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Quantitative magnetic resonance imaging: From fingerprinting to
integrated physics-based models

Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros

Abstract

Quantitative magnetic resonance imaging (qMRI) is concerned with estimating (in physical
units) values of magnetic and tissue parameters e.g., relaxation times T1, T2, or proton density ρ.
Recently in [Ma et al., Nature, 2013], Magnetic Resonance Fingerprinting (MRF) was introduced
as a technique being capable of simultaneously recovering such quantitative parameters by us-
ing a two step procedure: (i) given a probe, a series of magnetization maps are computed and
then (ii) matched to (quantitative) parameters with the help of a pre-computed dictionary which is
related to the Bloch manifold. In this paper, we first put MRF and its variants into a perspective
with optimization and inverse problems to gain mathematical insights concerning identifiability
of parameters under noise and interpretation in terms of optimizers. Motivated by the fact that
the Bloch manifold is non-convex and that the accuracy of the MRF-type algorithms is limited by
the “discretization size” of the dictionary, a novel physics-based method for qMRI is proposed.
In contrast to the conventional two step method, our model is dictionary-free and is rather gov-
erned by a single non-linear equation, which is studied analytically. This non-linear equation is
efficiently solved via robustified Newton-type methods. The effectiveness of the new method for
noisy and undersampled data is shown both analytically and via numerical examples for which
also improvement over MRF and its variants is documented.

1 Introduction

1.1 Context

The current routine of magnetic resonance imaging (MRI) examinations typically provides qualitative
images of nuclear magnetization of tissue accompanied by contrast “weights”. Physicians then visually
inspect these images, which, being qualitative only, may however not provide enough information
for certain diagnostic purposes. In order to remedy this, quantitative MRI (qMRI) seeks to not only
visualize the structure of the imaged object, but also to provide accurate parameters values (in physical
units) that characterize different tissue types. Such quantities are typically the proton density ρ of
Hydrogen atoms in water molecules, and the longitudinal and the transverse relaxation parameters T1

and T2, respectively, among others. These magnetic parameters are related to the evolution of the net
magnetization m through the renowned Bloch equations [4]:

∂m
∂t

(t) = m(t)× γB(t)−
(
mx(t)
T2

, my(t)

T2
, mz(t)−meq

T1

)>
,

m(0) = m0.
(1)

Here m, yielding m = ρm, is the macroscopic magnetization of (Hydrogen) proton of some unitary
density in the tissue under an external magnetic field B, and the relaxation rates T1 and T2 are
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associated model parameters. Further, m0 represents an initial state. System (1) is instrumental in
our quantification process established below and will be further described in Section 2.1.

Although qMRI techniques are still in their infancy, several interesting ideas and methods have already
been conceived. Early approaches [21] are based on a set of spin echo or inversion recovery images
that are reconstructed from k-space data with respect to various repetition times (TR) and echo
times (TE). In that context, acquisitions are designed for each parameter individually. The overall
technique is often referred to as parametric mapping method and consists of two steps: (i) reconstruct
a sequence of images as in qualitative MRI, and (ii) for each pixel of those images fit its intensity
to an ansatz curve characterized by the magnetic parameter associated to the tissue imaged at that
pixel. Based on this idea, many improvements have been suggested in the literature; see for instance
[14]. The associated approaches aim to simplify the physical model and handle tissue parameters
separately, as these are considered to be time consuming for the patient.

Another line of research, initiated by Ma et al. in [23] and named Magnetic Resonance Fingerprint-
ing (MRF), has recently gained considerable attention. First, in an offline phase, it builds a database
(dictionary) consisting of all trajectories (fingerprints) of the evolution of the associated magnetization.
Each of the latter is obtained by solving Bloch equations for some pre-selected combination of param-
eter values, typically those of T1 and T2 (but sometimes also others such as, e.g., the off-resonance
frequency). The underlying parameter combinations stem from a (sufficiently large) selection within a
region Cad which is meaningful for human tissue. Hence, the outcome of this first step of the method
is a physiologically informed dictionary Dic(Cad) (i.e., a look-up table) relating a set of feasible pa-
rameters to their associated solutions of Bloch equations. In a second phase, given a (sensed) mag-
netization trajectory that is assumed to be related to a solution of the Bloch equations, with the help of
this look-up table, the method identifies the parameter values that fit best to this trajectory. This main
principle behind MRF enables a simultaneous estimation of (quantitative) tissue parameters.

As our new method is inspired by MRF we further detail the MRF-workflow. Focusing on a thin slice
Ω of the tissue of interest, its first step is to reconstruct a sequence of L images {X(`)}L`=1 from data
{D(`)}L`=1 as in qualitative MRI, using a sufficiently rich excitation process throughL fast radio pulses;
see Section 2 for more details. At every time step, the data consists of a sub-sampling of the Fourier
coefficients of the magnetization. Sub-sampling occurs due to the short time between each excitation.
In a typical MRF routine, the reconstruction of the magnetization relies on the pseudo-inverse of the
Fourier transform. This leads to noticeable artifacts in the magnetization images. However, the evo-
lution of the magnetization of a specific tissue element (voxel) along the series of the reconstructed
magnetization images can be assumed to correspond (approximately) to the solution of Bloch equa-
tions with parameters that correspond to this specific voxel. Hence, the second step of MRF matches
the recorded trajectory of each voxel to a fingerprint in the pre-computed dictionary, typically through
minimizing a least-squares distance. In this way, the parameter values that correspond to the “best”
fingerprint are then assigned to that very voxel. Formally, the MRF procedure can be stated as follows:

- Compute X(`) ∈ argmin
X

∥∥P (`)FX −D(`)
∥∥2

2
, ` = 1, . . . , L, (MRF-step 1)

- Compute m∗ ∈ argmin
m∈Dic(Cad)

S(Tx,ym,X
∗) with X∗ := (X(1), . . . , X(L)). (MRF-step 2)

In (MRF-step 1) D = (D(1), . . . , D(L)) denotes the data obtained after each pulse, where D(`)

is a sub-sampling of the Fourier coefficients of the magnetization, more precisely of its transverse
component Tx,y, i.e., the first two components only. Here, P ` is the `-th sub-sampling operator, and
the Fourier transform is denoted by F . Accordingly, the first step computes L reconstructions of the
magnetization of the tissue slice, i.e., X(`) = F−1(P (`))>D(`), where F−1 stands for the pseudo-
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inverse. In (MRF-step 2), for every voxel r (in practice, for every image pixel) the best approximation
is obtained via exhaustive search over the dictionary Dic(Cad). We recall that Dic(Cad) = {mθ :
θ ∈ Cad}, where θ is a vector of tissue parameters – here, for simplicity, θ = (T1, T2) – and Cad
is the admissible domain for these parameters. By mθ we denote the solution of Bloch equations
with parameter θ, evaluated at the same time instances as for the magnetization responses. Hence,
every element of Dic(Cad) is a vector sequence of length L. The function S(·, ·) is a Euclidean
distance of normalized quantities, in order to avoid the multiplicative effect that the density ρ has in
the magnetization. Correspondingly, the minimization task in (MRF-step 2) has to be understood in a
“voxel-wise” sense, i.e., it is performed as often as the number of voxels (in practice pixels). Finally, the
spatial parameter maps are formed by assigning (to the corresponding voxels) the parameter values
θ that correspond to the optimal matchings mθ. For more details we refer to Section 2.3.

While first numerical results [23] show that MRF is a promising qMRI approach, several issues remain
open from a mathematical viewpoint which motivate our work. For instance, with respect to stability
one is interested in knowing whether two close trajectories yield similar parameter values. Assuming
that this is the case, i.e., the method is stable, and L is fixed, then mainly two factors influence the
accuracy of MRF: (i) the quality of the L magnetization reconstructions, and (ii) the completeness
(fineness) of the dictionary. Clearly, one is interested in analysing and optimizing both aspects. In
this vein, the available literature mostly focuses on improving (i), see, e.g., [2, 6], while (ii) remains
critical and will always impose limitations depending on the quality of the dictionary. Moreover, both
steps of the MRF procedure may benefit from each other when combined. For example, in order to
obtain improved reconstructions in (MRF-step 1), it may be informed by the physics-based model built
into (MRF-step 2). This motivates our approach of integrating the Bloch equations already into step
(MRF-step 1), yielding a single-step qMRI approach upon fixing the best approximation problem.

Davies et al. [6] proposed a first approach in this direction which exhibits advantages over the original
MRF scheme. They coined the name BLoch response recovery through Iterated Projection (BLIP)
for their solution scheme which relates to a projected Landweber-type iteration for reconstructing the
magnetization. A key step of the procedure is to project, in every iteration, the current reconstruction
onto a dictionary related to the Bloch manifold. This leads to an improved solution for the magnetization
especially in the case of strongly sub-sampled data. The underlying constrained optimization problem
reads

min
X

‖PFTx,yX −D‖2
2 subject to (s.t.) X ∈ R+Dic(Cad). (BLIP)

While we defer more details on the BLIP method to Section 2.3, we mention already here that the
potential non-convexity of the positive cone of Bloch manifolds R+Dic(Cad) represents a major com-
plication as the projection may become non-unique; compare Proposition 4.2 below. This problem is
even more concerning when data is corrupted by noise. In addition, as the projection (matching) is
still dictionary based, the method can be memory consuming, especially when the dictionary is highly
refined in order to have high accuracy.

1.2 Our contribution and the structure of the paper

Our work has two major focus points. In a first part, contained in Section 3, we perform sensitivity
analysis to show that the matching process is a well-posed inverse problem when it is restricted to
the Bloch manifold. This fact partially explains why the concept of involving a dictionary in MRF has
been so successful. In particular in Theorem 3.6 we show that if two trajectories of the magnetization
evolution as dictated by the Bloch equations are sufficiently close, then the same holds true for the
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associated parameters, i.e., ‖θ−θδ‖ ≤ Cδ if ‖m−mδ‖ ≤ δ. Here θ, θδ are the inferred parameters
given the Bloch trajectories m, mδ. The constant C is independent of δ, and the norms will be made
precise later in the text. Furthermore, we also establish a mathematical understanding of why a large
number of frames L yields a positive influence on the quality of the final result; compare Theorem 4.7.

In the second part of our work, with the goal of avoiding the potentially ill-posed projection step in
BLIP, we aim to solve the parameter identification problem directly subject to the Bloch manifold. The
associated new single-step model reads: Find (ρ, θ) such that

Q(ρ, θ) := PF(ρTx,ym(θ)) = D, with (ρ(r), θ(r)) ∈ R+ × Cad, for every r ∈ Ω. (2)

Here the qMRI-operator Q inserts the Bloch dynamics into the data acquisition, and by solving (2) we
can recover both ρ and θ. However, the non-linearity of Q makes the problem rather challenging as
also additional difficulties arise due to aspects like, e.g., sub-sampling and noise in MRI.

We propose a projected Levenberg-Marquardt regularized variant of the Gauss-Newton method as
a numerical remedy under such adverse circumstances. Analytically, this requires a differentiability
result for the map θ 7→ m(θ). Furthermore, as for many highly non-linear and non-convex problems,
the initialization of the iteration turns out to be crucial. For this initialization, we suggest to use BLIP
(or MRF) with a rather coarse dictionary for efficiency purposes, only. Overall it turns out that our
approach allows to produce more accurate parameter maps in less CPU-time.

We mention that similar single-step dictionary-free approaches can be found in the recent papers [28]
and [27]. In particular, the model in [28] abandons the Fourier space character of the data and asks for
a relatively large number of data frames which leads to solving a very large non-linear system. As a
result, the method is memory and CPU intense. The work of [27] focuses mainly on the experimental
design, aiming at optimizing the excitation pulse sequences as well as the repetition times.

Structure of the paper. The rest of the paper is structured as follows: In Section 2, we provide a
general background of MRI, particularly to the Bloch equations and MRF. In Section 3, we relate
MRF-type algorithms to inverse problems. We also perform stability analysis for inversion of the Bloch
mapping. Our new integrated physics approach leading to a single-step model in form of a non-linear
operator equation is the focus of Section 4. We analyse the differentiability of the associated operator
and show the non-convexity of the Bloch manifold. Subsequently, we discuss several Newton-type
methods for its numerical solution. Here, we particularly focus on the case of undersampled and
noisy data. In order to illustrate the efficiency of the proposed method for qMRI, numerical tests and
comparisons are presented in Section 5. A short description on solutions of Bloch equations in different
cases is given in the Appendix.

2 Background on MRI and MRF

We provide here a brief summary of the principles underlying MRI as they are useful for our purpose
of generating an integrated physics-based model for reconstruction; see [31] for more details. Also, a
mathematical description of MRF and the BLIP algorithms are given.

2.1 Bloch equations

The Bloch equations [4] characterize the key physics in nuclear magnetic resonance. For the sake
of their derivation, let Ω be a domain in R2 modelling a thin slice of tissue. Every element point (or
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voxel) of Ω is denoted by r. The main principles of MRI lie in the interaction between an externally
applied dynamic magnetic field B = (Bx, By, Bz)

> and the (net or bulk) magnetization which is
equal to all the individual dipole moments of the proton spins within a voxel. This net magnetization is
proportional to the hydrogen proton density ρ. Correspondingly, letting m = (mx,my,mz)

> denote
the magnetization per unit density element, the net magnetization in a voxel of density ρ equals ρm.

In the case of a static magnetic field B0, which is typically regarded to lie in z-direction, the net mag-
netization is aligned to that field with its longitudinal component mz reaching an equilibrium meq. This
alignment is not achieved instantaneously but it is controlled by the longitudinal relaxation time T1 (or
T1(r) emphasizing the dependence on a specific voxel). The longitudinal magnetization evolves ac-
cording to mz(t) = meq(1− e−(t/T1)). Furthermore, the part of the magnetization orthogonal to B0,
which is called the transverse magnetization (mx,my)

>, precesses about the z-axis at a frequency
equal to γ|B0| where γ denotes the gyromagnetic ratio. This precession emits an electromagnetic
signal which can be detected and measured by the coils of the MR machine. The transverse magneti-
zation decays exponentially at a rate T2, the transverse relaxation time.

The overall macroscopic dynamics that dictate the relation between the magnetizationm, the magnetic
field B and the relaxation times T1, T2, are governed by the Bloch equations, which is a system of
linear ordinary differential equations (ODEs):

∂m(t,r)
∂t

= m(t, r)× γB(t, r)−Θ(r) • (m(t, r)−me),
m(0, r) = m0(r),

(3)

where me = (0, 0,meq)
> (without loss of generality we assume me = (0, 0, 1)> in what follows),

and “×” denotes the outer product between vectors. For the ease of notation we use

Θ(r) := (Θ1(r),Θ2(r),Θ3(r))> :=
(
1/T2(r), 1/T2(r), 1/T1(r)

)>
,

and the operation • in (3) denotes Hadamard product (component-wise multiplication of vectors). As
introduced above, m : (0, τ)×Ω→ R3, for some time horizon τ > 0, denotes the magnetization in
a unit volume per unit proton density, and m0 is a given initial state. Note that the dependence on r is
here intrinsic and does not enter the equation. As the latter is linear, one can simply multiply (3) by ρ
in order to get the net magnetization.

The total magnetic field B(t, r) can be typically decomposed into

B(t, r) = B0(r) +B1(t, r) + (0, 0, G(t) · r)>. (4)

Here B0 denotes the external constant magnetic field that points into the positive z direction, and it is
generally assumed to be spatially homogeneous. For the sake of generality, we, however, keep here
the dependence on r. The summand B1(t, r) = (B1,x(t, r), B1,y(t, r), 0)> corresponds to a radio
frequency (RF) pulse, which is sent periodically and lasts only for a very short time. It is used to excite
the magnetization from its equilibrium by turning the magnetization precession away from the direction
of the main magnetic field with the so-called flip angle

α(t) = γ

∫ t

0

|B1(s)| ds.

These pulses usually last only very briefly compared to T1 and T2. Therefore, RF sequences can
be completely characterized by sequences of flip angles, and time is normally omitted. The interval
between two consecutive pulses is called repetition time (TR). As we shall see later in Section 4,
we consider a specific flip angle sequence pattern referred to as Inversion Recovery balanced Steady
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State Free Precession (IR-bSSFP) [29]. Through this choice, the solution of Bloch equations can be
simulated by a discrete linear dynamical system; see Section 4.1. In the Appendix, we provide case
discussions concerning the discrete Bloch dynamics and the solution of Bloch equations. The factor
G(t) in (4) is a magnetic gradient field designed to differentiate the point-wise information from the
detected signal.

In brief, the measured signal can be expressed by

S(t) =

∫
Ω

ρ(x, y)(Tx,ym(t, x, y))e−iγ|B0|te−iγ
∫ t
0 (xGx+yGy)dτdxdy,

where Tx,ym := mx(x, y)+imy(x, y) stands for the transverse magnetization, and i is the imaginary
unit. Alternatively, one can think of Tx,ym as a pair of real-valued components. The third component of
m can usually not be measured due to the position of coils. Finally, up to a demodulation by eiγ|B0|t, the
MR signal D(t) can mathematically be modelled as a collection of coefficients of a Fourier transform
of the transverse magnetization, i.e.,

P (t)F(ρTx,ym
(t)) = D(t),

where F denotes the Fourier transform and P (t) a sub-sampling operator.

2.2 Sub-sampling

In MRI, and in particular in MRF, one does not wait for the signal to return to equilibrium between
two excitation pulses and due to time constraints only a small proportion of the k-space is sampled.
Reconstruction of the magnetization under such circumstances leads to the occurrence of aliasing
artifacts, especially when this reconstruction uses the basic (but fast to apply) pseudo-inverse of F .

In the literature, three different sub-sampling schemes are designed and are often practically em-
ployed: spiral, radial and Cartesian sub-sampling. Each of these corresponds to a different variation
in time of the selection gradients Gx and Gy. In the original version of MRF, the former two patterns
were preferred as the associated aliasing artifacts appear to be uncorrelated, respectively, and can
be roughly treated as random noise. The latter is not the case for Cartesian sub-sampling; see for
instance the numerical examples in [6]. The BLIP method, reviewed in the next section and improving
over MRF, however perfectly fits to Cartesian sub-sampling. As our starting point is the BLIP method,
we thus focus here on Cartesian sub-sampling based on multishot echo-planar imaging (EPI) [24]; see
Section 5.2 for details. We note however that this choice is not limiting as other sub-sampling patterns
may be used as well.

2.3 MRF and BLIP in some detail

In MRF one initially considers a pre-designed excitation pattern of L flip angles {α`}L`=1 separated
by a repetition time TR. Here, for simplicity, we consider TR to be constant but this is not necessary.
Also a subset Cad ⊂ Rm of the space of tissue parameters to be estimated is predefined. For the
ease of exposition, here we consider Cad to contain admissible θ = (T1, T2)-values, yielding m = 2.
For example, values for T1 would typically range from 685ms (white matter on brain) to 4880ms
(cerebrospinal fluid), with the corresponding range for T2 to be 65ms–550ms [23]. As we shall see
below, in our dictionary-free approach we chooseCad to be a convex subset ofR+×R+, in particular a
box, thus admitting values between a minimum and a maximum value. Dictionary based methods then
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replace Cad by a sufficiently fine discretization yielding J parameter values {θj}Jj=1. For simplicity, in
this section we write Cad also for the discretization. Using this set of J parameter values, the specific
excitation pattern, the sequence of flip angles {α`}L`=1 and the repetition time TR, one can simulate
the Bloch equations by using a discrete linear dynamical system. In this context, the solutions of
the Bloch equations are evaluated at discrete times t1, t2, . . . , tL; see Section 4.1 for details. This
generates a dictionary Dic(Cad) of J magnetization responses (i.e., trajectories of the solutions of
Bloch equations evaluated at times t1, t2, . . . , tL) {mθj}Jj=1:

Dic(Cad) = {mθj : θj ∈ Cad, j = 1, . . . , J} ⊂
((

R3
)L)J

.

Next, MR data are collected at the respective L read-out times. Each component D(`) of the data
D = (D(1), . . . , D(L)), corresponds to a sub-sampling (resulting by P (`)) of the Fourier coefficients
of the net magnetizationX(`). Here, the reconstruction of the transverse magnetization image is done
via the least square solution and hence these images suffer from aliasing artifacts. This step therefore
consists of solving L least square solutions (using the pseudo-inverse Fourier transformF−1(P (`))>)
to obtainX∗ = (X(1), . . . , X(L)), whereX(`) : Ω→ R2. Note that, instead of R2, one can also use
the complex number representation of the reconstructed magnetizationX and the Bloch responsem,
i.e., m = mx + imy. Observe that in this section Ω denotes a set of discrete voxels, which in practice
are represented by pixels i : 1, . . . , N . Summarizing, we have

Step 1 of the MRF process: Reconstruction of the magnetizations
Reconstruct the vector of L net magnetizations X∗ = (X(1), . . . , X(L)) by solving

X(`) ∈ argmin
X:Ω→R2

‖P (`)FX −D(`)‖2
2 using X(`) = F−1(P (`))>D(`), ` = 1, . . . , L

The second and final step of MRF identifies the transverse component of mθj (denoted by Tx,ymθj )
in the dictionary Dic(Cad) that best matches the reconstructed magnetization at every voxel. The de-
sired parameter map θ : Ω → R2 is then obtained by mapping every discrete voxel i to the θ-value
that corresponds to the matched mθ, and the reconstructed magnetization sequence at voxel i, i.e.,
(X`

i )
L
`=1, contributes with density ρi that is associated with this particular tissue element. Utilizing nor-

malization and an `2-projection onto the discrete Bloch manifold, the best approximation and following
density computation yield

Step 2 of the MRF process: Matching of the magnetizations to the dictionary
For every discrete voxel i = 1, . . . , N , compute the projected magnetization Xi = (X`

i )
L
`=1

according to

mθji = argmin
mθ∈Dic(Cad)

∥∥∥∥ Tx,ym
θ

‖Tx,ymθ‖2

−Xi

∥∥∥∥2

2

.

Then extract {θji}Ni=1 = {(T1(i), T2(i))}Ni=1 from a look-up table, and compute the density map
{ρi}Ni=1 as

ρi =
‖Xi‖2

‖Tx,ymθji‖2

.

One may notice that Step 1 very likely has non-unique minimizers due to sub-sampling. In [23] the
specific minimizer X(`) = F−1((P (`))>D(`)) was chosen, which, however, may not be suitable;
compare, e.g., [6]. BLIP is an alternative MRF-approach and is due to [6]. It operates in the following
way:
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Algorithm 1. BLIP [6].

1 Generate a dictionary Dic(Cad).

2 Initialize the magnetization vector X = 0 and choose an initial step size µ1.

3 For n = 1, 2, 3, . . . iterate as follows:

3.1 For every ` = 1, . . . , L, perform a gradient decent step yielding(
X(`)

)
n+1

=
(
X(`)

)
n
− µnF−1(P (`))>

(
P (`)F(X(`))n −D(`)

)
.

3.2 Project each (Xi)n+1 =
((
X

(`)
i

)L
`=1

)
n+1

onto the dictionary Dic(Cad) to obtain, as Step
2 in MRF, (

mθji
)
n+1

=
((

(mθji )(`)
)L
`=1

)
n+1

and (ρi)n+1

for every voxel i,= 1, . . . , N .

3.3 For every ` = 1, . . . , L, update
(
X(`)

)
n+1

as follows(
X

(`)
i

)
n+1
← (ρi)n+1

(
(Tx,ym

θji )(`)
)
n+1

, i = 1, . . . , N.

3.4 Update the step size µn (see [6] for some rules).

4 Upon termination of the iteration with outcome X , as in MRF, construct parameter maps from
X by using a look-up table.

As mentioned above, BLIP aims to compute an approximate solution to

min
X

‖PFTx,yX −D‖2
2 , s.t. X ∈ R+Dic(Cad) (BLIP)

by employing a projected gradient descent method. Note that in contrast to MRF, BLIP integrates the
dictionary constraint into a single minimization step and is shown in [6] to be superior to MRF, in
particularly for Cartesian sub-samping.

3 MRF as an inverse problem and its stability analysis

3.1 Towards a coupled inverse problem

For the sake of generality, our starting point is the time continuous version of the Bloch equations. In
order to fix our setting, let Y := [L2(Ω)]3 and Z := [L∞(Ω)]3. The initial magnetization is given
by m0 ∈ Y , and B ∈ L∞(0, τ ;Z) denotes a given external magnetic field for some time horizon
τ > 0. We recall the Bochner space

L∞(0, τ ;Z) := {f : (0, τ)→ Z : ‖f‖L∞(0,τ ;Z) < +∞},

with ‖f‖L∞(0,τ ;Z) = ess sup
0<t<τ

‖f(t)‖Z .
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The space L1(0, τ ;Y) is defined similarly. The space W 1,1(0, τ ;Y) consists of all the functions
f : (0, τ)→ Y such that both f and ∂f

∂t
belong to L1(0, τ ;Y). We refer to [8] for more on Lebesgue,

Sobolev and Bochner spaces.

A natural space for the parameter θ = (T1, T2) is [L∞(Ω)]2, and we also consider this parameter to
be bounded uniformly away from zero. Consequently, we have Θ = (1/T2, 1/T2, 1/T1)> belongs to
[L∞(Ω)]3, as well. Finally, recall that me ≡ (0, 0, 1)>.

For our further analysis, it is convenient to introduce the operator

Bm0,B : [L∞(Ω)]2 → {m : (0, τ)→ Y},

where Bm0,B(θ) denotes the solution mapping of the Bloch equations (3) up to time τ . Equipped with
this notation, we now state the following family of inverse problems which represents a continuous
version of the MRF process:

- Problem 1: For some t` ∈ (0, τ), ` = 1, . . . , L, in order to obtain X(t`) ∈ L2(Ω) solve the
linear equation

P (t`)FX(t`) = D(t`), (5)

where D(t`) ∈ [L2(K)]2, K is a bounded frequency domain which is usually called k-space,
F : [L2(Ω)]2 → [L2(K)]2, P (t`) : [L2(K)]2 → [L2(K)]2.

- Problem 2: For every r ∈ Ω, to obtain θ = θ(r) ∈ R+ × R+ solve

ρ(r)Tx,y(Bm0,B(θ))(·, r) = X(·)(r), (6)

where ρ ∈ L∞(Ω), and Tx,y is the transverse projection. Note that, strictly speaking, the coupling of
(5) and (6) makes sense only when P (t`) = Id, i.e., there is no sub-sampling. This is because of the
fact that under sub-sampling, uniqueness of solutions for (5) is not guaranteed, and X(·)(r) may not
belong to the Bloch manifold.

Here Problem 1 corresponds to the first step in MRF and aims to invert the Fourier transform for
sub-sampled (and potentially noisy) data. This type of problem is the central mathematical problem in
standard MRI and has been extensively studied in the literature. In particular, variational methods e.g.,
sparse regularization methods and optimal weighted total variational methods, have been successfully
applied towards that [11, 13, 19, 22], to mention only a few recent results.

In view of the parameter identification problem involving the Bloch equations in the second step of
MRF we now focus on equation (6). But for the sake of ease of demonstration, we neglect the effect
of the density map ρ and the transverse projection operator Tx,y, i.e., we study

Bm0,B(θ) = m. (7)

3.2 Stability analysis on inverting the Bloch mapping

With the aim of quantifying the influence of inaccuracies or noise in the solution of (5) on solving (6),
we next analyse stability of (7). This is of relevance for both, MRF and BLIP.

In order to simplify the discussion, in this section we consider the time domain (0, τ) to be the period
between two consecutive pulses. From a modelling point of view, m0 will be the magnetization right
after the first pulse, i.e., after the application of the flip angle displacement and, m(τ, ·) will be the
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magnetization right before the next pulse. In that case the magnetic field B 6= 0 is considered to be
time independent which means that B is a constant function in L∞(0, τ ;Y) with respect to time and
with (possibly spatially varying) values in Y . Also, the effect of the gradient field G is ignored here, as
it only encodes the MRI signal.

From a classical result for evolutionary equations in Banach spaces (see e.g. [3, Proposition 3.3]), we
infer existence of a solution m of (3) in W 1,1(0, τ ;Y). In fact, m enjoys even higher regularity, but for
our purposes W 1,1(0, τ ;Y) turns out to be sufficient. Hence, we consider

Bm0,B : [L∞(Ω)]2 → W 1,1(0, τ ;Y)

for given m0 and B.

Given the existence of solutions, our further analysis relies on the following assumptions:

Assumption 3.1. Let θ(r) ∈ Cad for all r ∈ Ω, where Cad ⊂ R+ × R+ denotes a feasible domain
which is convex and bounded away from zero.

For our next assumption, we define the range of the Bloch map, i.e.,

R(Bm0,B) :=
{
m : m = Bm0,B(θ) with θ ∈ [L∞(Ω)]2 and θ(r) ∈ Cad for all r ∈ Ω

}
.

Assumption 3.2. Let
m ∈ R(Bm0,B) ⊂ W 1,1(0, τ ;Y), (8)

be a solution of the Bloch equations (3). Then the quantity (ω1
τ (r), ω

2
τ (r), ω

3
τ (r))

> :=
∫ τ

0
m(t, r)dt−

meτ is bounded away from zero, i.e., there is a constant cτ > 0 such that

inf
r∈Ω

∣∣ωiτ (τ)
∣∣ ≥ cτ , for i = 1, 2, 3. (9)

Remark 3.3. Assumption 3.1 implies no factual limitation in practice. Assumption 3.2 is also justified in
practice as we consider (0, τ) to be the time between two consecutive pulses which roughly equals to
repetition time. In this period, the net magnetization always satisfiesmx > c′τ > 0,my > c′′τ > 0, and
mz < me, and these give the estimate (9). Since, in an MRI experiment, the time domain consists
of the repetition of periodic radio pulses, (the excitation time of the pulse is usually very short) our
assumption is satisfied during the entire experiment.

Theorem 3.4. Let Assumption 3.2 hold, the magnetic field satisfy B 6= 0, and let m ∈ R(Bm0,B) for
some θ. Then the θ-value associated with m is unique.

Proof. Observe that by integrating the Bloch equations over the time domain (0, τ), we have

Θ(r)=

(
m(0, r)−m(τ, r) +

∫ τ

0

m(t, r)× γB(t, r)dt

)
./ωτ , (10)

where “./” denotes a component-wise quotient of vectors. Note that the integrals are well-defined, since
for almost every r,m(r, ·) ∈ L1(0, τ). Also, due to Assumption 3.2 we have ωiτ 6= 0 for i ∈ {1, 2, 3}.
The uniqueness of θ = ( 1

Θ3
, 1

Θ1
)> follows readily.

We immediately have the next corollary.

Corollary 3.4.1. Let Assumption 3.2 hold, and B 6= 0. Then the Bloch mapping satisfies

Bm0,B(θ1) = Bm0,B(θ2) ⇐⇒ θ1 = θ2.
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Proof. For every fixed θ(r) ∈ Cad, the Bloch mapping is well-defined under Assumption 3.2. The
mapping is injective by Theorem 3.4. The other direction follows from the Picard–Lindelöf Theorem
(see, e.g., [30]).

Remark 3.5. The uniqueness result indicates that enforcing the magnetization function to be in the
range of a Bloch mapping also guarantees a unique parameter. This explains the idea behind BLIP
which aims at an improved solution (when compared to MRF) from undersampled data by using pro-
jection steps onto the Bloch manifold.

The main stability result of this section is stated next.

Theorem 3.6. Let the Assumption 3.1 be satisfied, and let m,mδ ∈ R(Bm0,B) with corresponding
parameters θ, θδ. If Assumption 3.2 holds for both m and mδ, and

∥∥m−mδ
∥∥
W 1,1(0,τ ;Y)

≤ δ for

δ > 0, then we have ∥∥θ − θδ∥∥
[L1(Ω)]2

≤ C(τ, θ, B)δ,

where C(τ, θ, B) is a constant depending on τ , θ and B, but not on δ.

Proof. Using equation (10) with the obvious definition of ωδτ , we have

Θ−Θδ =

(
m0 −m(τ, r) +

∫ τ

0

m(t, r)× γB(t, r)dt

)
./ωτ

−
(
mδ

0 −mδ(τ, r) +

∫ τ

0

mδ(t, r)× γB(t, r)dt

)
./ωδτ

= Θ •
(
(ωδτ − ωτ )./ωδτ

)
−
(
mδ

0 −m0 −mδ(τ, r) +m(τ, r)
)
./ωδτ

−
(∫ τ

0

mδ(t, r)× γB(t, r)−m(t, r)× γB(t, r)dt

)
./ωδτ .

Note that
∫ τ

0
mδ(t, r)−mδ

e(r)dt =
∫ τ

0
mδ(t, r)dt−mδ

eτ , and mδ
e = me. Due to (9), we have

inf
r∈Ω

∣∣∣∣∫ τ

0

m(t, r)−me(r)dt

∣∣∣∣ ≥ cτ , and inf
r∈Ω

∣∣∣∣∫ τ

0

mδ(t, r)−me(r)dt

∣∣∣∣ ≥ cτ .

As a consequence, we obtain the estimate∥∥Θ−Θδ
∥∥

[L1(Ω)]3
≤ 1

cτ

∫ ∣∣∣∣Θ(r) •
∫ τ

0

(mδ(t, r)−m(t, r))dt

∣∣∣∣ dr
+

1

cτ

∫ ∣∣∣∣∫ τ

0

(
∂m(t, r)

∂t
− ∂mδ(t, r)

∂t

)
dt

∣∣∣∣ dr
+

1

cτ

∫ ∣∣∣∣∫ τ

0

(mδ(t, r)−m(t, r))× γB(t, r)dt

∣∣∣∣ dr
≤ 1

cτ
C‖mδ −m‖L1(0,τ ;[L1(Ω)]3) +

1

cτ

∥∥∥∥∂mδ

∂t
− ∂m

∂t

∥∥∥∥
L1(0,τ ;[L1(Ω)]3)

+
1

cτ
C‖mδ −m‖L1(0,τ ;[L1(Ω)]3),

with generic constantsC depending on γ,B and Θ. Here we have used the facts that Θ ∈ [L∞(Ω)]2

and the outer product with B(t, r) can be written as the application of a linear operator with bounded
norm (in t and r) as B is bounded in L∞(0, τ ;Z) and also independent of time.
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As (θ1, θ2) = ( 1
Θ3
, 1

Θ1
) and by Assumption 3.1 we can find a constant C1 > 0 such that∥∥θ − θδ∥∥

[L1(Ω)]2
≤ C1

∥∥Θ−Θδ
∥∥

[L1(Ω)]3
.

This follows from the fact that the function h : [a, b]→ R, with h(β) = 1/β, is Lipschitz for 0 < a <
b < ∞. The proof is completed by combining the last two inequality relations and the fact that the
[L1(Ω)]3 norm is bounded by [L2(Ω)]3 norm.

The above result can be interpreted as follows. Theorem 3.6 shows that the inverse problem (7) is well-
posed by restricting the right hand side to the range of the Bloch mapping. That is, if the reconstructed
magnetization is in the Bloch manifold (more precisely the positive cone of the manifold), then the
values of the tissue parameters θ recovered from the dictionary should in principle be not too far away
from the exact solutions.

The analytical properties of the Bloch mapping and its inverse not only support the application of MRF-
type schemes, but they also motivate us to find yet more accurate solution techniques for quantitative
MRI. This is our target in the next section.

4 An integrated physics-based method for qMRI

We now propose a method for qMRI that integrates the physics model into the reconstruction process.
In contrast to the previously discussed two-step procedures, it consists of a single step only.

On an abstract level, our model is associated with the non-linear operator equation

Q(x) = D, (11)

where x(r) = (ρ(r), θ(r)) ∈ C̃ad := R+×Cad for all r ∈ Ω, D is the acquired MRI signal, and the
qMRI-operator Q is defined by

Q(x) := PF(ρTx,yM(θ)). (12)

It integrates the Bloch mapping within the data acquisition procedure.

Anticipating our subsequent development, M(θ) represents the discrete Bloch dynamics, which cor-
responds to the time continuous version m(θ) previously discussed.

4.1 Bloch mapping as discrete dynamics

With the aim of employing a fast imaging protocol for absolute quantification of T1 and T2 post-contrast
(e.g., upon administering Gadolinium (Gd)), we focus here on Inversion Recovery balanced Steady-
State Free Precession (IR-bSSFP) flip angle sequence patterns; see [29] and compare also [18].
IR-bSSFP is a specific MRI excitation pulse sequence widely used in applications and it allows for a
simple approximation of the solutions of the Bloch equations at the read out times. In our subsequent
analysis and numerical examples, we always use the associated discrete dynamics approximating the
continuous Bloch equations.

To simplify the presentation, we will ignore the factor of off-resonance and only consider the homoge-
neous case of the flip angles and off-resonance frequency. In this case, the magnetization after each
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n-th excitation pulse is simulated by the following recursion formula
M` = E1(TR`, θ)Rφ`Rx(α`)R

>
φ`
M`−1 + E2(TR`, θ)Me,

Me = (0, 0, 1)>,
M0 = −Me = (0, 0,−1)>.

(13)

Here {α`}L`=1 and {TR`}L`=1 are the flip angles and repetition time sequences, and {M`}L`=1 are the
magnetizations at the middle of each TR` time interval. Moreover we denote

E1(TR`, θ) =

 e
−TR`

T2 0 0

0 e
−TR`

T2 0

0 0 e
−TR`

T1

 , E2(TR`, θ) =
(

1− e−
TR`
T1

)

and also

Rφ` =

 cos(φ`) sin(φ`) 0
− sin(φ`) cos(φ`) 0

0 0 1

 and Rx(α`) =

 1 0 0
0 cos(α`) sin(α`)
0 − sin(α`) cos(α`)

 .

The angle φ` denotes a phase shift by the gradient magnetic fields [29] and is assumed to be known.

Writing (13) in a compact form, we are able to derive the evolution of the discrete system for the
magnetization vectors

M` =

(∏̀
k=1

E1(TRk, θ)R(αk)

)
M0 + E2(TR`, θ)Me (14)

+
`−1∑
k=1

(
E2(TRk, θ)

∏̀
j=k+1

E1(TRj, θ)R(αj)

)
Me,

where we use the matrix notation R(α`) := Rφ`Rx(α`)R
>
φ`

. Note that (14) establishes a mapping
between θ and {M`}L`=1 yielding a discrete (in time) version of the operator Bm0,B associated with the
IR-bSSFP pulse sequence. For utilizing Gauss-Newton-type algorithms for solving (11), it is of interest
to study differentiability of this mapping. This and further properties are therefore the subjects of the
following section.

4.2 Properties of the Bloch mapping and the qMRI-operator

Consider the discrete Bloch mapping as defined in (13):

M : V →
[
Y := [L2(Ω)]3

]L
, M(θ) := {M`(θ)}L`=1,

where V is the open subset of [L∞(Ω)]2 that consists of all functions with strictly positive values
almost everywhere. In the later of our text, we constantly use the notation o(σ) for small positive real
value σ satisfying o(σ)

σ
→ 0 as σ → 0.

Proposition 4.1. Let {M`(θ)}L`=1 be the sequence given in (14), {α`}L`=1 the sequence of flip angles
with α` ∈ (0, π) for every ` = 1, . . . , L, and {TR`}L`=1 the sequence of repetition times with
TR` > 0 for every `. Given M0 ∈ Y , then the following statements hold true:
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(i) M is Fréchet differentiable with bounded derivative. Moreover, given sufficiently small h ∈
[L∞(Ω)]2 we have the general estimate for all q ≥ 2 and for q = +∞:

‖M(θ + h)−M(θ)−M ′(θ)h‖[Y]L = o
(
‖h‖[Lq(Ω)]2

)
. (15)

In addition if M0 ∈ [L∞(Ω)]3, then there exist some constant C independent of h for the
following estimate

‖M ′(θ)h‖[Y]L ≤ C ‖h‖L2(Ω)]2 . (16)

(ii) Let Me = (0, 0, 1)> and either M0 = Me or M0 = −Me, then the operator M is injective,
i.e., given θa, θb ∈ V , we have

M(θa) = M(θb) =⇒ θa = θb.

Proof. Due to the recursive nature of M`, it suffices to analyse M1:

M1(θ) = E1(TR1, θ)RφRx(α1)R>φM0 + E2(TR1, θ)Me.

(i) We start by considering the differentiability ofM1(θ). This is readily derived when using the differen-

tiability of x 7→ e−
TR
x for x > 0. We denote byM ′

1(θ) the Fréchet derivative of the mapM1 evaluated
at θ, that is M ′

1(θ) : [L∞(Ω)]2 → Y bounded, linear such that

lim
h→0

‖M1(θ + h)−M1(θ)−M ′
1(θ)h‖Y

‖h‖[L∞(Ω)]2
= 0. (17)

To simplify the formulas, for every ` = 1, . . . , L, we denote

U1(`) :=

 0 0 0
0 0 0

0 0 TR`
(T1)2

e
−TR`

T1

R(α`),

and

U2(`) :=


TR`
(T2)2

e
−TR`

T2 0 0

0 TR`
(T2)2

e
−TR`

T2 0

0 0 0

R(α`).

We compute

M ′
1(θ) =

(
M ′

1,1(θ), M ′
1,2(θ)

)
:=

(
U1(1)M0 −

TR1

T 2
1

e
−TR1

T1 Me, U2(1)M0

)
. (18)

Note that M ′
1(θ) ∈ Y ×Y = [L2(Ω)]3× [L2(Ω)]3. It can be regarded as a bounded linear operator

from [L∞(Ω)]2 → Y × Y which is defined for every h = (h1, h2) ∈ [L∞(Ω)]2 as

M ′
1(θ)h = M ′

1,1(θ)h1 +M ′
1,2(θ)h2

:=
(
[M ′

1,1(θ)]xh1, [M
′
1,1(θ)]yh1, [M

′
1,1(θ)]zh1

)
+
(
[M ′

1,2(θ)]xh2, [M
′
1,2(θ)]yh2, [M

′
1,2(θ)]zh2

)
,

where [·]x, [·]y, [·]z denote components of a vector, and the multiplication of L2(Ω)- and L∞(Ω)-
functions is understood in a pointwise sense. The resulting product is in L2(Ω). Using the fact that
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(e−
TR
x )′ = TR

x2
e−

TR
x is Lipschitz continuous over x ∈ (0,∞) for every fixed TR > 0 (actually the

derivative of every order of e−
TR
x is Lipschitz continuous), then the following pointwise estimate holds

true:
|M1(θ(r) + h(r))−M1(θ(r))−M ′

1(θ(r))h(r)| ≤ C |h(r)|2 , for all r ∈ Ω, (19)

where C is a constant independent of h and θ, as well independent on r. Note that∥∥|h|2∥∥
L2(Ω)

≤ Cq
∥∥|h|2∥∥

Lq(Ω)
, for all q ≥ 2 and q = +∞,

where Cq is a also constant independent of h and θ. Then for all h ∈ [L∞(Ω)]2 sufficiently small

‖M1(θ + h)−M1(θ)−M ′
1(θ)h‖Y

‖h‖[Lq(Ω)]2
≤
C
∥∥|h|2∥∥

L2(Ω)

‖h‖[Lq(Ω)]2
≤
CCq

∥∥|h|2∥∥
Lq(Ω)

‖h‖[Lq(Ω)]2
,

and with this we get (15) for M1.

The Frechét differentiability of M1 in the space [L∞(Ω)]2 is then a consequence of the above es-
timate, where the constant Cq = C∞ = |Ω|. In this case, it then implies (17) which gives us the
conclusion.

The derivative of M`(θ) for ` > 1 can then be calculated by applying the chain rule to the recursion
formula (13), i.e.,

M ′
`(θ) =

 (
U1(`)M`−1(θ) + E1(TR`, θ)R(α`)M

′
`−1,1(θ)− TR`

T 2
1
e
−TR`

T1 Me

)>
(
U2(`)M`−1(θ) + E1(TR`, θ)R(α`)M

′
`−1,2(θ)

)>
> . (20)

We get the boundedness of the derivatives because all the quantities Ua(`), R(α`), E1(TR`, θ) and

e−
TR`
Ta

TR`
T 2
a

for a = 1, 2 and ` = 1, . . . , L are uniformly bounded. If in addition we have M0 ∈
[L∞(Ω)]3, the iteration (14) will assure that M` ∈ [L∞(Ω)]3. Then the estimate (16) immediately
follows.

(ii) We show that the map M1 : [L∞(Ω)]2 → Y is injective for some non-zero α1 and TR1. We first
note that R = R(α1) := RφRx(α1)R>φ is unitary, and E1(TR1, θ) and E2(TR1, θ) are contraction
operators. Assume now that M1(θa) = M1(θb) for θa 6= θb. Then we have(

E1(TR1, θ
a)− E1(TR1, θ

b)
)
RM0 + (E2(TR1, θ

a)− E2(TR1, θ
b))Me = 0 in Y .

Assume further that T a1 6= T b1 , then in those points of Ω where this occurs we have (suppressing
spatial dependence r)

Me =



e
−TR1
Ta2 −e

−TR1
Tb2

e
−TR1
Ta1 −e

−TR1
Tb1

0 0

0 e
−TR1
Ta2 −e

−TR1
Tb2

e
−TR1
Ta1 −e

−TR1
Tb1

0

0 0 e
−TR1
Ta1 −e

−TR1
Tb1

e
−TR1
Ta1 −e

−TR1
Tb1


RM0. (21)

Suppose now that M0 = −Me. Then, since R is unitary, (21) is satisfied if and only if T a1 = T a2 ,
T b1 = T b2 , −RMe = Me and α1 = π. This, however, contradicts α ∈ (0, π). The case M0 = Me is
similar. If T a1 = T b1 but T a2 6= T b2 , then one uses the inverse relation of (21) and arrives at the same
conclusion. Thus we have injectivity for M1 and hence also of M .
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Regarding non-convexity of the Bloch manifold we have the following result.

Proposition 4.2. Suppose that the assumptions of Proposition 4.1 hold true. Furthermore, let the
operator M be restricted to some feasible set Cad which is connected and convex:

Cad := {θ ∈ [L∞(Ω)]2 | θ(r) ∈ Cad, for every r ∈ Ω},

where Cad is a convex subset of R+×R+ (typically a box) which is bounded and bounded away from
zero. Then the image M [Cad] of M : Cad → YL is a non-convex subset of YL.

Proof. Suppose that M [Cad] is a convex subset of YL. Then, for arbitrary θa 6= θb ∈ Cad and for
every λ ∈ (0, 1), there exist θλ ∈ Cad such that

λM`(θ
a) + (1− λ)M`(θ

b) = M`(θ
λ) for all ` ∈ {1, . . . , L} . (22)

We focus on the first two components M1,M2 ∈ Y and recall

M1(θ) =E1(TR1, θ)R(α1)M0 + E2(TR1, θ)Me,

M2(θ) =

(
2∏

k=1

E1(TRk, θ)R(αk)

)
M0

+ (E2(TR1, θ) + E2(TR2, θ)E1(TR1, θ)R(α1))Me.

Upon some straightforward calculations, the convexity condition (22) can be equivalently written as
the following system of equations (where θa = (T a1 , T

a
2 ), θb = (T b1 , T

b
2 ), θλ = (T λ1 , T

λ
2 )):

λe
−TR1

Ta1 + (1− λ)e
−TR1

Tb1 = e
−TR1

Tλ1 , (23)

λe
−TR1

Ta2 + (1− λ)e
−TR1

Tb2 = e
−TR1

Tλ2 , (24)

λe
−TR2

Ta1 e
−TR1

Ta1 + (1− λ)e
−TR2

Tb1 e
−TR1

Tb1 = e
−TR2

Tλ1 e
−TR1

Tλ1 , (25)

λe
−TR2

Ta2 e
−TR1

Ta2 + (1− λ)e
−TR2

Tb2 e
−TR1

Tb2 = e
−TR2

Tλ2 e
−TR1

Tλ2 , (26)

λe
−TR1

Ta1

(
1− e−

TR2
Ta1

)
+ (1− λ)e

−TR1
Tb1

(
1− e

−TR2
Tb1

)
= e

−TR1
Tλ1

(
1− e

−TR2
Tλ1

)
, (27)

λe
−TR1

Ta2

(
1− e−

TR2
Ta1

)
+ (1− λ)e

−TR1
Tb2

(
1− e

−TR2
Tb1

)
= e

−TR1
Tλ2

(
1− e

−TR2
Tλ1

)
, (28)

where (23)–(24) come from (22) for M1, and (25)–(28) from (22) for M2.

Simplifying we get:

λe
−TR1

Ta1 + (1− λ)e
−TR1

Tb1 = e
−TR1

Tλ1 ,

λe
−TR1

Ta2 + (1− λ)e
−TR1

Tb2 = e
−TR1

Tλ2 ,

λe
−TR2+TR1

Ta1 + (1− λ)e
−TR2+TR1

Tb1 = e
−TR2+TR1

Tλ1 ,

λe
−TR2+TR1

Ta2 + (1− λ)e
−TR2+TR1

Tb2 = e
−TR2+TR1

Tλ2 ,

λe
−TR1

Ta2 e
−TR2

Ta1 + (1− λ)e
−TR1

Tb2 e
−TR2

Tb1 = e
−TR1

Tλ2 e
−TR2

Tλ1 .

Since TR > 0, this system has a solution only if θa = θb = θλ which gives a contradiction.
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The asserted non-convexity in Proposition 4.2 yields a disadvantage for methods based on projections
of the magnetization reconstruction sequences onto the Bloch manifold, as projections need no longer
be unique. One specific instance of such a method is BLIP.

Concerning the MRI data, it is quite nature to assumeD ∈ ([L2(K)]2)
L

whereK denotes a compact
frequency domain. Now we are in a position to show the Fréchet differentiability of the qMRI-operator.

Lemma 4.3. Let x = (ρ, θ) ∈ Ṽ ⊂ L∞(Ω)× [L∞(Ω)]2, where Ṽ is the open subset with functions
of strictly positive values only. Then the qMRI-operator

Q : Ṽ →
(
[L2(K)]2

)L
is Fréchet differentiable. Similarly, given M0 ∈ [L∞(Ω)]3 we have the following general estimate for
sufficiently small h ∈ L∞(Ω)× [L∞(Ω)]2:

‖Q(x + h)−Q(x)−Q′(x)h‖([L2(K)]2)L = o
(
‖h‖[L2(Ω)]3

)
. (29)

Proof. Recall that
Q(x) = {Q(`)(x)}L`=1 =

{
P (`)F(ρTx,yM`(θ))

}L
`=1

.

To see the Fréchet differentiability, we first notice that all P (`), F and Tx,y are bounded, linear opera-
tors. Then we consider

Q(`)(x + h)−Q(`)(x) =P (`)F((ρ+ hρ)Tx,yM`(θ + hθ))− P (`)F(ρTx,yM`(θ + hθ))

+ P (`)F (ρTx,y (M`(θ + hθ)−M`(θ))) .

For every x = (ρ, θ) ∈ Ṽ , and h = (hρ, hθ) ∈ L∞(Ω) × [L∞(Ω)]2 small enough, applying the
Fréchet differentiability of each M` from Proposition 4.1, and using the estimates (15) and (16), we
get the estimates below:∥∥P (`)F((ρ+ hρ)Tx,yM`(θ + hθ))− P (`)F(ρTx,yM`(θ + hθ))

∥∥
[L2(K)]2

=
∥∥P (`)F(hρTx,yM`(θ + hθ))

∥∥
[L2(K)]2

≤
∥∥P (`)F(hρTx,yM`(θ))

∥∥
[L2(K)]2

+ C ‖hρhθ‖[L2(Ω)]2 + o(‖hθ‖[L2(Ω)]2)

and ∥∥P (`)F (ρTx,y (M`(θ + hθ)−M`(θ)))
∥∥

[L2(K)]2
≤
∥∥P (`)F(ρTx,yM

′
`(θ)hθ)

∥∥
[L2(K)]2

+ o(‖hθ‖[L2(Ω)]2).

The two inequalities indicate for sufficiently small h ∈ L∞(Ω)× [L∞(Ω)]2∥∥Q(`)(x + h)−Q(`)(x)− A(`)h
∥∥

[L2(K)]2
= o

(
‖h‖[L2(Ω)]3

)
, (30)

where
A(`) : [L∞(Ω)]3 → [L2(K)]2,

: h 7→ P (`)F(hρTx,yM`(θ)) + P (`)F(ρTx,yM
′
`(θ)hθ),

is a bounded linear operator. Using (30) and the fact that

‖h‖[L2(Ω)]3 ≤ C ‖h‖[L∞(Ω)]3

we show that Q(`) is Fréchet differentiable, and A(`) is the derivative. The derivative of Q is obtained
from derivatives of each Q(`) for ` ∈ {1, . . . , L}. Finally the estimate (29) is obtained from (30).
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The above proof also presents a way of how to calculate the derivative of Q.

Remark 4.4. The estimates (15) and (29) do not guarantee the differentiability of M and Q in the
whole space [L2(Ω)]3 and [L2(Ω)]3, respectively. However, the Fréchet derivativeQ′(x) at x ∈ Ṽ as

an operator from [L2(Ω)]3 to ([L2(K)]2)
L

is well defined given M0 ∈ [L∞(Ω)]3 which is applicable
in practice.

4.3 (Gauss-) Newton method for ideal data

Next we turn towards iterative methods for computing a solution to the non-linear equation

Q(x) = D, (31)

which in fact represents a system of equations

P (`)F(ρTx,yM`(θ)) = D(`), ` = 1, . . . , L.

Because of the regularity of the operator Q, a first idea to solve the non-linear operator equation
(31) is using a Gauss-Newton method, which, given some approximate solution xn, is based on the
first-order approximation

Q(xn+1) ' Q(xn) +Q′(xn) (xn+1 − xn) = D. (32)

By letting Dn := D −Q(xn) +Q′(xn)xn, (32) becomes

Q′(xn)xn+1 −Dn = 0. (33)

Note that sinceD = {D(`)}L`=1 is a sequence of data frames of length L, so isDn. Typically, we have
L ≥ 2. Therefore (the space discrete version of) (33) in general contains redundant equations. Thus,
one considers (33) in a least-squares sense. Taking into account also the physical constraint of the
tissue parameters, we introduce the feasible set C̃ad ⊂ [L∞(Ω)]3 which is a connected and convex
set (typically a box) and contains all feasible values for x = (ρ, θ). Finally, it leads to computing xn+1

by solving
xn+1 = argmin

x∈C̃ad
‖Q′(xn)x−Dn‖2

([L2(K)]2)L , n = 0, 1, 2 . . . (34)

The solution of the problem in (34) can be approximated by a projection step to C̃ad, resulting to the
following projected Gauss-Newton iteration:

Dn = D −Q(xn) +Q′(xn)xn, (35)

yn+1 = (Q′)†(xn)Dn :=
(
(Q′(xn))>Q′(xn)

)−1
(Q′(xn))>Dn, (36)

xn+1 = PC̃adyn+1. (37)

We point out that the step in (36) is regarded in a Hilbert space setting, i.e.,

Q′(xn) : [L2(Ω)]3 →
(
[L2(K)]2

)L
, for n ∈ N,

and (Q′(xn))> is the Hermitian adjoint of the linear operator Q′(xn). This can be done since, as we
have mentioned that Q′(xn) is a well defined linear operator for functions in [L2(Ω)]3, and (36) will
give a solution yn+1 ∈ [L2(Ω)]3. The subsequent projection step (37) assures that xn+1 ∈ C̃ad ⊂
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[L∞(Ω)]3. Supposing that C̃ad := {x ∈ [L2(Ω)]3 : xp(r) ∈ [Cp, Cp] for p ∈ {1, 2, 3} a.e. r ∈ Ω}
for C,C ∈ R3 with Cp < Cp for p ∈ {1, 2, 3} and x = (x1, x2, x3)>, the projection can be realised
by

(PC̃adx)p(r) =


Cp for xp(r) ≤ Cp,

xp(r) for Cp < xp(r) < Cp,

Cp for Cp ≤ xp(r)
(38)

for every r ∈ Ω. Different from the projection in BLIP algorithm, the projection in (38) is uniquely
defined because of the convexity of the feasible domain. In particular, for an exact solution x∗ of (31),
we assume that x∗ ∈ C̃ad. It is obvious that the non-expansiveness holds for the projection operator:

‖xn+1 − x∗‖[L2(Ω)]3 ≤ ‖yn+1 − x∗‖[L2(Ω)]3 . (39)

We show here the superlinear convergence rate of the projected Gauss-Newton iteration (35)–(37)
given the Fréchet differentiability of the non-linear operator Q and the general estimate (29). The
proof is based on a classical result for unconstrained problems, see, e.g., [15].

Theorem 4.5. Let x∗ ∈ C̃ad be an exact solution of (31), and assume there exists a neighbourhood
N(x∗) ⊂ [L∞(Ω)]3 of x∗ such that (Q′)†(x) is uniformly bounded for all x ∈ N(x∗). Then there
exists a potentially smaller neighbourhood such that for every initial guess x0 belonging there, for the
iterates in (36) and (37) we have that xn → x∗ with a superlinear rate of convergence, i.e.,

‖xn+1 − x∗‖[L2(Ω)]3 = o
(
‖xn − x∗‖[L2(Ω)]3

)
for all n ∈ N. (40)

Proof. Since D = Q(x∗), for every xn ∈ N(x∗), the forms in (35) and (36) give us

‖yn+1 − x∗‖[L2(Ω)]3 ≤
∥∥(Q′)†(xn)

∥∥ ‖Q(x∗)−Q(xn)−Q′(xn)(x∗ − xn)‖([L2(K)]2)L . (41)

Let B(x∗, ε) be an [L2(Ω)]3 ball of radius ε around x∗, then there exist W > 0 such that for
every x ∈ B(x∗, ε) ∩ N(x∗) it holds that

∥∥(Q′)†(x)
∥∥ ≤ W . Using the estimate (29), for those

x ∈ B(x∗, ε) ∩N(x∗) where ε small enough, we have

‖Q(x∗)−Q(x)−Q′(x)(x∗ − x)‖([L2(K)]2)L = o
(
‖x∗ − x)‖[L2(Ω)]3

)
. (42)

Let η ∈ (0, 1] be arbitrary, because of (42), we can find ρ ∈ (0, ε), such that for all h ∈ [L∞(Ω)]3,
and ‖h‖[L2(Ω)]3 < ρ:

‖Q(x∗)−Q(x∗ + h) +Q′(x∗ + h)h‖([L2(K)]2)L <
η

W
‖h‖[L2(Ω)]3 ≤

‖h‖[L2(Ω)]3

W
.

This shows that if x0 ∈ B(x∗, ρ) ∩N(x∗), when applying the iteration steps (36) and (37), the non-
expansive property (39) and the estimate (41) gives {xn}n∈N ⊂ B(x∗, ρ) ∩ N(x∗). Therefore the
iteration (36) is always well defined. Now by replacing x by xn in (42) and using the relation (41) and
(39), then we get the final relation:

‖xn+1 − x∗‖[L2(Ω)]3 = o
(
‖x∗ − xn)‖[L2(Ω)]3

)
.

However, due to the non-linearity of the map Q and non-convexity of Q(C̃ad), the iteration in (36) will
only converge for initial values x0 ∈ C̃ad in a certain neighbourhood of the exact solution x∗, provided
that the data D contains no noise.

For undersampled and noisy data, it is even crucial to choose a good initial guess in order to obtain a
robust and efficient numerical algorithm for solving the problem (11). This would be the main task of
the next section.
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4.4 A projected Levenberg-Marquardt method for undersampled and noisy
data

Undersampling is often unavoidable in the acquisition process of MRI due to time constraints. The
main problem caused by undersampling is ill-posedness of the equation (11) due to the properties of
the operator P composed into the qMRI-operator Q. As a consequence, the solution of (11) may be
unreliable, even when the data is contaminated by noise of small intensity.

In order to address the problem of undersampling and noise, and to solve (11) robustly, we turn to a
projected Levenberg-Marquardt (L-M) method instead of the aforementioned projected Gauss-Newton
scheme. It essentially relies on a Tikhonov type regularization. Suppose that the ideal dataD has been
corrupted by some noise, leading to perturbed dataDδ. Then the projected L-M iteration reads: Given
x0 ∈ C̃ad and a sequence {λn}n∈N of positive real numbers, iterate for n = 0, 1, 2, . . .:

D̃δ
n = Dδ −Q(xn), (43)

hδn = argmin
h

∥∥∥Q′(xn)h− D̃δ
n

∥∥∥2

([L2(K)]2)L
+ λn ‖h‖2

[L2(Ω)]3 , (44)

xn+1 = PC̃ad(xn + hδn). (45)

where PC̃ad is the projection as defined in (38).

From a regularization point of view, the L-M iteration (44) is nothing else but an iterative Tikhonov
regularization for solving a non-linear equation [12, 16]. Note that if λn = 0 for every n, then the L-M
method becomes a Gauss-Newton method. The convergence and convergence rates of L-M methods
in the sense of regularization have been shown in many works; see, e.g., [12]. There, general rules of
choosing the parameter of a form λn = λ0β

n for some λ0 > 0, β ∈ (0, 1) are discussed, as well as
a discrepancy principle of terminating the iterations at step n = ne where ne is the first iteration index
such that the condition ∥∥Q(xne)−Dδ

∥∥
([L2(K)]2)L

≤ %δ

holds. It is also shown that with these choices, the solution of the L-M method converges to a solution
of the original non-linear equation. In our case this yields xne → x∗ as δ → 0.

The local and global convergence as well as rates of convergence of (projected) L-M algorithms have
also been intensively studied; we refer to [7, 9, 32, 17] for instance. In the absence of additive noise
and with proper initial values, the optimal convergence rates of the L-M algorithm are determined
by the rates of the updated parameters λn, i.e., ‖xn − x∗‖[L2(Ω)]3 = O(λn). In [17], quadratic
convergence rate of projected L-M algorithm for convex constraint has been proved in finite dimen-
sional spaces. For non-zero residual problems, i.e., in the presence of additive noise, a standard L-M
method with no projection usually only achieves a linear convergence rate ‖xn+1 − xn‖[L2(Ω)]3 ≤
C ‖xn − xn−1‖[L2(Ω)]3 for some constant C < 1. With an additional convex constraint, in the case of
non-zero residual problem, we expect that the projected L-M method will keep the convergence rate
as the non-projected L-M for unconstrained problems, even though the convergence result seems to
be more complicated than the zero residual problem. We ignore the discussion in detail in this paper.

As for the (projected) Gauss-Newton iteration, initialization is crucial for the (projected) L-M method.
Unfortunately, there is no general way to produce good initial guesses, rather this is a problem-
dependent task. Here we suggest to use a very fast version of MRF and BLIP in order to produce
initial points in a neighbourhood of a solution. The low run-time of the initialization scheme is related
to using a relatively coarse dictionary only. In this way, the dictionary is no longer refined in the L-M
iterations. Having clarified this, our main proposed algorithm is summarized in Algorithm 2.
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Algorithm 2. Projected L-M iteration with MRF/BLIP-based initialization

� Input and setting:

� MRI data Dδ ∈ ([L2(K)]2)
L

;

� Parameters for the physical setting of MRI, e.g., flip angle and repetition time sequences,
{α`}L`=1, {TR`}L`=1;

� A coarse discretization of the set Cad = [Tmin
1 , Tmax

1 ]× [Tmin
2 , Tmax

2 ].

� Initialization:

� Generate a dictionary Dic(Cad), using the coarse discretization of Cad, the flip angles
and the repetition times, with the help of the IR-bSSFP, formula (14) for magnetization;

� Use the BLIP method, Algorithm 1, to produce an initialization: x0 = (ρ0, θ0) ∈ C̃ad ⊂
[L∞(Ω)]3;

� Choose an initial parameter λ0 ≥ 1.

� Projected L-M iteration:

(1) Do the projected L-M iteration step (43)–(45);

(2) If stopping criteria are not fulfilled, set n← n+ 1, update λn = max{λ0β
n, µn}, where

β ∈ (0, 1), and µn ≥ 0 and go back to (1); otherwise, give the output.

� Output: The estimated parameter map xne = (ρne , θne), for some final iteration index ne.

There (µn)n∈N is a sequence of parameters that depend on the noise level in the data, and λ0 de-
pends on the sub-sampling rate. In our numerical examples below, we set λ0 = s2, where 1/s is the
undersampling rate of the data. A typical choice for µn is µn = ε

∥∥Q(xn)−Dδ
∥∥

([L2(K)]2)L
where

ε ∈ (0, 1).

4.5 Why more data frames can help

In the original MRF approach, in order to handle the problem of noisy data, the use of a large numberL
of consecutive pulse sequences and acquisitions is proposed. Conceptionally, this technique should
average out noise and thus support better reconstructions. We borrow this idea here and justify it
theoretically in what follows. In this part we consider problems after discretization, that is, in finite
dimensional spaces.

For this purpose, we first recall the so called Chebyshev’s inequality for vector-valued random variables
(see e.g. [10, 26]). In its formulation, P(·) stands for the probability of an event and ‖ · ‖Rp denotes
the Euclidean norm in Rp.

Lemma 4.6 (Chebyshev’s inequality). Let φ = (φ1, φ2, . . . , φp) be a vector-valued random variable,
for some p ∈ N, with expected value and variance E(φ) = χ = (χ1, χ2, . . . , χp), V (φ) = Σ2 =
(σ2

1, σ
2
2, . . . , σ

2
p), respectively. Then, for every ε > 0, we have

P(‖φ− χ‖Rp > ε) ≤ ‖Σ
2‖Rp
ε2

. (46)
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The following, main theorem of this section, states that if a family of L linear systems has a common
solution and the right hand sides are perturbed by noise, then by solving a least-squares problem one
can get an approximation of the common solution, with a certain probability that gets improved as the
number L increases. Later we shall see how this applies to our proposed algorithm to qMRI.

Theorem 4.7. Let A`ζ = b`, ` = 1, . . . , L, be a family of L linear systems of equations, where
{b`}L`=1, with b` ∈ Rp for every `, and {A`}L`=1, with A` ∈ Rd×p, p ≤ d, and rank(A`) = p for
every `, are given sequences of data and system matrices, respectively. Assume also that the singular
values of all A` have a uniform lower and upper bound

√
c and

√
C , respectively, which are both

independent of L. Further suppose that this family of equations has a common solution ζ∗ ∈ Rp. If
b̃` = b` + δ`, where {δ`}L`=1 are independently identically distributed (i.i.d.) random variables with
expected value (0, . . . , 0) ∈ Rp, and variance (σ2, . . . , σ2) ∈ Rp, then the least-squares solution

ζls = argmin
ζ∈Rp

∥∥∥Aζ − b̃∥∥∥2

RLd
, (47)

where
A = (A1, A2, · · · , AL)> and b̃ = (b̃1, b̃2, · · · , b̃L)>

approximates the solution ζ∗ with the following probability estimate

P(‖ζls − ζ∗‖Rp > ε) <
σ2

ε2
O
( p
L

)
, for every ε > 0. (48)

Proof. From (47), we get ζls = (A>A)−1A>b̃, which is also a random variable. Since A is not
random, we can compute the expected value of ζls as follows:

E(ζls) = E((A>A)−1A>b̃) = (A>A)−1A>E(b̃) = (A>A)−1A>b = ζ∗.

Therefore E(ζls − ζ∗) = 0. Similarly, for the variance (diagonal of the covariance matrix) we have

V (ζls − ζ∗) = σ2diag
(
(A>A)−1

)
,

where “diag” denotes the diagonal of a matrix. Denoting by Tr the trace operator, i.e., the summation
of the diagonal values and using Lemma 4.6, we get that for every ε > 0

P(‖ζls − ζ∗‖Rp > ε) <
σ2‖diag

(
(A>A)−1

)
‖Rp

ε2
≤
σ2 Tr

(
(A>A)−1

)
ε2

. (49)

Here we have used the fact that the matrix (A>A)−1 is positive definite and hence it has strictly
positive diagonal elements, together with the fact that the `1 norm in Rp is larger than the Euclidean
one.

From the form of A we have A>A =
∑L

`=1 A
>
` A` with trace

Tr(A>A) =
L∑
`=1

Tr(A>` A`).

Since every A>` A` is positive definite, so is A>A. Let {Sj}pj=1 be the eigenvalues of A>A allowing
for the decomposition

A>A = USU−1 and (A>A)−1 = US−1U−1, (50)
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where S is the diagonal matrix with entries {Sj}pj=1, and U is a unitary matrix. Then, for the traces
we have

Tr(A>A) =

p∑
j=1

Sj and Tr
(
(A>A)−1

)
=

p∑
j=1

1

Sj
.

Due to the uniform lower and upper bounds on the singular values of {A`}L`=1, we get a corresponding

uniform bound on the eigenvalues of the matrices
{
A>` A`

}L
`=1

, i.e.,

cL ≤ Sj ≤ CL, for all j = 1, 2, . . . , p.

Consequently, we have

1

CL
≤ 1

Sj
≤ 1

cL
=⇒ 1

Sj
= O

(
1

L

)
, for j = 1, 2, . . . , p.

From this we infer the following estimate

Tr
(
(A>A)−1

)
=

p∑
j=1

1

Sj
= O

( p
L

)
,

and combined with (49) it proves the assertion

P(‖ζls − ζ∗‖Rp > ε) =
σ2

ε2
O
( p
L

)
.

Theorem 4.7 relates to our qMRI algorithm in several ways:

(i) Observe that regarding the setting of qMRI problems, the noise in the data obtained after each
pulse sequence can be considered as realisations of i.i.d. random variables.

(ii) In Newton-type methods, if there is no sub-sampling for the qMRI-operator, thenQ′ is non-degenerate
on the effective domain Ω, i.e., on the part of the slices where the biological tissue is imaged. In this
case, we may consider A` = (Q(`))′, and b` = (D

(`)
k )δ, with both quantities satisfying the as-

sumptions of Theorem 4.7 given that the data contains Gaussian noise. This indicates that the result
of Theorem 4.7 can be applied to every Newton-type step for a given ε > 0, and an initial value
‖x0 − x∗‖ ≤ ε. Since we have restricted to a small neighbourhood of the exact solution x∗, we can
take roughly the common solution ζ∗ corresponding to (47) of Theorem 4.7 as the exact solution of
the least-squares problem (34).

(iii) In the case of the Levenberg-Marquardt method, with the sub-sampling operators P (`), the results

of Theorem 4.7 can still be applied as the involved matrices become A` =
(
((Q(`))′)>,

√
λnId

)>
,

and b` =
(

((D̃
(`)
n )δ)>, 0

)>
. Note that in this case ζ corresponds to h. Further the matrices A` will

always be of full rank with uniformly bounded singular values, whenever we let the sequence (λn)n∈N
be uniformly bounded away from zero. Such a uniform lower bound is indeed usually in place at the
presence of noise. In such a case, we can treat ζ∗ ≡ 0 as the common solution of (44) .

5 Numerical results

Now we report on numerical results obtained by our Algorithm 2 when applied to synthetic data. Our
setting also allows for an extensive quantitative comparison with Algorithm 1 (BLIP), which was shown
in [6] to be superior to the original MRF.
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5.1 Generating test data

Our tests are based on synthetic data from an anatomical brain phantom, publicly available from the
Brain Web Simulated Brain Database [1, 5]. We use a 217× 181 slice completed by zero fill-in order
to generate a 256 × 256-pixel image. The selected ranges for θ = (T1, T2)> and ρ reflect natural
values encountered in the human body [6], with T1 ranging from 530ms–5012ms, T2 from 41ms–
512ms, and ρ between 80–100. As pixel units in practical images very likely contain multiple tissue
types rather than only a pure one in a single volume of the observed pixels, we interpolate the values
of each parameter T1, T2 and ρ of the 256 × 256 phantom, respectively, by averaging the values
of every four neighboured pixels with non-zero parameter values. This average process shrinks the
256 × 256 image to a 128 × 128 image. In Figure 1, we display the interpolated parameters of T1,
T2 and ρ as coloured images. These serve as the ground truth for our numerical tests.
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Figure 1: The interpolated parameters serve as the ground truth for our algorithm. From left to right:
T1, T2 and ρ.

The IR-bSSFP pulse sequence scheme introduced in Section 4.1 is applied to generate MRI data. It
is based on constant flip angles α and repetition time TR sequences of length L. The data D are
generated by using the prescribed parameters T1, T2 and ρ with the pulse sequences characterized
by α and TR. With this setting, we first simulate the magnetization, and then use FFT to generate the
Fourier space data from it. Sub-sampling is implemented by using the scheme described in the next
section. We also note that for the generation of the magnetization, we rely on (14) and take advantage
of the MATLAB code provided in [23]. For simplicity, we set the phase shift φ ≡ 0 in (14).

5.2 Sub-sampling pattern

Here we focus on Cartesian sub-sampling which is frequently used in practice; see, e.g., [24]. This
choice implies a specific form of the sub-sampling operator P (`) for ` = 1, . . . , L. In the discrete
setting, the full k-space data are given by a dense matrix of complex values or, equivalently, two real-
valued dense matrices, respectively of sizeN×N . According to our set-up above, we haveN = 128.
More specifically, we use here an nmultishot Echo Planar Imaging (EPI) scheme, which means that at
every read-out time, n rows of k-space are simultaneously filled. Hence, in every acquisition there will
be n < N rows of the matrix filled with Fourier coefficients. To simplify the discussion, we consider
(N mod n) ≡ 0, and further set s := N/n, which gives a sub-sampling rate of 1/s. The sampling
pattern P (`) is described in detail as follows:

(i) For every `-th acquisition, define ξ` := (` mod s) for ` = 1, . . . , L.
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(ii) P ` will include those rows of the full k-space matrices, indexed by numbers from the set ι with

ι := {i ∈ {1, . . . , N} : (i mod s) ≡ ξ`} .

Thus, at every read-out time, P (`) samples n rows from the full Fourier space to simulate the n
multishot EPI. A simple example of such a sub-sampling pattern is shown in Figure 2.

Figure 2: A sub-sampling pattern example for s = 4, L = 4, and N = 16. The first image depicts
an example of fully sampled k-space data. The second to the fifth images are example frames of the
undersampled data, where the information indicated by blank rows is not collected in that frame. The
sub-sampling pattern follows the order periodically if L > s.

We note that this sub-sampling strategy differs from the one in [6]. There, ξ` is defined as a uniformly
distributed random number in {0, 1, . . . , s− 1}, whereas here we consider a deterministic periodical
order. After experimentation and when compared to the pseudo-random strategy of [6], we found that
the deterministic order is more stable and gives comparable or better results when the BLIP algorithm
for Cartesian sub-sampled data is used. Therefore, in our implementation of the BLIP algorithm we
use the deterministic strategy as described above.

We consider different sub-sampling rates on the data using the above strategy. By taking into account
that longer processing time is needed for higher sampling rates, it follows that the flip angles and the
repetition times must be increased proportionally. Accordingly, we use the following repetition times
TR = (TR1, TR2, . . . , TRL) and flip angles α = (α1, α2, . . . , αL):

(a) Fully sampled data: Repetition time TR` = 40ms and flip angles α` = 40π
180

for all ` =
1, . . . , L.

(b) 1/4 sampled data (sub-sampling rate 25%), e.g., a 32 multi-shot EPI: Repetition time TR` =
20ms and flip angles α` = 20π

180
for all ` = 1, . . . , L.

(c) 1/8 sampled data (sub-sampling rate 12.5%), e.g., a 16 multi-shot EPI: a shorter repetition
time TR` = 10ms and smaller flip angles α` = 10π

180
are applied for all ` = 1, . . . , L.

It is reported in the literature [23] that adding random noise to the flip angles and to repetition times
may improve the final results of MRF (and BLIP). However, in our experiments we did not find signif-
icant differences. Therefore, we do not add noise to the angles and repetition times in our numerical
tests.

In order to compare our method and the BLIP algorithm, we used for the latter a very fine dictionary
where T1 was discretized from 15ms to 5500ms with increments of 15ms, and T2 was discretized
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from 1.5ms to 550ms with increments of 1.5ms. This means that the discretized feasible domain
Cad for θ = (T1, T2) was (in MATLAB notation)

Cad = {[15 : 15 : 5500]× [1.5 : 1.5 : 550]} .

In this case, the dictionary had 366 × 366 = 133956 entries, and it required memory for a storage
matrix of dimension 133956 × L. The deterministic sub-sampling pattern was used in all numerical
examples for the BLIP algorithms, including the generation of the initial values. For the projection onto
the feasible set C̃ad we use the following thresholds for each parameter values: (the constants C and
C here refer to (38))

C C
T1 0 5500
T2 0 550
ρ 0 100

Note that the value 0 is assigned to the marginal area in the tested images in Figure 1, where there is
no tissue information. Further, the linear systems in the L-M iterations were solved by employing MAT-
LAB’s backslash command. For our test runs, we used a CPU with an Intel Core i5-7500, 3.40GHz, 2
cores, and RAM of 8GB DDR4, 2400 MHz, as well as MATLAB of version 2018a under the operating
system openSUSE 42.3.

5.3 Undersampled data with no additive noise

The first set of examples addresses noiseless undersampled data (Cartesian sub-sampling at rate
1/8), and totally L = 80 data frames. In these tests, we used a coarse dictionary for initializing
Algorithm 2. Here T1 was discretized from 200ms to 5500ms with increments of 200ms, and T2 was
discretized from 20ms to 550ms with increments of 20ms. Note we not only compare our results to
the solutions of the BLIP algorithm, but we also plot the initial guesses produced by BLIP. Concerning
BLIP, following the findings in [6] we applied 20 steps of a Landweber iteration. On the other hand, our
method was stopped after 25 Levenberg-Marquardt steps as then no significant change in the iterates
was observed. The regularization parameters had the following values: µ = µn = 0, for every n ∈ N,
λ0 = s2, and β = 0.01.

The reconstructed parameter maps are presented in Figure 3. In the first row we depict the parameter
maps T1, T2, ρ of the BLIP algorithm, computed with the coarse dictionary. These quantities were
subsequently used for the initialization of our new algorithm. In the second row, the corresponding
results for the fine dictionary are shown. These are the ones that should be compared with the images
of the third row, which are the results of our algorithm. In order to make the differences clearer, we
also provide the corresponding error maps in Figure 4. In fact, we show the pointwise error maps
|θcomputed − θgt|, where θgt are the ground-truth parameter maps shown in Figure 1, and draw the
reader to observing the scale of error as depicted in the vertical bar. We observe that the accuracy of
the estimated parameters, especially for T1, is much higher in our method when compared to BLIP.
Note that the error in BLIP is actually larger than the dictionary mesh size, which indicates that this is
not a matter of the fineness of dictionary, but it could also be due to the projection onto a non-nonvex
set as discussed above.

The rate of convergence of the proposed algorithm turns out to be linear for this example; see Figure
5. The figure depicts the ratio ‖xn+1−xn‖2

‖xn−xn−1‖2
versus the number of iterations. Note that x stands here

either for T1, T2, or ρ.
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Figure 3: Experiment with noiseless undersampled data. First row: Initialization of our algorithm, com-
puted by BLIP with a coarse dictionary. Middle row: Result by BLIP with fine dictionary. Last row:
Solution by proposed algorithm.

5.4 Undersampled data with additive noise

Now we present results for undersampled noisy data with a sub-sampling rate of 1/4 and additive
Gaussian white noise of variance σ2 = 0.8 and mean 0. The total signal to noise ratio of the Fourier
data is SNR = 35. As before, we use here L = 80 data frames.

The coarse dictionary employed in order to generate the initial value x0 used T1 discretized from
400ms to 5500ms with increments of 400ms, and T2 from 40ms to 550ms with increments of
40ms. This resulted in a dictionary with 169 entries only, and needed a complex-valued matrix of
dimension 169 × L for its representation. As in the previous example, the refined dictionary had a
dimension 133956 × L. Again, we used 20 Landweber iterations for BLIP, and 25 iterations for our
L-M algorithm. The regularization parameters were chosen as µn = 10−8

∥∥Qxn −Dδ
∥∥

2
for every

n ∈ N, λ0 = s2, and β = 0.01. Note that because of noise, here we used a fixed µ strictly larger
than zero.
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Figure 4: Experiment with noiseless undersampled data. Pointwise distance of the solutions of Figure
3 to the corresponding ground truths of Figure 1. First row: Initial error of BLIP with a coarse dictionary.
Middle row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.

We depict the results in Figure 6 and the corresponding pointwise errors in Figure 7, using the same
row system as in Figures 3 and 4, respectively. The result of the proposed algorithm again outperforms
the refined BLIP algorithm, especially in the reconstruction of the density map, but not as significantly
as in the noiseless case. In addition, our method consumes much less memory and requires much
less CPU-time; see Table 1.

In Figure 8, we plot again the residual ratios again showing a linear rate of convergence.

5.5 Ideal data–fully sampled and no noise

We also discuss the results for the case of fully sampled and noise-free data. Here, we only need
L = 3 data frames, which actually equals the number of unknown parameters. Thus, the resulting
discrete system is non-singular. For both the BLIP and our algorithm, we execute 5 iterations. The
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Figure 5: Experiment with undersampled data. From left to right and from above to bottom: Conver-
gence of the data residual ‖Q(xn)−D‖, convergence rates via plots of the iterate ratios ‖xn+1−xn‖2

‖xn−xn−1‖2
for x = T1, T2, ρ, respectively.

regularization parameters were chosen as µn = 0 for every n ∈ N, λ0 = s2 = 1, and β = 0.
Note that, as discussed earlier, this choice makes the L-M iteration equivalent to the Gauss-Newton
method.

Here, we only show the error maps of the results in Figure 9. We observe that the Gauss-Newton
algorithm essentially recovers the ground truth as expected, while the accuracy of BLIP is limited by
the discretization mesh of the dictionary.

In contrast to the previous case, as we verify numerically in Figure 10, the convergence rate of the
algorithm is superlinear.

5.6 Quantitative comparisons

In Table 1 we provide a summary of further qualitative comparisons for all of the previous tests. The
index in our comparison is the cost in CPU-time as well as the error rates of each algorithm, with the
latter defined as

‖xcomputed − xgt‖2

‖xgt‖2

,

where x = T1, T2 or ρ. We provide comparisons with the initial value x0 and also with the results of
the L-M algorithm without projection. Note that the CPU-time costs for the algorithm proposed here
include the time needed for computing the initial value.

From the table we observe that the initial guess has been significantly improved by both algorithms,
but in the end our proposed algorithm outperforms the refined BLIP in all of the indices. We can see
from the table that the non-projected L-M algorithm provides comparable results as the projected L-
M method in the cases the data with no additive noise. This is not surprising since the initialization
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Figure 6: Experiment with undersampled and noisy data. First row: Initialization of our algorithm, com-
puted by BLIP with a coarse dictionary. Middle row: Result by BLIP with fine dictionary. Last row:
Solution by proposed algorithm.

Table 1: Quantitative summary of the results: computational times and error rates

Full data 1/8 sampled data 1/4 sampled and noisy data

time (s) error rate ‖e‖2
‖x∗‖2

time (s) error rate ‖e‖2
‖x∗‖2

time (s) error rate ‖e‖2
‖x∗‖2

T1 T2 ρ T1 T2 ρ T1 T2 ρ
Initial 1.20 0.036 0.009 0.008 15.26 0.472 0.010 0.003 13.67 0.148 0.088 0.188
BLIP 78.94 0.005 0.002 0.003 964.04 0.072 0.002 0.001 1073.86 0.078 0.019 0.028
L-M 8.41 1.6 ∗ 10−13 2.6 ∗ 10−15 6.1 ∗ 10−16 489.82 0.009 0.001 0.0002 493.23 0.072 0.014 0.020

Proposed 8.47 1.6 ∗ 10−13 2.4 ∗ 10−15 5.6 ∗ 10−16 494.56 0.015 0.002 0.0002 495.77 0.070 0.011 0.009

produces values well located in the interior of the feasible set. As a consequence the non-projected L-
M iterations can almost be reside in the feasible domain. Hence, the projection appears unnecessary
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Figure 7: Experiment with undersampled and noisy data. Pointwise distance of the solutions of Figure
6, to the corresponding ground truths of Figure 1. First row: Initial error of BLIP with a coarse dictionary.
Middle row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.

in the noise-free case.

Finally, we would like to verify the fact that larger frames sequences can help to get more accurate
estimations; compare the discussion at the end of Section 4.5. For the results shown in Table 2 we
performed a set of experiments for data frames of increasing length L. All data were 1/4 sub-sampled
and corrupted by additive i.d.d. Gaussian noise as described before with variance 1 and mean 0. This
gives a total signal noise ratio SNR = 15. We then ran our L-M algorithm for 20 iterations always
using the same initial value x0, which was generated by using BLIP with 160 frames and the coarse
dictionary as described in Section 5.4. The parameter had values λn = µn = λ0

∥∥Qxn −Dδ
∥∥

2
for

all n ∈ N, and λ0 = 10−8.

The results in Table 2 clearly indicate that an increasing number of sequences improves the accuracy
of the estimated parameters. There we have also computed the errors of the standard L-M method,
i.e., with no projection. It can be observed (also in Table 1 for the noisy case) that the projected L-M
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Figure 8: Experiment with noisy data. From left to right and from above to bottom: Convergence of
the data residual ‖Q(xn) − Dδ‖, convergence rates via plots of the iterate ratios ‖xn+1−xn‖2

‖xn−xn−1‖2
for

x = T1, T2, ρ respectively.

method outperforms the standard L-M method of no projection. Note that the CPU-time costs that we
show here do not include initialization as the latter was the same in each case.

Table 2: The length of data sequences and its influence on the solution accuracy

Standard L-M method Projected L-M method (proposed)
ER T1 ER T2 ER ρ time (s) ER T1 ER T2 ER ρ time (s)

L = 5 0.2267 0.4923 0.1682 36.66 0.1743 0.2028 0.0424 36.40
L = 10 0.1818 0.0805 0.0757 59.69 0.1699 0.0348 0.0275 59.33
L = 20 0.0542 0.0182 0.0317 104.56 0.0290 0.0072 0.0099 104.65
L = 40 0.0413 0.0131 0.0276 193.65 0.0211 0.0051 0.0090 194.28
L = 80 0.0268 0.0117 0.0268 375.90 0.0121 0.0043 0.0087 374.41
L = 160 0.0193 0.0112 0.0266 736.77 0.0078 0.0041 0.0085 737.45

6 Concluding remarks

In this paper, we analysed MRF from the perspective of inverse problems, and we were able to provide
some mathematical insights in order to better understand the functionalities of the method. Subse-
quently, we have proposed a novel model for quantitative MRI which is in accordance with the stan-
dard routine of the MRI experiment setting. The model is dictionary-free and incorporates the physical
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Figure 9: Fully sampled data. Pointwise distance of the solutions of BLIP algorithm and Newton algo-
rithm to the corresponding ground truths. First row: Initial error of BLIP with a coarse dictionary. Middle
row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.

setting of MRI into one single non-linear equation. We have proposed a robust algorithm that was
shown to be capable of estimating the tissue parameters with high precision. In contrast to the original
MRF method and its variant BLIP, it does not rely on refining a dictionary to improve the accuracy.
Even though our new algorithm is based on a specific Bloch dynamics referred to as IR-bSSFP, this
constitutes by no means a limitation for the method. Rather, other type of discrete dynamics or approx-
imations to Bloch equations can be fitted to this approach as well. Furthermore, we have considered
the relaxation parameters T1, T2 and the proton density ρ as unknowns in the present paper, but as
long as parameters can be related to the Bloch dynamics, there would be no difficulty to extending the
algorithm to incorporate the further parameters into the current framework.
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Figure 10: Fully sampled data and superlinear convergence of the Newton method. From left to right
and from above to bottom: Convergence of the data residual ‖Q(xn) −D‖2, convergence rates via

plots of the iterate ratios ‖xn+1−xn‖2
‖xn−xn−1‖2

for x = T1, T2, ρ respectively.
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Appendix: Solutions of Bloch equations with different cases

Here we briefly review several simplified cases towards the solutions of the Bloch equations, which are
helpful in order to understand the simulations based on discrete dynamics. More detailed descriptions
can be found in [20, 25]. Note that here we omit the position dependence in Bloch equations.

Only main field with no relaxation

The Bloch equations, in a setting which only takes into account the main magnetic field and with no
relaxation, represent an autonomous dynamical system, that is

∂m

∂t
= m× γB0.

The solution in this case is
m(t) = Pω0(t)m(0),

where

Pω0(t) =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 , and ω0 = γ |B0| .
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It can be interpreted in a way that the magnetization precesses about the main magnetic field at a
frequency ω0, called Larmor frequency.

Main field with relaxation

This is the case of Bloch equations (1) with B(t, r) = B0, meaning that radio frequencies and
gradient fields are not considered here. After some change of variable and further calculations, the
solution turns out to be

m(t) = Pω0(t)E(t)m(0) + (1− e−
t
T1 )me,

where

E(t) =

 e
− t
T2 0 0

0 e
− t
T2 0

0 0 e
− t
T1

 .

Note that the matrices Pω0(t) and E(t) are commutable.

With perturbations and without relaxation

By perturbation we mean that there is aB1 field which rotates at the Larmor frequency, and it is always
orthogonal to the main field, such that 〈B0, B1〉 = 0. This models the excitation of radio pulses in
the MRI machine. By convention, the direction of the B1 field can be defined to be along the x-axis in
space. Since in reality, the excitation pulse only lasts for a very short length of time in comparison with
T1 and T2, we can ignore the relaxation terms. The solution of (1) in the case of no relaxation terms
but with perturbation is

m(t) = Pω0(t)Rx(α(t))m(0),

where α(t) := γ
∫ t

0
|B1(s)| ds is the flip angle, and

Rx(t) =

 1 0 0
0 cos(α(t)) sin(α(t))
0 − sin(α(t)) cos(α(t))

 .

With perturbations and relaxation

Finally we are able to simulate the solutions of (1) in the case where both the perturbations of the main
field and relaxation terms are taken into account. This is based on the assumption that the excitation
pulse is turned on at the time period (0, t0), where t0 is a very small number in comparison to the
relaxation parameters. Therefore, we can estimate the solution of (1) with the following formula:

m(t) = Pω0(t)E(t)Rx(α(t0))m(0) + (1− e−
t
T1 )me.

The main tool in all of the above calculations is to change variables to a rotating frame of reference in
order to match the Larmor precession.
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