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A physically oriented method for quantitative magnetic
resonance imaging

Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros

Abstract

Quantitative magnetic resonance imaging (qMRI) denotes the task of estimating the values
of magnetic and tissue parameters, e.g., relaxation times T1, T2, proton density ρ and others.
Recently in [Ma et al., Nature, 2013], an approach named Magnetic Resonance Fingerprinting
(MRF) was introduced, being capable of simultaneously recovering these parameters by using a
two step procedure: (i) a series of magnetization maps are created and then (ii) these are matched
to parameters with the help of a pre-computed dictionary (Bloch manifold). In this paper, we
initially put MRF and its variants in the perspective of optimization and inverse problems, providing
some mathematical insights into these methods. Motivated by the fact that the Bloch manifold is
non-convex, and the accuracy of the MRF type algorithms is limited by the discretization size of
the dictionary, we propose here a novel physically oriented method for qMRI. In contrast to the
conventional two step models, our model is dictionary-free and it is described by a single non-
linear equation, governed by an operator for which we prove differentiability and other properties.
This non-linear equation is efficiently solved via robust Newton type methods. The effectiveness
of our method for noisy and undersampled data is shown both analytically and via numerical
examples where also improvement over MRF and its variants is observed.

1 Introduction

1.1 Context

Current routine of magnetic resonance imaging (MRI) examinations typically provides qualitative im-
ages of nuclear magnetization of the tissue accompanied by contrast “weights”. The physicians then
typically inspect visually these images, which however being qualitative, may not provide enough infor-
mation for a sufficiently accurate diagnosis. The idea of quantitative MRI (qMRI) is to provide additional
measurements that can be used as a diagnostic tool. It aims not only to visualize the structure of the
imaged object, but also to provide accurate values of parameters that characterize different types of
tissues. Typical quantities that are used to discriminate different tissue types are for instance the pro-
ton density ρ of Hydrogen atoms in water molecules, the longitudinal and the transverse relaxation
parameters T1, T2, and others. The connection between the evolution of the net magnetization (in-
direct measurement) and the aforementioned magnetic parameters is done via the renowned Bloch
equations [4], a system of time dependent ordinary differential equations

∂m
∂t

(t) = m(t)× γB(t)−
(
mx(t)
T2

, my(t)

T2
, mz−meq

T1

)>
m(0) = m0.

(1)

These equations govern the macroscopic magnetization m of the tissue under external magnetic
fields B. The relaxation rates T1 and T2 are model parameters associated to the equations. Note that
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G. Dong, M. Hintermüller, K. Papafitsoros 2

in Section 2.1 we provide a general background to MRI and Bloch equations for the not so familiar
readers.

Even though the techniques for qMRI are still in the stage of gestation, many ideas and methods
have been proposed. Earlier approaches [20] are based on a set of spin echo or inversion recovery
images that are reconstructed form the k-space data, with respect to various repetition times (TR) and
echo times (TE). There, the acquisitions are designed for each parameter individually. This type of
approach is usually called parametric mapping method [22] and it consists of two steps: (i) reconstruct
a sequence of images as in qualitative MRI and (ii) for each pixel of the images, fit the intensity of the
images to an ansatz curve characterized by the magnetic parameter associated to the tissue imaged
at that pixel. Based on this idea, many improvements have been suggested in the literature, see for
instance [15]. These types of approaches simplify the physical model and deal with tissue parameters
separately, which are considered to be time consuming for the patient.

Another line of research, initiated by Ma et al. in [22] and named Magnetic Resonance Fingerprinting
(MRF), has recently gained much attention. The basic idea of MRF is first to build a database (dictio-
nary) consisting of all the trajectories (fingerprints) of the evolution of the magnetization corresponding
to some indexed parameter values, typically those of T1 and T2 and also some other parameters e.g.
off-resonance frequency. These trajectories are computed by solving the Bloch equations, as many
times as the number of all the combination of the parameter values. The values of the parameters are
obtained by discretizing their range in a feasible set Cad which corresponds to values that are natu-
rally occurring in the human tissue. In this way, the dictionary establishes a discretized map Dic(Cad)
(look-up table) between the all feasible parameters and the corresponding solutions of Bloch equa-
tions. Thus, given a magnetization trajectory that is assumed to be a solution of the Bloch equations
for some parameters, with the help of this look-up table, one is able to find the parameter values that
correspond to this trajectory. This is the main principle behind MRF and the one that allows for the
simultaneous estimation of the tissue parameters.

The MRF workflow consists again of two steps. Focusing on a thin slice Ω of the tissue of interest, the
first step is to reconstruct a sequence of L images {X(`)}L`=1 from data {D(`)}L`=1 as in qualitative
MRI, using a rich enough excitation process through L fast radio pulses, see Section 2 for details. At
every time step, the data consists of a sub-sampling of the Fourier coefficients of the magnetization.
This sub-sampling occurs, because the time between each excitation is small. In a typical MRF routine
the magnetization reconstruction process is by using the pseudo-inverse of the Fourier transform,
something that leads to the occurence of artifacts in the magnetization images. However, looking at the
evolution of the magnetization of a specific tissue element (voxel) along the series of the reconstructed
magnetization images, it can be assumed that it should correspond, at least approximately, to the
solution of the Bloch equations with parameters that correspond to this specific voxel. Hence, the
second step of MRF is the matching of the recorded trajectory of each voxel to a fingerprint in the
pre-computed dictionary, again typically through mimimizing a least square distance. The parameter
values that correspond to the “best” fingerprint are then assigned to that voxel.

This MRF procedure can be formally described as follows:

Solve each X(l) = argmin
X

∥∥P (`)FX −D(`)
∥∥2

2
, ` = 1, . . . , L, (MRF-step 1)

in order to get X∗ = (X(1), . . . , X(L))

Solve m∗ = argmin
m∈Dic(Cad)

S(Tx,ym,X
∗). (MRF-step 2)

A few words about the notation of the above steps are in order. Starting from (MRF-step 1), with D =
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Quantitative MRI 3

(D(1), . . . , D(L)) we denote the obtained data after each pulse. Each D(`) is a sub-sampling P ` of
the Fourier coefficients of the magnetization, in fact of its transverse component Tx,y, i.e., the first two
components. The Fourier transform is denoted withF . The first step consist then of L reconstructions
of the magnetization of this tissue slice. Note again that this reconstructions are done in a “naive” way,
i.e., by considering the pseudo inverse of F

X(`) = F−1(P (`))>D(`).

In (MRF-step 2), for every voxel (in practice, for every image pixel r) the matching is performed via
exhausted search over the dictionary Dic(Cad). Note that Dic(Cad) = {mθ : θ ∈ Cad}, where
θ is a vector of the tissue parameters – for simplicity we can consider θ = (T1, T2) – and Cad is
an admissible domain for these parameters. By mθ we denote the solution of the Bloch equations
with parameter θ, evaluated in the same time steps for which we have constructed the magnetization
responses. Hence, every element of Dic(Cad) is a vector sequence of length L. The function S(·, ·) is
a Euclidean distance of normalized quantities, in order to avoid the multiplicative effect that the density
ρ has in the magnetization. Note that the local density ρ of Hydrogen atoms, multiplies m, resulting in
the net magnetization ρm. The minimization in (MRF-step 2) is “voxel-wise”, i.e., it is done as many
times as the number of voxels (in practice pixels). Finally, the parameter spatial maps are formed by
assigning the parameter values θ that correspond to the optimal matches mθ to the corresponding
voxels. A more detailed description of MRF is done in Section 2.3.

The first numerical results in [22] showed that MRF is a promising approach for qMRI. However, there
are several open issues from a mathematical point of view. A basic question is whether two close
enough trajectories would infer similar parameter values θ. This refers to some stability analysis for
the inversion of the Bloch map θ 7→ mθ. Assuming this stability, and that the number of pulses L is
fixed, then there are mainly two factors that influence the accuracy of MRF approaches, namely (i) the
quality of the L magnetization reconstructions, and (ii) the completeness (fineness) of the dictionary.
In the literature, most of the works focus on improving the former factor, see e.g. [2, 7] while the latter
will always impose limitations as it is intrinsically part of a dictionary method.

Moreover, as we have seen, both the parameter mapping method and MRF rely on a two-step strategy,
that is first to reconstruct magnetization maps and then to fit the images to the parameters. It is clear
that the first step partially determines the quality of the results in the second step. However, it can be
observed that the second step procedure can also have a positive influence to the reconstruction in
the first step, in particular when the data is under-sampled. For instance, the fact that the evolution
of magnetization is dictated by the Bloch equations, can already be taken into account in the recon-
struction step and thus improve its quality. In particular, as we will see in the next variant of MRF, it
can serve as a constraint to assure uniqueness of solutions in the reconstruction step. Therefore the
separation of the procedure into two steps does not seem optimal.

The question that now arises is whether we can estimate the tissue parameters in a single step from
the Fourier space data, while in the same time making the modelling more robust. These considera-
tions motivate our work.

An approach towards this direction was proposed by Davies et al., in [7], where a strategy based on a
projected Landweber iteration was proposed, and significantly improved the result of MRF. The method
was named BLoch response recovery through Iterated Projection (BLIP). An iterative approach was
suggested to reconstruct the magnetization, with the key idea being, to project in each iteration the
reconstructions to the Bloch manifold (dictionary). Note that this projection is still dictionary based. This
leads to an improved solution for the magnetization especially in the case of poorly sub-sampled data.
The BLIP algorithm can be roughly understood as a projected gradient descent method for solving the
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following constrained optimization problem:

min
X

‖PFTx,yX −D‖2 , (BLIP)

subject to X ∈ R+Dic(Cad).

We refer the reader again to Section 2.3 for a complete description of the BLIP method. Even though,
the BLIP method improves the MRF considerably there is still some issues remaining. An important
one arises due to the fact that the convexity of the (positive cone of) Bloch manifolds R+Dic(Cad),
is not guaranteed (see Proposition 4.2), therefore every projection operation to the Bloch manifold
may not be well-posed. This might cause serious errors especially in the case when the data are
corrupted by noise. In addition, since the projection (matching) is still dictionary based, the method
can be memory consuming, especially when the dictionary is highly refined in order to have higher
accuracy.

1.2 Our contribution

Our work can be divided into two parts. In the first part, Section 3, using some sensitivity analysis
we show that the matching process is a well-posed inverse problem when it is restricted to the Bloch
manifold. This partially explains why the idea of dictionary in MRF has been successful. In particular
in Theorem 3.6, we show that if two trajectories of the magnetization evolution as these are dictated
by the Bloch equations, are close enough, the same holds for the parameters θ that dictate these
trajectories. This follows from an estimate of a type

‖θ − θδ‖ ≤ Cδ while ‖m−mδ‖ ≤ δ,

where θ, θδ are the inverted parameters fromm, mδ which are Bloch trajectories. Here, the constant
C is independent of δ, and the norms will be clear later in the text. This explains why the idea of a
dictionary works in practice. Furthermore, we also provide a mathematical understanding on why a
large number of frames L, plays a positive role in the quality of the final result. This is discussed in
Theorem 4.6.

In the second part of our work, we propose a novel method for qMRI. Our idea is to solve the parameter
identification problem directly in the domain of the Bloch manifold, so that we can avoid the (ill-posed)
projection as it is done in BLIP from a modelling point of view. With this in mind, we suggest the
following single step model:

Q(ρ, θ) := PF(ρTx,yM(θ)) = D, where (ρ(r), θ(r)) ∈ R+ × Cad, or every r ∈ Ω. (2)

The operatorQ, named qMRI operator, incorporates directly the Bloch dynamics into the data acquisi-
tion, and by solving (2) we can recover both ρ and θ. However the non-linearity ofQmakes the problem
rather challenging as also additional difficulties arise due to the setting of MRI, e.g., sub-sampling and
noise. We propose Newton type methods for the solution of (2). In the case of sub-sampling and noise,
we consider a variant of Gauss-Newton method, namely a Levenberg-Marquant type regularization ap-
proach. In order to do so, we show the necessary differentiability results for the operation that maps
θ to the Bloch trajectories and as a result differentiability of the operator Q. As it is the case for many
highly non-linear and non-convex problems, the initialization for these types of iterative methods turns
out to be crucial. Here we suggest to use BLIP (or MRF) using very coarse dictionary in order to fastly
produce a sensible initialization for our algorithm, in which case BLIP is competent. Hence, in the end
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we are able to produce more accurate parameter maps with less computational power and time costs
than the previous methods.

Note that a similar approach is followed in two recent papers [26] and [27] where also a single step
model and a dictionary free method are considered respectively. In particular, the model in [27] aban-
dons the Fourier space character of the data, and asks for relatively big amount of data frames to
solve a very large non-linear system. As a result, relatively large memory and computational power is
needed. The work of [26] mainly takes the experiment design point of view, aiming at optimizing the
excitation pulse sequences as well as the repetition times.

Structure of the paper

The rest of the paper is planned as follows: In Section 2, we provide a general background to MRI,
particularly to Bloch equations and MRF. In Section 3, we put the MRF-type algorithms in the per-
spective of inverse problems, where we perform a stability analysis for inversion of the Bloch mapping.
In Section 4, we propose our new physically based, single step model for qMRI, which is described
by a nonlinear operator equation. We analyse the differentiability of this operator, and prove the non-
convexity of the Bloch manifold. Subsequently, we discuss a series of Newton type methods for its
numerical solutions. We particularly focus on the case of undersampled and noisy data. Numerical
tests and comparisons are presented in Section 5 to illustrate the efficiency of the proposed method
for qMRI. A short description on solutions of Bloch equations in different cases is given in the Ap-
pendix.

2 Background on MRI and MRF

We provide here a brief, high level summary of the MRI principles. For more details, we refer the
readers to [30].

2.1 Bloch equations

The Bloch Equations [4] characterize the key physical principles in nuclear magnetic resonance. We
will discuss the Bloch equations in their classical form in the continuous time dependent case. We first
describe our set up.

We are focusing on a thin slice of tissue which is modelled by a domain Ω ⊆ R2. We denote every
element point (or voxel) of Ω with r. The main principles of MRI lie on the interaction between an exter-
nally applied dynamic magnetic fieldB = (Bx, By, Bz)

> and the (net or bulk) magnetization which is
equal to all the individual dipole moments of the proton spins within a voxel. This net magnetization is
proportional to the hydrogen proton density ρ. We denote by m = (mx,my,mz)

> the magnetization
per unit density element, hence the net magnetization in a voxel of density ρ is equal to ρm.

In the case of a static magnetic field B0, which is typically regarded to lie on the z-direction, the net
magnetization is aligned to that field, of with its longitudinal component mz reaching an equilibrium
meq. This alignment is not achieved instantaneously but it is controlled by the longitudinal relaxation
time T1 (or T1(r) if we want to emphasize the dependence on a specific voxel), and the longitudinal
magnetization evolves according to the following formula

mz(t) = meq(1− e−(t/T1)).
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Furthermore, the part of the magnetization orthogonal to B0, which is called the transverse magneti-
zation (mx,my)

>, precesses about the z-axis at a frequency equal to γ|B0|. The constant γ is called
the gyromagnetic ratio. This precession emits an electromagnetic signal which can be detected and
measured by the coils of the MRI machine. The transverse magnetization decays also exponentially
at a rate T2, the transverse relaxation time.

The overall macroscopic dynamics that dictate the relation between the magnetizationm, the magnetic
field B and the relaxation times T1, T2, are governed by the Bloch equations, which is a system of
time dependent linear ODEs:

∂m(t,r)
∂t

= m(t, r)× γB(t, r)−Θ(r) • (m(t, r)−me),
m(0, r) = m0(r).

(3)

where me = (0, 0,meq)
> and “×” denotes the outer product between vectors. Also, in order to

simplify the presentation, we have introduce the variable Θ

Θ(r) = (Θ1(r),Θ2(r),Θ3(r))> :=
(
1/T2(r), 1/T2(r), 1/T1(r)

)>
,

The operation • in (3) denotes component-wise multiplication between vectors. As we have noted,
here m : (0, τ) × Ω → R3, for some τ > 0, denotes the magnetization in a unit volume per unit
proton density. Notice that the dependence on r, is intrinsic here and does not enter in the dynamics of
the equation. Furthermore, me denotes the equilibrium state of the magnetization, which without loss
of generality we can consider it to be unitary in magnitude, i.e. me ≡ (0, 0, 1)>. Since the equation is
linear, in order to get the net magnetization, one simply has to multiply it by ρ.

The total magnetic field B(t, r) can be typically decomposed as follows

B(t, r) = B0(r) +B1(t, r) + (0, 0, G(t) · r)>. (4)

Here B0 denotes the external constant magnetic field that points to the positive z direction and in
general assumed to be spatially homogeneous. However, we keep here the dependence on r for
generality. The component B1(t, r) = (B1,x(t, r), B1,y(t, r), 0)> denotes a radio frequency (RF)
pulse, which is sent periodically and only lasts for a very short time. It is used in order to excite the
magnetization from its equilibrium, by turning the magnetization precession away from the direction of
the main magnetic field with an angle

α(t) = γ

∫ t

0

|B1(s)| ds,

which is called flip angle. These pulses usually last only very shortly in comparison with T1 and T2.
Therefore RF sequences can be completely characterized by sequences of flip angles, and the time
is normally omitted. The interval between two consecutive pulses is called repetition time (TR). As we
will see later in the Section 4, we will consider a specific flip angle sequence pattern called Inversion
Recovery balanced Steady State Free Precession (IR-bSSFP) [28]. By using these sequences the
solution of the Bloch equations can be simulated by a discrete linear dynamical system, see Section
4.1. In the appendix, we provide some case discussions which help to understand the discrete Bloch
dynamics and the solution of Bloch equations.

The component G(t) in (4) is a magnetic gradient field that is designed to distinguish the point-wise
information from the detected signal. Without getting into too much details, the measured signal can
be described as

S(t) =

∫
Ω

ρ(x, y)(Tx,ym(t, x, y))e−iγ|B0|te−iγ
∫ t
0 (xGx+yGy)dτdxdy,
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where we have introduced the notation Tx,ym := mx(x, y) + imy(x, y) for the transverse magneti-
zation, i being the imaginary unit. This type of presentation is a convention in the MRI community, but
one can also think of Tx,ym as a pair of real valued components. The third component of m usually
can not be measured because of the position of the coils. The MRI signal D(t)can be mathematically
modelled as some collected coefficients of a Fourier transform of the transverse magnetization up to
a demodulation by eiγ|B0|t. That is

P (t)F(ρTx,ym
(t)) = D(t),

where F denotes the Fourier transform, and P (t) means a sub-sampling operator.

2.2 Sub-sampling

The idea to not fully sample the k-space in order to recover the signal, lies on the core of rapid
MRI imaging, and also in MRF since, as we will see later, one does not wait for the signal to return
to equilibrium and due to time constraints only a small proportion of the k-space is sampled between
every excitation pulse. Reconstruction of the magnetization from sub-sampled measurements leads to
the presence of aliasing artifacts especially when this reconstruction uses the basic (but fast) approach
of pseudo inverse of F .

In the context of MRF, three different types of sub-sampling are typically employed, namely, the spiral,
the radial and the Cartesian sub-sampling pattern. Each of these, corresponds to a different variation
in time, of the selection gradients Gx and Gy. In the original version of MRF, the former two methods
were preferred since the aliasing artifacts of these two patterns appear to be uncorrelated and can be
roughly treated as random noise, something which is not the case with the Cartesian sub-sampling
pattern, see for instance the corresponding numerical examples in [7]. However in the same paper,
it was shown that the BLIP method, reviewed in the next section, perfectly fits in the framework of
Cartesian sub-sampling, while in the same time, it improves the results of MRF. In this paper, since
our starting point is the BLIP algorithm, we will also focus on Cartesian pattern for sub-sampling based
on multishot echo-planar imaging (EPI) [23], see Section 5.2 for details. However, this does not limit
our proposed method, and other sub-sampling patterns can be used.

2.3 Description of MRF and BLIP

In the section we describe the workflow of the MRF process. It consists of three, discrete steps, the
construction of the dictionary, the reconstruction of the magnetizations and finally the matching to the
magnetizations to the dictionary.

Initially, one considers a pre-designed excitation pattern that consists of L flip angles {α`}L`=1 which
are separated by a repetition time TR. Here, for simplicity, we consider TR to be constant but this is
not necessary. Also a subset Cad ⊂ Rm of the space of tissue parameters we want to estimate is
predefined. For simplicity here we considerCad to be the set of all the admissible θ = (T1, T2) values,
i.e., m = 2, but more parameters can also be taken into account. The set Cad contains all values of
θ that are expected to be found in the human body. For example values for T1 would typically range
from 685ms (white matter on brain) to 4880ms (cerebrospinal fluid), with the corresponding range
for T2 to be 65–550 ms [22]. As we will see later on, in our dictionary-free approach we will consider
Cad to be simply a convex subset of R+ × R+, in particular a box, allowing thus for all the values
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between a minimum and a maximum value. In the context of dictionary method as it is the case in the
original MRF, the set Cad is discretized, using fine enough discretization and K pairs of parameters
are selected, i.e., {θk}Kk=1. For this section we will use the same notation forCad and its discretization,
i.e., here Cad = {θk}Kk=1 but later we will consider Cad to be the whole convex set. Using this set
of parameters {θk}Kk=1, the specific excitation pattern, the sequence of flip angles {α`}L`=1 and the
repetition time TR, one can simulate the Bloch equations by using a discrete linear dynamic system.
The solutions of the Bloch equations are evaluated in discrete times t1, t2, . . . , tL, see Section 4.1 for
details. This generates a dictionary Dic(Cad) ofK magnetization responses {mθk}Kk=1 which can be

seen as K sequences of length L with components in R3, that is Dic(Cad) ⊂
(

(R3)
L
)K

. We name

this creation of the dictionary as the Step 0 of the MRF process:

Step 0 of the MRF process: Construction of the dictionary
Given an excitation pattern of flip angles {α`}L`=1, repetition time TR, and a set of parameters
Cad = {θk}Kk=1, generate the dictionary Dic(Cad) of K trajectories of the solutions of Bloch
equations, evaluated at times t1, t2, . . . , tL

Dic(Cad) = {mθk : θk ∈ Cad, k = 1, . . . , K} ⊂
((

R3
)L)K

In the next phase, the MR data are collected at the respective L read out times. Each component
D(`) of the data D = (D(1), . . . , D(L)), corresponds, due to time constraints, to only a sub-sampling
P (`) of the Fourier coefficients of the net magnetizationX(`). Here the reconstruction of the transverse
magnetization image is done via the least square solution and hence these images suffer from aliasing
artifacts. So this step consists of solving L least square solutions (using the pseudo-inverse Fourier
transform F−1(P (`))>) to obtain X∗ = (X(1), . . . , X(L)), whereX(`) : Ω→ R2. Note that, instead
of R2, one can use the complex number representation for the reconstructed magnetization X and
the Bloch response m, that is m = mx + imy. Note that in this section Ω denotes a set of discrete
voxels, which in practice are represented by pixels i : 1, . . . , N . Summarizing

Step 1 of the MRF process: Reconstruction of the magnetizations
Reconstruct the vector of L net magnetizations X∗ = (X(1), . . . , X(L)) by solving

X(`) ∈ argmin
X:Ω→R2

‖P (`)FX −D(`)‖2
2 using X(`) = F−1(P (`))>D(`), ` = 1, . . . , L

The final step of the MRF, is to match the reconstructed magnetization of every voxel, i.e., a sequence
of length L, to the transverse components of the element mθk (denoted by Tx,ymθk ) in the dictionary
Dic(Cad), which is more likely to correspond to. Then the required parameter map θ : Ω → R2, is
formed by mapping every voxel i to the θ value that corresponds to the matched mθ. Note that each
reconstructed magnetization sequence of a i-th voxel (X`

i )
L
`=1, has the contribution of the density ρi

of this particular tissue element. In order to compare with the candidate fingerprint sequence, minimal
Euclidean distance is used to select the best fingerprint, which can be seen as an `2 projection onto

the discrete Bloch manifold. If each fingerprint is firstly normalized, i.e., m̃θk = Tx,ymθk

‖Tx,ymθk‖2
and then

this projection can be computed as a maximal inner product. Finally the density ρi is computed by
ρi = ‖Xi‖2

‖Tx,ym
θki ‖2

. Summarizing again

Step 2 of the MRF process: Matching of the magnetizations to the dictionary
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For every voxel i = 1, . . . , N , compute the projection of the magnetization Xi = (X`
i )
L
`=1 to the

discrete Bloch manifold Dic(Cad) by

mθki = argmin
mθ∈Dic(Cad)

∥∥∥∥ Tx,ym
θ

‖Tx,ymθ‖2

−Xi

∥∥∥∥2

2

,

and use a look-up table to obtain the final parameter map {θki}Ni=1 = {(T1(i), T2(i))}Ni=1. Finally,
compute the density map {ρi}Ni=1 as

ρi =
‖Xi‖2

‖Tx,ymθki‖2

.

One can observe in step 1, that the minimization problem minX
∥∥P (`)FX −D(`)

∥∥2

2
has very likely

non-unique minimizers due to the sub-sampling operator P `. In the original paper [22], the specific
minimizer X(`) = F−1((P (`))>D(`)) was chosen. However, this by no means, mean that this choice
is optimal, see corresponding examples in [7].

We now introduce another approach similar to MRF, named BLoch response recovery through Iterated
Projection (BLIP). This is of iterative nature, and it was recently proposed in [7]. We state the algorithm
straight away and then we discuss it

Algorithm 2.1: BLIP algorithm [7]

• Generate the dictionary Dic(Cad) as in the Step 0 of MRF.
• Initialize the magnetization vector X = 0 and choose an initial step size µ1.
• Start an iterative procedure for n = 1, 2, 3, . . . as follows:
� Do the following gradient decent step:(

X(`)
)
n+1

=
(
X(`)

)
n
− µnF−1(P (`))>(P (`)F

(
X(`)

)
n
−D(`)), ` = 1, . . . , L.

� Project each (Xi)n+1 =
((
X

(`)
i

)L
`=1

)
n+1

onto the dictionary Dic(Cad) as in the Step 2 of
MRF, obtaining (

mθki
)
n+1

=
((

(mθki )(`)
)L
`=1

)
n+1

and (ρi)n+1

for every voxel i,= 1, . . . , N .

� For every ` = 1, . . . , L, update
(
X(`)

)
n+1

as follows(
X

(`)
i

)
n+1
← (ρi)n+1

(
(Tx,ym

θki )(`)
)
n+1

, i = 1, . . . , N.

� Update the step size µn (see [7] for some rules).
• Construct parameter maps as in MRF, using look-up tables and the last iterates from above.

As we have mentioned in the introduction, BLIP approximates the solution of the following constrained
minimization problem

min
X

‖PFTx,yX −D‖2
2 , (BLIP)

subject to X ∈ R+Dic(Cad).
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through a projected gradient descent iteration. The difference to the original MRF is that the constraint
in (BLIP) enforces the solutions to belong to the scaled dictionary R+Dic(Cad). Here we do not have
the typical two step procedure of MRF, but rather the two steps, i.e., reconstruction and matching, are
fused and benefit from each other. In [7], it was shown that particularly for the cartesian sub-samping
that we focus here, the BLIP algorithm produces results of higher quality than the classical MRF.

From a mathematical point of view, there are several issues that remain for both methods above
and also other MRF type methods. First we would like to know the how the discretization size of
the dictionary would influence the matching of the parameters, which asks for a stability analysis for
inverting the Bloch mapping. Assuming this stability, the accuracy of the above MRF-type algorithms is
influenced by several factors, such as the accuracy of the reconstructed image from the Fourier space
data, the fineness of the generated dictionary as well as the number of frames L. The BLIP algorithm
greatly improves the accuracy of the reconstructed image by enforcing explicitly the constraint to the
Bloch manifold as stated in the optimization model (BLIP). However, the Bloch manifolds constraint is
not convex, see Proposition 4.2, making this projection step problematic. Moreover, the accuracy of
the final solutions of these methods are unavoidably limited by the fineness of the dictionary.

Before we proceed with the introduction of our proposed method, we will give a mathematical insight
to the dictionary matching procedure from inverse problems point of view.

3 MRF: Inverse Problems Point of View and Stability Analysis

3.1 Coupled inverse problems point of view

Here we will use the time continuous version for the Bloch equations by adopting a more general
framework.

We start by describing our set up. We denote

Y := [L1(Ω)]3 and Z := [L∞(Ω)]3.

We consider m0 ∈ Y to be an initial vector of magnetization and B ∈ L∞(0, τ ;Z) an external
magnetic field for some τ > 0. Recall that

L∞(0, τ ;Z) = {f : [0.τ ]→ Z : ‖f‖L∞(0,τ ;Z) <∞} where ‖f‖L∞(0,τ ;Z) = ess sup
0≤t≤τ

‖f(t)‖Z .

Note that the space L1(0, τ ;Y) is defined similarly, as well as the space W 1,1(0, τ ;Y). The latter
space consists of all the functions f : [0, τ ]→ Y such that both f and ∂f

∂t
belong to L1(0, τ ;Y). We

refer to [9] for this type of Bochner spaces.

For the parameter θ = (T1, T2) we have that θ ∈ [L∞(Ω)]2, and we also consider this parameter to
be bounded away from zero. As a result Θ = (1/T2, 1/T2, 1/T1)> ∈ [L∞(Ω)]3. Finally keep in mind
that the equilibrium vectorme is constant and equal to (0, 0, 1)>. Recalling again the Bloch equations

∂m(t,r)
∂t

= m(t, r)× γB(t, r)−Θ(r) • (m(t, r)−me),
m(0, r) = m0(r),

(5)

It is convenient here to introduce the operator

Bm0,B : [L∞(Ω)]2 → {m : [0, τ ]→ Y},
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where Bm0,B(θ) denotes the solution mapping of the Bloch equation up to time τ .

With this notation, we can now write down the following family of inverse problems which can be
thought of as a continuous version of the MRF process:

- Problem 1: For some t` ∈ (0, τ), ` = 1, . . . , L, solve for X(t`) ∈ L2(Ω) the following linear
equation

P (t`)FX(t`) = D(t`), (6)

whereD(t`) ∈ [L2(K)]2,K being the k-space,F : [L1(Ω)]2 → [L2(K)]2,P (t`) : [L2(K)]2 →
[L2(K)]2

- Problem 2: For every r ∈ Ω, solve for θ = θ(r) ∈ R+ × R+

ρ(r)Tx,y(Bm0,B(θ))(·, r) = X(·)(r), (7)

where ρ ∈ L∞(Ω), and Tx,y is the transverse projection. Note that, strictly speaking, the coupling of
(6) and (7) makes sense only when P (t`) = id, i.e., there is no sub-sampling. This is because in the
case of sub-sampling, uniqueness of solutions for (6) is not guaranteed, and X(·)(r) may not belong
to the Bloch manifold.

The first problem that corresponds to the first step in MRF, is the inversion of the Fourier transform
for sub-sampled (and potentially noisy) data. This type of problems is the key mathematical problem
in standard MRI, and as a result it has been extensively studied for a long time. In particular, sparse
regularization methods, optimal weighted total variational methods have been successfully applied
towards that [12, 14, 18, 21].

The second step in MRF is a parameter identification inverse problem involving the Bloch equations.
From a rigorous mathematical point of view, a major issue concerning such an inverse problem is
to study existence, uniqueness and stability of solutions. Especially, the stability gives a theoretical
judgement on the feasibility of dictionary methods. Up to our best knowledge, these problems related
to Bloch equations have not yet been carefully analysed in the literature. Due to its fundamental im-
portance, we discuss it next.

In order to simplify the upcoming sensitivity analysis, we will focus on solving equation (7), without the
effect of the density map ρ and the transverse projection operator Tx,y. That means, in what follows,
we analyse the stability of the inversion of the Bloch mapping by considering the following equation

Bm0,B(θ) = m. (8)

3.2 Stability analysis on inverting Bloch mapping

In this section, we focus on analysing the stability of problem (8). This is interesting to us since one
would want to know how the deviations in the solutions of problem (6) will be propagated in the process
of solving problem (7). The conclusion will serve as a mathematical basis for the approach MRF and
BLIP algorithms.

In order to simplify the discussion, in this section we consider the time domain (0, τ), to be the time
between each paired consecutive pulses. From a modelling point of view,m0 will be the magnetization
right after the first pulse, i.e., after the application of the flip angle displacement and, m(τ, ·) will be
the magnetization right before the next pulse. In that case the magnetic field B 6= 0 is considered to
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time independent which means that, B is a constant function in L∞(0, τ ;Y). Also the effect of the
gradient field G is ignored here, as it only encodes the MRI signal.

Given the setting introduced to the previous section and using a classical result for evolutionary equa-
tions in Banach spaces [3], we get that the solution of (5) m belongs to the space W 1,1(0, τ ;Y). In
fact even more regularity holds, but this is enough for our purposes. Hence here,

Bm0,B : [L∞(Ω)]2 → W 1,1(0, τ ;Y),

Note that m0 and B are fixed here. To implement the analysis, we ask for the following assumptions
on the magnetization m and the time τ , and also a condition for the feasible domain of the parameter
θ.

Assumption 3.1. To be practical, we shall consider θ(r) ∈ Cad for all r ∈ Ω, whereCad ⊂ R+×R+

denotes a feasible domain which is convex and bounded away from zero.

We finally denote

R(Bm0,B) =
{
m : ∃ θ ∈ [L∞(Ω)]2 such that θ(r) ∈ Cad for all r ∈ Ω and m = Bm0,B(θ)

}
,

to be the range of the Bloch mapping.

Assumption 3.2. Let
m ∈ R(Bm0,B) ⊂ W 1,1(0, τ ;Y), (9)

be a solution of the Bloch equations (5). Then the quantity (ω1
τ (r), ω

2
τ (r), ω

3
τ (r))

> :=
∫ τ

0
m(t, r)dt−

meτ is bounded away from zero, i.e., there is a constant cτ > 0 such that

inf
r∈Ω

∣∣ωiτ (τ)
∣∣ ≥ cτ , for i = 1, 2, 3. (10)

Remark 3.3. The Assumption 3.2 is in practice justified, since we consider (0, τ) as the time between
two consecutive pulses which roughly equals to the repetition time. In this period, the net magnetization
always satisfiesmx > c′τ > 0,my > c′′τ > 0, andmz < me, and these give the estimate (10). Since
in a MRI experiment, the time domain consists of repetition of periodic radio pulses, (the excitation
time of the pulse is usually very short) then one can think the assumption will always hold in the whole
experiment.

Theorem 3.4. Let Assumption 3.2 hold, the magnetic field B 6= 0, and let m ∈ R(Bm0,B) for some
θ. Then this θ is unique.

Proof. Observe that by integrating the Bloch equations over the time domain (0, τ), we have

Θ(r) =

(
m(0, r)−m(τ, r) +

∫ τ
0
m(t, r)× γB(t, r)dt

)∫ τ
0

(m(t, r)−me(r))dt
, (11)

where the dividing operation is defined component-wisely for vector valued functions. Note that the
integrals above are well-defined, since for almost every r, m(r, ·) ∈ L1((0, τ)). Also due to Assump-
tion 3.2 the denominator in (11) is not zero. The uniqueness of θ = ( 1

Θ3
, 1

Θ1
)> follows then directly.

We immediately have the next corollary:

DOI 10.20347/WIAS.PREPRINT.2528 Berlin 2018



Quantitative MRI 13

Corollary 3.4.1. Let Assumption 3.2 hold, B 6= 0. Then the Bloch mappingwe have

Bm0,B(θ1) = Bm0,B(θ2) ⇐⇒ θ1 = θ2

Proof. For every fixed θ(r) ∈ Cad, the Bloch mapping is well-defined under Assumption 3.2. The
mapping is injective by Theorem 3.4. The other direction follows from Picard–Lindelöf Theorem (see
e.g. [29]).

Remark 3.5. The uniqueness result indicates that to enforce the magnetization function to be in the
range of a Bloch mapping will also enforce a unique parameter. This explains the idea of BLIP algo-
rithm which helps to have a better solution from undersampled data by using projection steps to the
Bloch manifold.

We now proceed with the main stability result of this section.

Theorem 3.6. Let the Assumption 3.1 be satisfied, and let m,mδ ∈ R(Bm0,B) with corresponding
parameters θ, θδ. If Assumption 3.2 holds for both m and mδ, and∥∥m−mδ

∥∥
W 1,1(0,τ ;Y)

≤ δ,

where δ > 0, then we have the estimate∥∥θ − θδ∥∥
[L1(Ω)]2

≤ C(τ, θ, B)δ,

where C(τ, θ, B) is a constant dependent on τ , θ and B, but independent of δ.

Proof. Using equation (11), we have

Θ−Θδ =

(
m0 −m(τ, r) +

∫ τ
0
m(t, r)× γB(t, r)dt

)∫ τ
0

(m(t, r)−me(r))dt

−
(
mδ

0 −mδ(τ, r) +
∫ τ

0
mδ(t, r)× γB(t, r)dt

)∫ τ
0

(mδ(t, r)−mδ
e(r))dt

= Θ •
∫ τ

0
mδ(t, r)−mδ

e(r)− (m(t, r)−me(r))dt∫ τ
0

(mδ(t, r)−mδ
e(r))dt

−m
δ
0 −m0 −mδ(τ, r) +m(τ, r)∫ τ

0
(mδ(t, r)−mδ

e(r))dt

−
∫ τ

0
mδ(t, r)× γB(t, r)−m(t, r)× γB(t, r)dt∫ τ

0
(mδ(t, r)−mδ

e(r))dt
.

Note that
∫ τ

0
mδ(t, r)−mδ

e(r)dt =
∫ τ

0
mδ(t, r)dt−mδ

eτ , andmδ
e = me. Considering the condition

given in (10), we have

inf
r∈Ω

∣∣∣∣∫ τ

0

m(t, r)−me(r)dt

∣∣∣∣ ≥ cτ , and inf
r∈Ω

∣∣∣∣∫ τ

0

mδ(t, r)−me(r)dt

∣∣∣∣ ≥ cτ .
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Then, we have the estimate for generic constants C that depend on B and Θ∥∥Θ−Θδ
∥∥

[L1(Ω)]3
≤ 1

cτ

∫ ∣∣∣∣Θ(r) •
∫ τ

0

(mδ(t, r)−m(t, r))dt

∣∣∣∣ dr
+

1

cτ

∫ ∣∣∣∣∫ τ

0

(
∂m(t, r)

∂t
− ∂mδ(t, r)

∂t

)
dt

∣∣∣∣ dr
+

1

cτ

∫ ∣∣∣∣∫ τ

0

(mδ(t, r)−m(t, r))× γB(t, r)dt

∣∣∣∣ dr
≤ 1

cτ
C‖mδ −m‖L1(0,τ ;Y)

+
1

cτ

∥∥∥∥∂mδ

∂t
− ∂m

∂t

∥∥∥∥
L1(0,τ ;Y)

+
1

cτ
C‖mδ −m‖L1(0,τ ;Y),

where we have use the fact that Θ ∈ [L∞(Ω)]2 and the fact the outer product with B(t, r) can can
be written as a linear operator with bounded norm, both in t and r, due to the fact that B is bounded
in L∞(0, τ ;Z) and also independent of time.

Finally note that, as θ1 = 1
Θ3

and θ2 = 1
Θ1

and by Assumption 3.1, we can find a constant C1 > 0
such that ∥∥θ − θδ∥∥

[L1(Ω)]2
≤ C1

∥∥Θ−Θδ
∥∥

[L1(Ω)]3
.

This follows from the fact that the function h : [a, b]→ R, with h(β) = 1/β, is Lipschitz in the domain
0 < a < b <∞. The proof is complete by considering the last two inequalities.

The above result can be interpreted as follows. Theorem 3.6 shows that the inverse problem (8) is well-
posed by restricting the right hand side to the range of the Bloch mapping. That is, if the reconstructed
magnetization is in the (scaled) Bloch manifold, then the values of the tissue parameters θ recovered
from the dictionary, should be in principle not too far away from the exact solutions. It also explains the
improvement of BLIP over the classical MRF scheme, where in every iteration, a projection onto the
Bloch manifold is performed.

The analytical property of the Bloch mapping and its inverse not only support the feasibility of the MRF
type schemes, but also motivate us to find more accurate techniques for solving the quantitative MRI
problem. We discuss this in the following section where we also introduce our proposed method.

4 A Physically Oriented Method for qMRI

We propose now a physically oriented, single step model for qMRI, instead of the previously discussed
two step procedures. Without getting into too many details, we first state that our model is summarized
by the following non-linear operator equation:

Q(x) = D, (12)

where x(r) = (ρ(r), θ(r)), D is the acquired MRI signal and Q is an operator which is defined by

Q(x) := PF(ρTx,yM(θ)) and (ρ(r), θ(r)) ∈ C̃ad := R+ × Cad for all r ∈ Ω. (13)

DOI 10.20347/WIAS.PREPRINT.2528 Berlin 2018



Quantitative MRI 15

We call this operator Q, the qMRI operator. It integrates the Bloch mapping within the data acquisition
procedure. Note that here we use M(θ) to denote discrete Bloch dynamics which will be discussed
below. That is, in this section, we return to the same time discrete version of MRF process.

4.1 Bloch mapping as discrete dynamics

We shall focus here on a specific type of discrete Bloch dynamics named Inversion Recovery balanced
Steady-State Free Precession (IR-bSSFP) [28]. This is a specific MRI excitation pulse set-up widely
used in applications and it allows for a simple approximation of the solutions of the Bloch equations at
the read out times. From now on, in analysis and in the numerical examples, we will always use this
type of dynamics instead of the continuous Bloch equations.

To simplify the presentation, we will ignore the factor of off resonance and only consider the homoge-
neous case of the flip angles and off resonance frequency. In this case, the magnetization after each
n-th excitation pulse, at the middle of each TR` time, is simulated by the following recursion formula

M` = E1(TR`, θ)RφRx(α`)R
>
φM`−1 + E2(TR`, θ)Me,

Me = (0, 0, 1)>,
M0 = −Me = (0, 0,−1)>.

(14)

Here {α`}L`=1 and {TR`}L`=1, are the flip angles and repetition time sequences, and {M`}L`=1 are
the magnetizations at the middle of each TR` time. Moreover we denote

E1(TR`, θ) =

 e
−TR`

T2 0 0

0 e
−TR`

T2 0

0 0 e
−TR`

T1

 , E2(TR`, θ) =
(

1− e−
TR`
T1

)

and also

Rφ =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 and Rx(α`) =

 1 0 0
0 cos(α`) sin(α`)
0 − sin(α`) cos(α`)

 .

The angle φ is assumed to be a known quantity and it denotes phase shift by the gradient magnetic
fields [28].

Writing again (14) in a compact form, we are able to derive the evolution of the discrete system for the
magnetization vectors

M` =

(∏̀
k=1

E1(TRk, θ)R(αk)

)
M0 + E2(TR`, θ)Me (15)

+
`−1∑
k=1

(
E2(TRk, θ)

∏̀
j=k+1

E1(TRj, θ)R(αj)

)
Me,

where we have used the matrix notation R := RφRx(α`)R
>
φ here and later on. We note that with

(15) it establishes a mapping between θ and {M`}L`=1.

We are interested in the differentiability of the above mapping since it would be important for devel-
oping algorithms to solve Equation (12). In the following section, we shall prove that M(θ) is Fréchet
differentiable.
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4.2 Properties of the Bloch mapping and the qMRI operator

This subsection is devoted to show some differentiability and additional properties of the discrete Bloch
mapping

M(θ) = {M`(θ)}L`=1.

defined in (14). We will also show among others the non-convexity of the Bloch manifold. Note that

M : [L∞(Ω)]2 → YL

where we recall that Y = [L1(Ω)]3. Observe that M can be thought as the discrete time version of
the operator Bm0,B of the previous section, for this specified IR-bSSFP pulse sequence.

The differentiability of M is shown below and as a consequence the differentiability of the qMRI oper-
ator (13) will follow afterwards.

Proposition 4.1. Let {M`(θ)}L`=1 be the sequence as given by (15), {α`}L`=1 the sequence of the
flip angles with α` ∈ (0, π) for every ` = 1, . . . , L and {TR`}L`=1 the sequence of repetition times
with TR` > 0 for every `. Moreover let Me = (0, 0, 1)> and M0 = ±Me (means either of them).
Consider the operator M restricted to those θ ∈ [L∞(Ω)]2 such that θr ∈ Cad for every r, where
Cad is convex subset of R+×R+, bounded, and bounded away from zero. We denote such a feasible
set asA withA ⊂ [L∞(Ω)]2. Then we have the following statements:

(i) The operator M is injective, that is for θa, θb ∈ A

M(θa) = M(θb) =⇒ θa = θb.

(ii) M is Fréchet differentiable with bounded derivative.

Proof. Due to the recursion structure of M`, it turns out that it is sufficient to analyse M1.

(i) It suffices to show that the map M1 : [L∞(Ω)]2 → Y is injective. Since

M1(θ) = E1(TR1, θ)RφRx(α1)R>φM0 + E2(TR1, θ)Me,

for some non-zero α1 and TR1, we have that R = RφRx(α1)R>φ is unitary, and E1(TR1, θ) and
E2(TR1, θ) are contraction operators. Assume now towards contradiction thatM1(θa) = M1(θb) for
θa 6= θb, then this implies that(

E1(TR1, θ
a)− E1(TR1, θ

b)
)
RM0 + (E2(TR1, θ

a)− E2(TR1, θ
b))Me = 0,

with the above equation to hold in Y . Assume further that T a1 6= T b1 , then in those points of Ω where
this occurs we have (note that we suppress the spatial dependence r)

Me =



e
−TR1
Ta2 −e

−TR1
Tb2

e
−TR1
Ta1 −e

−TR1
Tb1

0 0

0 e
−TR1
Ta2 −e

−TR1
Tb2

e
−TR1
Ta1 −e

−TR1
Tb1

0

0 0 e
−TR1
Ta1 −e

−TR1
Tb1

e
−TR1
Ta1 −e

−TR1
Tb1


RM0. (16)
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Supposing that M0 = −Me, then from the fact that R is unitary, then (16) is satisfied if and only
if T a1 = T a2 , T b1 = T b2 , −RMe = Me and α1 = π. This contradicts our setting that α ∈ (0, π).
Similarly we work ifM0 = Me. If T a1 = T b1 then T a2 6= T b2 and one can write down the inverse relation
of (16) and arrive to the same conclusion. Thus we have injectivity for M1 and hence also of M .

(ii) Again we start by considering the differentiability of

M1(θ) = E1(TR1, θ)R(α1)M0 + E2(TR1, θ)Me.

which is easy to derive by using the differentiability of function e−
TR
x for x > 0. We denote by M ′

1(θ)
the Fréchet derivative of the map M1 evaluated at θ, that is M ′

1(θ) : [L∞(Ω)]2 → Y bounded, linear
such that

lim
h→0

‖M1(θ + h)−M1(θ)−M ′
1(θ)h‖Y

‖h‖[L∞(Ω)]2
= 0. (17)

To simplify the formulas, for every ` = 1, . . . , L, we denote

U1(`) :=

 0 0 0
0 0 0

0 0 TR`
(T1)2

e
−TR`

T1

R(α`)

and

U2(`) :=


TR`
(T2)2

e
−TR`

T2 0 0

0 TR`
(T2)2

e
−TR`

T2 0

0 0 0

R(α`).

By calculations we compute

M ′
1(θ) =

(
M ′

1,1(θ), M ′
1,2(θ)

)
=

(
U1(1)M0 −

TR1

T 2
1

e
−TR1

T1 Me, U2(1)M0

)
(18)

Note that M ′
1(θ) ∈ Y ×Y = [L1(Ω)]3× [L1(Ω)]3. It can be regarded as a bounded linear operator

from [L∞(Ω)]2 → Y which is defined for every h = (h1, h2) ∈ [L∞(Ω)]2 as

M ′
1(θ)h = M ′

1,1(θ)h1 +M ′
1,2(θ)h2

:=
(
[M ′

1,1(θ)]xh1, [M
′
1,1(θ)]yh1, [M

′
1,1(θ)]zh1

)
+
(
[M ′

1,2(θ)]xh2, [M
′
1,2(θ)]yh2, [M

′
1,2(θ)]zh2

)
where above a multiplication between aL1(Ω) and anL∞(Ω) function is regarded pointwise, resulting
in a L1(Ω) function. It is not difficult to see that (17) is satisfied for M ′

1(θ) due to the differentiability
of e−

1
x for x in strictly positive domain.

The derivative of M`(θ) for ` > 1 can then be calculated by applying chain rule to the recursion
formulas (14),

M ′
`(θ) =

 (
U1(`)M`−1(θ) + E1(TR`, θ)R(α`)M

′
`−1,1(θ)− TR`

T 2
1
e
−TR`

T1 Me

)>
(
U2(`)M`−1(θ) + E1(TR`, θ)R(α`)M

′
`−1,2(θ)

)>
> . (19)

We get the boundedness of the derivatives because all the quantities Ua(`), R(α`), E1(TR`, θ) and

e−
TR`
Ta

TR`
T 2
a

for a = 1, 2 and ` = 1, . . . , L are uniformly bounded.
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Regarding non-convexity of the Bloch manifold we are able to show the following result.

Proposition 4.2. Under the same assumptions of Proposition 4.1, we have that the image M [A] of
M : A → YL is a non-convex subset of YL.

Proof. Suppose towards contradiction that the image M [A] is a convex subset of YL. This means
that for arbitrary θa 6= θb ∈ A, and for every λ ∈ (0, 1), there exist θλ ∈ A, such that

λM`(θ
a) + (1− λ)M`(θ

b) = M`(θ
λ) for all ` ∈ {1, . . . , L} . (20)

We focus on the first two components M1,M2 ∈ Y . Recall

M1(θ) = E1(TR1, θ)R(α1)M0 + E2(TR1, θ)Me

M2(θ) =

(
2∏

k=1

E1(TRk, θ)R(αk)

)
M0 + (E2(TR1, θ) + E2(TR2, θ)E1(TR1, θ)R(α1))Me.

With some elementary calculations, the convexity condition (20) can be equivalently written as the
following system of equations (where θa = (T a1 , T

a
2 ), θb = (T b1 , T

b
2 ), θλ = (T λ1 , T

λ
2 )):

λe
−TR1

Ta1 + (1− λ)e
−TR1

Tb1 = e
−TR1

Tλ1 , (21)

λe
−TR1

Ta2 + (1− λ)e
−TR1

Tb2 = e
−TR1

Tλ2 , (22)

λe
−TR2

Ta1 e
−TR1

Ta1 + (1− λ)e
−TR2

Tb1 e
−TR1

Tb1 = e
−TR2

Tλ1 e
−TR1

Tλ1 , (23)

λe
−TR2

Ta2 e
−TR1

Ta2 + (1− λ)e
−TR2

Tb2 e
−TR1

Tb2 = e
−TR2

Tλ2 e
−TR1

Tλ2 , (24)

λe
−TR1

Ta1

(
1− e−

TR2
Ta1

)
+ (1− λ)e

−TR1
Tb1

(
1− e

−TR2
Tb1

)
= e

−TR1
Tλ1

(
1− e

−TR2
Tλ1

)
, (25)

λe
−TR1

Ta2

(
1− e−

TR2
Ta1

)
+ (1− λ)e

−TR1
Tb2

(
1− e

−TR2
Tb1

)
= e

−TR1
Tλ2

(
1− e

−TR2
Tλ1

)
, (26)

where the first two (21)–(22) come from (20) for M1, and the rest (23)–(26) come from (20) for M2.
This system can further be simplified as:

λe
−TR1

Ta1 + (1− λ)e
−TR1

Tb1 = e
−TR1

Tλ1 ,

λe
−TR1

Ta2 + (1− λ)e
−TR1

Tb2 = e
−TR1

Tλ2 ,

λe
−TR2+TR1

Ta1 + (1− λ)e
−TR2+TR1

Tb1 = e
−TR2+TR1

Tλ1

λe
−TR2+TR1

Ta2 + (1− λ)e
−TR2+TR1

Tb2 = e
−TR2+TR1

Tλ2

λe
−TR1

Ta2 e
−TR2

Ta1 + (1− λ)e
−TR1

Tb2 e
−TR2

Tb1 = e
−TR1

Tλ2 e
−TR2

Tλ1 .

Since TR > 0, this system has a solution only if θa = θb = θλ which gives the contradiction.

What the Proposition 4.2 says is that the Bloch manifold is not a convex set. This has negative im-
plications when one wants to project the magnetization reconstruction sequences onto this set as it
is the case in the BLIP algorithm. Indeed in that case, uniqueness of these projections cannot be
guaranteed.

Now we are in a position to further show the Fréchet differentiability for the qMRI operator Q.
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Lemma 4.3. Let x = (ρ, θ) ∈ L∞(Ω) × [L∞(Ω)]2, and D ∈ ([L2(K)]2)
L

where K denotes the
frequency domain. Then the qMRI operator

Q : L∞(Ω)× [L∞(Ω)]2 →
(
[L2(K)]2

)L
(further restricted so θ(r) ∈ Cad for every r ∈ Ω) is Fréchet differentiable.

Proof. Recall that for x = (ρ, θ) we have

Q(x) = {Q(`)(x)}L`=1 =
{
P (`)F(ρTx,yM`(θ))

}L
`=1

.

To see the Fréchet differentiability, we first notice that all P (`), F and Tx,y are bounded, linear oper-
ators. Using the Fréchet differentiability of each M` from Proposition 4.1 , we have for every feasible
x = (ρ, θ) and h = (hρ, hθ) belonging to L∞(Ω)× [L∞(Ω)]2

Q(`)(x + h)−Q(`)(x) = P (`)F((ρ+ hρ)Tx,yM`(θ + hθ))− P (`)F(ρTx,yM`(θ + hθ))

+ P (`)F(ρTx,yM`(θ + hθ))− P (`)F(ρTx,yM`(θ))

= P (`)F(hρTx,yM`(θ + hθ)) + P (`)F(ρTx,yM
′
`(θ)hθ) + o(hθ)

= P (`)F(hρTx,yM`(θ)) + P (`)F(ρTx,yM
′
`(θ)hθ) + o(hρhθ) + o(hθ)

= A(`)h + o(h).

Note
A(`)h = P (`)F(Tx,yM`(θ)hρ) + P (`)F(ρTx,yM

′
`(θ)hθ)

is a bounded linear operator from L∞(Ω) × [L∞(Ω)]2 to [L2(K)]2. This shows that Q is Fréchet
differentiable.

The above proof also presents a way on how to calculate the derivative of Q`. In what follows, we will
always use Q′ instead of A to denote the Fréchet derivative of Q.

4.3 (Gauss-) Newton method for ideal data

In this section we discuss methods for the solution of the non-linear equation

Q(x) = D, (27)

which in fact consists of a system of equations

P (`)F(ρTx,yM`(θ)) = D(`), ` = 1, . . . , L.

Because of the regularity of the operator Q, a first idea to solve the non-linear operator equation (27)
is using a Newton type method, or more precisely Gauss-Newton method, which is based on the first
order approximation:

Q(xn+1) ' Q(xn) +Q′(xn) (xn+1 − xn) = D. (28)

By letting Dn := D −Q(xn) +Q′(xn)xn, then (28) gives the equation, (Newton iteration)

Q′(xn)xn+1 −Dn = 0. (29)
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Note that since D = {D(`)}L`=1 is a sequence of data frames of length L, so is Dn, therefore (the
space discrete version of) (29) is in general an overdetermined system of linear equations. Thus, one
considers the equation (29) in a least square sense leading to the Gauss-Newton method:

xn+1 = argmin
x

‖Q′(xn)x−Dn‖2
, (30)

whose solution is

xn+1 = (Q′)†(xn)Dn :=
(
(Q′(xn))>Q′(xn)

)−1
(Q′(xn))>Dn.

Using the Fréchet differentiability, one can show superlinear convergence rate for the Newton type
methods above, provided that the initial guess is sufficiently close to the exact solution. For complete-
ness, we state the theorem below, for more details we refer to [16]

Theorem 4.4. Let x∗ be the exact solution of (27), and suppose that there exists a neighbourhood
of x∗ such that (Q′)†(x) is uniformly bounded. Then there exists a potentially smaller neighbourhood
such that for every initial guess x0 belonging there, for the iterates in (30) we have that xn → x∗ with
superlinear convergence, i.e.,

‖xn+1 − x∗‖ = o(‖xn − x∗‖) for all n ∈ N. (31)

However, due to the non-linear and non-convex property of the functionQ, the iteration in (30) will only
converge for initial values x0 in a certain neighbourhood of the exact solution x∗, provided that the
data D should contain no noise. We refer to the Newton-Kantorovich Theorem, e.g. [5], where more
precise statements can be made.

Overall, for undersampled and noisy data, it is crucial to choose a good initial guess in order to obtain
a robust and efficient numerical algorithm for solving the problem (12). This would be the main task of
the next section.

4.4 Our main algorithm: A Levenberg-Marquardt method for undersampled
noisy data

Undersampling is often unavoidable in the acquisition process of MRI due to the time constraint, with
the issue being particularly important for fast MRI. The main problem caused by undersampling is ill-
posedness of the equation (12) due to the highly compactness of the operator P in the qMRI operator
Q. In that case, the solution of (12) can be unreliable, especially if the data contains even small noise.

In order to resolve the problem of undersampling and noise, and to solve (12) robustly, we turn to a
Levenberg-Marquardt (L-M) method instead of the aforementioned Gauss-Newton. There a Tikhonov
type regularization is imposed on each iterates. Suppose that the ideal data D have been corrupted
with some noise, leading to some perturbed data Dδ. The L-M iteration then reads:

hδn = argmin
h

∥∥∥Q′(xn)h− D̃δ
n

∥∥∥2

+ λn ‖h‖2 (32)

xδn+1 = xδn + hδn.

where
D̃δ
n = Dδ −Q(xn).
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From a regularization point of view, the L-M iteration (32) is nothing else but a iterative Tikhonov
regularization for solving a non-linear equation [13, 17]. Note that if λn = 0 for every n, then the L-M
method degenerates to the Gauss-Newton method. The convergence and convergence rates of L-M
methods in the sense of regularization have been shown in many references, a standard one is [13].
There, general rules of choosing the parameter of a form λn = λ0β

n for some λ0 > 0, β ∈ (0, 1)
are discussed, as well as a discrepancy principle of terminating the iterations at step n = ne where
ne is the first iteration index such that the condition

∥∥Q(xδne)−D
δ
∥∥ ≤ %δ

holds. It is also shown that with these choices, the solution of the L-M method converges to a solution
of the original non-linear equation. In our case that means xδne → x∗ as δ → 0.

The local and global convergence and convergence rates of L-M algorithms have also been intensively
studied, we refer to [8, 10, 31] for instance. Usually, in the absence of additive noise, with proper initial
values, the optimal convergence rates of the algorithm are determined by the rates of the updated
parameters λn,

‖xn − x∗‖ = O(λn).

Instead, for non-zero residual case, i.e., in the presence of additive noise, it usually only achieves a
linear convergence rate

‖xn+1 − xn‖ ≤ C ‖xn − xn−1‖

for some constant C < 1.

Initialization is crucial for the L-M iteration as well. Proper initial values can not only theoretically prove
the convergence rates, but as it is in the case of Gauss-Newton, they help stabilizing the algorithms
and also accelerating the convergence to the final solutions.

There is no general way to produce good initial values but it is rather dependent on the specific con-
sidered problem. Here we suggest to use a very fast version of MRF and BLIP in order to produce
a good initialization. By fast here, we mean that we use only a relatively coarse dictionary, in which
case the MRF and its variant BLIP are computational efficient. The idea is that, by initializing the L-M
algorithm in this way, then the iteration will converge to the expected solution without a need to refine
the dictionary once again. Our main proposed algorithm is summarized below:
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Algorithm 4.1: Proposed algorithm for qMRI: L-M iteration with MRF/BLIP-based initializa-
tion

Input & setting: • MRI data Dδ ∈ ([L2(K)]2)
L

,
• Parameters for the physical setting of MRI, e.g., flip angle and repetition time

sequences, {α`}L`=1, {TR`}L`=1.
• A coarse discretization of the set Cad = [Tmin

1 , Tmax
1 ]× [Tmin

2 , Tmax
2 ].

Initialization: • Generate a dictionary Dic(Cad), using the coarse discretization of Cad,
the flip angles and the repetition times, with the help of the IR-bSSFP magnetization
formula (15).
• Use the BLIP method, Algorithm 2.1, to produce an initialization
x0 = (ρ0, θ0) ∈ L∞(Ω)× [L∞(Ω)]2

L-M iteration: • Run the Levenberg-Marquardt iteration (32), with initialization x0,
and adaptive parameters λn = max{λ0β

n, µn}, for some λ0 ≥ 1,
β ∈ (0, 1), and µn chosen according to the noise level.

Output : The estimated parameter map xne = (ρne , θne), for some final n = ne.

Here (µn)n∈N is a sequence of parameters that depend on the data noise level, and λ0 depends on
sub-sampling rate. In the numerical examples later, we will set λ0 = s2, where 1/s is the under-
sampling rate of the data. A typical choice for µn is µn = ε

∥∥Q(xn)−Dδ
∥∥ where ε ∈ (0, 1).

4.5 Why more data frames can help?

In the original paper of MRF, in order to deal with the problem of noisy data, it was proposed to use a
large number L of consecutive pulse sequences and acquisitions, with the idea that this will be able to
average out the noise and thus obtain better reconstructions. The same idea holds for our approach
and we shall show in the following that this idea can be theoretically justified.

We first recall the, so called Chebyshev’s inequality for vector valued random variables (see e.g. [11,
25]).

Lemma 4.5 (Chebyshev’s inequality). Let φ = (φ1, φ2, . . . , φp) be a vector-valued random variable,
for some p ∈ N, with expected value and variance E(φ) = χ = (χ1, χ2, . . . , χp), V (φ) = Σ2 =
(σ2

1, σ
2
2, . . . , σ

2
p) respectively. Then we have

P(‖φ− χ‖Rp ≤ ε) ≥ 1− ‖Σ
2‖Rp
ε2

, (33)

for every ε > 0, where here ‖ · ‖Rp is the Euclidean norm in Rp.

We now show the main theorem of this section. It says that if a family of L linear systems has a
common solution, and the right hand sides are perturbed by noise, then by solving a least square
problem one can get an approximation of the common solution, with a certain probability that improves
as the number L increases. Later we will see how this applies to our proposed approach for qMRI.
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Theorem 4.6. Let A`ζ = b`, ` = 1, . . . , L be a family of L linear systems of equations, where
{b`}L`=1 and {A`}L`=1 are sequences of data and matrices respectively. We consider each b` to be
a vector of dimension p, and every A` to be of size d × p, where p ≤ d and of full rank, i.e.,
rank(A`) = p for every ` = 1, . . . , L. We assume that the singular values ofA` have a uniform lower
and upper bound

√
c, and

√
C respectively, which are both independent of L. We further assume that

this family of systems of equations has a common solution ζ∗ ∈ Rp. Suppose that b̃` = b` + δ`,
where {δ`}L`=1 are independently identically distributed (i.i.d.) random variables with expected value
(0, . . . , 0) ∈ Rp, and variance (σ2, . . . , σ2) ∈ Rp. Then the least square solution

ζls = argmin
ζ∈Rp

∥∥∥Aζ − b̃∥∥∥2

RLd
, (34)

where

A =

 A1
...
AL

 and b =

 b1
...
bL


will approximate the real solution ζ∗ with the following probability estimate

P(‖ζls − ζ∗‖Rp > ε) <
σ2

ε2
O
( p
L

)
, for every ε > 0. (35)

Proof. From (34), we get ζls = (A∗A)−1A∗b̃, which is also a random variable. SinceA is not random,
we can compute the expected value of ζls as follows

E(ζls) = E((A∗A)−1A∗b̃) = (A∗A)−1A∗E(b̃) = (A∗A)−1A∗b = ζ∗.

Therefore E(ζls − ζ∗) = 0. Similarly for the variance (diagonal of the covariance matrix) we have

V (ζls − ζ∗) = σ2diag
(
(A∗A)−1

)
,

where diag denotes the diagonal of a matrix. Denoting by Tr, the trace operator, i.e., the summation
of the diagonal values and using Lemma 4.5, we get that for every ε > 0

P(‖ζls − ζ∗‖Rp > ε) <
σ2‖diag ((A∗A)−1) ‖Rp

ε2

≤ σ2Tr ((A∗A)−1)

ε2
. (36)

Here we have used the fact that the matrix (A∗A)−1 is positive definite and hence it has strictly
positive diagonal elements, together with the fact that 1-norm in Rp is larger than the Euclidean one.

From the form of A we have A∗A =
∑L

`=1 A
∗
`A` with a trace Tr(A∗A) =

∑L
`=1 Tr(A

∗
`A`). Since

every A∗`A` is positive definite, so is A∗A. Let {Sj}pj=1 be the eigenvalues of A∗A, then can have
the decomposition

A∗A = USU−1 and (A∗A)−1 = US−1U−1 (37)

where S is the diagonal matrix with {Sj}pj=1 on the diagonal, and U is a unitary matrix. Then for the
traces we have

Tr(A∗A) =

p∑
j=1

Sj and Tr
(
(A∗A)−1

)
=

p∑
j=1

1

Sj
.
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Due to the uniform lower and upper bounds on the singular values of {A`}L`=1, we have a correspond-

ing uniform bound of the eigenvalues of the matrices {A∗`A`}
L
`=1

cL ≤ Sj ≤ CL, for all j = 1, 2, . . . , p.

Consequently we have

1

CL
≤ 1

Sj
≤ 1

cL
⇒ 1

Sj
= O

(
1

L

)
, for all j = 1, 2, . . . , p.

This shows the following estimate

Tr
(
(A∗A)−1

)
=

p∑
j=1

1

Sj
= O

( p
L

)
,

and combined with (36), gives the final conclusion

P(‖ζls − ζ∗‖ > ε) =
σ2

ε2
O
( p
L

)
.

We discuss now how Theorem 4.6 can be put into context with our qMRI algorithm. Note initially
that, regarding the setting of the qMRI problems, the noise in the data obtained after each pulse
sequence can be considered as i.i.d. random variables. In the (Gauss-)Newton method, if there is
no sub-sampling for the qMRI operator, then Q′ is non-degenerate in the effective domain Ω. By
effective we mean the part of the slices where the biological tissue is imaged. In this case, we can
think A` = (Q(`))′, and b` = (D

(`)
k )δ, and they will satisfy the assumptions of Theorem 4.6 given

that the data contains Gaussian noise. This indicates that the result of Theorem 4.6 can be applied to
every Newton step for a given ε > 0, and an initial value ‖x0 − x∗‖ ≤ ε. Here the common solution
ζ∗ corresponding to (34) of Theorem 4.6 will be the exact solution θ of the least square problem (30).

In the case of Levenberg-Marquardt method, with the sub-sampling operators P (`), the results of

Theorem 4.6 can still be applied as the matrices become A` =
(
((Q(`))′)>,

√
λnId

)>
, and b` =(

((D̃
(`)
n )δ)>, 0

)>
. Note that in this case ζ corresponds to h. The matrices A` will be always of full

rank with uniformly bounded singular values if we let the sequence (λn)n∈N to be uniformly bounded
from below, as it is typically the case when there is noise in the data. In this case the common solution
of (32) will be ζ∗ ≡ 0.

The above analysis shows why by choosing multiple frames, i.e., many pulse sequences, one can get
a better result. Even though, Theorem 4.6 cannot be applied to the original MRF framework, it gives a
first understanding why these type of methods are benefited by a multiple frame strategy.

5 Numerical Results

In this section, we present numerical results implemented with a set of synthetic data using the pro-
posed Algorithm 4.1. We will provide an extensive quantitative comparison with the BLIP method,
Algorithm 2.1, which was shown in [7] to be superior to the original MRF in the setting we are consid-
ering.

We first explain the experimental set-up for our numerical algorithms.
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Figure 1: The interpolated parameters serve as the ground truth for our algorithm. From left to right:
T1, T2 and ρ.

5.1 Tested data

We used synthetic anatomical brain phantom data, publicly available on the Brain Web Simulated Brain
Database [1, 6]. We used a a 217× 181 slice, which was subsequently, zero-filled in order to make a
256× 256 pixels image. The range for the parameters θ = (T1, T2)>, and ρ were selected in a way
that the correspond to the natural values encountered in the human body [7], where T1 is ranged from
530ms–5012ms, and T2 is ranged from 41ms–512ms, and values ρ are between 80–100. In order
to make the testing data to be more realistic, we interpolated the values of each parameters T1, T2

and ρ of the obtained 256 × 256 phantom by averaging the values of every four neighboured pixels
with non-zero parameter values. This is based on the fact that the pixel units in practical images very
likely contain multi-type of tissues instead of a pure one in a single volume of the observed pixels.
This average process shrinks the 256× 256 image to a 128× 128 image. In Figure 1, we display the
interpolated parameters of T1, T2 and ρ as coloured images. These serve as the ground truth of our
numerical tests.

We use a simulated IR-bSSFP pulse sequence scheme to generate the MRI data, where we consid-
ered constant flip angles α and repetition time TR sequences. Both sequences are of length L. The
data D are generated by using the prescribed parameters T1, T2 and ρ with the pulse sequences
characterized by α and TR. With this setting, we first simulate the magnetization, and then use FFT
to generate the Fourier space data from it. Sub-sampling is implemented using the scheme that is de-
scribed in the next section. In order to generate the magnetization, we used formula (15), also taking
advantage of the MATLAB code provided in [22].

The sub-sampling pattern of the Fourier space data is important for generating the synthetic data, and
it is also a part of the qMRI operator. We discuss it in detail below.

5.2 Sub-sampling pattern

As we have mentioned before, here we focus on Cartesian sub-sampling which is quite standard in
practice [23]. In what follows, we discuss the form of the sub-sampling operator P (`) for ` = 1, . . . , L.
Note that since we are in the discrete setting, the full k-space data will be a full matrix of complex
values, or equivalently two real valued full matrices, of size N × N . In our examples, a full k-space
data is then a 128× 128 matrix of complex values, that is N = 128.

We use here an n multishot Echo Planar Imaging (EPI) scheme, which means that in every read out
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Figure 2: A sub-sampling pattern example for s = 4, L = 4, and N = 16. The first image depicts an
example of a fully sampled k space data. The second to the fifth images are example frames of the
under-sampled data, where the information at the blank rows part is not collected in that frame. The
sub-sampling pattern follows the order periodically if L > s.

time, n rows of the k-space are simultaneously filled. Hence, in every acquisition, there will be n < N
rows of the matrix filled with data of Fourier coefficients. To simplify the discussion we consider (N
mod n) ≡ 0, and further set s = N/n, which means that the sub-sampling rate is 1/s. The sampling
pattern P (`) is described in detail as follows:

(i) For every `-th acquisition, define ξ` := (` mod s) for ` = 1, . . . , L.

(ii) P ` will include those rows in the full k space matrices, indexed by numbers in a set ι where

ι := {i ∈ {1, . . . , N} , such that (i mod s) ≡ ξ`} .

Thus, at every time, P (`) will sample n rows from the full Fourier space to simulate the n multishot
EPI. A toy example of such a sub-sampling pattern is given in Figure 2.

We note that this sub-sampling strategy is different to the one described in [7]. There ξ` is defined as a
uniformly distributed random number in {0, 1, . . . , s− 1}, whereas here we consider a deterministic
periodical order. After experimentation we have observed that the deterministic order is more stable,
and gives comparable or better results when the BLIP algorithm for Cartesian sub-sampled data is
used, in comparison to the pseudo-random scheme in [7]. Therefore, in our implementation for the
BLIP algorithm, we will use the deterministic strategy described above instead of the original one.

We consider different sub-sampling rates on the data using the above strategy. By taking into ac-
count that longer processing time is needed for higher sampling rates, it follows that the flip an-
gles and the repetition times must be increased proportionally. We use constant repetition times
TR = (TR1, TR2, . . . , TRL) and also flip angles α = (α1, α2, . . . , αL). In particular, we used
the following values for each sub-sampling rate:

(a) For fully sampled data, we used: Repetition time TR` = 40ms and flip angles α` = 40π
180

for all
` = 1, . . . , L.

(b) For 1/4 sampled data (sub-sampling rate 25%), e.g., a 32 multi-shot EPI, we used: Repetition
time TR` = 20ms and flip angles α` = 20π

180
for all ` = 1, . . . , L.

(c) For 1/8 sampled data (sub-sampling rate 12.5%), e.g., a 16 multi-shot EPI, a shorter repetition
time TR` = 10ms and smaller flip angles α` = 10π

180
are applied for all ` = 1, . . . , L.
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It is reported in the literature [22] that adding random noise to the flip angles and to repetition times may
improve the final results of MRF (and BLIP). However in our experiments, we did not find significant
differences. Therefore, we do not add noise to the angles and repetition times in our numerical tests.

5.3 Results

In order to compare the proposed method and the BLIP algorithm, we will use for the latter a very
fine dictionary where T1 is discretized from 15ms to 5500ms with increments of 15ms, and T2 is
discretized from 1.5ms to 550ms with increments of 1.5ms. This means that the discretized feasible
domain Cad for θ = (T1, T2) is (in MATLAB notation)

Cad = {[15 : 15 : 5500]× [1.5 : 1.5 : 550]} .

In this case the dictionary has 366 × 366 = 133956 entries, and it requires memory for a storage
matrix of dimension 133956 × L. We used a computer with a CPU: Intel Core i5-7500, 3.40GHz, 2
cores, and an RAM: 8GB DDR4, 2400 MHz. All of our experiments run with MATLAB on a operator
system openSUSE 42.3. We use the deterministic sub-sampling pattern in all the numerical examples
of BLIP algorithms, including the generation of the initial values. The linear systems in L-M iterations
were by MATLAB’s backslash command.

5.3.1 Undersampled data with no additive noise

The first set of examples deals with noiseless under-sampled data (Cartesian sub-sampling at rate
1/8), and totally L = 80 frames data. In this example, we use a coarse dictionary for initilizaing
Algorithm 4.1. Here T1 is discretized from 200ms to 5500ms with increments of 200ms, and T2 is
discretized from 20ms to 550ms with increments of 20ms. We compare our results to the solutions
of the BLIP algorithm, and we also show the result of the initial guess given by BLIP. In this case,
20 steps of Landweber iteration for the BLIP algorithm are applied, which according to [7] are suffi-
cient. Correspondingly 25 steps of Levenberg-Marquardt iterations were used for proposed algorithm
and gave sufficient results. After that no significant change in the iterates was observed. We let the
regularization parameters have the following values: µ = µn = 0, for every n ∈ N, λ0 = s2, and
β = 0.01.

The reconstructed parameters are presented in Figure 3. There we show in the first row the parameter
maps T1, T2, ρ of the BLIP algorithm, computed with the coarse dictionary, that are subsequently
used for the initialization of our algorithm. In the second row, the corresponding results for the fine
dictionary are shown. These are the ones that should be compared with the images of the third row,
which are the results of our algorithm. In order to make the distinction more clear, we also provide the
corresponding error maps in Figure 4. There we have computed the pointwise error maps

|θcomputed − θgt| ,

where θgt are the ground truth parameter maps shown in Figure 1. We can observe that the accuracy
of estimated parameters, especially for T1, given by the proposed method is much higher than the
BLIP algorithm. Note that the error in BLIP is actually larger than the dictionary mesh size, which
indicates that this is not a matter of the fineness of dictionary, but it could also be due to the projection
on a non-nonvex set as we have previously discussed.
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Regarding the rate of convergence of the proposed algorithm, we see that in this case is linear, see
Figure 5. There we have plotted the ratio ‖xn+1−xn‖2

‖xn−xn−1‖2
versus the number of iterations. Note that here

we denote x = T1, T2 or ρ.

5.3.2 Undersampled data with additive noise

In this set of results, we present the case in which the data is 1/4 sub-sampled and they are also
corrupted with additive Gaussian noise. We also use here L = 80 data frames as the last set of
examples. The noisy data were generated as follows: To each simulated magnetization frame, we
added Gaussian noise of variance σ2 = 0.8 and mean 0, and then applied the discrete Fourier
transform with a subsequent sub-sampling. The total signal to noise ratio between the data D and the
noise is SNR = 35.

The coarse dictionary mesh used in order to generate the initial value x0 is as follows: T1 is discretized
from 400ms to 5500ms with increments of 400ms, and T2 is discretized from 40ms to 550ms
with increments of 40ms. Therefore here, we have a dictionary which consists of 13 × 13 = 169
entries only, and ask for a matrix of dimension 169 × L for complex values. The refined dictionary is
the same as described previously, of dimension 133956 × L for complex values. We use again 20
iterations for the Landweber iterations in the BLIP algorithm, and 25 iterations for our L-M algorithm.
The regularization parameters are chosen as follows: µn = 10−5 for every n ∈ N, λ0 = s2, and
β = 0.01. Note that because of noise, here we used a fixed µ strictly larger than zero.

We depict the results in Figure 6 and the corresponding pointwise errors in Figure 7, using the same
row system as in Figures 3 and 4. The result of the proposed algorithm again outperforms the refined
BLIP algorithm, but not as significantly as in the noiseless case. However it still consumes much less
memory and requires much less computational time, see Table 1.

In Figure 8, we plotted again the residual ratios, that again show a linear rate of convergence.

5.3.3 Ideal data–fully sampled and no noise

We also show the results for the case of fully sampled and noise-free data. Here, we only need
L = 3 data frames, which actually equals to the number of unknown parameters, and it gives a
determined system. For both the BLIP and our algorithm, we chose the number of iterations to be 5.
The regularization parameters are chosen as follows: µn = 0 for every n ∈ N, λ0 = s2 = 1, and
β = 0. Note that, as we have discussed, this choice makes the L-M iteration equivalent to Gauss-
Newton method.

Here, we only show the error maps of the results in Figure 9. We observe that the Gauss-Newton
algorithm essentially recovers the ground truth in this case, while the accuracy of BLIP algorithm, is
limited by the discretization mesh of the dictionary.

In contrast to the previous case, as we verify numerically in Figure 10, the convergence rate of the
algorithm is superlinear.

5.3.4 Quantitative comparisons

We also provide in Table 1 a summary of qualitative comparisons of all the previous results. The index
in our comparison is the computational time costs as well as the error rates given by the algorithms.
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Figure 3: Experiment with noiseless undersampled data. First row: Initialization of our algorithm, com-
puted by BLIP with a coarse dictionary. Middle row: Result by BLIP with fine dictionary. Last row:
Solution by proposed algorithm.
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Figure 4: Experiment with noiseless undersampled data. Pointwise distance of the solutions of Figure
3, to the corresponding ground truths, in Figure 1. First row: Initial error of BLIP with a coarse dictionary.
Middle row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.

DOI 10.20347/WIAS.PREPRINT.2528 Berlin 2018



Quantitative MRI 31

0 5 10 15 20 25
10

0

10
2

10
4

Data residual decay

0 5 10 15 20 25

10
0

10
1

10
2

Convergence rate of T1

0 5 10 15 20 25

1

1.5

2

2.5

3 Convergence rate of T2

0 5 10 15 20 25

1

1.2

1.4
Convergence rate of Density

Figure 5: Experiment with undersampled data. From left to right and from above to bottom: Conver-
gence of the data residual ‖Q(xn)−D‖, convergence rates via plots of the iterate ratios ‖xn+1−xn‖2

‖xn−xn−1‖2
for x = T1, T2, ρ respectively.

The error rates are defined as
‖xcomputed − xgt‖2

‖xgt‖2

where x = T1, T2 or ρ. We give also the corresponding results for the initialization x0. Note that
the time costs for the proposed algorithm presented here include the time that was needed for the
computation of initial value. From the table, we observe that the initial guess has been significantly

Table 1: Quantitative summary of the results: computational times and error rates

Full data 1/8 sampled data 1/4 sampled and noisy data

time (s) error rate ‖e‖
‖x∗‖ time (s) error rate ‖e‖

‖x∗‖ time (s) error rate ‖e‖
‖x∗‖

T1 T2 ρ T1 T2 ρ T1 T2 ρ
Initialization 1.20 0.036 0.009 0.008 15.26 0.472 0.010 0.003 13.67 0.148 0.088 0.188

BLIP 78.94 0.005 0.002 0.003 1064.04 0.072 0.002 0.001 1273.86 0.078 0.019 0.028
Proposed 8.41 2.2 ∗ 10−13 2.6 ∗ 10−15 6.4 ∗ 10−16 519.41 0.009 0.001 0.0002 525.43 0.075 0.013 0.018

improved by both algorithms, but in the end our proposed algorithm outperforms the refined BLIP in
all of the indexes.

Finally, we would like to verify the fact that larger sequences of frames can help for more accurate
estimations, as we discussed in the end of Section 4.5. We do that in Table 2. There we performed a
set of experiments, for data frames of increasing lengthL. All data are 1/4 sub-sampled and corrupted
with additive i.d.d. Gaussian noise as described before with variance 1 and mean 0. This gives a total
signal noise ratio SNR = 15. We then run our L-M algorithm for 20 iterations using the same initial
value x0, which was generated by using BLIP with 160 frames and the coarse dictionary as described
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Figure 6: Experiment with undersampled and noisy data. First row: Initialization of our algorithm, com-
puted by BLIP with a coarse dictionary. Middle row: Result by BLIP with fine dictionary. Last row:
Solution by proposed algorithm.
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Figure 7: Experiment with undersampled and noisy data. Pointwise distance of the solutions of Figure
6, to the corresponding ground truths of Figure 1. First row: Initial error of BLIP with a coarse dictionary.
Middle row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.
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Figure 8: Experiment with noisy data. From left to right and from above to bottom: Convergence of
the data residual ‖Q(xn) − Dδ‖, convergence rates via plots of the iterate ratios ‖xn+1−xn‖2

‖xn−xn−1‖2
for

x = T1, T2, ρ respectively.

in Section 5.3.2. We choose the parameter simply as λn = µn = λ0 ∗
∥∥Qxn −Dδ

∥∥ for all n ∈ N,
and λ0 = 10−8.

The results in Table 2 clearly indicate that increasing number of sequences improve accuracy of the
estimated parameters. Note that the time costs that we show here do not include the initialization,
which was the same for every case.

Table 2: The length of data sequences and its influence to the solution accuracy

sequence length error rate T1 error rate T2 error rate ρ time cost (s)
L = 5 0.2004 0.5131 0.1622 37.50
L = 10 0.1658 0.1736 0.0738 60.37
L = 20 0.0986 0.0409 0.0315 106.50
L = 40 0.0908 0.0221 0.0278 198.68
L = 80 0.0791 0.0175 0.0270 386.60
L = 160 0.0692 0.0153 0.0268 756.54

6 Concluding Remark and Discussions

In this paper, we analysed MRF from the perspective of inverse problems, and we were able to provide
some mathematical insight in order to better understand it. Subsequently, we have proposed a novel
model for quantitative MRI which is in accordance with the standard routine of MRI experiment setting.
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Figure 9: Fully sampled data. Pointwise distance of the solutions of BLIP algorithm and Newton algo-
rithm to the corresponding ground truths. First row: Initial error of BLIP with a coarse dictionary. Middle
row: error of BLIP with fine dictionary. Last row: Error of the proposed algorithm.
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Figure 10: Fully sampled data and superlinear convergence of the Newton method. From left to right
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for x = T1, T2, ρ respectively.

The model is dictionary-free and incorporates the physical setting of MRI in one single non-linear
equation. We have proposed a robust algorithm, that was shown to be capable of estimating the
tissue parameters in high precision. In contrast to the original MRF method and its variant BLIP, it
does not rely on refining a dictionary to improve the accuracy. Even though our new algorithm is
based on a specific Bloch dynamics called IR-bSSFP, this is not the limitation to the method itself.
Other type of discrete dynamics or approximations to Bloch equation can be fitted to the current
framework. Furthermore, we have considered as unknowns the relaxation parameters T1, T2 and the
proton density ρ in the current paper, but as long as parameters can be described into the Bloch
dynamics, there is no difficulty to extend the algorithm to incorporate the new parameters into the
current framework.

Appendix: Solutions of Bloch equations with different cases

Here we briefly review several simplified cases towards the solutions of Bloch equations, which are
helpful in order to understand the simulations by using the discrete dynamics. More detailed descrip-
tions can be found in [19, 24]. Note that here we omit the position dependence in Bloch equations.

Only main field with no relaxation

The Bloch equations in a setting which only takes into account the main magnetic field and with no
relaxation is just an autonomous dynamical system. That is

∂m

∂t
= m× γB0. (38)
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The solution in this case is
m(t) = Pω0(t)m(0),

where

Pω0(t) =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 , and ω0 = γ |B0| .

This says that the magnetization precesses about the main magnetic field at a frequency ω0, called
Larmor frequency.

Main field with relaxation

This is the case of Bloch equations (1) with B(t, r) = B0. This means that radio frequencies and the
gradient fields are not considered here. After some change of variable and calculations, the solution
turns out to be

m(t) = Pω0(t)E(t)m(0) + (1− e−
t
T1 )me,

where

E(t) =

 e
− t
T2 0 0

0 e
− t
T2 0

0 0 e
− t
T1

 .

Note that the matrices Pω0(t) and E(t) are commutable.

With perturbations and without relaxation

By perturbation we mean that there is aB1 field which rotates at the Larmor frequency, and it is always
orthogonal to the main field, such that 〈B0, B1〉 = 0. This models the excitation of radio pulses in
the MRI machine. By convention, the direction of the B1 field can be defined to be along the x-axis in
space. Since in reality, the excitation pulse only lasts for a very short length of time in comparison with
T1 and T2, we can ignore the relaxation terms. The solution of (1) in the case of no relaxation terms
but with perturbation is

m(t) = Pω0(t)Rx(α(t))m(0),

where α(t) := γ
∫ t

0
|B1(s)| ds is the called flip angle, and

Rx(t) =

 1 0 0
0 cos(α(t)) sin(α(t))
0 − sin(α(t)) cos(α(t))

 .

With perturbations and relaxation

Finally we are able to simulate the solutions of (1) in the case where both the perturbations of the main
field and relaxation terms are taken into account. This is based on the assumption that the excitation
pulse is turned on at the time period (0, t0), where t0 is a very small number in comparison to the
relaxation parameters. Therefore, we can estimate the solution of (1) with the following formula

m(t) = Pω0(t)E(t)Rx(α(t0))m(0) + (1− e−
t
T1 )me.

The main tool in all of the above calculations is by changing variables to a rotating frame of reference,
in order to match the Larmor precession.
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