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Generalized integrable evolution equations with an infinite
number of free parameters

Nail Akhmediev, Adrian Ankiewicz, Shalva Amiranashvili, Uwe Bandelow

Abstract

Evolution equations such as the nonlinear Schrödinger equation (NLSE) can be extended to
include an infinite number of free parameters. The extensions are not unique. We give two exam-
ples that contain the NLSE as the lowest-order PDE of each set. Such representations provide
the advantage of modelling a larger variety of physical problems due to the presence of an infinite
number of higher-order terms in this equation with an infinite number of arbitrary parameters. An
example of a rogue wave solution for one of these cases is presented, demonstrating the power
of the technique.

1 Introduction

The mathematical description of physical processes is a crucial step towards our ability to understand
nature. A time derivative in this description provides the possibility of relating the past and the future of
the evolution. In other words, equations with time derivatives allow us to predict future dynamics based
on the present conditions. These are known as evolution equations. A few of them are integrable in
the sense that their solutions can be written analytically. Finding new integrable equations leads to
further progress in describing nature. Well-known examples of evolution equations are the KdV [1],
the nonlinear Schrödinger equation (NLSE) [2] and some of its extensions [3]. The NLSE is one of the
basic models of nonlinear wave propagation in optical fibers [4], water waves [5, 6] and generally in
nonlinear dispersive media [7, 8]. This equation and its variations have been instrumental in describing
phenomena of temporal and spatial soliton propagation [8], their interactions [9], modulation instability
[10], periodic and localized breathers [11, 14, 13, 12, 15], supercontinuum generation [16], Fermi-
Pasta-Ulam Recurrence [17], Bose-Einstein condensates [18] and rogue waves [21, 19, 20]. However,
in order to increase the accuracy of modelling, the NLSE has to be extended to include additional terms
[22] that are responsible for higher-order dispersion [23] and nonlinear effects such as self-steepening
and self-frequency shift [24, 25]. These terms are important in the description of higher-amplitude
waves [26, 27] and shorter duration pulses [28].

Very often, on extending the equations, while we gain in accuracy, we lose in integrability of the NLSE.
Fortunately, integrability can be restored for special choices of the coefficients in the higher-order
terms. For extensions including third order terms, the choice of the coefficients that admit integra-
bility are well-known. These cases include the Hirota [29] and Sasa-Satsuma (SSE) [30] equations.
However, the next step of such extensions is still not completely classified. For the branch of exten-
sions that includes the Hirota equation, certain higher-order evolution equations are known. These
include the fourth-order Lakshmanan-Porsezian-Daniel (LPD) equation [31] and a fifth-order equation
[32]. Moreover, the whole infinite extension and its soliton and rogue wave solutions can be presented
explicitly [33, 34].
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An important step is that the whole set can be written in the form of one ‘general equation’ [33, 34].
Moreover, this general equation can have an infinite number of operators controlling time evolution
of a system [33, 34]. It includes known equations as particular cases with arbitrary real coefficients
which govern the contribution of each operator to the whole set. The power of such representation lies
in the variability of these coefficients. When all of them are zero except one, we obtain a particular
case. Having two or more coefficients being nonzero provides more complicated equations that can
be of interest due to the special case in physics that such an equation may describe. One example
is the Heisenberg spin chain dynamics [43]. Such ‘general equations’ could be of great importance
for physics because higher-order terms in this equation may describe finer effects such as higher-
order dispersion or higher-order nonlinearities in the wave propagation phenomena. They improve the
accuracy of the basic approximation that is usually described by the lowest-order equation.

Unfortunately, not all higher-order terms in these generalizations result in integrable equations. A spe-
cific set of coefficients is required for these integrable cases. It is indeed fortunate when such an ‘up-
grade’ belongs to an integrable case. The chances are low if there is only one case that starts with the
given base equation. Finding new equations is thus an important task which may significantly improve
the accuracy of modelling of physical phenomena. We have found that there are at least two ‘general
equations’ that have the NLSE as a base. One of them is a ‘generalized Hirota equation’ [33, 34],
while the other one, found more recently [35], is a ‘generalized Sasa-Satsuma equation’. Both start
with the NLSE as a base evolution equation. Thus, both of them could be called NLSE sets. In order
to avoid confusion and distinguish them explicitly, we label them here as the generalized Hirota and
generalized Sasa-Satsuma equations. The first few equations of the Hirota extension are the NLSE
[8], the third-order Hirota equation [29], fourth-order LPD equation [31] and the quintic equation of this
sequence [32, 36]. Higher-order infinite extensions of this set have been presented in explicit forms in
[33, 34]. On the other hand, the generalised Sasa-Satsuma equation has, as the starting equations,
the NLSE and the third-order Sasa-Satsuma equation [30, 38, 37]. Higher-order infinite extensions
have been discovered in our recent work [35].

In the present work, we review the progress made towards the infinite extention of the NLSE with
the addition of an infinite number of higher-order terms. These terms keep each of the considered
general equations integrable, while at the same time allowing us to include an infinite number of
free parameters that control these higher-order terms. The latter provides infinitely many degrees
of freedom in describing physical models but keeps the whole equation integrable. This has both
advantages and disadvantages. The advantage is that solutions can be presented in analytical form.
The disadvantage is that integrability still restricts the modelling and keeps it in a rigid frame. However,
we believe that, on finding more such general equations, the frame can be significantly widened.

2 Generalized Hirota equation

The technique of extending the NLSE has been developed in [33, 34]. Below, we present only the final
results. Namely, the generalised Hirota equation can be written in the form:

iψt + α2K2[ψ(x, t)]− iα3K3[ψ(x, t)] (1)

+ α4K4[ψ(x, t)]− iα5K5[ψ(x, t)]

+ α6K6[ψ(x, t)]− iα7K7[ψ(x, t)]

+ α8K8[ψ(x, t)]− · · · = 0,

DOI 10.20347/WIAS.PREPRINT.2529 Berlin 2018



Generalized integrable evolution equations 3

where t is the evolution variable, x is the transverse variable, while each functionalKj[ψ(x, t)] repre-
sents a particular operator of order j. Coefficients αj are arbitrary real parameters. Importantly, they
do not have to be small. This freedom allows us to go well beyond the simple extension of the NLSE
with corrective perturbative terms.

In the lowest, second order, we obtain the fundamental nonlinear Schrödinger equation:

iψt + α2K2[ψ(x, t)] = iψt + α2(ψxx + 2|ψ|2ψ) = 0. (2)

Taking α2 =
1
2

or rescaling the t-variable, we get the NLSE in standard form. By adding the third order
operator, K3, we obtain the Hirota equation [39, 29]:

iψt + α2(ψxx + 2|ψ|2ψ)− iα3(ψxxx + 6|ψ|2ψx) = 0. (3)

Now, as a particular case of Eq.(3), we can take α2 = 0. The resulting equation

ψt − α3(ψxxx + 6|ψ|2ψx) = 0, (4)

is known as the ‘basic’ Hirota equation or as the ‘complexified’ modified Korteweg de Vries (mKdV)
equation [40]. Taking α3 = −1 leads to its standard form. The common factor i is canceled when
transforming (3) into Eq.(4). This cancellation can be done for all equations (1) when the coefficients
with even indices are zero, i.e. α2n = 0. However, solutions of these equations can be sought in either
complex or real forms. For example, when the function ψ is real (and α3 = 1), Eq.(4) becomes the
real mKdV:

ψt − ψxxx + 6ψ2ψx = 0. (5)

Solutions of the real mKdV equation are related to the solutions of the Korteweg de Vries (KdV)
equation through the Miura transformation [41]. Eq.(5) has rational solutions [42] that also have a
single high peak that can be viewed as a rogue wave at the center. However, these elevated peaks
are not completely localized, but are positioned on soliton-like structures [42].

With the fourth order operator, K4,

K4[ψ(x, t)] = ψxxxx + 8|ψ|2ψxx + 6|ψ|4ψ + 4|ψx|2ψ + 6ψ2
xψ
∗ + 2ψ2ψ∗xx. (6)

the equation is known as the LPD [45, 43, 44] equation. Further, the fifth order operator, K5 is given
by:

K5[ψ(x, t)] = ψxxxxx + 10|ψ|2ψxxx + 10(|ψx|2ψ)x + 20ψ∗ψxψxx + 30|ψ|4ψx. (7)

Even from this brief analysis, we can see the wide range of possibilities that the general equation (1)
provides. It includes many particular cases and it allows us to combine them into a unified model.
Moreover, the original NLSE does not have to be part of it (we can have α2 = 0), but it helps to
suggest the form of some solutions.

Further, the sixth order operator, K6, first found in [34], has the following explicit form:

K6[ψ(x, t)] = ψxxxxxx + ψ2
[
60|ψx|2ψ∗ + 50(ψ∗)2ψxx + 2ψ∗xxxx

]
(8)

+ ψ
[
12ψ∗ψxxxx + 8ψxψ

∗
xxx + 22|ψxx|2 + 18ψxxxψ

∗
x + 70(ψ∗)2ψ2

x

]
+ 20 (ψx)

2 ψ∗xx

+ 10ψx [5ψxxψ
∗
x + 3ψ∗ψxxx] + 20ψ∗ψ2

xx + 10ψ3
[
(ψ∗x)

2 + 2ψ∗ψ∗xx
]
+ 20|ψ|6ψ.
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while the seventh order operator, K7, is:

K7[ψ(x, t)] = ψxxxxxxx + 70ψ2
xxψ

∗
x + 112|ψxx|2ψx + 98|ψx|2ψxxx (9)

+ 70ψ2
[
ψx
[
(ψ∗x)

2 + 2ψ∗ψ∗xx
]
+ ψ∗ (2ψxxψ

∗
x + ψxxxψ

∗)
]
+ 28ψ2

xψ
∗
xxx

+ 14ψ
[
ψ∗
(
20|ψx|2ψx + ψxxxxx

)
+ 3ψxxxψ

∗
xx + 2ψxxψ

∗
xxx + 2ψxxxxψ

∗
x

+ ψxψ
∗
xxxx + 20ψxψxx(ψ

∗)2
]
+ 140|ψ|6ψx + 70ψ3

x(ψ
∗)2

+ 14ψ∗ (5ψxxψxxx + 3ψxψxxxx) .

The highest operator that we give here is K8:

K8[ψ(x, t)] = ψxxxxxxxx (10)

+ 14ψ3
[
40|ψx|2(ψ∗)2 + 20ψxx(ψ

∗)3 + 2ψ∗xxxxψ
∗ + 3(ψ∗xx)

2 + 4ψ∗xψ
∗
xxx

]
+ ψ2

[
28ψ∗(14|ψxx|2 + 11ψxxxψ

∗
x + 6ψxψ

∗
xxx) + 238ψxx(ψ

∗
x)

2 + 336|ψx|2ψ∗xx

+ 560ψ2
x(ψ

∗)3 + 98ψxxxx(ψ
∗)2 + 2ψ∗xxxxxx

]
+ 2ψ

{
21ψ2

x[9(ψ
∗
x)

2 + 14ψ∗ψ∗xx]

+ ψx[728ψxxψ
∗
xψ
∗ + 238ψxxx(ψ

∗)2 + 6ψ∗xxxxx] + 34|ψxxx|2 + 36ψxxxxψ
∗
xx

+ 22ψxxψ
∗
xxxx + 20ψxxxxxψ

∗
x + 161ψ2

xx(ψ
∗)2 + 8ψxxxxxxψ

∗
}
+ 182ψxx|ψxx|2

+ 308ψxxψxxxψ
∗
x + 252ψxψxxxψ

∗
xx + 196ψxψxxψ

∗
xxx + 168|ψx|2ψxxxx

+ 42ψ2
xψ
∗
xxxx + 14ψ∗(30ψ3

xψ
∗
x + 4ψxxxxxψx + 5ψ2

xxx + 8ψxxψxxxx)

+ 490ψ2
xψxx(ψ

∗)2 + 140ψ4ψ∗[(ψ∗x)
2 + ψ∗ψ∗xx] + 70|ψ|8ψ.

The general equation can be continued up to infinity. The complexity of the operators Kj grows with
the order j. The general iterative rules for obtaining these operators are given in [33, 34]. The equation
when the two coefficients α3 and α4 are arbitrary has been considered earlier in [46, 47]. In particular,
soliton solutions of this equation were given in [46], while rogue wave solutions were presented in [47].
The generalised Hirota equation (1) has been derived for the case of 2×2 matrix Lax pairs. Therefore,
the Sasa-Satsuma equation which requires the Lax pairs to be based on 3× 3 matrices is not part of
this set.

3 Generalized Sasa-Satsuma equation

We write the generalized Sasa-Satsuma equation in the same form as Eq.(1):

iψt + α2S2[ψ(x, t)]− iα3S3[ψ(x, t)] (11)

+ α4S4[ψ(x, t)]− iα5S5[ψ(x, t)]

+ α6S6[ψ(x, t)]− iα7S7[ψ(x, t)]

+ α8S8[ψ(x, t)]− · · · = 0.

However, we have chosen different notations for the functionals Sj[ψ(x, t)] as they are indeed differ-
ent from Kj[ψ(x, t)]. As above, t here is the evolution variable (time) while x is the transverse vari-
able. Coefficients αj are again arbitrary real numbers making Eq.(1) an infinitely variable integrable
evolution equation for a variety of applications that describe soliton and rogue wave phenomena.
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The lowest order functional S2[ψ(x, t)] in Eq.(1) is given by

S2[ψ(x, t)] = ψxx + 4|ψ|2ψ. (12)

Thus, when all αj are zero except for the α2, Eq. (1) is simply the NLSE but differently normalised
from (1) for compatibility with other functionals in the equation. The third order functional S3[ψ(x, t)]
is

S3[ψ(x, t)] = ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx. (13)

Therefore, when, α3 is nonzero and α2 = 1/2, we have the SSE:

iψt +
ψxx
2

+ 2|ψ|2ψ = iα3

[
ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx

]
. (14)

The fourth-order operator,

S4[ψ(x, t)] = ψxxxx + 6ψ∗xxψ
2 + 24|ψ|4ψ + 12|ψx|2ψ + 14|ψ|2ψxx + 8ψ∗ψ2

x, (15)

while the next one is

S5[ψ(x, t)] = ψxxxxx + 80|ψ|4ψx + 5ψ2ψ∗xxx + 25ψ(|ψx|2)x (16)

+ 40|ψ|2ψ2ψ∗x + 20|ψx|2ψx + 15|ψ|2ψxxx + 30ψ∗ψxψxx.

At the next level,

S6[ψ(x, t)] = ψxxxxxx + 55ψ3(ψ∗x)
2 + 45ψ2

xψ
∗
xx + 32ψψxψ

∗
xxx + 43ψ∗ψxψxxx (17)

+ 37ψψ∗xψxxx + 175|ψ|2ψ∗ψ2
x + 53|ψxx|2ψ + 31ψ∗ψ2

xx + 20|ψ|2ψxxxx
+ 160|ψ|6ψ + 110ψ∗ψ3ψ∗xx + 330|ψψx|2ψ + 170|ψ|4ψxx + 8ψ2ψ∗xxxx + 95|ψx|2ψxx.

The expressions for S7[ψ(x, t)] and higher are too cumbersome to be given here, but our technique,
presented in [35] is straightforward, allowing one to write them explicitly for any order j. We stress
that the expressions for Sj[ψ(x, t)] are different from Kj[ψ(x, t)] given in the previous section. The
reason is that the Lax pairs for these equations involve 3× 3 matrices rather than 2× 2 for the Hirota
branch. As a result, the solutions of Eq.(11) are significantly more involved than the solutions of Eq.(1).
Such complexity starts right from the lowest order Eq.(11) which is the SSE [30, 37, 48, 49, 50, 38, 51].
Both soliton solutions [37, 48, 49] and rogue wave solutions [52] have much more complicated struc-
tures than the corresponding solutions for the NLSE or Hirota equations. They involve more parame-
ters in the solutions and thus allow us to describe more complicated profiles. In particular, the basic
SSE has single-soliton solutions that have no analogs in the NLSE case. In addition to the common
bell-shaped solitons, it has soliton solutions with two maxima [30] and even with multiple maxima [49].
Moreover, the SSE has soliton solutions with complex oscillating patterns in the (x, t)-plane [48]. So-
lutions become even more complicated when they contain a background in the form of a plane wave
[50]. The complexities tend to accumulate when dealing with the higher-order equations of the gener-
alized SSE. Due to this complexity, even for the basic SSE, only first-order solutions have been derived
so far [35].

4 Simple example of exact solution of the generalized Hirota equa-
tion (1)

The power of the generalized equation approach can be demonstrated by the fact that we can seek
solutions of Eq.(1) or Eq.(11) in a general form, taking into account the whole infinite set of operators
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(a) (b)

Figure 1: Rogue waves of Eq.(18), when c = 1, (a) α4 =
1
4

and (b) α4 =
1
4
, α5 =

1
16

. All other αj ’s
in both cases are zero.

involved in the equation. For illustrative purposes, we will demonstrate this only for Eq.(1). Namely, the
first-order rogue wave solutions for Eq.(1) can be written in explicit form [47]:

ψ(x, t) = c

[
4
1 + 2iBrt

D(x, t)
− 1

]
eiφrt, (18)

where c is an arbitrary background while

Br =
∞∑
n=1

n(2n)!

(n!)2
α2nc

2n = 2c2(α2 + 6c2α4 + 30c4α6 + 140c6α8 + 630c8α10 + · · · ), (19)

and

D(x, t) = 1 + 4B2
r t

2 + 4(cx+ vrt)
2, (20)

where

vr =
∞∑
n=1

(2n+ 1)!

(n!)2
α2n+1c

2n+1 (21)

= 2c3(3α3 + 15c2α5 + 70c4α7 + 315c6α9 + 1386c8α11 + · · · ).

The coefficient φr in the exponential factor of (18) is given by:

φr = c2
∞∑
n=1

(2n)!

(n!)2
α2nc

2n−2 (22)

= 2c2
(
α2 + 3c2α4 + 10c4α6 + 35c6α8 + 126c8α10 + · · ·

)
.

The tilt factor vr (or “velocity") in (21) depends only on the coefficients of the operators of odd-order,
α2n+1, while the exponential factor, φr, and the stretching factor, Br, depend only on the coefficients
of the even-order operators α2n. These observations allow us to make some general conclusions
about the rogue wave profiles. Two illustrative examples are shown in Fig.1. We can see from this
figure that the tilt appears only when α5 is non-zero. Here, due to limited space, we restrict ourselves
with these two illustrations only. More solutions presented in [36, 53] show some unexpected features.
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5 Conclusions

A generalized integrable equation with infinite number of free parameters is a novel approach in the
theory of integrable equations. The two equations considered here include, as particular cases, known
equations such as NLSE, Hirota equation, Sasa-Satsuma equation, mKdV, etc. However, in combina-
tion with higher-order terms in the general equation, they become a powerful tool for modelling a wider
range of physical problems.

Each individual integrable evolution equation from either set is not just a special isolated case or a
mathematical curiosity. NLSE extensions are usually considered to be improved models for a more
accurate description of nonlinear wave propagation in the ocean [54, 55, 27] and in optical fibers
[28, 23]. Normally, these extensions are approximate, as they use small coefficients when dealing with
higher-order terms. The exactly integrable cases described above are beyond these approximations.
As such, they may expand the range of applicability of these models. Moreover, linear dispersion in our
approaches can be modelled accurately up to an infinite number of terms in the expansion. Although
nonlinear terms become fixed in this case, the deviations from realistic situation may be small. An
additional advantage is that solutions can be analytically presented around the above integrable cases
in approximate forms, thus extending the range of their applicability. Namely, perturbation techniques
based on these extended models may be a better solution [56] than choosing the NLSE as a ‘zero
order’ approximation. Thus, adding new members to the family of integrable equations should be
considered as adding significantly more power to our ability to do accurate mathematical modelling of
physical phenomena.
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