number of patterns and their analysis involved for the �rst time a

non-trivial control on uctuations of a free energy functional. Within
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their framework, however, the barrier lnN appeared unsurmountable,

and some crucial new ideas were needed. They came in two almost

simultaneous papers by Shcherbina and Tirozzi [ST] and Koch [K].

They proved that the free energy of the Hop�eld model in the ther-

modynamic limit is equal to that of the Curie-Weiss model, provided

only that limN"1 M
N

= 0, without condition on the speed of conver-

gence. In their proof this fact was linked to the convergence in norm

of a certain random matrix constructed from the patterns to the iden-

tity matrix. Control on this matrix proved one key element in further

progress. Building on this observation, in a paper with Picco [BGP1]

we were able to give a construction of the extremal Gibbs states under

the same hypothesis, and even get �rst results on the Gibbs states in

the case M
N

= � � 1. Further progress in this latter case, however,

required yet another key idea: the use of exponential concentration of

measure estimates. Variance estimates based on the Yurinskii martin-

gale construction had already appeared in [ST] where they were used to

prove self-averaging of the free energy. With Picco [BGP3] we proved

exponential estimates on \local" free energies and used this to show

that disjoint Gibbs states corresponding to all patterns can be con-

structed for small enough �. A considerable re�nement of this analysis

that included a detailed analysis of the local minima near the Mattis

states [Ma] was given in a later paper by the present authors [BG5].

The result is a fairly complete and rigorous picture of the Gibbs states

and even metastable states in the small � regime, which is in good

agreement with the heuristic results of [AGS]. During the preparation

of this manuscript, a remarkable breakthrough was obtained by Michel

Talagrand [T4]. He succeeded in proving that in a certain (nontrivial)

range of the parameters � and �, the validity of the \replica symmetric

solution" of [AGS] can be rigorously justi�ed. It turns out that a re-

sult obtained in [BG5] can be used to give an alternative proof of that

also yields some complementary information and in particular allows

to analyse the convergence properties of the Gibbs measures in that

regime. We �nd it particularly pleasant that, 10 years after the paper

by Amit et al., we can present this development in this review.

In the present paper we will give a fairly complete and streamlined

version of our approach, emphasizing generalizations beyond the stan-

dard Hop�eld model, even though we will not work out all the details

at every point. We have tried to give proofs that are either simpler or

more systematic than the original ones and believe to have succeeded

to some extent. At some places technical proofs that we were not able

to improve substantially are omitted and reference is made to the orig-

inal papers. In Section 2 we present a derivation of the Hop�eld model
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as a mean �eld spin glass, introduce the concept of generalized random

mean �eld models and discuss the thermodynamic formalism for such

systems. We point out some popular variants of the Hop�eld model

and place them in this general framework. Section 3 discusses some

necessary background on large deviations, emphasizing calculational

aspects. This section is quite general and can be regarded as com-

pletely independent from particular models. Section 4 brings the last

proof on exponential estimates on maximal and minimal eigenvalues

of some matrices that are used throughout in the sequel. In Section

5 we show how large deviation estimates lead to estimates on Gibbs

measures. Here the theme of concentration of measure appears in a

crucial way. Section 6 as well as Section 7 are devoted to the study of

the function � that emerged from Section 3 as a crucial instrument to

control large deviations. Section 8, �nally gives a rigorous derivation

of the replica symmetric solution of [AGS] in an appropriate range of

parameters, and the comstruction of the limiting distribution of the

Gibbs measures (the \metastate" in the language of [NS]).

There are a number of other results on the Hop�eld model that we

do not discuss. We never talk here about the high temperature phase,

and we also exclude the study of the zero temperature case. Also we

do not speak about the case � = 0 but will always assume � > 0. How-

ever, all proofs work also when M
N
# 0, with some trivial modi�cations

necessary when M(N) remains bounded or grows slowly. In this sit-

uation some more re�ned results, like large deviation principles [BG4]

and central limit theorems [G1] can be obtained. Such results will be

covered in other contributions to this volume.

Acknowledgements. We are grateful to Michel Talagrand for sending

us copies of his work, in particular [T4] prior to publication. This

inspired most of Section 8. We also are indebted to Dima Io�e for

suggesting at the right moment that the inequalities in [BL] could be

the right tool to make use of Theorem 8.1. This proved a key idea. We

thank Aernout van Enter for a careful reading of the manuscript and

numerous helpful comments.

2. Generalized random mean �eld models

This section introduces the general setup of our approach, including

a de�nition of the concept of \generalized random mean �eld model"

and the corresponding thermodynamic formalism. But before giving

formal de�nitions, we will show how such a class of models and the

Hop�eld model in particular arises naturally in the attempt to con-

struct mean �eld models for spin glasses, or to construct models of
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autoassociative memory.

2.1. The Hop�eld model as a mean �eld spin glass.

The derivation we are going to present does not follow the histori-

cal development. In fact, what is generally considered \the" mean �eld

spin glass model, the Sherrington-Kirkpatrick model [SK], is di�erent

(although, as we will see, related) and not even, according to the de�-

nition we will use, a mean �eld model (a fact which may explain why

it is so much harder to analyse than its inventors apparently expect-

ed, and which in many ways makes it much more interesting). What

do we mean by \mean �eld model"? A spin system on a lattice is,

roughly, given by a lattice, typically Z
d, a local spin space S, which

could be some Polish space but which for the present we can think of

as the discrete set S = f�1;+1g, the con�guration space S1 � SZd
and its �nite volume subspaces S� � S� for any �nite � � Z

d, and

a Hamiltonian function H that for any �nite � gives the energy of a

con�guration � 2 S1 in the volume �, as H�(�). We will say that

a spin system is a mean �eld model if its Hamiltonian depends on �

only through a set of so-called macroscopic functions or order param-

eters. By this we mean typically spatial averages of local functions

of the con�guration. If the mean �eld model is supposed to describe

reasonably well a given spin system, a set of such functions should be

used so that their equilibrium values su�ce to characterize complete-

ly the phase diagram of the model. For instance, for a ferromagnetic

spin system it su�ces to consider the total magnetization in a volume

�, m�(�) � 1
j�j
P

i2� �i as order parameter. A mean �eld Hamiltoni-

an for a ferromagnet is then H
fm
� (�) = �j�jE(m�(�)); the physically

most natural choice E(m) = 1
2
m2 gives the Curie-Weiss model. Note

that

H
fm
� (�) = �

X
i2�

�i

�
E(m�(�))

m�(�)

�
(2:1)

which makes manifest the idea that in this model the spins �i at the

site i interact only with the (non-local) mean-�eld
E(m�(�))

m�(�)
. In the

Curie-Weiss case this mean �eld is of course the mean magnetization

itself. Note that the order parameter m�(�) measures how close the

spin con�guration in � is to the ferromagnetic ground states �i �
+1, resp. �i � �1. If we wanted to model an antiferromagnet, the

corresponding order parameter would be the staggered magnetization

m�(�) � 1
j�j
P

i2�(�1)
P

d

=1
i
�i.
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6 Bovier and Gayrard

In general, a natural choice for a set of order parameters will be

given by the projections of the spin con�gurations to the ground states

of the system. By ground states we mean con�gurations � that for all

� minimize the Hamiltonian H� in the sense that H�(�) cannot be

made smaller by changing � only within �1. So if �1; : : : ; �M are the

ground states of our system, we should de�ne the M order parameters

m1
�(�) = 1

j�j
P

i2� �
1
i �i; : : : ;m

M
� (�) = 1

j�j
P

i2� �
M
i �i and take as a

Hamiltonian a function H
mf
� (�) = �j�jE

�
m1

�(�); : : : ;m
M
� (�)

�
. For

consistency, one should of course choose E in such a way that �1; : : : ; �M

are ground states of the so de�ned H
mf
� (�). We see that in this spirit,

the construction of a mean �eld model departs from assumptions on

the ground states of the real model.

Next we should say what we mean by \spin glass". This is a more

complicated issue. The generally accepted model for a lattice spin-

glass is the Edwards-Anderson model [EA] in which Ising spins on a

lattice Z
d interact via nearest-neighbour couplings Jij that are inde-

pendent random variables with zero mean. Little is known about the

low-temperature properties of this model on a rigorous level, and even

on the heuristic level there are conicting opinions, and it will be dif-

�cult to �nd consensus within a reasonably large crowd of experts on

what should be reasonable assumptions on the nature of ground states

in a spin glass. But there will be some that would agree on the two

following features which should hold in high enough dimension2

(1) The ground states are \disordered".

(2) The number of ground states is in�nite.

Moreover, the most \relevant" ground states should be stationary

random �elds, although not much more can be said a priori on their

distribution. Starting from these assumptions, we should choose some

function M(�) that tends to in�nity as � " Zd and M(�) random vec-

tors ��, de�ned on some probability space (
;F ;P) and taking values

in S1 and de�ne, for all ! 2 
, a M(�)-dimensional vector of order

parameters with components,

m
�
�[!](�) �

1

j�j
X
i2�

�
�
i [!]�i (2:2)

1 We are somewhat too simplistic here. The notion of ground states should in

general not only be applied to individual con�gurations but rather to measures on

con�guration space (mainly to avoid the problem of local degeneracy); however, we

will ignore such complications here.
2 For arguments in favour of this, see e.g. [BF,vE], for a di�erent view e.g. [FH].
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and �nally choosing the Hamiltonian as some function of this vector.

The most natural choice in many ways is

H�[!](�) = �j�j
2
km�[!](�)k22

= �j�j
2

M(�)X
�=1

[m�[!](�)]
2

= � 1

2j�j
X
i;j2�

M(�)X
�=1

�
�
i [!]�

�
j [!]�i�j

(2:3)

If we make the additional assumption that the random variables

�
�
i are independent and identically distributed with P[�

�
i = �1] = 1

2

we have obtained exactly the Hop�eld model [Ho] in its most standard

form3. Note that at this point we can replace without any loss � by

the set f1; : : : ; Ng. Note also that many of the most common variants

of the Hop�eld model are simply obtained by a di�erent choice of the

function E(m) or by di�erent assumptions on the distribution of �.

In the light of what we said before we should check whether this

choice was consistent, i.e. whether the ground states of the Hamilto-

nian (2.3) are indeed the vectors ��, at least with probability tending

to one. This will depend on the behavior of the function M(N). From

what is known today, in a strict sense this is true only if M(N) � c N
lnN

[McE,Mar] whereas under a mild relaxation (allowing deviations that

are invisible on the level of the macroscopic variables mN ), this hold-

s as long as limN"1
M(N)

N
= 0 [BGP1]. It does not hold for faster

growing M(N) [Lu]. On the contrary, one might ask whether for given

M(�) consistency can be reached by the choice of a di�erent distribu-

tion P. This seems an interesting, and to our knowledge completely

uninvestigated question.

2.2 The Hop�eld model as an autoassociative memory.

Hop�eld's purpose when deriving his model was not to model spin

glasses, but to describe the capability of a neural network to act as

a memory. In fact, the type of interaction for him was more or less

dictated by assumptions on neural functioning. Let us, however, give

another, fake, derivation of his model. By an autoassociative memory

we will understand an algorithm that is capable of associating input

3
Observe that the lattice structure of the set � plays no rôle anymore and we

can consider it simply as a set of points
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data to a preselected set of learned patterns. Such an algorithm may

be deterministic or stochastic. We will generally only be interested in

complex data, i.e. a pattern should contain a large amount of infor-

mation. A pattern is thus naturally described as an element of a set

SN , and a reasonable description of any possible datum � 2 SN within

that set in relation to the stored patterns �1; : : : �M is in terms of its

similarity to these patterns that is expressed in terms of the vector of

overlap parametersm(�) whose components arem�(�) = 1
N

PN
i=1 �

�
i �i.

If we agree that this should be all the information we care about, it

is natural to construct an algorithm that can be expressed in terms of

these variables only. A most natural candidate for such an algorithm

is a Glauber dynamics with respect to a mean �eld Hamiltonian like

(2.3). Functioning of the memory is then naturally interpreted by the

existence of equilibrium measures corresponding to the stored patterns.

Here the assumptions on the distribution of the patterns are dictated

by a priori assumptions on the types of patterns one wants to store, and

the maximal M(N) for which the memory \functions" is called storage

capacity and should be determined by the theory. In this paper we will

not say much about this dynamical aspect, mainly because there are

almost no mathematical results on this. It is clear from all we know

about Glauber dynamics, that a detailed knowledge of the equilibrium

distribution is necessary, but also \almost" su�cient to understand the

main features of the long time properties of the dynamics. These things

are within reach of the present theory, but only �rst steps have been

carried out (See e.g. [MS]).

2.3 De�nition of generalized random mean �eld models.

Having seen how the Hop�eld model emerges naturally in the

framework of mean �eld theory, we will now introduce a rather general

framework that allows to encompass this model as well as numerous

generalizations. We like to call this framework generalized random

mean �eld models mainly due to the fact that we allow an unbounded

number of order parameters, rather than a �nite (independent of N)

one which would fall in the classical setting of mean �eld theory and

for which the standard framework of large deviation theory, as outlined

in Ellis' book [El], applies immediately.

A generalized random mean �eld model needs the following ingre-

dients.

(i) A single spin space S that we will always take to be a subset of

some linear space, equipped with some a priori probability measure

q.

(ii) A state space SN whose elements we denote by � and call spin
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con�gurations, equipped with the product measure
Q

i q(d�i).

(iii) The dual space (SN )�M of linear maps �TN;M : SN ! R
M .

(iv) A mean �eld potential which is some real valued function EM :

R
M ! R, that we will assume

(iv.1) Bounded below (w.l.g. EM (m) � 0).

(iv.2) in most cases, convex and \essentially smooth", that is, it has

a domain D with non-empty interior, is di�erentiable on its

domain, and limm!@D jrEM (m)j = +1 (see [Ro]).

(v) An abstract probability space (
;F ;P) and measurable maps �T :


! (SN)�N. Note that if �N is the canonical projection RN ! R
N ,

then �TM;N [!] � �M�
T [!] ���1N are random elements of (SN )�M .

(vi) The random order parameter

mN;M [!](�) � 1

N
�TM;N [!]� 2 R

M (2:4)

(vii) A random Hamiltonian

HN;M [!](�) � �NEM (mN;M [!](�)) (2:5)

Remark. The formulation above corresponds to what in large devia-

tion theory is known as \level 1", i.e. we consider the Hamiltonian as a

function of order parameters that are functions (\empirical averages")

rather than as a function of empirical measures as in a \level 2" for-

mulations. In some cases a level 2 formulation would be more natural,

but since in our main examples everything can be done on level 1, we

prefer to stick to this language.

With these objects we de�ne the �nite volume Gibbs measures,

(which more precisely are probability measure valued random variables)

��;N;M on (SN ;B(SN )) through

��;N;M [!](d�) =
e��HN;M [!](�)

Z�;N;M [!]

NY
i=1

q(d�i) (2:6)

where the normalizing factor, called partition function, is

Z�;N;M [!] � E� e
��HN;M [!](�) (2:7)

where E� stands for the expectation with respect to the a priori prod-

uct measure on SN . Due to the special feature of these models that

HN;M [!] depends on � only through mN;M [!](�), the distribution of
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these quantities contains essentially all information on the Gibbs mea-

sures themselves (i.e. the measures ��;N;M [!] restricted to the level

sets of the functions mN;M [!] are the uniform distribution on these

sets) and thus play a particularly prominent rôle. They are measures

on (RM ;B(RM )) and we will call them induced measures and denote

them by

Q�;N;M [!] � ��;N;M [!] �
�
1

N
�TN;M [!]

��1
(2:8)

In the classical setting of mean �eld theory, N would now be con-

sidered as the large parameter tending to in�nity while M would be

some constant number, independent of N . The main new feature here

is that both N and M are large parameters and that as N tends to

in�nity, we choose M � M(N) as some function of N that tends to

in�nity as well. However, we stress that the entire approach is geared

to the case where at least M(N) < N , and even M(N)=N � � is smal-

l. In fact, the passage to the induced measures Q appears reasonably

motivated only in this case, since only then we work in a space of lower

dimension. To study e.g. the Hop�eld model for � large will require

entirely di�erent ideas which we do not have.

It may be worthwhile to make some remarks on randomness and self

averaging at this point in a somewhat informal way. As was pointed out

in [BGP1], the distribution Q of the order parameters can be expected

to be much less \random" than the distribution of the spins. This is

to be understood in a rather strong sense: De�ne

f�;N;M;�[!](m) � � 1

�N
lnQ�;N;M [!] (B�(m)) (2:9)

where B�(m) � R
M is the ball of radius � centered at m. Then by

strong self-averaging we mean that (for suitably chosen �) f as a func-

tion of m is everywhere \close" to its expectation with probability close

to one (for N large)). Such a fact holds in a sharp sense when M is

bounded, but it remains \essentially" true as long as M(N)=N # 0

(This statement will be made precise in Section 6). This is the reason

why under this hypothesis, these systems actually behave very much

like ordinary mean �eld models. When � > 0, what \close" can mean

will depend on �, but for small � this will be controllable. This is the

reason why it will turn out to be possible to study the situation with

� small as a perturbation of the case � = 0.

2.4 Thermodynamic limits
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Although in some sense \only �nite volume estimates really count",

we are interested generally in asymptotic results as N (andM) tend to

in�nity, and it is suitable to discuss in a precise way the corresponding

procedure of thermodynamic limits.

In standard spin systems with short range interactions there is

a well established beautiful procedure of constructing in�nite volume

Gibbs measures from the set of all �nite volume measures (with \bound-

ary conditions") due to Dobrushin, Lanford and Ruelle (for a good

exposition see e.g. [Geo]). This procedure cannot be applied in the

context of mean �eld models, essentially because the �nite volume

Hamiltonians are not restrictions to �nite volume of some formal in-

�nite volume Hamiltonian, but contain parameters that depend in an

explicit way on the volume N . It is however still possible to consider

so called limiting Gibbs measures obtained as accumulation points of

sequences of �nite volume measures. This does, however require some

discussion.

Observe �rst that it is of course trivial to extend the �nite vol-

ume Gibbs measures ��;N;M to measures on the in�nite product space

(SN;B(SN)), e.g. by tensoring it with the a priori measures q on the

components i > N . Similarly, the induced measures can be extended

to the space (RN ;B(RN )) by tensoring with the Dirac measure concen-

trated on 0. One might now be tempted to de�ne the set of limiting

Gibbs measures as the set of limit points, e.g.

C� [!] � clusN"1
�
��;N;M(N)[!]

	
(2:10)

where clusN"1aN denotes the set of limit points (\cluster set") of the

sequence aN . However, it is easy to see that in general this set is not

rich enough to describe the physical content of the model. E.g., if we

consider the Curie-Weiss model (c.f. (2.1)) it is easy to see and well

known that this cluster set would always consist of a single element,

namely the measure 1
2

�Q1
i=1 q

m�(�) +
Q1

i=1 q
�m�(�)

�
, where qa(�i) =

e�a�i

2 cosh(�a)
and where m�(�) is the largest solution of the equation

x = tanh �x (2:11)

(and which we will have many occasions to meet in the sequel of this

article). If � > 1, m�(�) > 0, and the limiting measure is a mixture; we

would certainly want to be allowed to call the two summands limiting

Gibbs measures as well, and to consider them as extremal, with all

limiting Gibbs measures convex combinations of them. The fact that
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more than one such extremal measure exists would be the sign of the

occurrence of a phase transition if � > 1.

The standard way out of this problem is to consider a richer class

of tilted Gibbs measures

�h�;N;M [!](d�) � e��HN;M [!](�)+�Nh(mN;M [!](�))

Zh
�;N;M [!]

NY
i=1

q(d�i) (2:12)

where h : RM ! R is a small perturbation that plays the rôle of a

symmetry breaking term. In most cases it su�ces to choose linear

perturbations, h (mN;M [!](�)) = (h;mN;M [!](�)), in which case h can

be interpreted as a magnetic �eld. Instead of (2.10) one de�nes then

the set

~C� [!] � cluskhk1#0;N"1
n
�h�;N;M(M)[!]

o
(2:13)

where we �rst consider the limit points that can be obtained for all h 2
R
1 and then collect all possible limit points that can be obtained as h

is taken to zero (with respect to the sup-norm). Clearly C� � ~C� . If this
inclusion is strict, this means that the in�nite volume Gibbs measures

depend in a discontinuous way on h at h = 0, which corresponds to the

standard physical de�nition of a �rst order phase transition. We will

call ~C� [!] the set of limiting Gibbs measures.

The set ~C� [!] will in general not be a convex set. E.g., in the Curie-
Weiss case, it consists, for � > 1 of three elements, �+�;1; �

�
�;1, and

1
2
(�+�;1 + ���;1). (Exercise: Prove this statement!). However, we may

still consider the convex closure of this set and call its extremal points

extremal Gibbs measures. It is likely, but we are not aware of a proof,

that all elements of the convex closure can be obtained as limit points

if the limits N " 0, khk1 # 0 are allowed to be taken jointly (Exercise:

Prove that this is true in the Curie-Weiss model!).

Of course, in the same way we de�ne the tilted induced measures,

and the main aim is to construct, in a more or less explicit way, the

set of limiting induced measures. We denote these sets by CQ� [!], and
~CQ� [!], respectively. The techniques used will basically of large devi-

ation type, with some modi�cations necessary. We will discuss this

formalism briey in Section 3 and 5.

2.5 Convergence and propagation of chaos.

Here we would like to discuss a little bit the expected or possible

behaviour of generalized random mean �eld models. Our �rst remark
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is that all the sets C� [!] and ~C� [!] will not be empty if S is compact.

The same holds in most cases for CQ� [!] and ~CQ� [!], namely when the

image of SN under �TN;M is compact. This may, however, be misleading.

Convergence of a sequence of measures Q�;N;M(N) on (R1 ;B(R1 )) in

the usual weak sense means simply convergence of all �nite dimension-

al marginals. Now take the sequence �eM(N) , of Dirac-measures con-

centrated on the M(N)-th unit vector in R
1 . Clearly, this sequence

converges to the Dirac measure concentrated on zero, and this observa-

tion obviously misses a crucial point about this sequence. Considered

rather as a measure on the set of unit vectors, this sequence clearly

does not converge. For most purposes it thus more appropriate to use

a `2-topology rather than the more conventional product topology. In

this sense, the above sequence of Dirac measures does, of course, not

converge weakly, but converges vaguely to the zero measure.

It is an interesting question whether one can expect, in a random

situation, that there exist subsequences of untilted measures converging

weakly in the `2 topology in a phase transition region. Ch. K�ulske [Ku]

recently constructed an example in which the answer to this question

is negative. He also showed, that, as long as M(N) < lnN , in the

standard Hop�eld model, the sets CQ� [!] and ~CQ� [!] coincide for almost
all !.

In conventional mean �eld models, the induced measures converge

(if properly arranged) to Dirac measures, implying that in the ther-

modynamic limit, the macroscopic order parameters verify a law of

large numbers. In the case of in�nitely many order parameters, this is

not obviously true, and it may not even seem reasonable to expect, if

M(N) is not considerably smaller than N . Indeed, it has been shown

in [BGP1] that in the Hop�eld model this holds if
M(N)
N

# 0. Another
paradigm of mean �eld theory is propagation of chaos [Sn], i.e. the fact

that the (extremal) limiting Gibbs measures are product measures, i.e.

that any �nite subset of spins forms a family of independent random

variables in the thermodynamic limit. In fact, both historically and in

most standard textbooks on statistical mechanics, this is the starting

assumption for the derivation of mean �eld theory, while models such

as the Curie-Weiss model are just convenient examples where these as-

sumptions happen to be veri�ed. In the situation of random models,

this is a rather subtle issue, and we will come back to this in Section 8

where we will learn actually a lot about this.

2.6 Examples.

Before turning to the study of large deviation techniques, we con-
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14 Bovier and Gayrard

clude this section by presenting a list of commonly used variants of the

Hop�eld model and to show how they �t into the above framework.

2.6.1 The standard Hop�eld model.

Here S = f�1; 1g, q is the Bernoulli measure q(1) = q(�1) = 1
2
.

(SN )� may be identi�ed with R
N and �TN;M are real M �N -matrices.

The mean �eld potential is EM (m) = 1
2
kmk22, where k � k2 denotes the

2-norm in R
M . The measure P is such that �

�
i are independent and

identically distributed with P[�
�
i = �1] = 1

2
. The order parameter is

the M -dimensional vector

mN;M [!](�) =
1

N

NX
i=1

�i�i (2:14)

and the Hamiltonian results as the one in (2.3).

2.6.2 Multi-neuron interactions.

This model was apparently introduced by Peretto and Niez [PN]

and studied for instance by Newman [N]. Here all is the same as in the

previous case, except that the mean �eld potential is EM (m) = 1
p
kmkpp,

p > 2. For (even) integer p, the Hamiltonian is then

HN;M [!](�) = � 1

Np

X
i1;:::;ip

�i1 : : : �ip

MX
�=1

�
�
i1
: : : �

�
ip

(2:15)

2.6.3 Biased Hop�eld model.

Everything the same as in 2.6.1, but the distribution of �
�
i is sup-

posed to reect an asymmetry (bias) between +1 and �1 (e.g. to store
pictures that are typically more black than white). That is, we have

(e.g.) P[�
�
i = 2x] = (1 � x) and P[�

�
i = 2(1 � x)] = x. One may, of

course, consider the model with yet di�erent distributions of the �
�
i .

2.6.4 Hop�eld model with correlated patterns.

In the same context, also the assumption of independence of the �
�
i

is not always reasonable and may be dropped. One speaks of semantic

correlation, if the components of each vector �� are independent, while

the di�erent vectors are correlated, and of spatial correlation, if the

di�erent vectors �� are independent, but have correlated components

�
�
i . Various reasons for considering such types of patterns can be found

in the literature [FZ,Mi]. Other types of correlation considered include

the case where P is the distribution of a family of Gibbs random �elds

[SW].
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2.6.5 Potts-Hop�eld model.

Here the space S is the set f1; 2; : : : ; pg, for some integer p, and q
is the uniform measure on this set. We again have random patterns �

�
i

that are independent and the marginal distribution of P coincides with

q. The order parameters are de�ned as

m
�
M [!](�) =

1

N

NX
i=1

h
��i;��i �

1
p

i
(2:16)

for � = 1; : : : ;M . EM is the same as in the standard Hop�eld model.

Note that the de�nition of mM seems not to �t exactly our setting.

The reader should �gure out how this can be �xed. See also [G1]. A

number of other interesting variants of the model really lie outside our

setting. We mention two of them:

2.6.6 The dilute Hop�eld model.

Here we are in the same setting as in the standard Hop�eld mod-

el, except that the Hamiltonian is no longer a function of the order

parameter. Instead, we need another family of, let us say indepen-

dent, random variables, Jij , with (i; j) 2 N � N with distribution e.g.

P[Jij = 1] = x, P[Jij = 0] = 1� x, and the Hamiltonian is

HN;M [!](�) = � 1

2Nx

X
i;j

�i�iJi;j [!]

MX
�=1

�
�
i �

�
j (2:17)

This model describes a neural network in which each neuron interacts

only with a fraction x of the other neurons, with the set of a priori

connections between neuron described as a random graph [BG1,BG2].

This is certainly a more realistic assumption when one is modelling

biological neural networks like the brain of a rat. The point here is that,

while this model is not a generalized mean �eld model, if we replace the

Hamiltonian (2.17) by its average with respect to the random variables

J , we get back the original Hop�eld Hamiltonian. On the other hand,

it is true that

sup
�2SN

��HN;M [!](�)� E
�
HN;M [!](�)

��F��� � cN

r
M

xN
(2:18)

with overwhelming probability, which implies that in most respects the

dilute model has the same behaviour as the normal one, provide M
xN

is

small. The estimate (2.18) has been proven �rst in [BG2], but a much

simpler proof can be found in [T4].
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16 Bovier and Gayrard

2.6.7 The Kac-Hop�eld model.

This model looks similar to the previous one, but here some non-

random geometry is introduced. The set f1; : : : ; Ng is replaced by

� � Z
d, and the random Jij by some deterministic function J(i�j) �

dJ((i� j)) with J(x) some function with bounded support (or rapid

decay) whose integral equals one. Here  is a small parameter. This

model had already been introduced by Figotin and Pastur [FP3] but

has been investigated more thoroughly only recently [BGP2, BGP4].

It shows very interesting features and an entire article in this volume

is devoted to it.

3. Large deviation estimates and transfer principle

The basic tools to study the models we are interested in are large

deviation estimates for the induced measures Q�;N;M . Compared to

the standard situations, there are two particularities in the setting of

generalized random mean �eld models that require some special atten-

tion: (i) the dimension M of the space on which these measures are

de�ned must be allowed to depend on the basic large parameter N and

(ii) the measure Q�;N;M is itself random. A further aspect is maybe

even more important. We should be able to compute, in a more or

less explicit form, the \rate function", or at least be able to identify its

minima. In the setting we are in, this is a di�cult task, and we will

stress the calculational aspects here. We should mention that in the

particular case of the Hop�eld model with quadratic interaction, there

is a convenient trick, called the Hubbard-Stratonovich transformation

[HS] that allows one to circumvent the technicalities we discuss here.

This trick has been used frequently in the past, and we shall come back

to it in Section 8. The techniques we present here work in much more

generality and give essentially equivalent results. The central result

that will be used later is Theorem 3.5.

3.1. Large deviations estimates.

Let us start with the general large deviation framework adopted to

our setting. LetM and N be two integers. Given a family f�N ; N � 1g
of probability measures on (RM ;B(RM )), and a function EM : RM ! R

(hypotheses on EM will be speci�ed later on), we de�ne a new family

f�N ; N � 1g of probability measures on (RM ;B(RM )) via

�N (�) �
R
�
eNEM (x)d�N (x)R

RM
eNEM (x)d�N (x)

; � 2 B(RM ) (3:1)
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We are interested in the large deviation properties of this new fami-

ly. In the case when M is a �xed integer, it follows from Varadhan's

lemma on the asymptotics of integrals that, if f�N ; N � 1g satis�es

a large deviation principle with good rate function I(�), and if EM is

suitably chosen (we refer to [DS], Theorem 2.1.10 and exercise (2.1.24)

for a detailed presentation of these results in a more general setting)

then f�N ; N � 1g satis�es a large deviation principle with good rate

function J(x) where

J(x) = �[EM (x)� I(x)] + sup
y2RM

[EM (y)� I(y)] (3:2)

Here we address the question of the large deviation behaviour of

f�N ; N � 1g in the case where M � M(N) is an unbounded func-

tion of N and where the measure �N is de�ned as follows:

Let � be a linear transformation from R
N to R

M . To avoid com-

plications, we assume that M � N and � is non-degenerate, i.e. its

image is all RM . We will use the same symbol to denote the corre-

sponding N �M matrix � � f�i;�gi=1;:::N ;�=1;:::M and we will denote

by �� � (�
�
1 ; : : : ; �

�
N ) 2 R

M , respectively �i � (�1i ; : : : ; �
M
i ) 2 R

N , the

�-th row vector and i-th column vector. The transposed matrix (and

the corresponding adjoint linear transformation from R
M to R

N ) is

denoted �T . Consider a probability space (R;B(R);P) and its N -fold

power (RN ;PN ) where PN = P
N . We set

�N � PN �
�
1
N
�T
��1

(3:3)

In this subsection we will present upper and lower large deviation

bounds for �xed N . More precisely we set, for any � > 0 and x� 2 R
M ,

ZN;�(x
�) �

Z
B�(x�)

eNEM (x)d�N (x) (3:4)

In the regime where limN!1 M
N

= 0, estimates on these quantities

provide a starting point to prove a strong large deviation principle for

f�N ; N � 1g in a formulation that extends the \classical" Cram�er's

formulation. This was done in [BG4] in the case of the standard Hop-

�eld model. In the regime where limN!1 M
N

= � with � > 0, we

cannot anymore establish such a LDP. But estimates on ZN;�(x
�) will

be used to establish concentration properties for QN asymptotically as

N tends to in�nity, as we will see later in the paper.

Following the classical procedure, we obtain an upper bound on

ZN;�(x
�) by optimizing on a family of exponential Markov inequalities.
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18 Bovier and Gayrard

As is well known, this will require the computation of the conjugate

of4 the logarithmic moment generating function, de�ned as

LN;M (t) � 1

N
log

Z
RM

eN(t;x)�N (dx) ; t 2 R
M (3:5)

In the setting we are in, the computation of this quantity is generally

quite feasible. A recurrent theme in large deviation theory is that of

the Legendre transform. To avoid complications that will not arise in

our examples, we restrict the following discussion mainly to the case

when the Legendre transform is well de�ned (and involutary) which

is essentially the case where the convex function is strictly convex and

essentially smooth. We recall from [Ro]:

De�nition 3.1. A real valued function g on a convex set C is said to

be strictly convex on C if

g((1� �)x+ �y) < (1� �)g(x) + �g(y) 0 < � < 1 (3:6)

for any two di�erent points x and y in C. It it called proper if it is not

identically equal to +1.

An extended-real-valued function h on RM is essentially smooth if it

satis�es the following three conditions for C = int(domh):

(a) C is non empty;

(b) h is di�erentiable throughout C;

(c) limi!1 jrh(xi)j = +1 whenever x1; x2; : : : ; is a sequence in C

converging to a boundary point x of C.

(Recall that domg � fx 2 R
M j g(x) < 1g). Note that if a

function EM is essentially smooth, it follows (c.f. [RV], Theorem A

and B and [Ro], pp. 263-272) that EM attains a minimum value and

the set on which this (global) minimum is attained consists of a single

point belonging to the interior of it's domain. Without loss of generality

we will assume in the sequel that EM(x) � 0 and EM (0) = 0.

All through this chapter we adopt the usual approach that consists

in identifying a convex function g on domg with the convex function

de�ned throughout the space RM by setting g(x) = +1 for x =2 domg.

4 We have chosen to follow Rockafellar's terminology and speak about conjugacy

correspondence and conjugate of a (convex) function instead of Legendre-Fenchel

conjugate, as is often done. This will allow us to refer to [Ro] and the classical

Legendre transform avoiding confusions that might otherwise arise.
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De�nition 3.2. Let g be a proper convex function. The function g�

de�ned by

g�(x�) = sup
x2RM

f(x; x�)� g(x)g (3:7)

is called its (ordinary) conjugate.

For any set S in R
M we denote by intS its interior. For smooth

g we denote by rg(x) �
�
@g(x)

@x1
; : : : ;

@g(x)

@x�
; : : : ;

@g(x)

@xM

�
, r2g(x) ��

@2g(x)

@x�@x�

�
�;�=1;:::;N

and �g(x) �PM
�=1

@2g(x)

@2x�
respectively the gradient

vector, the Hessian matrix, and the Laplacian of g at x.

The following lemma collects some well-known properties of LN;M
and its conjugate:

Lemma 3.3.

(a) LN;M and L�N;M are proper convex functions from R
M to R [1.

(b) LN;M (t) is in�nitely di�erentiable on

int(domLN;M ). De�ning the measure ~�N;t via d~�N;t(X) �
expfN(t;X)gR

expfN(t;X)gd�N (X)
d�N (X), and denoting by ~E t(�), the expectation

w.r.t. ~�N;t we have, for any t in domLN;M ,

rLN;M (t) = ~E t(X) =
�
~E t (X�)

�
�=1;:::;M

1
N
r2LN;M (t) =

�
~E t(X�X�)� ~E t(X�)~E t(X�)

�
�;�=1;:::;M

(3:8)

and, if L� is smooth, the following three conditions on x are equivalent

1) rLN;M (t) = x

2) L�N;M (x) = (t; x)� LN;M (t)

3) (y; x)� LN;M (y) achieves its supremum over y at y = t

(3:9)

(c) L�N;M (x) � 0 and, if ~E0(X) <1, L�N;M (~E0(X)) = 0.

Proof. The proofs of statements (a) and (c) can be found in [DZ], as

well as the proof of the di�erentiability property. The formulae (3.8)

are simple algebra. Finally, the equivalence of the three conditions

(3.9) is an application of Theorem 23.5 of [Ro] to the particular case of

a di�erentiable proper convex function.
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20 Bovier and Gayrard

Setting

	N;M (x) � �EM (x) + L�N;M (x) ; x 2 R
M (3:10)

we have

Lemma 3.4. For any x� in R
M , de�ne t� � t�(x�) through

L�N;M (x�) = (t�; x�) � LN;M (t�) if such a t� exists while otherwise

kt�k2 � 1 (note that t� need not be unique). We have, for any � > 0,

1

N
logZN;�(x

�) � �	N;M (x�) + sup
x2B�(x�)

[EM (x)� EM (x�)] + �kt�k2
(3:11)

and

1

N
logZN;�(x

�) � �	N;M (x�) + inf
x2B�(x�)

[EM (x)� EM (x�)]� �kt�k2

+ 1
N
log(1� 1

�2N
�LN;M (t�))

(3:12)

Proof. Analogous bounds were obtained in [BG4], Lemmata 2.1 and

2.2, in the special case of an application to the Hop�eld model. The

proofs of (3.11) and (3.12) follow the proofs of these lemmata with only

minor modi�cations. We will only recall the main lines of the proof of

the lower bound: the essential step is to perform an exponential change

of measure i.e., with the de�nition of ~�N;t from Lemma 3.4, we have,

1

N
logZN;�(x

�) = ~E t�
�
eNfEM (X)�(t�;X)g1IfB�(x�)g

�
~E 0

�
eN(t�;X)

�
(3:13)

from which, together with (3.5) and (3.9), we easily obtain,

1

N
logZN;�(x

�) � eNf�	N;M (x�)+infx2B�(x�)[EM (x)�EM (x�)]��kt�k2g

� ~�N;t�(B�(x
�))

(3:14)

When the law of large numbers is not available, as is the case here, the

usual procedure to estimate the term ~�N;t�(B�(x
�)) would be to use

the upper bound. Here we simply use the Tchebychev inequality to

write

1� ~�N;t�(B�(x
�)) = ~E t�

�
1IfkX�x�k2

2
>�2g

�
� 1

�2
~E t� kX � x�k22 (3:15)
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Now, by (3.9), t� satis�es rLN;M (t�) = x�, and it follows from (3.8)

that

~E t�kX � x�k22 =
1

�2

MX
�=1

�
~E t�X

2
� �

�
~E t�X�

�2�
= 1

�2N
�LN;M (t�)

(3:16)

Collecting (3.14), (3.15) and (3.16) proves (3.12).

Remark. The lower bound (3.12) is meaningful only if
1

N�2
�LM;N (x) < 1. But the Laplacian of a function on R

M has a

tendency to be of order M . Thus, typically, the lower bound will be

useful only if �2 � O(M=N). We see that if limN"1 M
N

= 0, one may

shrink � to 0 and get upper and lower bounds that are asymptotically

the same (provided EM is continuous), provided the norm of t� remain-
s bounded. Since t� is random, this introduces some subtleties which,
however, can be handled (see [BG4]). But if limN"1 M

N
= � > 0, we do

not get a lower bound for balls of radius smaller than O(
p
�) and there

is no hope to get a large deviation principle in the usual sense from

Lemma 3.4. What is more disturbing, is the fact that the quantities

	 and t� are more or less impossible to compute in an explicit form,

and this makes Lemma 3.4 not a very good starting point for further

investigations.

3.2. Transfer principle.

As we will show now, it is possible to get large deviation estimates

that do not involve the computation of Legendre transforms. The price

to pay will be that these will not be sharp everywhere. But as we

will see, they are sharp at the locations of the extrema and thus are

su�cient for many purposes. Let us de�ne the function

�N;M (x) = �EM (x) + (x;rEM(x))� LN;M (rEM (x)) (3:17)

Theorem 3.5.

(i) Let x� be a point in R
M such that for some �0 > 0, for all x; x0 2

B�0(x
�), krEM(x)�rEM (x0)k2 < ckx� x0k2. Then, for all 0 <

� < �0

1

N
logZN;�(x

�) � ��N;M (x�) +
1

2
c�2 (3:18)
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(ii) Let x� be a point such that rLN;M (rEM (x�)) = x�. Then,

1

N
logZN;�(x

�) � ��N;M (x�)+ 1
N
log(1� 1

�2N
�LN;M (rEM(x�)))

(3:19)

Remark. The condition rLN;M (rEM (x�)) = x� is equivalent to the
condition r	N;M (x�) = 0, if L� is essentially smooth. This means that
the lower bound holds at all critical points of the \true" rate function.

It is easy to see that r	N;M (x) = 0 implies r�N;M (x) = 0, while the

converse is not generally true. Fortunately, however, this is true for

critical points of �N;M that are minima. This fact will be established

in the remainder of this section.

Remark. It is clear that we could get an upper bound with error

term C� without the hypothesis that rEM is Lipshitz. However, when

we apply Theorem 3.5, a good estimate on the error will be important5,

while local Lipshitz bounds on rEM are readily available.

Proof. With the de�nition of ~�N;t from Lemma 3.4, we have,

ZN;�(x
�) = ~E t

�
eNfEM (X)�(t;X)g1IfB�(x�)g

�
~E0

�
eN(t;X)

�
= eNfLN;M (t)+EM (x�)�(t;x�)g

� ~E t

�
eNfEM (X)�EM (x�)�(t;(X�x�))g1IfB�(x�)g

� (3:20)

The strategy is now to chose t in such a way as to get optimal con-

trol over the last exponent in (3.20). By the fundamental theorem of

calculus,

jEM(X)� EM (x�)� (t; (X � x�))j

=

����
Z 1

0

ds ((rEM (sX + (1� s)x�)� t); (X � x�))

����
� sup

s2[0;1]
k(rEM (sX + (1� s)x�)� tk2kX � x�k2

(3:21)

Of course we want a bound that is uniform in the set of X we consider,

so that the best choice is of course t � rEM (x�). Since rEM (x) was

5 The point is that the number of balls of radius � to cover, say, the unit ball is

of the order ���N , that is exponentially large. Therefore we want to use as large a

� as possible with as small an error as possible. Such problems do not occur when

the dimension of the space is independent of N.
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assumed to be Lipshitz in B�(x
�) we get

ZN;�(x
�) � eNfLN;M (rEM (x�))+EM (x�)�(rEM (x�);x�)ge

1
2
Nc�2

= e�N�N;M (x�)e
1
2
Nc�2

(3:22)

where the last equality follows from the de�nition (3.17). This proves

the upper bound (3.18). To prove the lower bound, note that since EM
is convex,

EM (X)� EM (x�)� (rEM (x�); (X � x�)) � 0 (3:23)

Using this in the last factor of (3.20), we get

ZN;�(x
�) � e�Nf�N;M (x�)g~�N;t(B�(x

�)) (3:24)

Now, just as in (3.15),

1� ~�N;t(B�(x
�)) � 1

N
~E tkX � x�k22 (3:25)

and a simple calculation as in Section 3.1 shows that

~E tkX � x�k22 = 1
�2N

�LN;M (t) + krLN;M (t)� x�k22 (3:26)

Here we see that the optimal choice for t would be the solution of

rLN;M (t) = x�, an equation we did not like before. However, we

now have by assumption, rLN;M (rEM(x�)) = x�. This concludes the
proof of Theorem 3.14.

Sometimes the estimates on the probabilities of `2-balls may not

be the most suitable ones. A charming feature of the upper bound is

that it can also be extended to sets that are adapted to the function

EM . Namely, if we de�ne

~ZN;�(x
�) �

Z
eNEM (x)1IfkrEM (x)�rEM (x�)k2��gd�N (x) (3:27)

we get

Theorem 3.6. Assume that for some q � 1 for all y; y0 2
B�0(rEM (x�)), k(rEM )�1(y) � (rEM )�1(y0)k2 � cky � y0kq2, then
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for all 0 < � < �0

1

N
log ~ZN;�(x

�) � ��N;M (x�) +
1

2
c�1+q (3:28)

The proof of this Theorem is a simple rerun of that of the upper

bound in Theorem 3.5 and is left to the reader.

We now want to make the remark following Theorem 3.5 precise.

Proposition 3.7. Assume that EM is strictly convex, and essentially

smooth. If �N:M has a local extremum at a point x� in the interior of

its domain, then rL(rEM(x�)) = x�.

Proof. To prove this proposition, we recall a fundamental Theorem

on functions of Legendre type from [Ro].

De�nition 3.8. Let h be a di�erentiable real-valued function on a open

subset C of RM . The Legendre conjugate of the pair (C; h) is de�ned to

be the pair (D; g) where D = rh(C) and g is the function on D given

by the formula

g(x�) = ((rh)�1(x�); x�)� h((rh)�1(x�)) (3:29)

Passing from (C; h) to (D; g), if the latter is well de�ned, is called the

Legendre transformation.

De�nition 3.9. Let C be an open convex set and h an essentially

smooth and strictly convex function on C. The pair (C; h) will be called

a convex function of Legendre type.

The Legendre conjugate of a convex function of Legendre type is

related to the ordinary conjugate as follows:

Theorem 3.10. ([Ro], Theorem 26.5) Let h be a closed convex func-

tion. Let C = int(domh)and C� = int(domh�). Then (C; h) is a convex

function of Legendre type if and only if (C�; h�) is a convex function

of Legendre type. When these conditions hold, (C�; h�) is the Legen-

dre conjugate of (C; h), and (C; h) is in turn the Legendre conjugate of

(C�; h�). The gradient mapping is then one-to-one from the open con-

vex set C onto the open convex set C�, continuous in both directions

and

rh� = (rh)�1 (3:30)
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With this tool at our hands, let us de�ne the function  N;M (x) �
E�M (x) � LN;M (x). The crucial point is that since EM is of Legendre

type, by De�nition 3.8 and Theorem 3.10, we get

�N;M (x) =  N;M (rEM (x)) (3:31)

Moreover, since rEM is one-to-one and continuous, �N;M has a lo-

cal extremum at x� if and only if  N;M has a local extremum at

the point y� = rEM (x�). In particular, r N;M (y�) = 0. Thus,

rE�M (y�) = rLN;M (y�), and by (3.30), (rEM )�1(y�) = rLN;M (y�),
or x� = rLN;M (rEM (x�), which was to be proven.

The proposition asserts that at the minima of �, the condition of

part (ii) of Theorem 3.5 is satis�ed. Therefore, if we are interested in

establishing localization properties of our measures, we only need to

compute � and work with it as if it was the true rate function. This

will greatly simplify the analysis in the models we are interested in.

Remark. If L is of Legendre type, it follows by the same type of argu-

ment that x� is a critical point of 	 if and only if rEM (x�) is a critical
point of  . Moreover, at such critical points, �(x�) =  (rEM(x�)).
Thus in this situation, if x� is a critical point of 	, than x� is a crit-

ical point of �, and 	(x�) = �(x�). Conversely, by Proposition 3.7,

if � has a local extremum at x�, then x� is a critical point of 	 and

�(x�) = 	(x�). Since generally 	(x) � �(x), this implies also that

if � has a minimum at x�, then 	 has a minimum at x�. One can

build on the above observations and establish a more complete \dual-

ity principle" between the functions � and 	 in great generality, but

we will not make use of these observations. The interested reader will

�nd details in [G2].

4. Bounds on the norm of random matrices

One of the crucial observations that triggered the recent progress

in the Hop�eld model was the observation that the properties of the

random matrix A(N) � �T �
N

play a crucial rôle in this model, and that

their main feature is that as long as M=N is small, A(N) is close to

the identity matrix. This observation in a sense provided the proper

notion for the intuitive feeling that in this case, \all patterns are al-

most orthogonal to each other". Credit must go to both Koch [K] and

Shcherbina and Tirozzi [TS] for making this observation, although the
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properties of the matrices A(N) had been known a long time before.

In fact it is known that under the hypothesis that �
�
i are independent,

identically distributed random variables with E�
�
i = 0, E [�

�
i ]

2
= 1 and

E [�
�
i ]

4
<1, the maximal and minimal eigenvalues of A(N) satisfy

lim
N"1

�max(A(N)) = (1 +
p
�)2; a.s. (4:1)

This statement was proven in [YBK] under the above (optimal) hy-

potheses. For prior results under stronger assumptions, see [Ge,Si,Gi].

Such results are generally proven by tedious combinatorial methods,

combined with truncation techniques. Estimates for deviations that

were available from such methods give only subexponential estimates;

the best bounds known until recently, to our knowledge, were due to

Shcherbina and Tirozzi [ST] and gave, in the case where �
�
i are sym-

metric Bernoulli random variables

P
�
kA(N)� 1Ik > [(1 +

p
�)2 � 1](1 + �)

�
� exp

�
��

4=3M2=3

K

�
(4:2)

with K a numerical constant and valid for small �. More recently, a

bound of the form exp
�
� �2N

K

�
was proven by the authors in [BG5],

using a concentration estimate due to Talagrand. In [T4] a simpli�ed

version of that proof is given. We will now give the simplest proof of

such a result we can think of.

Let us de�ne for a M �M -matrix A the norm

kAk � sup
x2RM
kxk2=1

(x;Ax) (4:3)

For positive symmetric matrices it is clear that kAk is the maximal

eigenvalue of A. We shall also use the notation kAk2 �
qP

�;� A
2
�� .

Theorem 4.1. Assume that E�
�
i = 0, E [�

�
i ]

2
= 1 and j��i j � 1. Then

there exists a numerical constant K such that for large enough N , the

following holds for all � � 0 and all � � 0

P
�
jkA(N)k � (1 +

p
�)2j � �

�
� K exp

 
�N (1 +

p
�)2

K

�r
�

1 +
p
�
+ 1� 1

�2
!

(4:4)
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Proof. Let us de�ne for the rectangular matrix �

k�k+ � sup
x2RM
kxk2=1

k�xk2 (4:5)

Clearly

kA(N)k = k�=
p
Nk2+ (4:6)

Motivated by this remark we show �rst that k�=
p
Nk+ has nice con-

centration properties. For this we will use the following theorem due

to Talagrand:

Theorem 4.2. (Theorem 6.6 in [T2]) Let f be a real valued function

de�ned on [�1; 1]N . Assume that for each real number a, the set ff �
ag is convex. Suppose that on a convex set B � [�1; 1]N the restriction

of f to B satis�es for all x; y 2 B

jf(x)� f(y)j � lBkx� yk2 (4:7)

for some constant lB > 0. Let h denote the random variable h =

f(X1; : : : ; XN).Then, if Mf is a median of h, for all t > 0,

P [jh�Mf j � t] � 4b+
4

1� 2b
exp

�
� t2

16l2B

�
(4:8)

where b denotes the probability of the complement of the set B.

To make use of this theorem, we show �rst that k�=
p
Nk+ is a

Lipshitz function of the i.i.d. variables �
�
i :

Lemma 4.3. For any two matrices �, �0, we have that

jk�k+ � k�0k+j � k� � �0k2 (4:9)
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Proof. We have

jk�k+ � k�0k+j � sup
x2RM
kxk2=1

jk�xk2 � k�0xk2j

� sup
x2RM
kxk2=1

k�x� �0xk2

� sup
x2RM
kxk2=1

vuut NX
i=1

x2i

NX
i=1

MX
�=1

(�
�
i � �0�i )2 = k� � �0k2

(4:10)

where in the �rst inequality we used that the modulus of the di�erence

of suprema is bounded by the supremum of the modulus of the dif-

ferences, the second follows from the triangle inequality and the third

from the Schwarz inequality.

Next, note that as a function of the variables � 2 [�1; 1]MN , k�k+
is convex. Thus, by Theorem 4.2, it follows that for all t > 0,

P

h
jk�=

p
Nk+ � M k�=

p
Nk+ j � t

i
� 4e�N

t2

16 (4:11)

where M k�=
p
Nk+ is a median of k�=

p
Nk+. Knowing that kA(N)k

converges almost surely to the values given in (4.1) we may without

harm replace the median by this value. Thus

P
�
kA(N)k+ � (1 +

p
�)2 � �

�
= P

�
k�=

p
Nk+ � (1 +

p
�) � (1 +

p
�)

�r
1 +

�

(1 +
p
�)2

� 1

��

� 4 exp

 
�N(1 +

p
�)2

�r
1 +

�

(1 +
p
�)2

� 1

�2

=16

!

(4:12)
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and similarly, for 0 � � � (1 +
p
�)2

P
�
kA(N)k+ � (1 +

p
�)2 � ��

�
= P

�
k�=

p
Nk+ � (1 +

p
�) � (1 +

p
�)

�r
1� �

(1 +
p
�)2

� 1

��

� 4 exp

 
�N(1 +

p
�)2

�r
1� �

(1 +
p
�)2

� 1

�2

=16

!

(4:13)

while trivially P
�
kA(N)k+ � (1 +

p
�)2 � ��

�
= 0 for � > (1 +

p
�)2.

Using that for 0 � x � 1, (
p
1� x � 1)2 � (

p
1 + x � 1)2, we get

Theorem 4.1.

Remark. Instead of using the almost sure results (4.1), it would

also be enough to use estimates on the expectation of kA(N)k to prove
Theorem 4.1. We see that the proof required no computation whatso-

ever; it uses however that we know the medians or expectations. The

boundedness condition on �
�
i arises from the conditions in Talagrand's

Theorem. It is likely that these could be relaxed.

Remark. In the sequel of the paper we will always assume that our

general assumptions on � are such that Theorem 4.1 holds. Of course,

since exponential bounds are mostly not really necessary, one may also

get away in more general situations. On the other hand, we shall see

in Section 6 that unbounded �
�
i cause other problems as well.

5. Properties of the induced measures

In this section we collect the general results on the localization (or

concentration) of the induced measures in dependence on properties of

the function ��;N;M introduced in the previous section. There are two

parts to this. Our �rst theorem will be a rather simple generalization

to what could be called the \Laplace method". It states, roughly,

the (hardly surprising) fact that the Gibbs measures are concentrated

\near" the absolute minima of �. A second, and less trivial remark

states that quite generally, the Gibbs measures \respect the symmetry

of the law of the disorder". We will make precise what that means.

5.1 Localization of the induced measures.

The following Theorem will tell us what we need to know about

the function � in order to locate the support of the limiting measures
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Q.
Theorem 5.1. Let A � R

1 be a set such that for all N su�ciently

large the following holds:

(i) There is n 2 A such that for all m 2 Ac,

��;N;M(N)[!](m)� ��;N;M(N)[!](n) � C� (5:1)

for C > c su�ciently large, with c the constant from (i) of Theorem

3.5.

(ii) �LN;M (rEM(n)) � KM for some K < 1, and BK
p
�(n) � A.

Assume further that � satis�es a tightness condition, i.e. there

exists a constant, a, su�ciently small (depending on C), such that

for all r > C�

` (fm j��;M;N [!](m)� ��;M;N [!](n) � rg) � rM=2aMM�M=2

(5:2)

where `(�) denotes the Lebesgue measure. Then there is L > 0 such

that

Q�;N;M(N)[!] (Ac) � e�L�M (5:3)

and in particular

lim
N"1

Q�;N;M(N)[!] (A) = 1 (5:4)

Remark. Condition (5.2) is veri�ed, e.g. if � is bounded from below

by a quadratic function.

Proof. To simplify notation, we put w.r.g. ��;N;M [!](n) = 0. Note

�rst that by (ii) and (3.19) we have that (for suitably chosen �)

Q�;N;M(N)[!] (A) �
1

Z�;N;M(N)[!]

1

2
e��N��;N;M [!](n) =

1

2Z�;N;M(N)[!]

(5:5)

It remains to show that the remainder has much smaller mass. Note

that obviously, by (i),

Q�;N;M(N)[!] (Ac) �
Z 1

C�

drQ�;N;M(N)[!] (Ac \ fm j��;N;M(m) = rg)

�
Z 1

C�

drQ�;N;M(N)[!] (fm j��;N;M (m) = rg)
(5:6)
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Now we introduce a lattice WM;� of spacing 1=
p
N in R

M . The point

here is that any domain D � R
M is covered by the union of balls

of radius
p
� centered at the lattice points in D, while the number of

lattice points in any reasonably regular set D is smaller than `(D)NM=2

(see e.g. [BG5] for more details). Combining this observation with the

upper bound (3.18), we get from (5.6) that

Z�;N;M(N)[!]Q�;N;M(N)[!] (Ac)

�
Z 1

C�

dre��Nr` (fm j��;N;M(m) � rg)NM=2e�Mc=2

�
Z 1

C�

dre��NrrM=2aM��M=2e��c=2

� aMe�Mc=2�

Z 1

C

dre��MrrM=2

� aMe��c=2e��MC=2�

Z 1

C

dre��Mr=2rM=2

e��M [C=2�c=2�ln a=�]N�1
�
2

e�

�M

(5:7)

which clearly for � � 1 can be made exponentially small in M for C

su�ciently large. Combined with (5.5) this proves (5.3). (5.4) follows

by a standard Borel-Cantelli argument.

Remark. We see at this point why it was important to get the error

terms of order �2 in the upper bound of Theorem 3.5; this allows us to

choose � � p
�. otherwise, e.g. when we are in a situation where we

want use Theorem 5.6, we could of course choose � to be some higher

power of �, e.g. � = �. This then introduces an extra factor eMj ln�j,
which can be o�set only by choosing C � j ln�j, which of course implies
slightly worse estimates on the sets where Q is localized.

5.2 Symmetry and concentration of measure.

Theorem 5.1 allows us to localize the measure near the \reasonable

candidates" for the absolute minima of �. As we will see, frequently,

and in particular in the most interesting situation where we expect a

phase transition, the smallest set A satisfying the hypothesis of Theo-

rem 5.1 we can �nd will still be a union of disjoint sets. The components

of this set are typically linked by \symmetry". In such a situation we

would like to be able to compare the exact mass of the individual com-
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ponents, a task that goes beyond the possibilities of the explicit large

deviation estimates. It is the idea of concentration of measure that

allows us to make use of the symmetry of the distribution P here. This

fact was �rst noted in [BGP3], and a more elegant proof in the Hop�eld

model that made use of the Hubbard-Stratonovich transformation was

given �rst in [BG5] and independently in [T4].

Here we give a very simple proof that works in more general situa-

tions. The basic problem we are facing is the following. Suppose we are

in a situation where the set A from Theorem 5.1 can be decomposed

as A = [kAk for some collection of disjoint sets Ak. De�ne

fN [!](k) � � 1

�N
ln E� e

��HN;M [!](�)1IfmN;M [!](�)2Akg (5:8)

Assume that by for all k

EfN [!](k) = EfN [!](1) (5:9)

(Think of Ak = B�(m
�ek) in the standard Hop�eld model). We want

so show that this implies that for all k, jfN [!](k)�fN [!](1)j is \small"
with large probability. Of course we should show this by proving that

each fN [!](k) is close to its mean, and such a result is typically given

by concentration estimates. To prove this would be easy, if it were

not for the indicator function in (5.8), whose argument depends on the

random parameter ! as well as the Hamiltonian. Our strategy will be

to introduce quantities f �N (k) that are close to fN (k), and for which it

is easy to prove the concentration estimates. We will then control the

di�erence between f �N (k) and fN (k). We set

f �N (k) � � 1

�N
ln E�

�
�N
2��

�M=2
Z
Ak

dme�
�N
2� kmN;M(�)�mk22e�NEM (m)

(5:10)

Note that the idea is that
�
�N
2��

�M=2

e�
�N
2� kmN;M(�)�mk22 converges to

the Dirac distribution concentrated on mN;M (�), so that f �N (k) con-

verges to fN (k) as � # 0. Of course we will have to be a bit more careful
than just that. However, Talagrand's Theorem 6.6 of [T2] gives readily

Proposition 5.2. Assume that � veri�es the assumptions of Theorem

4.1 and S is compact. Then there is a �nite universal constant C such

that for all � > 0,

P [jf �N (k)� Ef �N (k)j > x] � Ce�M + Ce�
x2�2N
C (5:11)
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Proof. We must establish a Lipshitz bound for f �N [!](k). For no-

tational simplicity we drop the superuous indices N and k and set

f �[!] � f �N [!](k). Now

jf �[!]� f �[!0]j

=
1

�N

�����ln
E�

R
Ak

dme�
�N
2� kmN;M [!](�)�mk22e�NEM (m)

E�

R
Ak

dme�
�N
2� kmN;M [!0](�)�mk2

2e�NEM (m)

�����
=

1

�N

�����ln
E�

R
Ak

dme�
�N
2� kmN;M [!0](�)�mk22e�NEM (m)

E�

R
Ak

dme�
�N
2� kmN;M [!0](�)�mk2

2e�NEM (m)

e�
�N
2� (kmN;M [!](�)�mk22�kmN;M [!0](�)�mk22)

�����
� 1

�
sup

�2SN ;m2Ak

��kmN;M [!](�)�mk22 � kmN;M [!0](�)�mk22
��
(5:12)

But

��kmN;M [!](�)�mk22 � kmN;M [!0](�)�mk22
��

� kmN;M [!0](�)�mN;M [!](�)k2k2m�mN;M [!](�)�mN;M [!0](�)k2
� 1p

N
k�[!0]� �[!]k2

h
R+ c(

p
kA[!]k+

p
kA[!0]k)

i
(5:13)

where R is a bound form on Ak. We wrote A[!] � �T [!]�[!]
N

to make the

dependence of the random matrices on the random parameter explicit.

Note that this estimate is uniform in � and m. It is easy to see that

f �[!] has convex level sets so that the assumptions of Theorem 6.6 of

[T1] are veri�ed. Proposition 5.2 follows from here and the bounds on

kA[!]k given by Theorem 4.1.

We see from Proposition 5.2 that we can choose an � = N��1 , and
an x = N��2 with �1; �2 > 0 and still get a probability that decays

faster than any power with N .

Let us now see more precisely how f �[!] and f0[!] are related. Let

us introduce as an intermediate step the �-smoothed measures

~Q�
�;N;M [!] � Q�;N;M [!] ?N

�
0;

�

�N

�
(5:14)
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where N
�
0; �

�N

�
is a M -dimensional normal distribution with mean 0

and variance �
�N

1I. We mention that in the case EM (m) = 1
2
kmk22, the

choice � = 1 is particularly convenient. This convolution is then known

as the \Hubbard-Stratonovich transformation" [HS]. Its use simpli�es

to some extent that particular case and has been used frequently, by us

as well as other authors. It allows to avoid the complications of Section

3 altogether.

We set ~f �[!] � � 1
�N

ln
�
Z�;N;M ~Q�

�;N;M (Ak)
�
. But

Z�;N;M ~Q�
�;N;M (Ak)

= E�

�
�N
2��

�M=2
Z
Ak

dme�
�N
2� kmN;M(�)�mk22e�NEM (mN;M (�))

= E�

�
�N
2��

�M=2
Z
Ak

dm1IfkmN;M(�)�mk2��g e
� �N

2� kmN;M(�)�mk22

� e�NEM (mN;M (�))

+ E�

�
�N
2��

�M=2
Z
Ak

dm1IfkmN;M(�)�mk2>�g e
� �N

2� kmN;M(�)�mk22

� e�NEM (mN;M (�))

� (I) + (II)

(5:15)

for � > 0 to be chosen. We will assume that on Ak, EM is uniformly

Lipshitz for some constant CL. Then

(I) � e+�NCL�E�

�
�N
2��

�M=2
Z
Ak

dme�
�N
2� kmN;M(�)�mk22e�NEM (m)

= e�NCL�e��Nf�[!]

(5:16)

and

(II) � E�2
M=2

�
�N
4��

�M=2

e�
�N
4� �

2

�
Z
Ak

dme�
�N
4� kmN;M(�)�mk22e�NEM (mN;M (�))

� 2M=2e�
�N
4� �

2

E� e
�NEM (mN;M (�))

�
�N
4��

�M=2

�
Z

dme�
�N
4� kmN;M(�)�mk22 = 2M=2e�

�N
4� �

2

Z�;N;m

(5:17)
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In quite a similar way we can also get a lower bound on (I), namely

(I) � e��NCL�E�

�
�N
2��

�M=2
Z
Ak

dme�
�N
2� kmN;M(�)�mk22e�NEM (m)

� e��NCL�2M=2e�
�N
4� �

2

e
�N supm2Ak

EM (m)

= e��NCL�e��Nf�[!] � e��NCL�2M=2e�
�N
4� �

2

e�N supm2Ak
EM (m)

(5:18)

Since we anticipate that � = N��1 , the second term in (5.18) is neg-

ligible compared to the �rst, and (II) is negligible compared to (I),

with room even to choose � tending to zero with N ; e.g., if we choose

� = �1=4, we get that

j ~f �[!]� f �[!]j � const:�1=4 (5:19)

for su�ciently small �. (We assume that jf �[!]j � C).

Finally we must argue that ~f �[!] and f0[!] di�er only by little.

This follows since N (0; �N
�
) is sharply concentrated on a sphere of

radius ��
�

(although this remark alone would be misleading). In fact,

arguments quite similar to those that yield (5.19)(and that we will not

reproduce here) give also

j ~f �[!]� f0[!]j � const:�1=4 (5:20)

Combining these observations with Proposition 5.2 gives

Theorem 5.3. Assume that � veri�es the assumptions of Theorem 4.1

and S is compact. Assume that Ak � R
M veri�es

Q�;N;M [!](Ak) � e��Nc (5:21)

for some �nite constant c, with probability greater than 1� e�M . Then

there is a �nite constant C such that for � > 0 small enough for any

k; l,

P

h
jfN (k)� fN (l)j � C�1=4 + x

i
� Ce�M + Ce�

x2�2N
C (5:22)

6. Global estimates on the free energy function

After the rather general discussion in the last three sections, we

see that all results on a speci�c model depend on the analysis of the
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(e�ective) rate function ��;N [!](x). The main idea we want to follow

here is to divide this analysis in two steps:

(i) Study the average E��;N [!](x) and obtain explicit bounds from

which the locations of the global minima can be read o�. This part

is typically identical to what we would have to do in the case of

�nitely many patterns.

(ii) Prove that with large probability, j��;N [!](x)� E��;N [!](x)j is so
small that the deterministic result from (i) holds essentially outside

small balls around the locations of the minima for ��;N [!](x) itself.

These results then su�ce to use Theorems 5.1 and 5.3 in order to

construct the limiting induced measures. The more precise analysis of

� close to the minima is of interest in its own right and will be discussed

in the next section.

We mention that this strict separation into two steps was not fol-

lowed in [BG5]. However, it appears to be the most natural and rea-

sonable procedure. Gentz [G1] used this strategy in her proof of the

central limit theorem, but only in the regime M2=N # 0. To get suf-

�ciently good estimates when � > 0, a sharper analysis is required in

part (ii).

To get explicit results, we will from now on work in a more restrict-

ed class of examples that includes the Hop�eld model. We will take

S = f�1; 1g, with q(�1) = 1=2 and EM (m) of the form

EM (m) � 1

p
kmkpp (6:1)

with p � 2 and we will only require of the variables �
�
i to have mean

zero, variance one and to be bounded. To simplify notation, we assume

j��i j � 1. We do not strive to get optimal estimates on constants in

this generality, but provide all the tools necessary do so in any speci�c

situation, if desired5.

A simple calculation shows that the function of Theorem 3.5 de�ned

in (3.17) in this case is given by (we make explicit reference to p and

5 A word of warning is due at this point. We will treat these generalized models

assuming always M=�N. But from the memory point of view, these models should

and do work with M=�Np�1 (see e.g. [Ne] for a proof in the context of storage

capacity). For p>2 our approach appears perfectly inadequate to deal with so many

patterns, as the description of system in terms of so many variables (far more than

the original spins!) seems quite absurd. Anyhow, there is some fun in these models

even in this more restricted setting, and since this requires only a little more work,

we decided to present those results.
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�, but drop the M)

�p;�;N [!](m) =
1

q
kmkpp�

1

�N

NX
i=1

ln cosh

 
�

MX
�=1

�
�
i [!]jm�jp�1sign(m�)

!

(6:2)

where 1
p
+ 1

q
= 1.6Moreover

�p;�;N [!](m) = ( q;�;N [!] � rEM ) (m) (6:3)

where  q;�;N [!] : R
M ! R is given by

 q;�;N [!](x) =
1

q
kxkqq �

1

�N

NX
i=1

ln cosh (�(�i[!]; x)) (6:4)

and rEM : RM ! R
M , by

rEM (m) = (r1EM (m1); : : : ;r�EM (m�); : : : ;rMEM (mM )) (6:5)

where

r�EM (m�) = sign (m�)jm�jp�1 (6:6)

Since r�EM is a continuous and strictly increasing function going to

+1, resp. �1, as m� goes to +1, resp. �1, (and being zero at

m� = 0) its inverse r�E
�1
M exists and has the same properties as

r�EM . It is thus enough, in order to study the structure of the minima

of �p;�;N [!], to study that of  q;�;N [!].

Before stating our main theorem we need to make some comments

on the generalized Curie-Weiss functions

�q;�(z) =
1

q
jzjq � 1

�
ln cosh(�z) (6:7)

The standard Curie-Weiss case q = 2 is well documented (see e.g.

[El]), but the general situation can be analyzed in the same way. In

a quite general setting, this can be found in [EE]. A new feature for

q < 2 is that now zero is always a local minimum and that there is a

range of temperatures where three local minima exist while the absolute

minimum is the one at zero. For su�ciently low temperatures, however,

6 Throughout this section, q will stand for the conjugate of p.
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the two minima away from zero are always the lowest ones. The critical

temperature �c is de�ned as the one where �q;� takes the same value

at all three local minima. Thus a particular feature for all q < 2 is

that for � � �c, the position of the deepest minimum, x�(�), satis�es
x�(�) � x�q(�c) > 0. Of course x�q(�c) tends to 0 as q tends to 2. For

integer p � 3 we have thus the situation that x�(�) = O(1), and only

in the case p = 2 do we have to take the possible smallness of x�(�)
near the critical point into account.

Proposition 6.1. Assume that �
�
i are i.i.d., symmetric bounded ran-

dom variables with variance 1. Let either p = 2 or p � 3. Then for all

� > �c(p) there exists a strictly positive constant Cp(�) and a subset


1 � 
 with P[
1] � 1�O(e��N ) such that for all ! 2 
1 the follow-

ing holds for all x for which x� = sign(m�)jm�jp�1 with kmk2 � 2:

There is a > 0 and a �nite numerical constant c1 such that for all

 � a if infs;� kx� se�x�qk2 � c1x
�
q,

 p;�;N [!](x)�
1

q
(x�q)

q+
1

�
ln cosh(�x�q) � Cp(�) inf

s;�
kx�se�x�qk22 (6:8)

where C2(�) � (m�(�))2 as � # 1, and Cp(�) � Cp > 0 for p � 3. The

in�ma are over s 2 f�; 1;+1g and � = 1; : : : ;M .

Remark. Estimates on the various constants can be collected from

the proofs. In case (i), C2(�) goes like 10�5, and a � 10�8 and

c1 � 10�7. These numbers are of course embarrassing.
From Proposition 6.1 one can immediately deduce localization

properties of the Gibbs measure with the help of the theorems in Sec-

tion 5. In fact one obtains

Theorem 6.2. Assume that �
�
i are i.i.d. Bernoulli random variables

taking the values �1 with equal probability. Let either p = 2 or p � 3.

Then there exists a �nite constant cp such that for all � > �c(p) there

is subset 
1 � 
 with P[
1] � 1 � O(e��N ) such that for all ! 2 
1

the following holds:

(i) In the case p = 2,

Q�;N;M(N)[!] ([s;�Bc2m�(se�m�)) � 1� exp (�KM(N)) (6:9)

(ii) In the case p � 3,

Q�;N;M(N)[!]
�
[s;�

�
m 2 R

M jx(m) 2 Bcp�j ln�j(se
�x�q)

	�
� 1� exp (�KM(N))

(6:10)
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Moreover, for h = �se�, and any � > 0, for p = 2

Qh
�;N;M(N)[!] (Bc2m�(se�m�)) � 1� exp (�K(�)M(N)) (6:11)

and for p � 3,

Qh
�;N;M(N)[!]

��
m 2 R

M jx(m) 2 Bcp�j ln�j(se
�x�q)

	�
� 1� exp (�K(�)M(N))

(6:12)

with K(�) � const:� > 0.

Remark. Theorem 6.2 was �rst proven, for the case p = 2, with

imprecise estimates on the radii of the balls in [BGP1,BGP3]. The

correct asymptotic behaviour (up to constants) given here was proven

�rst in [BG5]. A somewhat di�erent proof was given recently in [T4],

after being announced in [T3] (with additional restrictions on �). The

case p � 3 is new. It may be that the j ln�j in the estimates there

can be avoided. We leave it to the reader to deduce Theorem 6.2 from

Proposition 6.1 and Theorems 5.1 and 5.3. In the case p � 3, Theorem

3.6 and the remark following the proof of Theorem 5.1 should be kept

in mind.

Proof of Proposition 6.1. We follow our basic strategy to show �rst

that the mean of  q;�;N [!] has the desired properties and to control

the uctuations via concentration estimates. We rewrite  q;�;N [!](x)

as

 q;�;N [!](x) = + E

�
1

q
j(�1; x)jq �

1

�
ln cosh(�(�1; x))

�

+
1

q
kxkqq �

1

q
E j(�1 ; x)jq

+
1

�N

NX
i=1

fE ln cosh(�(�i; x))� ln cosh(�(�i; x))g

(6:13)

We will study the �rst, and main, term in a moment. The middle term

\happens" to be positive:

Lemma 6.3. Let fXj ; j = 1; : : : ; ng be i.i.d. random variables with

EXi = 0, EX2
i = 1, and let x = (x1; : : : ; xn) be a vector in R

n . Then,

for 1 < q � 2,

kxkqq � E j
nX
j=1

xjXjjq � 0 (6:14)
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Equality holds if all but one component of the xj are zero.

Proof. A straightforward application of the H�older inequality yields

E j
nX
j=1

xjXjjq � (E j
nX
j=1

xjXjj2)
q
2 = kxkqq (6:15)

Let us now consider the �rst term in (6.13). For q = 2 we have

from [BG5] the following bound: Let

ĉ(�) � ln cosh(�x�)
�(x�)2

� 1

2
(6:16)

Then for all � > 1 and for all z

�2;�(z)� �2;�(x
�) � ĉ(�)(jzj � x�)2 (6:17)

Moreover ĉ(�) tends to 1
2
as � " 1, and behaves like 1

12
(x�(�))2, as

� # 1.
Proposition 6.4. Assume that �

�
1 are i.i.d., symmetric and E (�

�
1 )

2 = 1

and j��1 j � 1. Let either p = 2 or p � 3. Then for all � > �c (of

p) there exists a positive constant Cq(�) such that for all x such that

x� = sign(m�)jm�jp�1 with kmk2 � 2,

E

�
1

q
j(�1; x)jq �

1

�
ln cosh(�(�1; x))

�
� 1

q
(x�)q +

1

�
ln cosh(�x�)

� Cq(�) inf
�;s
kx� se�x�k22

(6:18)

where x� is the largest solution of the equation xq�1 = tanh�x. In the

case q = 2 C2(�) =
1

5000

�
ln cosh(�x�)

�(x�)2 � 1
2

�
� 1

600000
(x�)2 for � # 1.

Remark. Note that nothing depends on � in this proposition. The

constants appearing here are quite poor, but the proof is fairly nice

and universal. In a very recent paper [T4] has a similar result where

the constant seems to be 1=256L, but so far we have not been able to

�gure out what his estimate for L would be. Anyway, there are other

options if the proof below is not to your taste!
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Proof. It is not di�cult to convince oneself of the fact that there exist

positive constants ~Cq(�) such that for all Z = (�1; x) satisfying the

assumption of the proposition

1

q
jZjq � 1

�
ln cosh(�Z)� 1

q
(x�)q +

1

�
ln cosh(�x�) � ~Cq(�) (jZj � x�)2

(6:19)

For q = 2 this follows from Lemma (6.17). For q � 3, note �rst that

the allowed jZj are bounded. Namely,

j(�1; x)j �
�����
MX
�=1

j��1 jjmp�1
� j

����� �
sX

�

m2
�

sX
�

jm�j2(p�2) � kmk22

(6:20)

using that kmk1 � 1 and the H�older inequality in the case p > 3.

Moreover since by de�nition �x� are the only points where the func-

tion �q;�(z) takes its absolute minimum, and x
� is uniformly bounded

away from 0, it is clear that a lower bound of the form (6.19) can be

constructed on the bounded interval [�2; 2].
We have to bound the expectation of the right hand side of (6.19).

Lemma 6.5. Let Z = X + Y where X;Y are independent real valued

random variables. Then for any � > 0

E (jZj � x�)2 � 1

2

�p
EZ2 � x�

�2
+

1

2
�2P[jXj > �]

�min (P[Y > �];P[Y < ��])
(6:21)

Proof. First observe that, since E jZj �
p
EZ2 ,

E (jZj � x�)2 =
�p

EZ2 � x�
�2

+ 2x�E
�p

EZ2 � jZj
�

�
�p

EZ2 � x�
�2 (6:22)

On the other hand, Tchebychev's inequality gives that for any positive

�,

E (jZj � x�)2 � �2P [jjZj � x�j > �] (6:23)

Now it is clear that if jXj > �, then jjX + Y j � x�j > � either if Y > �

or if Y < �� (or in both cases). This gives the desired estimate. Thus
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(6.23) implies that

E (jZj � x�)2 � �2P[jXj > �] min (P[Y > �];P[Y < ��]) (6:24)

(6.22) and (6.24) together imply (6.21).

In the case of symmetric random variables, the estimate simpli�es

to

E (jZj � x�)2 � 1

2

�p
EZ2 � x�

�2
+
1

4
�2P[jXj > �]P[jY j > �] (6:25)

which as we will see is more easy to apply in our situations. In partic-

ular, we have the following estimates.

Lemma 6.6. Assume that X = (x; �) where j��j � 1, E�� = 0 and

E (��)2 = 1. Then for any 1 > g > 0,

P [jXj > gkxk2] �
1

4

�
1� g2

�2
(6:26)

Proof. A trivial generalization of the Paley-Zygmund inequality [Ta1]

implies that for any 1 > g > 0

P
�
jXj2 � g2E jXj2

�
� (1� g2)2

(E jXj2)2
EX4

(6:27)

On the other hand, the Marcinkiewicz-Zygmund inequality (see [CT],

page 367) yields that

E j(x; �)j4 � 4E

 X
�

x2�(�
�)2

!2

� 4kxk42 (6:28)

while EX2 = kxk22. This gives (6.26).

Combining these two results we arrive at
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Lemma 6.7. Assume that Z = (x; �) with �� as in Lemma 6.6 and

symmetric. Let I � f1; : : :Mg and set ~x� = x�, if � 2 I, ~x� = 0 if

� 62 I. Put x̂ = m� ~x. Assume k~xk2 � kx̂k2. Then

E (jZj � x�)2 � 1

2
(kxk2 � x�)2 +

1

500
kx̂k22 (6:29)

Proof. We put � = gkx̂k2 in (6.25) and set g2 = 1
5
. Then Lemma 6.6

gives the desired bound.

Lemma 6.8. Let Z be as in Lemma 6.7. Then there is a �nite positive

constant c such that

E (jZj � x�)2 � c inf
�;s
kx� se�x�k22 (6:30)

where c � 1
4000

.

Proof. We assume w.r.g. that x�jx2j � jx3j � : : : � jxM j
and distinguish three cases. Case 1: x21 � 1

2
kxk22. Here we set

x̂ � (0; x2; : : : ; xM ). We have that

kx� e1x�k22 = kx̂k22 + (x1 � x�)2

� kx̂k22 + 2(x1 � kxk2)2 + 2(kxk2 � x�)2

� 3kx̂k22 + 2(kxk2 � x�)2
(6:31)

Therefore (6.29) yields

1

2
(kxk2 � x�)2 +

1

500
kx̂k22 �

1

3 � 500
�
3kx̂k22 + 1500=2(kxk2 � x�)2

�
� 1

3 � 500kx� e1x�k22
(6:32)

which is the desired estimate in this case.

Case 2: x21 < 1
2
kxk22, x22 � 1

4
kxk22. Here we may choose x̂ =

(0; x2; 0; : : : ; 0). We set ~x = (0; 0; x3; : : : ; xM ). Then

kx� e1x�k22 � (x1 � x�)2 + kx̂k22 + k~xk22 (6:33)
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But k~xk22 � kxk22 � 1
2
kxk22 � 2kx̂k2 and

(x1 � x�)2 � ( 1
2
kxk2 � x�)2 � 2(kxk2 � x�)2 +

1

2
kxk22

1

2(1� �)
x�kx̂k2

� 2(kxk2 � x�)2 + 2kx̂k22
(6:34)

Thus kx�e1x�k22 � 4kx̂k22+2(kxk2�x�)2, from which follows as above

that

1

2
(kxk2 � x�)2 +

1

500
kx̂k22 �

1

4 � 500kx� e1x�k22 (6:35)

Case 3: x21 < 1
2
kxk22, x2 < 1

4
kxk22. In this case it is possible

to �nd 1 � t < M such that ~x = (x1; x2; : : : ; xt; 0; : : : ; 0) and

x̂ = (0; : : : ; 0; xt+1; : : : ; xM ) satisfy jk~xk22 � kx̂k22j � 1
4
kxk22. In par-

ticular, k~xk22 � 5
3
kx̂k22, and (x�)2 � 2(kxk2 � x�)2 + 2kxk22 � 2(kxk2 �

x�)2 + 16
3
kx̂k22. Thus

kx� e1x�k22 � (x�)2 + k~xk22 + kx̂k22 � 2(kxk2 � x�)2 + 8kx̂k22 (6:36)

and thus

1

2
(kxk2 � x�)2 +

1

500
kx̂k22 �

1

8 � 500kx� e1x�k22 (6:37)

Choosing the worst estimate for the constants of all three cases proves

the lemma. Proposition 6.4 follows by putting al together.

We thus want an estimate on the uctuations of the last term in

the r.h.s. of (6.13). We will do this uniformly inside balls BR(x) ��
x0 2 R

M j kx� x0k2 � R
	
of radius R centered at the point x 2 R

M .

Proposition 6.9. Assume � � 1. Let f��i gi=1;:::;N ;�=1;:::;M be i.i.d.

random variables taking values in [�1; 1] and satisfying E�
�
i = 0,

E (�
�
i )

2 = 1. For any R <1 and x0 2 fsm�e�; s = �1; � = 1; : : : ;Mg
we have:

i) For p = 2 and � < 11=10, there exist �nite numerical constants C,
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K such that 7

P

"
sup

x2BR(x0)

����� 1

�N

NX
i=1

fE ln cosh(�(�i; x))� ln cosh(�(�i; x))g
�����

� C
p
�R(m� +R) + C�m� + 4�3(m� + R)

#

� ln
�
R
�3

�
e��N + e��

2N

(6:38)

ii) For p � 3 and � > �c, and for p = 2 and � � 11=10,

P

"
sup

x2BR(x0)

����� 1

�N

NX
i=1

fE ln cosh(�(�i; x))� ln cosh(�(�i; x))g
�����

> C
p
�R(R+ kx0k2) + C�+ 4�3

#
� ln

�
R
�3

�
e��N + e��

2N

(6:39)

Proof. We will treat the case (i) �rst, as it is the more di�cult one.

To prove Proposition 6.9 we will have to employ some quite heavy

machinery, known as \chaining" in the probabilistic literature8(see

[LT]; we follow closely the strategy outlined in Section 11.1 of that

book). Our problem is to estimate the probability of a supremum over

an M -dimensional set, and the purpose of chaining is to reduce this

to an estimate of suprema over countable (in fact �nite) sets. Let

us use in the following the abbreviations f(z) � ��1 ln cosh(�z) and
F (�; x) � 1

N

PN
i=1 f((�i; x)). We us denote by WM;r the lattice in R

M

with spacing r=
p
M . Then, for any x 2 R

M there exists a lattice point

y 2 WM;r such that kx� yk2 � r. Moreover, the cardinality of the set

of lattice points inside the ball BR(x0) is bounded by9

���WM;r

\
BR(x0)

��� � e�N [ln(R=r)+2] (6:40)

We introduce a set of exponentially decreasing numbers rn = e�nR
(this choice is somewhat arbitrary and maybe not optimal) and set

7 The absurd number 11=10 is of course an arbitrary choice. It so happens that,

numerically, m�(1:1)�0:5 which seemed like a good place to separate cases.
8 Physicists would more likely call this \coarse graining" of even \renormalization".
9 For the (simple) proof see [BG5].
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W(n) � WM;rn \ Brn�1
(0). The point is that if r0 = R, any point

x 2 BR(x0) can be subsequently approximated arbitrarily well by a

sequence of points kn(x) with the property that

kn(x)� kn�1(x) 2 W(n) (6:41)

As a consequence, we may write, for any n� conveniently chosen,

jF (�; x)� EF (�; x)j � jF (�; k0(x))� EF (�; k0(x))j

+

n�X
n=1

jF (�; kn(x))� F (�; kn�1(x))� E (F (�; kn(x))� F (�; kn�1(x)))j

+ jF (�; x)� F (�; kn�(x))� E (F (�; x) � F (�; kn�(x)))j
(6:42)

At this point it is useful to observe that the functions F (�; x) have some

good regularity properties as functions of x.

Lemma 6.10. For any x 2 R
M and y 2 R

M ,

1

�N

�����
NX
i=1

fln cosh(�(�i; x))� ln cosh(�(�i; y))g
�����

�

8<
:
kx� yk2max(kxk2; kyk2)kAk if � < 11=10

kx� yk2kAk1=2 if � � 11=10

(6:43)

Proof of Lemma 6.10. De�ning F as before, we use the mean value

theorem to write that, for some 0 < � < 1,

jF (�; x)� F (�; y)j = 1

N

NX
i=1

(x� y; �i)f
0((�i; x+ �(y � x)))

�
"
1

N

NX
i=1

(x� y; �i)
2

# 1
2
"
1

N

NX
i=1

�
f 0
�
(�i; x+ �(y � x))

��2# 1
2

(6:44)

By the Schwarz inequality we have.

1

N

NX
i=1

(x� y; �i)
2 � kx� yk22kAk (6:45)

To treat the last term in the r.h.s. of (6.44) we will distinguish the two

cases � � 11
10

and � � 11
10
.
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1) If � � 11
10

we use that jf 0(x)j = j tanh(�x)j � �jxj to write

1

N

NX
i=1

�
f 0
�
(�i; x+ �(y � x))

��2
�
�
11
10

�2 1

N

NX
i=1

(�i; x+ �(y � x))2

�
�
11
10

�2 1

N

NX
i=1

(�(x; �i)
2 + (1� �)(y; �i)

2)

=
�
11
10

�2
(�kxk22 + (1� �)kyk22)kAk

�
�
11
10

�2
max(kxk22; kyk22)kAk

(6:46)

which, together with (6.44) and (6.45), yields

jF (�; x)� F (�; y)j � kx� yk2max(kxk2; kyk2)kAk (6:47)

2) If A � � 11
10

we use that jf 0(x)j � 1 to get

jF (�; x)� F (�; y)j � kx� yk2kAk1=2 (6:48)

This concludes the proof of Lemma 6.10.

Lemma 6.10 implies that the last term in (6.42) satis�es

jF (�; x)�F (�; kn�(x))�E(F (�; x)�F (�; kn�(x)))j � const:rn� (6:49)

which can be made irrelevantly small by choosing, e.g., rn� = �3.

From this it follows that for any sequence of positive real numbers tk

21=may=1997; 11:39 47



48 Bovier and Gayrard

such that
P1

n=0 tn � t, we have the estimate

P

"
sup

x2BR(x0)
jF (�; x)� EF (�; x)j � t+ �t+ rn�kxk2(kAk+ EkAk)

#

� P [jF (�; x0)� EF (�; x0)j � �t]

+ P

"
sup

x2BR(x0)

��F (�; k0(x))� F (�; x0)

� E (F (�; k0(x))� F (�; x0))
�� � t0

#

+

n�X
n=1

P

"
sup

x2BR(x0)

��F (�; kn(x))� F (�; kn�1(x))

� E (F (�; kn(x))� F (�; kn�1(x)))
�� � tn

#

� P [jF (�; x0)� EF (�; x0)j � �t]

+ e
M [ln R

r0
+2]

P [jjF (�; x)� EF (�; x)j � t0]

+

n�X
n=1

eM [ln R
rn

+2]
P

h
jF (�; kn(x))� F (�; kn�1(x))

� E (F (�; kn(x))� F (�; kn�1(x)))j � tn

i
(6:50)

where we used that the cardinality of the set

Card

�
jF (�; kn(x))� F (�; kn�1(x))

� E (F (�; kn(x))� F (�; kn�1(x)))j ;x 2 BR(x0)

�

� CardfWM;rn�1
\BR(x0)g � exp

�
M [ln R

rn
+ 2]

�
(6:51)

We must now estimate the probabilities occurring in (6.50); the �rst

one is simple and could be bounded by using Talagrand' s Theorem

6.6 cited in Section 4. Unfortunately, for the other terms this does not

seem possible since the functions involved there do not satisfy the hy-

pothesis of convex level sets. We thus proceed by elementary methods,

exploiting the particularly simple structure of the functions F as sums

over independent terms. Thus we get from the exponential Tchebychev
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inequality that

P [F (�; x)� F (�; y)� E [F (�; x) � F (�; y)] � �]

� inf
s�0

e��s
NY
i=1

Ee+
s
N (f((�i;x))�f((�i;y))�E[f((�i ;x))�f((�i;y))])

� inf
s�0

e��s
NY
i=1

"
1 +

s2

2N2
E

�
f((�i; x))� f((�i; y))

� E [f((�i ; x))� f((�i; y))]
�2
e
s
N jf((�i;x))�f((�i;y))�E[f((�i ;x))�f((�i;y))]j

#

(6:52)

We now use that both j tanh(�x)j � 1 and j tanh(�x)j � �jxj to get

that

jf((�i; x))� f((�i; y))j � j(�i; (x� y))jmax
z
jf 0((�i; z))j � j(�i; (x� y))j

(6:53)

and

jf((�i; x))� f((�i; y)) � j(�i; (x� y))j
� �j(�i; (x� y))jmax(j(�i; x)j; j(�i; y)j)

(6:54)

The second inequality will only be used in the case p � 3 and if � � 1:1

Using the Schwarz inequality together with (6.53) we get

E (f((�i; x))� f((�i; y))� E [f((�i ; x))� f((�i; y))])
2

� e
s
N jf((�i;x))�f((�i;y))�E[f((�i ;x))�f((�i;y))]j

�
h
8E (f((�i; x))� f((�i; y)))

4
i1=2

�
h
Ee

2s
N jf((�i;x))�f((�i;y))�E(f((�i ;x))�f((�i;y)))j

i1=2
�
p
8
�
E (�i ; x� y)4

�1=2 h
Ee

2s
N j(�i;(x�y))j

i1=2
e
s
N Ej(�i ;(x�y))j

(6:55)

Using (6.54) and once more the Schwarz inequality we get an alternative

bound for this quantity by

p
8�2

�
E (�i ; x� y)8

�1=4
max

��
E (�i ; x)

8
�1=4 �

E (�i ; y)
8
�1=4�

�
h
Ee

2s
N j(�i;(x�y))j

i1=2
e
s
N Ej(�i ;(x�y))j

(6:56)
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The last line is easily bounded using essentially Khintchine resp.

Marcinkiewicz-Zygmund inequalities (see [CT], pp. 366 �.), in par-

ticular

E j(�i ; x)j �
p
2kxk2 reps. kxk2=

p
2 if �

�
i are Bernoulli

Eesj(�i ;x)j � 2e
s2

2
c with c = 1 if �

�
i are Bernoulli

E (�i ; (x� y))2k � 22kkkk(x� y)k2k2 no 22k if �
�
i are Bernoulli

(6:57)

Thus

E (f((�i; x))� f((�i; y))� E [f((�i ; x))� f((�i; y))])
2

� e
s
N jf((�i;x))�f((�i;y))�E[f((�i ;x))�f((�i;y))]j

�
p
8
p
32k(x� y)k22e

s
N

p
2kx�yk2+c 2s

2

N2 kx�yk22

respectively

� �2
p
82442kx� yk22 (kxk2 + kyk2)2 e

s
N

p
2kx�yk2+c 2s

2

N2 kx�yk22

(6:58)

In the Bernoulli case the constants can be improved to 2
p
8 and

p
842,

resp., and c = 1.

Inserting (6.58) into (6.52), using that 1 + x � ex and choosing s gives

the desired bound on the probabilities. The trick here is not to be

tempted to choose s depending on �. Rather, depending on which

bound we use, we choose s =
N
p
�

kx�yk2 or s =
N
p
�

kx�yk2k(kxk2+kyk2) . This
gives

P [F (�; x)� F (�; y)� E [F (�; x) � F (�; y)] � �]

� exp

�
�N

p
��

kx� yk2
+ 8�Ne

p
2�+2c�

�
(6:59)

respectively

P [F (�; x)� F (�; y)� E [F (�; x) � F (�; y)] � �]

� exp

�
�N

p
��

kx�yk2(kxk2+kyk2) + �N�2
p
82442e

2
p
�

kxk2+kyk2
+ c�

(kxk2+kyk2)2

�
(6:60)
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In particular

P

���F (�; kn(x))� F (�; kn�1(x))

� E [jF (�; kn(x))� F (�; kn�1(x))]
�� � tn

�

� 2 exp

�
�N tn

p
�

rn�1
+N8�Ne

p
2�+2c�

� (6:61)

and

P

���F (�; kn(x))� F (�; kn�1(x))

� E [jF (�; kn(x))� F (�; kn�1(x))]
�� � tn

�

� 2 exp

�
�N tn

p
�

rn�1(R+ kx0k2)
+ �N�2

p
82442e

2
p
�

R+kx0k2
+ c�

(kx0k2+R)2

�
(6:62)

We also have

P [jF (�; k0(x))� F (�; x0)� E [F (�; k0(x))� F (�; x0)]j � t0]

� 2 exp

�
�N t0

p
�

R
+ 8�Ne

p
2�+2c�

�
(6:63)

and

P [jF (�; k0(x))� F (�; x0)� E [F (�; k0(x))� F (�; x0)]j � t0]

� 2 exp

�
�N t0

p
�

R(kx0k2 + R)
+ �N�2

p
82442e

2
p
�

R+kx0k2
+ c�

(kx0k2+R)2

�
(6:64)

Since kx0k2 + R � x� so that
2
p
�

R+kx0k2 + c�
(kx0k2+R)2 �

p
2x� +

c2(x�)2 � c0. Thus in the case � � 1:1 we may choose t0 and tn
as

t0 =
p
�R(kx0k2 + R)

h
1 + 2 + �22442

p
8ec

0 + 1
i

(6:65)

and

tn =
p
�e�(n�1)R(kx0k2 + R)

h
n+ 2 + �22442ec

0 + 1
i

(6:66)
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Finally a simple estimate gives that (for x0 = �m�e�)

P [jF (�; x0)� EF (�; x0)j � �t] � 2e
� �t2

20(m�)2
N

(6:67)

Choosing �t = m��, setting n� = ln
�
�3

R

�
, and putting all this into

(6.50) we get that

P

"
sup

x2BR(x0)
jF (�; x)� EF (�; x)j �

p
�R(kx0k2 + R)

�
4 + �22442

p
8ec

0

+ 3 + e
e�1 + �22442ec

0

�
+m��+ �3(kx0k2 + R)

#

� ln
�
�3

R

�
e��N + 2e��

2N=20

(6:68)

This proves part (i) of Proposition 6.9 and allows us to estimate the

constant C in (6.38). In the same way, but using (6.61) and (6.63), we

get the analogous bound in case (ii), namely

P

"
sup

x2BR(x0)
jF (�; x)� EF (�; x)j �

p
�R(kx0k2 + R)

�
4 + 8ec

0 + 3 + e
e�1 + 8ec

0
�
+ 4�3

#

� ln
�
�3

R

�
e��N

(6:69)

This concludes the proof of Proposition 6.9.

Remark. The reader might wonder whether this heavy looking chain-

ing machinery used in the proof of Proposition 6.9 is really necessary.

Alternatively, one might use just a single lattice approximation and

use Lemma 6.10 to estimate how far the function can be from the lat-

tice values. But for this we need at least a lattice with r =
p
�, and

this would force us to replace the
p
� terms in (6.38) and (6.39) byp

�j ln�j. While this may not look too serious, it would certainly spoil

the correct scaling between the critical � and � � 1 in the case p = 2.
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We are now ready to conclude the proof of Proposition 6.1. To

do this, we consider the 2M sectors in which sx�e� is the closest of

all the points sx�e� and use Proposition 6.9 with x0 = se�x� and R

the distance from that point. One sees easily that if that distance

is su�ciently large (as stated in the theorem), then with probability

exponentially close to one, the modulus of the last term in (6.13) is

bounded by one half of the lower bound on the �rst term given by

Proposition 6.4. Since it is certainly enough to consider a discrete set

of radii (e.g. take R 2 Z=N), and the individual estimates fail only

with a probability of order exp(��N), it is clear that the estimates on

 hold indeed uniformly in x with probability exponentially close to

one. This concludes the proof of Proposition 6.1.

7. Local analysis of �

To obtain more detailed information on the Gibbs measures re-

quires to look more precisely at the behaviour of the functions

�p;�;N (m) in the vicinities of points �m�(�)e�. Such an analysis has

�rst been performed in the case of the standard Hop�eld model in

[BG5]. The basic idea was simply to use second order Taylor expan-

sions combined with careful probabilistic error estimates. One can cer-

tainly do the same in the general case with su�ciently smooth energy

function EM (m), but since results (and to some extent techniques) de-

pend on speci�c properties of these functions, we restrict our attention

again to the cases where EM (m) = 1
p
kmkpp, with p � 2 integer, as in

the previous section. For reasons that will become clear in a moment,

the (most interesting) case p = 2 is special, and we consider �rst the

case p � 3. Also throughout this section, the �
�
i take the values �1.

7.1. The case p � 3.

As a matter of fact, this case is \misleadingly simple"7. Recal-

l that we deal with the function �p;�;N(m) given by (6.2). Let us

consider without restriction of generality the vicinity of m�e1. Write

m = m�e1 + v where v is assumed \small", e.g. kvk2 � � < m�. We

have to consider mainly the regions over which Proposition 6.1 does not

give control, i.e. where k sign (m)jmjp�1� e1(m�)p�1k2 � c1
p
� (recal-

l (6.6)). In terms of the variable v this condition implies that both

jv1j2 � C
p
� and kv̂k2p�22p�2 � C

p
� for some constant C (depending on

7 But note that we consider only the case M��N rather than M��Np�1
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p), where we have set v̂ = (0; v2; v3; : : : ; vM ). Under these conditions

we want to study

�p;�;N (m
�e1 + v)� �p;�;N(m

�e1) =
1

q

�
(m� + v1)

p � (m�)p + kv̂kpp
�

� 1

�N

NX
i=1

"
ln cosh

0
@�((m� + v1)p�1 +

X
��2

�̂
�
i v

p�1
� )

1
A

� ln cosh(�(m�)p�1)

#

(7:1)

where we have set �̂
�
i � �1i �

�
i . The crucial point is now that we can

expand each of the terms in the sum over i without any di�culty: for

j(m�+v1)p�1�(m�)p�1j � jv1j(p�1)(m�+ jv1j)p�2 � Cjv1j, and, more
importantly, the H�older inequality gives

������
X
��2

�̂
�
i sign(v�)jv�jp�1

������ � kv̂k22kv̂kp�31 (7:2)

As explained earlier, we need to consider only v for which kvk2 � 2,

and kv̂k1 � kv̂k2p�2 � (C
p
�)

1=(2p�2)
is small on the set we consider.

Such a result does not hold if p = 2, and this makes the whole analysis

much more cumbersome in that case | as we shall see.

What we can already read o� from (7.1) otherwise is that v1 and

v̂ enter in a rather asymmetric way. We are thus well-advised to treat

jv1j and kv̂k2 as independent small parameters. Expanding, and using

that m� = tanh(�(m�)p�1) gives therefore

�p;�;N (m
�e1 + v)� �p;�;N (m

�e1)

= v21
p� 1

2
(m�)p�2

�
1� �(1� (m�)2)(m�)p�2(p� 1)

�
+

1

q
kv̂kpp �

�

2
(1� (m�)2)

�
sign (v̂)jv̂jp�1; �

T �

N
sign (v̂)jv̂jp�1

�

� 1

N

NX
i=1

�
�̂i; sign (v̂)jv̂jp�1

� �
m� +

�

2
(1� (m�)2)(m�)p�2v1

�

+ R(v)

(7:3)
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where

jR(v)j � jv1j3
(p� 1)(p� 2)(p� 3)

6
(m� + jv1j)p�3

+
29=4

6

"
jv1j3(p� 1)3(m� + j�j)3(p�2) + 1

N

NX
i=1

j(�̂i; sign (v̂)jv̂jp�1)j3
#

� 2�2 tanh �
�
(m� + jv1j)p�1 + kv̂k22kv̂kp�31

�
cosh2 �

�
(m� � jv1j)p�1 � kv̂k22kv̂kp�31

�
(7:4)

where the last factor is easily seen to be bounded uniformly by some

constant, provided jv1j and kv̂k2 are small compared to m�(�). Recall
that the latter is, for � � �c, bounded away from zero if p � 3. (Note

that we have used that for positive a and b, (a+ b)3 � 29=4(a3 + b3)).

Note further that

�
sign (v̂)jv̂jp�1; �

T �

N
sign (v̂)jv̂jp�1

�
� kA(N)k

X
��2

v2p�2�

� kA(N)kkv̂kppkv̂kp�21

(7:5)

and

1

N

NX
i=1

j(�̂i; sign (v̂)jv̂jp�1)j3 �
1

N

NX
i=1

j(�̂i; sign (v̂)jv̂jp�1)j2kv̂k22kv̂kp�31

� kA(N)kkv̂kppkv̂k2p�51 kv̂k22
(7:6)

so that in fact

�p;�;N (m
�e1 + v)� �p;�;N (m

�e1)

= v21
p� 1

2
(m�)p�2

�
1� �(1� (m�)2)(m�)p�2(p� 1)

�
+

1

q
kv̂kpp

� 1

N

NX
i=1

�
�̂i; sign (v̂)jv̂jp�1

� �
m� +

�

2
(1� (m�)2)(m�)p�2v1

�
+R(v)

(7:7)

where j ~R(v)j � c
�
jv1j3 + kv̂kppkv̂kp�21

�
.

These bounds give control over the local minima near the Mattis

states. In fact, we can compute easily the �rst corrections to their

precise (random) positions. The approximate equations for them have
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the form

v1 = c1(�)
1p
N
(z; sign (v̂)jv̂jp�1)

v� =
1p
N
z�(m

� + c2(�)v1); for � 6= 1

(7:8)

where z� = 1p
N

P
i �̂

�
i and c1(�); c2(�) are constants that can be read

o� (7.7). These equations are readily solved and give

v1 =
1p
N
c1X

v� =
1p
N
z�

�
m� +

c1c2p
N
X

� (7:9)

where X is the solution of the equation

X =
1

N (p�1)=2 kzk
p
p

�
m� +

c1c2p
N
X

�p
(7:10)

Note that for N large,

Ekzkpp �
M

N (p�1)=2
(1� (�1)p)2p=2�

�
1+p
2

�
2
p
�

(7:11)

Moreover, an estimate of Newman ([N], Proposition 3.2) shows that

P

h��kzkpp � Ekzkpp
�� > M

p�2

2p�2

i
� 2e�cp()M

1=(p�1)

(7:12)

for some function cp() > 0 for  > 0. This implies in particular that
Xp
N
is sharply concentrated around the value M

Np=2 (which tends to zero

rapidly for our choices of M). Thus under our assumptions on M , the

location of the minimum in the limit as N tends to in�nity is v1 = 0

and v� = m�p
N
z�, and at this point �p;�;N (m

�e1+ v)��p;�;N (m
�e1) =

O
�
M=Np=2

�
.

On the other hand, for kv̂kp � 2
p
�(m� + c),

�p;�;N (m
�e1 + v)� �p;�;N (m

�e1) � c1v
2
1 + c3kv̂kpp > 0 (7:13)

which completes the problem of localizing the minima of � in the case

p � 3. Note the very asymmetric shape of the function in their vicinity.
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7.2 The case p = 2.

The case of the standard Hop�eld model turns out to be the more

di�cult, but also the most interesting one. The major source of this

is the fact that an inequality like (7.2) does not hold here. Indeed, it

is easy to see that there exist v such that

���P� �̂
�
i v�

��� = p
Mkv̂k2. The

idea, however, is that this requires that v be adapted to the particular

�̂i, and that it will be impossible, typically, to �nd a v such that for

many indices, i,
���P� �̂

�
i v�

��� would be much bigger than kvk2 and to take
advantage of that fact. The corresponding analysis has been carried out

in [BG5] and we will not repeat all the intermediate technical steps here.

We will however present the main arguments in a streamlined form.

The key idea is to perform a Taylor expansion like in the previous case

only for those indices i for which (�i; v) is small, and to use a uniform

bound for the others. The upper and lower bounds must be treated

slightly di�erently, so let us look �rst at the lower bound.

The uniform bound we have here at our disposal is that

� 1

�
ln cosh �x � (m�)2

2
� 1

�
ln cosh �m� � x2

2
(7:14)

Using this we get, for suitably chosen parameter � > 0, by a simple

computation that for some 0 � � � 1,

�2;�;N(m
�e1 + v)� �2;�;N(m

�e1)

� 1

2
kvk22 �

1

2
�(1� (m�)2)

1

N

NX
i=1

(�i; v)
2 � m�

N

NX
i=1

(�̂i; v̂)

� 1

6

1

N

NX
i=1

1Ifj(�i;v)j��m�gj(�i; v)j32�2
tanh �(m� + �(�i; v))

cosh2 �(m� + �(�i; v))

� 1

2
(1� �(1� (m�)2))

1

N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; v)
2

(7:15)

The �rst two lines are the main second order contributions. The third

line is the standard third order remainder, but improved by the char-

acteristic function that forces (�i; v) to be small. The last line is the

price we have to pay for that, and we will have to show that with large

probability this is also very small. This is the main \di�culty"; for the
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third order remainder one may use simply that

1

6

1

N

NX
i=1

1Ifj(�i;v)j��m�gj(�i; v)j32�2
tanh �(m� + �(�i; v))

cosh
2 �(m� + �(�i; v))

� 1

2N

NX
i=1

(�i; v)
2�m� 1

3
�2

tanh �(m�(1 + �))

cosh
2 �(m�(1� �))

� 1

2N

NX
i=1

(�i; v)
2�(1 + �)(m�)2

�3

3
cosh

�2 �(m�(1� �))

(7:16)

For � somewhat small, say � � 0:1, it is not di�cult to see that
�3

3
cosh�2 �(m�(1 � �)) is bounded uniformly in � by a constant of

order 1. Thus we can for our purposes use

1

6N

NX
i=1

1Ifj(�i;v)j��m�gj(�i; v)j32�2
tanh �(m� + �(�i; v))

cosh2 �(m� + �(�i; v))

� �(1 + �)(m�)2
1

2N

NX
i=1

(�i; v)
2

(7:17)

which produces just a small perturbation of the quadratic term. Setting

Xa(v) �
1

N

NX
i=1

1Ifj(�i;v)j>ag(�i; v)
2 (7:18)

we summarize our �nding so far as

Lemma 7.1. There exists �c > 0 (� 0:1) such that for all �, for

� � �c,

�2;�;N(m
�e1 + v)� �2;�;N (m

�e1)

� 1

2

�
v;

�
1I� (�(1� (m�)2) + �(1 + �)(m�)2)

�T �

N

�
v

�
� m�

N

NX
i=1

(�̂i; v̂)

� 1

2
(1� �(1� (m�)2))X�m�(v)

(7:19)

Before turning to the study ofXa(v), we derive corresponding lower

bounds. For this we need a complement to (7.14). Using the Taylor
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formula with second order remainder we have that for some ~x

� 1

�
ln cosh �x � (m�)2

2
� 1

�
ln cosh �m� � x2

2

+
(x�m�)2

2

�
1� �

�
1� tanh2 �(~x)

��
� (m�)2

2
� 1

�
ln cosh �m� � x2

2
+

(x�m�)2

2

(7:20)

By a similar computation as before this gives

Lemma 7.2. There exists �c > 0 (� 0:1) such that for all �, for

� � �c,

�2;�;N(m
�e1 + v)� �2;�;N(m

�e1)

� 1

2

�
v;

�
1I� (�(1� (m�)2)� �(1 + �)(m�)2)

�T �

N

�
v

�

� m�

N

NX
i=1

(�̂i; v̂) +
1

2
�(1� (m�)2))X�m�(v)

(7:21)

To make use of these bounds, we need to have uniform control over

the Xa(v). In [BG5] we have proven for this the following

Proposition 7.3. De�ne

�(�; a=�) =

0
@2
r
2
p
2e
� (1�3

p
�)2

(1�
p
�)2

a2

4�2 + �(j ln�j+ 2) + �
p
1 + r(�)

1
A

2

+ 2�2(1 + r(�)) + 1
2
�

�
2e
� a2

��2 + 2
p
3�(j ln�j+ 2)

�
(7:22)

Then

P

"
sup
v2B�

Xa(v) � �2�(�; a=�)

#
� e��N + P[kA� 1Ik � r(�)] (7:23)

We see that �(�; a; �) is small if � is small and �2 is small compared

to a which for us is �ne: we need the proposition with a = �m� and

with � � m�c1, where  is our small parameter. The proof of this

proposition can be found in [BG5]. It is quite technical and uses a
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chaining procedure quite similar to the one used in Section 6 in the

proof of Proposition 6.9. Since we have not found a way to simplify or

improve it, we will not reproduce it here. Although in [BG5] only the

Bernoulli case was considered, but the extension to centered bounded

�
�
i poses no particular problems and can be left to the reader; of course

constants will change, in particular if the variables are asymmetric.

The expression for �(�; a; �) looks quite awful. However, for �

small (which is all we care for here), it is in fact bounded by

�(�; a=�) � C

�
e
�(1�2p�)2 a2

4�2 + �(j ln�j+ 2)

�
(7:24)

with C � 25. We should now choose � in an optimal way. It is easy to

see that in (7.19), for � � cm�, this leads to � � 
p
j ln j, uniformly

in � > 1. This uses that the coe�cient of X�m�(v) is proportional

to (m�)2. Unfortunately, that is not the case in the upper bound of

Lemma 7.2, so that it turns out that while this estimate is �ne for �

away from 1 (e.g. � > 1:1, which means m� > 0:5), for � near one

we have been too careless! This is only just: replacing �(1� tanh2 �~x)

by zero and hoping to get away with it was overly optimistic. This is,

however, easily remedied by dealing more carefully with that term. We

will not give the (again somewhat tedious) details here; they can be

found in [BG5]. We just quote from [BG5] (Theorem 4.9)

Lemma 7.4. Assume that � � 1:1. Then there exists �c > 0 (� 0:1)

such that for � � �c,

�2;�;N(m
�e1 + v)� �2;�;N (m

�e1)

� 1

2

�
v;

�
1I� (�(1� (m�)2)� �(1 + �)(m�)2)

�T �

N

�
v

�
� m�

N

NX
i=1

(�̂i; v̂)

+
1

2
(m�)2kvk22

 
 + 240e

�(1�2p�)2 (m�)2

4kvk2
2

!

(7:25)

For the range of v we are interested in, all these bounds combine

to

Theorem 7.5. For all � > 1 and for all kvk2 � cm�, there exists a
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�nite numerical constant 0 < C <1 such that������2;�;N(m
�e1 + v)� �2;�;N (m

�e1)

� 1

2

�
1� �(1� (m�)2)

�
kvk22 �

m�

N

NX
i=1

(�̂i; v̂)

����� � 
p
j ln jC(m�)2kvk22

(7:26)

with probability greater that 1� e��N .

As an immediate consequence of this bound we can localize the

position of the minima of � near m�e� rather precisely.

Corollary 7.6. Let v� denote the position of the lowest minimum of

the function �2;�;N(m
�e1 + v) in the ball kvk2 � cm�. De�ne the

vector z(�) 2 R
M with components

z(�)� �
�

1
N

P
i �

�
i �

�
i ; for � 6= �

0; for � = �
(7:27)

There exists a �nite constant C such that

v� � m�

1� �(1� (m�)2)
z(1)


2

� C 
p
j ln j kz(1)k2(m�)3

(1� �(1� (m�)2))2

(7:28)

with the same probability as in Theorem 7.5. Moreover, with probability

greater than 1� e�4M=5,

kz(1)k2 � 2
p
� (7:29)

so that in factv� � m�

1� �(1� (m�)2)
z(1)

2

� C2
p
j ln jm� (7:30)

Proof. (7.28) is straightforward from Theorem 7.5. The bound

on kz(1)k2 was given in [BG5], Lemma 4.11 and follows from quite

straightforward exponential estimates.

Remark. We will see in the next section that for � not too large

(depending on �), there is actually a unique minimum for kvk2 � cm�.
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8. Convexity, the replica symmetric solution, convergence

In this �nal section we restrict our attention to the standard Hop-

�eld model. Most of the results presented here were inspired by a recent

paper of Talagrand [T4].

In the last section we have seen that the function � is locally bound-

ed from above and below by quadratic functions. A natural question

is to ask whether this function may even be locally covex. The follow-

ing theorem (�rst proven in [BG5]) shows that this is true under some

further restrictions on the range of the parameters.

Theorem 8.1. Assume that 1 < � <1. If the parameters �; �; � are

such that for � > 0,

inf
�

�
�(1� tanh2(�m�(1� �)))(1 + 3

p
�)

+ 2� tanh2(�m�(1� �))�(�; �m�=�)
�
� 1� �

(8:1)

Then with probability one for all but a �nite number of indices N ,

�N;� [!](m
�e1+ v) is a twice di�erentiable and strictly convex function

of v on the set fv : kvk2 � �g, and �min

�
r2�N;� [!](m

�e1 + v)
�
> �

on this set.

Remark. The theorem should of course be used for � = cm�. One

checks easily that with such �, the conditions mean: (i) For � close to

1:  small and, (ii) For � large: � � c��1.
Remark. In deviation from our general policy not to speak about the

high-temperature regime, we note that it is of course trivial to show

that �min

�
r2�N;� [!](m)

�
� � for all m if � � 1�2�

(1+
p
�)2

. Therefore

all the results below can be easily extended into that part of the high-

temperature regime. Note that this does not cover all of the high

temperature phase, which starts already at ��1 = 1 +
p
�.

Proof. The di�erentiability for �xedN is no problem. The non-trivial

assertion of the theorem is the local convexity. Since d2

dx2
ln cosh(�x) =
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�
�
1� tanh

2
(�x)

�
we get

r2�(m�e1 + v) = 1I� 1

N

NX
i=1

f 00� (m
��1i + (�i; v))�

T
i �i

= 1I� �

N

NX
i=1

�Ti �i +
�

N

X
i

�Ti �i tanh
2
(�(m��1i + (�i; v)))

� 1I� �
�T �

N
+
�

N

X
i

�Ti �i1Ifj(�i;v)j��m�g tanh
2(�m�(1� �))

= 1I� �
�
1� tanh

2
(�m�(1� �))

� �T �
N

� � tanh2(�m�(1� �))
1

N

X
i

�Ti �i1Ifj(�i;v)j>�m�g

(8:2)

Thus

�min

�
r2�(m�e1 + v)

�
� 1� �

�
1� tanh2(�m�(1� �))

�
kA(N)k

� � tanh2(�m�(1� �))

 1
N

NX
i=1

1Ifj(�i;v)j>�m�g�
T
i �i


(8:3)

What we need to do is to estimate the norm of the last term in (8.3).

Now,

sup
v2B�

 1
N

NX
i=1

1Ifj(�i;v)j>�m�g�
T
i �i


= sup

v2B�
sup

w:kwk2=�
1
�2

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)
2

� 1
�2

sup
v2B�

sup
w2B�

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)
2

(8:4)

To deal with this last expression, notice that

(�i; w)
2

= 1Ifj(�i;v)j>�m�g(�i; w)
2
�
1Ifj(�i;w)j<j(�i;v)jg + 1Ifj(�i;w)j�j(�i;v)jg

�
� 1Ifj(�i;v)j>�m�g(�i; v)

2 + 1Ifj(�i;w)j>�m�g(�i; w)
2

(8:5)
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Thus

1
N

NX
i=1

1Ifj(�i;v)j>�m�g(�i; w)
2 = X�m�(v) +X�m�(w) (8:6)

and so we are reduced to estimating the same quantities as in Section

7. Thus using Proposition 7.3 and the estimate (4.12) with � =
p
�,

we obtain therefore that with probability greater than 1 � e�const:�N

for all v with norm less than �,

�min

�
r2�(m�e1 + v)

�
� 1� �

�
1� tanh2(�m�(1� �))

�
(1 + 3

p
�)

� 2� tanh2(�m�(1� �))�(�; �m�=�)
(8:7)

Optimizing over � gives the claim of the theorem.

Remark. Note that the estimates derived from (8.7) become quite

bad if � is large. Thus local convexity appears to break down for

some critical �conv(�) that tends to in�nity, as � # 0. In the heuristic

picture [AGS] such a critical line appears as the boundary of the region

where the so-called replica symmetry is supposed to hold. It is very

instructive to read what Amit et al. write on replica symmetry breaking

in the retrieval phases: \....the very occurrence of RSB8implies that the

energy landscape of the basin of each of the retrieval phases has features

that are similar to the SG9phase. In particular, each of the retrieval

phases represents many degenerate retrieval states. All of them have

the same macroscopic overlap m, but they di�er in the location of the

errors. These states are organized in an ultrametric structure" ([AGS],

page 59). Translated to our language, this means that replica symmetry

breaking is seen as a failure of local convexity and the appearance of

many local minima. On this basis we conjectured in [BG5] that replica

symmetry is closely related to the local convexity of the free energy

functional 10

8 = replica symmetry breaking
9 = spin glass
10 We should note, however, that our condition for local convexity (roughly

��1>�) does not have the same behaviour as is found for the stability of the replica

symmetric solution in [AGS] (��1>exp(�1=2�)). It is rather clear that our condi-

tion for convexity cannot be substantially improved. On the other hand, Talagrand

has informed us that his method of deriving the replica symmetric solution which
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We can now make these observations more precise. While we

have so far avoided this, now is the time to make use of the Hubbard-

Stratonovich transformation [HS] for the case of quadratic EM . That

is, we consider the new measures ~Q�;N;M � ~Q1
�;N;M de�ned in (5.14).

They have the remarkable property that they are absolutely continuous

w.r.t. Lebesgue measure with density

1

Z�;N;M
exp (��N��;N;M (z)) (8:8)

(do the computation or look it up in [BGP1]). Moreover, in many

computations it can conveniently replace the original measure Q. In

particular, the following identity holds for all t 2 R
M .

Z
dQ�;N;M (m)e(t;m) = e

ktk2
2

�N

Z
d ~Q�;N;M (z)e(t;z) (8:9)

Since for t with bounded norm the �rst factor tends to one rapidly, this

shows that the exponential moments of Q and ~Q are asymptotically

equal. We will henceforth assume that we are in a range of � and �

such that the union of the balls B�(�)(sm
�e�) has essentially full mass

under ~Q.
To study one of the balls, we de�ne for simplicity the conditional

measures

~Q(1;1)
�;N;M (�) � ~Q�;N;M

�
�
��z 2 B�(�)(m

�e1)
�

(8:10)

with �(�) such that Theorem 8.1 holds. (Alternatively we could consider

tilted measures with h proportional to e1 and arbitrarily small). For

notational convenience we will introduce the abbreviation E ~Q for the

expectation w.r.t. the measure ~Q(1;1)
�;N;M .

Now intuitively one would think that since ~Q(1;1)
�;N;M has a density

of the form e�NV (z) with a convex V with strictly positive second

derivative, this measure should have similar properties as for quadratic

V . It turns out that this is to some extent true. For instance, we have:

Theorem 8.2. Under the hypothesis of Theorem 8.1, and with the

same probability as in the conclusion of that theorem, for any t 2 R
M

does not require convexity, can be extended to work under essentially the conditions

of [AGS].
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with ktk2 � C <1,

e(t;E ~Qz) � O(e�M ) � E ~Qe
(t;z) � e(t;E ~Qz)ektk

2
2=�N +O(e�M ) (8:11)

In particular, the marginal distributions of Q converge to Dirac distri-

butions concentrated on the corresponding projections of E ~Qz.

Proof. The main tool in proving this Theorem are the so-called

Brascamp-Lieb inequalities8[BL]. We paraphrase them as follows.

Lemma 8.3. [Brascamp-Lieb[BL]]Let V : RM ! R be non-negative

and strictly convex with �min(r2V ) � �. Denote by EV expectation

with respect to the probability measure

e�NV (x)dMxR
e�NV (x)dMx

(8:12)

Let f : RM ! R be any continuously di�erentiable function. Then

EV (f � EV f)
2 � 1

�N
EV (krfk22) (8:13)

We see that we are essentially in a situation where we can apply

Lemma 8.3. The only di�erence is that our measures are supported only

on a subset of RM . This is however no problem: we may either continue

the function �(m) as a strictly convex function to all RM and study the

corresponding measures noting that all reasonable expectations di�er

only by exponentially small terms, or one may run through the proof

of Lemma 8.3 to see that the boundary terms we introduce only lead to

exponentially small error terms in (8.13). We will disregard this issue

in order not to complicate things unnecessarily. To see how Lemma 8.3

works, we deduce the following

Corollary 8.4. Let EV be as in Lemma 8.3. Then

(i) EV kx� EV xk22 � M
�N

(ii) EV kx� EV xk44 � 4 M
�2N2

(iii) For any function f such that Vt(x) � V (x)� tf(x)=N for t 2 [0; 1]

is still strictly convex and �min(r2Vt) � �0 > 0, then

0 � ln EV e
f � EV f �

1

2�0N
sup
t2[0;1]

EVt krfk22 (8:14)

8 We thank Dima Io�e for having brought these to our attention
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In particular,

(iv) ln EV e
(t;(x�EV x)) � ktk22

2�N

(v) ln EV e
kx�EV xk22 � EV kx� EV xk22 � M

�2N2

Proof. (i) Choose f(x) = x� in (8.13). Insert and sum. (ii) Choose

f(x) = x2� and use (i). (iii) Note that

ln EV e
f = EV f +

Z 1

0

ds

Z s

0

ds0
EV

�
es
0f
�
f � EV e

s0ff
EV es

0f

�2�
EV es

0f

= EV f +

Z 1

0

ds

Z s

0

ds0EVs0
�
f � EVs0 f

�2
(8:15)

where by assumption Vs(x) has the same properties as V itself. Thus

using (8.13) gives (8.15) (iv) and (v) follow with the corresponding

choices for f easily.

Theorem 8.2 is thus an immediate consequence of (iv).

We now come to the main result of this section. We will show

that Theorem 8.1 in fact implies that the replica symmetric solution of

[AGS] is correct in the range of parameters where Theorem 8.1 holds.

Such a result was recently proven by Talagrand [T4], but we shall see

that using Theorem 8.1 and the Brascamp-Lieb inequalities, we can

give a greatly simpli�ed proof.

Theorem 8.5. Assume that the parameters �; � are such that the

conditions both of Theorem 6.2 and of Theorem 8.1 are satis�ed, with

� > 0 and � � cm�, where c is such that the mass of the complement

of the set [s;�Bcm�(sm�e�) is negligible. Then, the replica symmetric

solution of [AGS] holds in the sense that, asymptotically, as N " 1,

E ~Qz1, and EkE ~Q ẑk22 (recall that ẑ � (0; z2; : : :) converge almost surely

to the positive solution �̂ and r of the system of equations

�̂ =

Z
dN (g) tanh(�(�̂+

p
�rg)) (8:16)

q =

Z
dN (g) tanh2(�(�̂+

p
�rg)) (8:17)
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r =
q

(1� � + �q)2
(8:18)

(note that q is an auxiliary variable that could be eliminated).

Remark. As far as Theorem 8.5 is considered as a result on conditional

measures only, it is possible to extend its validity beyond the regime of

Theorem 6.2. In that case, what is needed is only Theorem 8.1 and the

control of the location of the local minima given by Theorem 7.5. One

may also, in this spirit, consider the extension of this result to other

local minima (corresponding to the so-called \mixed patterns"), which

would, of course, require to prove the analogues of Theorem 7.5, 8.1

in this case, as well as carrying out the stability analysis of a certain

dynamical system (see below). We do not doubt that this can be done.

Remark. We will not enter into the discussion on how these equations

were originally derived with the help of the replica trick. This is well

explained in [AGS]. In [T4] it is also shown how one can derive on this

basis the formula for the free energy as a function of �̂; r, and q that is

given in [AGS] and for which the above equations are the saddle point

equations. We will not repeat these arguments here.

Remark. In [PST] it was shown that the replica symmetric solution

holds if the so-called Edwards-Anderson parameter, 1
N

P
i[��;N;M(�i)]

2

is self-averaging. Some of the basic ideas in that paper are used both

in Talagrand's and in our proof below. In fact we follow the strategy

of [PST] more closely than Talagrand, and we will see that this leads

immediately to the possibility of studying the limiting Gibbs measures.

Proof. It may be well worthwhile to outline the strategy of the proof

in a slightly informal way before we go into the details. This may also

give a new explanation to the mysterious looking equations above. It

turns out that in a very speci�c sense, the idea of these equations and

their derivation is closely related to the original idea of \mean �eld the-

ory". Let us briey recall what this means. The standard derivation

of \mean �eld" equations for homogeneous magnets in most textbooks

on statistical mechanics does not start from the Curie-Weiss model but

from (i) the hypothesis that in the in�nite volume limit, the spins are

independent and identically distributed under the limiting (extremal)

Gibbs measure and that (ii) their distribution is of the form e��im

where m is the mean value of the spin under this same measure, and

that is assumed to be an almost sure constant with respect to the Gibb-

s measure. The resulting consistency equation is then m = tanh �m.

This derivation breaks down in random systems, since it would be un-

reasonable to think that the spins are identically distributed. Of course

one may keep the assumption of independence, and write down a set of

21=may=1997; 11:39 68



Hop�eld models 69

consistency equations (in the spin-glass case, these are know as TAP-

equations [TAP]). Let us try the idea in Hop�eld model. The spin �i
here couples to a \mean �eld" hi(�) = (�i;m(�)), which is a function

of the entire vector of magnetizations. To obtain a self-consistent set of

equations we would have to compute all of these, leading to the system

m� =
1

N

X
i

�
�
i tanh(�(�i;m)) (8:19)

Solving this is a hopelessly di�cult task when M is growing somewhat

fast with N , and it is not clear why one should expect these quantities

to be constants when M = �N .

But now suppose it were true that we could somehow compute the

distribution of hi(�) a priori as a function of a small number of param-

eters, not depending on i. Assume further that these parameters are

again functions of the distribution of the mean �eld. Then we could

write down consistency conditions for them and (hopefully) solve them.

In this way the expectation of �i could be computed. The tricky part

is thus to �nd the distribution of the mean �eld 8. Miraculously, this

can be done, and the relevant parameters turn out to be the quantities

�̂ and r, with (8.16)-(8.18) the corresponding consistency equations9

We will now follow these ideas and give the individual steps a

precise meaning. In fact, the �rst step in our proof corresponds to

proving a version of Lemma 2.2 of [PST], or if one prefers, a sharpened

version of Lemma 4.1 of [T4]. Note that we will never introduce any

auxiliary Gaussian �elds in the Hamiltonian, as is done systematically

in [PST] and sometimes in [T4]; all comparison to quantities in these

8 This idea seems related to statements of physicists one �nds sometimes in the

literature that in spin glasses, that the relevant \order parameter" is a actually a

probability distribution.
9

In fact, we will see that the situation is just a bit more complicated. For �nite

N, the distribution of the mean �eld will be seen to depend essentially on three

N-dependent, non-random quantities whose limits, should they exist, are related

to �̂, r and q. Unfortunately, one of the notorious problems in disordered mean

�eld type models is that one cannot prove a priori such intuitively obvious facts

like that the mean values of thermodynamic quantities (such as the free energy,

etc.) converge, even when it is possible to show that their uctuations converge

to zero (this sad fact is sometimes overlooked). We shall see that convergence of

the quantities involved here can be proven in the process, using properties of the

recurrence equations for which the equations above are the �xed point equations,

and a priori control on the overlap distribution as results from Theorem 6.2 (or 7.5).
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papers is thus understood modulo removal of such terms. Let us begin

by mentioning that the crucial quantity u(�) de�ned in De�nition 5 of

[PST] has the following nice representation10

u(�) = ln

Z
d ~Q(1;1)

�;N;M (z)e��(�;z) (8:20)

where, like Talagrand in [T4], we singled out the site N + 1 (instead

of 1 as in [PST]) and set �N+1 = �. For notational simplicity we will

denote the expectation w.r.t. the measure ~Q(1;1)
�;N;M by E ~Q and we will

set �z = z � E ~Qz.

Lemma 8.6. Under the hypotheses of Theorem 8.5 we have that

(i) With probability exp. close to 1,

E�E ~Qe
��(�;�z) = e

�2�2

2
E ~Qk�zk22+R (8:21)

where jRj � C
N
.

(ii) Moreover,

E�

�
E ~Qe

��(�;�z) � E�E ~Qe
��(�;�z)

�2
� C

N
(8:22)

Proof. Note �rst that

E�E ~Qe
��(�;�z) � E ~Qe

�2�2

2
k�zk22 (8:23)

and also

E �E ~Qe
��(�;�z) � E ~Qe

�2�2

2
k�zk22� �4�4

4
k�zk44 (8:24)

(8.23) looks most encouraging and (ii) of Corollary 8.4 leaves hope for

the k�zk44 to be irrelevant. Of course for this we want the expectation to

move up into the exponent. To do this, we use (iii) of Corollary 8.4 with

f chosen as �2�2

2
k�zk22 and �2�2

2
k�zk22� �4�4

12
k�zk44, respectively. For this we

have to check the strict convexity of �+ s
N
f in these cases. But a simple

computation shows that in both cases �min

�
r2(� + s

N
f)
�
� �� ��

N
, so

that for any �; � there is no problem if N is large enough (Note that the

quartic term has the good sign!). A straightforward calculation shows

10 Actually, our de�nition di�ers by an irrelevant constant from that of [PST].
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that this gives (8.21).

To prove (ii), it is enough to compute

E�

�
E ~Qe

��(�;�z)
�2

= E �E ~Qe
��(�;�z+�z0) (8:25)

where we (at last!) introduced the \replica" z0 that is an independent

copy of the random variable z. By some abuse of notation E ~Q also

denotes the product measure for these two copies. By the same token

as in the proof of (i), we see that,

E�E ~Qe
��(�;�z+�z0) = e

�2�2

2
E ~Qk�z+�z0k22+O(1=N) (8:26)

Finally,

E ~Qk�z + �z0k22 = 2E ~Qk�zk22 + 2E ~Q(�z; �z
0) = 2E ~Qk�zk22 (8:27)

Inserting this and (8.21) into the left hand side of (8.22) establishes

that bound. This concludes the proof of Lemma 8.6.

An easy corollary gives what Talagrand's Lemma 4.1 should be:

Corollary 8.7. Under the hypotheses of Lemma 8.6, there exists a

�nite numerical constant c such that

u(�) = ��(�; E ~Qz) +
�2�2

2
E ~Qk�zk22 +RN (8:28)

where

E jRN j2 �
c

N
(8:29)

Proof. Obviously

E ~Qe
��(�;z) = e��(�;E ~Qz)E�E ~Qe

��(�;�z)
E ~Qe

��(�;�z)

E�E ~Qe
��(�;�z)

(8:30)

Taking logarithms, the �rst two factors in (8.30) together with (8.21)

give the two �rst terms in (8.28) plus a remainder of order 1
N
. For the
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last factor, we notice �rst that by Corollary 8.4, (iii),

e��
2� M

�N � E ~Qe
��(�;�z) � e�

2� M
�N (8:31)

so that for � small, � and �� bounded, E ~Qe
��(�;�z) is bounded away

from 0 and in�nity; we might for instance think that 1
2
� E ~Qe

��(�;�z) �
2. But for A;B in a compact interval of the positive half line not

containing zero, there is a �nite constant C such that j ln A
B
j = j lnA�

lnBj � CjA�Bj. Using this gives

E �

"
ln

E ~Qe
��(�;�z)

E�E ~Qe
��(�;�z)

#2
� C2

E �

�
E ~Qe

��(�;�z) � E�E ~Qe
��(�;�z)

�2
(8:32)

From this and (8.22) follows the estimate (8.29).

We have almost proven the equivalent of Lemma 2.2 in [PST]. What

remains to be shown is

Lemma 8.8: Under the assumptions of Theorem 8.1 (�; E ~Qz) con-

verges in law to �1�̂ +
p
�rg where �̂ = limN"1 E ~Qz1 and r �

��1 limN"1
E ~Q ẑ

2
2
, where ẑ � (0; z2; z3; : : : ; ) and g is a standard

normal random variable.

Quasiproof:[PST] The basic idea behind this lemma is that for all � >

1, E ~Qz� tends to zero, the �� are independent amongst each other and

of the E ~Qz� and that therefore
P

�>1 ��E ~Qz� converge to a Gaussians

with variance limN"1
E ~Q ẑ

2
2
.

To make this idea precise is somewhat subtle. First, to prove a

central limit theorem, one has to show that some version of the Linde-

berg condition [CT] is satis�ed in an appropriate sense. To do this we

need some more facts about self-averaging. Moreover, one has to make

precise to what extent the quantities E ~Qz1 and
E ~Q ẑ

2
2
converge, as

N tends to in�nity. There is no way to prove this a priori, and only

at the end of the proof of Theorem 8.5 will it be clear that this is the

case. Thus we cannot and will not use Lemma 8.8 in the proof of the

Theorem, but a weaker statement formulated as Lemma 8.13 below.

The following lemma follows easily from the proof of Talagrand's

Proposition 4.3 in [T5].
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Lemma 8.9. Assume that f(x) is a convex random function de�ned

on some open neighborhood U � R. Assume that f veri�es for all

x 2 U that j(Ef)00(x)j � C <1 and E (f(x) � Ef(x))2 � S2. Then, if

x� S=C 2 U

E (f 0(x)� Ef 0(x))2 � 12CS (8:33)

But as so often in this problem, variance estimates are not quite

su�cient. We will need the following, sharper estimate (which may be

well known):

Lemma 8.10. Assume that f(x) is a random function de�ned on some

open neighborhood U � R. Assume that f veri�es for all x 2 U that

for all 0 � r � 1,

P [jf(x)� Ef(x)j > r] � c exp

�
�Nr

2

c

�
(8:34)

and that, at least with probability 1� p, jf 0(x)j � C, jf 00(x)j � C <1
both hold uniformly in U . Then, for any 0 < � � 1=2, and for any

0 < � < N �=2,

P

h
jf 0(x)� Ef 0(x)j > �N��=2

i
� 32C2

�2
N � exp

�
��

4N1�2�

256c

�
+ p

(8:35)

Proof. Let us assume that jU j � 1. We may �rst assume that

the boundedness conditions for the derivatives of f hold uniformly; by

standard arguments one shows that if they only hold with probability

1 � p, the e�ect is nothing more than the �nal summand p in (8.35).

The �rst step in the proof consists in showing that (8.34) together with

the boundedness of the derivative of f implies that f(x) � Ef(x) is

uniformly small. To see this introduce a grid of spacing �, i.e. let
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U� = U \ �Z. Clearly

P

�
sup
x2U

jf(x)� Ef(x)j > r

�

� P

"
sup
x2U�

jf(x)� Ef(x)j

+ sup
x;y:jx�yj��

jf(x)� f(y)j+ jEf(x) � Ef(y)j > r

#

� P

�
sup
x2U�

jf(x)� Ef(x)j > r � 2C�

�

� ��1P [jf(x)� Ef(x)j > r � 2C�]

(8:36)

If we choose � = r
4C

, this yields

P

�
sup
x2U

jf(x)� Ef(x)j > r

�
� 4C

r
exp

�
�Nr

2

4c

�
(8:37)

Next we show that if supx2U jf(x)� g(x)j � r for two functions f , g

with bounded second derivative, then

jf 0(x)� g0(x)j �
p
8Cr (8:38)

For notice that����1� [f(x+ �)� f(x)]� f 0(x)

���� � �

2
sup

x�y�x+�
f 00(y) � C

�

2
(8:39)

so that

jf 0(x)� g0(x)j � 1

�
jf(x+ �)� g(x+ �)� f(x) + g(x)j+ C�

� 2r

�
+ C�

(8:40)

Choosing the optimal � =
p
2r=C gives (8.38). It su�ces to combine

(8.38) with (8.37) to get

P

h
jf 0(x)� Ef 0(x)j >

p
8rC

i
� 4C

r
exp

�
�Nr

2

4c

�
(8:41)

Setting r = �2

CN� , we arrive at (8.35).
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We will now use Lemma 8.10 to control E ~Qz�. We de�ne

f(x) =
1

�N
ln

Z
B�(m�e1)

dMze�Nxz�e��N��;N;M (z) (8:42)

and denote by E ~Qx the corresponding modi�ed expectation. As has by

now been shown many times [T2,BG5,T4], f(x) veri�es (8.34). More-

over, f 0(x) = E ~Qx z� and

f 00(x) = �NE ~Qx

�
z� � E ~Qx z�

�2
(8:43)

Of course the addition of the linear term to � does not change its

second derivative, so that we can apply the Brascamp-Lieb inequalities

also to the measure E ~Qx . This shows that

E ~Qx

�
z� � E ~Qx z�

�2 � 1

�N�
(8:44)

which means that f(x) has a second derivative bounded by c = 1
�
.

Remark. In the sequel we will use Lemma 8.10 only in situations

where p is irrelevantly small compared to the main term in (8.35). We

will thus ignore its existence for simplicity.

This gives the

Corollary 8.11. Under the assumptions of Theorem 8.1, there are

�nite positive constants c; C such that, for any � � 1
2
and � � N �=2,

for any �,

P

h
jE ~Qz� � EE ~Qz�j � �N��=2

i
� C

�2
N � exp

�
��

4N1�2�

c

�
(8:45)

This leaves us only with the control of EE ~Qz�. But by symmetry,

for all � > 1, EE ~Qz� = EE ~Qz2 while on the other hand

MX
�=2

(EE ~Qz�)
2 � c22(m�)2 (8:46)

so that jEE ~Qz�j � c
m�N

�1=2. Therefore, with probability of order, say

1� exp(�N1�2�) it is true that for all � > 2, jE ~Qz�j � �N��=2.
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Finally we must control the behaviour of the prospective variance

of our gaussian. We set TN �PM(N)
�=2 (E ~Qz�)

2. Let us introduce

g(x) � 1

�N
ln E ~Qe

�Nx(ẑ;ẑ0) (8:47)

where E ~Q is understood as the product measure for the two independent

copies z and z0. The point is that TN = g0(0). On the other hand, g

satis�es the same self-averaging conditions as the function f before,

and its second derivative is bounded (for x � �=2), since

g00(x) = �NE ~Qx

�
(ẑ; ẑ0)� E ~Qx (ẑ; ẑ

0)
�2

� 2�

�
2E ~Qx kẑk22 � 2�

�

�

(8:48)

where here Ex~Q stands for the coupled measure corresponding to (8.47)

(and is not the same as the the measure with the same name in (8.43)).

Thus we get our second corollary:

Corollary 8.12. Under the assumptions of Theorem 8.1, there are

�nite positive constants c; C such that, for any � � 1
2
and � � N �=2,

P

h
jTN � ETN j � �N��=2

i
� C

�2
N � exp

�
��

4N1�2�

c

�
(8:49)

Thus TN converges almost surely to a constant if ETN converges.

We are now in a position to prove

Lemma 8.13. Consider the random variables XN � 1p
ETN

PM(N)
�=2 ��E ~Qz�.

Then, if the hypotheses of Theorem 8.5 are satis�ed, XN converges

weakly to a gaussian random variable of mean zero and variance one.

Proof. Let us show that EeitXN converges to e�t
2=2. To see this, let


N denote the subset of 
 on which the various nice things we want

to impose on E ~Qz� hold; we know that the complement of that set has

measure smaller than O(e�N
1�2�

). We write

EeitXN = E �

�
1I
N E �e

itXN + 1I
c
N
E� e

itXN
�

= E �

"
1I
N

Y
�

cos

�
tp
ETN

E ~Qz�

�#
+O

�
e�N

1�2�
� (8:50)
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Thus the second term tends to zero rapidly and can be forgotten. On

the other hand, on 
N ,

MX
�=2

(E ~Qz�)
4 � �2N��

MX
�=2

(E ~Qz�)
2 � �2N�� c�

(m�)2
(8:51)

tends to zero, so that using for instance j ln cosx � x2=2j � cx4 for

jxj � 1,

E �1I
NE �e
itXN

� e�t
2=2 sup


N

�
exp

�
�TN � ETN

2ETN
+ c

t4�2N��

(ETN )2

��
P�(
N )

(8:52)

Clearly, since also jTN �ETN j � �N��=2, the right hand side converges

to e�t
2=2 and this proves the lemma.

Corollary 8.7 together with Lemma 8.13 represent the complete

analogue of Lemma 2.2 of [PST]. To derive from here the equations

(8.16)-(8.18) requires actually a little more, namely a corresponding

statement on the convergence of the derivative of u(�). Fortunately,

this is not very hard to show.

Lemma 8.14. Set u(�) = u1(�) + u2(�), where u1(�) = ��(�; E ~Qz)
and u2(�) = ln E ~Qe

��(�;�z). Then under the assumption of Corollary

8.13,

(i) 1
�
p
ETN

d
d�
u1(�) converges weakly to a standard gaussian random

variable.

(ii)
�� d
d�
u2(�)� ��2EE ~Qk�zk22

�� converges to zero in probability.

Proof. (i) is obvious from Corollary 8.13. To prove (ii), note that

u2(�) is convex and d2

d�2
u2(�) � ��

�
. Thus, if var (u2(�)) � Cp

N
,

then var
�
d
d�
u2(�)

�
� C0

N1=4 by Lemma 8.9. On the other hand,

jEu2(�) � �2�2

2
EE ~Qk�zk22j � Kp

N
, by Corollary 8.7, which, together

with the boundedness of the second derivative of u2(�) implies that

j d
d�
Eu2(�)� ��2EE ~Qk�zk22j # 0. This means that var (u2(�)) � Cp

N
im-

plies the Lemma. Since we already know that ER2
N � K

N
, it is enough

to prove var
�
E ~Qk�zk22

�
� Cp

N
. But this is a, by now, familiar exercise.
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The point is to use that E ~Qk�zk22 = d
dx
~g(x), where

~g(x) � 1

�N
ln E ~Qe

�Nxk�zk22 (8:53)

and to prove that var (~g(x)) � K
N
. using what we know about kE ~Qzk2

this follows as in the case of the function g(x). The proof is �nished.

From here we can follow [PST]. Let us denote by EQ the expecta-

tion with respect to the (conditional) induced measures Q(1;1)
�;N;M . Note

�rst that (8.9) implies that11 EQm� = E ~Qz�. On the other hand,

EQm� =
1

N

NX
i=1

�
�
i �

(1;1)
�;N;M (�i) (8:54)

and so, by symmetry

EE ~QN+1
(z�) = ��E��;N+1;M (�N+1) (8:55)

Note that from here on we will make the N -dependence of our mesures

explicit, as we are going to derive recursion relations. Now, u(�) was

de�ned such that

E��;N+1;M (�N+1) = E
eu(1) � eu(�1)

eu(1) + eu(�1)

= E tanh(�(�1E ~QN
z1 +

p
ETNXN )) + o(1)

(8:56)

Thus, if E ~QN
z1 and ETN converge, by Lemma 8.13, the limit must

satisfy (8.16). Of course we still need an equation for ETN which is

somewhat tricky. Let us �rst de�ne a quantity EQN by

EQN � E tanh2(�(�1E ~QN
z1 +

p
ETNXN )) (8:57)

This corresponds of course to (8.17). Now note that TN = kE ~QN
zk22 �

11
This relation is exact, if the tilted measures are considered, and it is true up

to irrelevant error terms if one considers the conditioned measures.
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(E ~QN
z1)

2 and

EkE ~QN+1
zk22 =

MX
�=1

E

 
1

N + 1

N+1X
i=1

�
�
i ��;N+1;M (�i)

!2

=
M � 1

N + 1
E

�
�
(1;1)
�;N+1;M (�N+1)

�2

+

MX
�=1

E�
�
N+1�

(1;1)
�;N+1;M (�N+1)

 
1

N + 1

NX
i=1

�
�
i ��;N+1;M (�i)

!

(8:58)

We see that the �rst term gives, by de�nition and (8.56), �EQN . For

the second term, we use the identity form [PST]

MX
�=1

�
�
N+1

 
1

N

NX
i=1

�
�
i ��;N+1;M (�i)

!
= ��1

P
�=�1 u

0(�)eu(�)P
�=�1 e

u(�)
(8:59)

which it is not too hard to verify. Together with Lemma 8.14 one

concludes that in law up to small errors

MX
�=1

�
�
N+1

 
1

N

NX
i=1

�
�
i ��;N+1;M (�i)

!
= �1N+1E ~QN

z1 +
p
ETNXN

+ �E ~QN
k�zk22 tanh �

�
�1N+1E ~QN

z1 +
p
ETNXN

�
(8:60)

and so

EkE ~QN+1
zk22 = �EQN + E

"
tanh �

�
�1N+1E ~QN

z1 +
p
ETNXN

�

�
h
�1N+1E ~QN

z1 +
p
ETNXN

i#

+ �EE ~QN
k�zk22 tanh2 �

�
�1N+1E ~QN

z1 +
p
ETNXN

�
(8:61)

Using the self-averaging properties of E ~QN
k�zk22, the last term is of

course essentially equal to

�EE ~QN
k�zk22EQN (8:62)

The appearance of E ~QN
k�zk22 is disturbing, as it introduces a new quan-

tity into the system. Fortunately, it is the last one. The point is that
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proceeding as above, we can show that

EE ~QN+1
kzk22 =�+ E

"
tanh �

�
�1N+1E ~QN

z1 +
p
ETNXN

�

�
h
�1N+1E ~QN

z1 +
p
ETNXN

i#
+ �EE ~QN

k�zk22EQN

(8:63)

so that setting UN � E ~QN
k�zk22, we get, subtracting (8.61) from (8.63),

the simple recursion

EUN+1 = �(1� EQN ) + �(1� EQN )EUN (8:64)

From this we get (since all quantities considered are self-averaging, we

drop the E to simplify the notation), setting MN � E ~QN
z1,

TN+1 = �(MN+1)
2 + �QN + �UNQN

+

Z
dN (g)[MN +

p
TNg] tanh�(MN +

p
TNg)

=MN+1(MN �MN+1) + �UNQN + �TN (1�QN ) + �QN

(8:65)

where we used integration by parts. The complete system of recursion

relations can thus be written as

MN+1 =

Z
dN (g) tanh�

�
MN +

p
TNg

�
TN+1 =MN�1(MN �MN+1) + �UNQN + �TN (1�QN ) + �QN

UN+1 = �(1�QN ) + �(1�QN )UN

QN+1 =

Z
dN (g) tanh2 �

�
MN +

p
TNg

�
(8:66)

We leave it to the reader to check that the �xed points of this sys-

tem lead to the equations (8.16)-(8.18) with r = limN"1 TN=�, q =

limN"1QN andm1 = limN"1MN (where the variable u = limN"1 UN
is eliminated).

We have dropped both the o(1) errors and the fact that the param-

eters � and � are slightly changed on the left by terms of order 1=N .

The point is that, as explained in [T4], these things are irrelevant. The

point is that from the localization results of the induced measures we

know a priori that for all N , if � and � are in the appropriate domain,

the four quantities are in a well de�ned domain. Thus, if this domain
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is attracted by the \pure" recursion (8.66), then we may choose some

function f(N) tending (slowly) to in�nity (e.g. f(N) = lnN) would be

a good choice) and iterate f(N) times; letting N tend to in�nity then

gives the desired convergence to the �xed point.

The necessary stability analysis, which is �nally an elementary an-

alytical problem can be found in [T4], Lemma 7.9 where it was ap-

parently carried out for the �rst time in rigorous form (a numerical

investigation can of course be found in [AGS]). It shows that all is well

if �� and  are small enough.

It is a particularly satisfying feature of the proof of Theorem 8.5

that in the process we have obtained via Corollary 8.7 and Lemma 8.13

control over the limiting probability distribution of the \mean �eld",

(�i;m), felt by an individual spin �i. In particular, the facts we have

gathered also prove Lemma 8.8. Indeed, since u(�) is the logarithm of

the Laplace transform of that �eld we can identify it with a gaussian

of variance EE ~QN
k�zk22 and mean E ~QN

z1 +
p
�rgi, where gi is itself a

standard gaussian. Moreover, esssentially the same analysis allows to

control not only the distribution of a single �eld (�;m), but of any �nite

collection, (�i;m)i2V , of them. Form this we are able to reconstruct

the probability distribution of the Gibbs measures:

Theorem 8.15. Under the conditions of Theorem 8.5, for any �nite

set V � N, the corresponding marginal distributions of the Gibbs mea-

sures �
(1;1)

�;N;M(N)
(�i = si; 8i 2 V ) converge in law to

Y
i2V

e�si(�̂�
1
i+
p
�rgi)

2 cosh(�(�̂�1i +
p
�rgi)

where gi, i 2 V are independent standard gaussian random variables.

Remark. In the language of Newman [NS] the above theorem iden-

ti�es the limiting Aizenman-Wehr metastate12for our system. Note

that there seems to be no (reasonable) way to enforce almost sure con-

vergence of Gibbs states for � > 0. In fact, the gi are continuous

unbounded random variables, and by chosing suitable random subse-

quences Ni, we can construct any desired product measure as limiting

measure!! Thus in the sense of the de�nition of limiting Gibbs states in

Section II, we must conclude that for positive �, all product measures

12 It would be interesting to study also the \empirical metastate'.'
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are extremal measures for our system, a statement that may seem sur-

prising and that misses most of the interesting information contained in

Theorem 8.12. Thus we stress that this provides an example where the

only way to express the full available information on the asymptotic-

s of the Gibbs measures is in terms of their probability distribution,

i.e. through metastates. Note that in our case, the metatstate is con-

centrated on product mesures which can be seen as a statement on

\propagation of chaos" [Sn]. Beyond the \replica symmetric regime"

this should no longer be true, and the metastate should then live on

mixtures of product measures.

Proof. We will give a brief sketch of the proof of Theorem 8.15. More

details are given in [BG6]. It is a simple matter to show that

�
(1;1)
�;N;M (�i = si; 8i 2 V )

=

R
B�(m

�e1)
dMze

��N

h
kzk2

2
2

� 1
�N

P
i62V

ln cosh(�(�i;z))

i
e
�

P
i2V

si(�i;z)

R
B�(m

�e1)
dMze

��N

h
kzk2

2
2

� 1
�N

P
i62V

ln cosh(�(�i;z))

iQ
i2V

2 cosh(�(�i;z))

(8:67)

Note that there is, for V �xed and N tending to in�nity, vir-

tually no di�erence between the function ��;N;M and
kzk22
2

�
1
�N

P
i62V ln cosh(�(�i; z)) so we will simply pretend they are the same.

So we may write in fact

�
(1;1)
�;N;M (�i = si; 8i 2 V ) =

E ~QN�jV j
e
�
P

i2V
si(�i;z)

P
�V

E ~QN�jV j
e
�
P

i2V
�i(�i;z)

(8:68)

Now we proceed as in Lemma 8.6.

E ~Qe
�
P

i2V
si(�i;z) = e

�
P

i2V
si(�i;E ~Qz)E ~Qe

�
P

i2V
si(�i;�z) (8:69)

The second factor is controlled just as in Lemma 8.6, and up to terms

that converge to zero in probability is independent of sV . It will thus

drop out in the ratio in (8.68). The exponent in the �rst term is

treated as in Lemma 8.8; since all the �i, i 2 V are independent,

we obtain that the (�i; E ~Q ẑ) converge indeed to independent gaussian

random variables. We omit the details of the proof of the analogue

of Lemma 8.9; but note that (�i; E ~Q ẑ) are uncorrelated, and this is

enough to get independence in the limit (since uncorrelated gaussians

are independent). From here the proof of Theorem 8.15 is obvious.
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We stress that we have proven that the Gibbs measures converge

weakly in law (w.r.t. to P) to some random product measure on the

spins. Moreover it should be noted that the probabilities of local events

(i.e. the expressions considered in Theorem 8.15) in the limit are not

measurable with respect to a local sigma-algebra, since they involve

the gaussians gi. These are, as we have seen, obtained in a most com-

plicated way from the entire set of the E ~Qz�, which depend of course

on all the �i. It is just fortunate that the covariance structure of the

family of gaussians gi, i 2 V , is actually deterministic. This means in

particular that if we take a �xed con�guration of the � and pass to the

limit, we cannot expect to converge.

Fianlly let us point out that to get propagation of chaos not all what

was needed to prove Theorem 8.8 is really necessary. The main fact we

used in the proof is the self-averaging of the quantity E ~Qe
�
P

i2V
si(�i;�z),

i.e. essentially (ii) of Lemma 8.6, while (i) is not needed. The second

property is that (�i; E ~Qz) converges in law, while it is irrelevant what

the limit would be (these random variables might well be dependent).

Unfortunately(?), to prove (ii) of Lemma 8.6 requires more or less the

same hypotheses as everything else (i.e. we need Theorem 8.1!), so this

observation makes little di�erence. Thus ist may be that propagation

of chaos and the exactness of the replica symmetric solution always go

together (as the results in [PST] imply).

While in our view the results presented here shed some light on the

\mystery of the replica trick", we are still far from understanding the

really interesting phenomenon of \replica symmetry breaking". This

remains a challenge for the decade to come.
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