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hMRI – A toolbox for quantitative MRI
in neuroscience and clinical research

Evelyne Balteau, Karsten Tabelow, John Ashburner, Martina F. Callaghan,
Bogdan Draganski, Gunther Helms, Ferath Kherif, Tobias Leutritz,

Antoine Lutti, Christophe Phillips, Enrico Reimer, Lars Ruthotto, Maryam Seif,
Nikolaus Weiskopf, Gabriel Ziegler, Siawoosh Mohammadi

ABSTRACT. Neuroscience and clinical researchers are increasingly interested in quantitative magnetic
resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as
axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-
to-use tool available on GitHub, for qMRI data handling and processing, presented together with a
tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI
maps (longitudinal and effective transverse relaxation rates R1 and R?

2, proton density PD and mag-
netisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate
delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input pa-
rameters for biophysical models designed to estimate tissue microstructure properties such as the MR
g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is
a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direc-
tion. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive
range of established SPM tools for high-accuracy spatial registration and statistical inferences and can
be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From
a user’s perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating
qMRI data in neuroscience and clinical research.

1. INTRODUCTION

Quantitative MRI (qMRI) finds increasing interest in neuroscience and clinical research because it is
not only more sensitive, but also more specific, to microstructural properties of brain tissue such as
axon, myelin, iron and water concentration than conventional weighted MRI (Cercignani, Dowell, and
Tofts 2018; Assaf and Basser 2005; Draganski et al. 2011; Lorio et al. 2014; Lorio et al. 2016a; Stüber
et al. 2014; Callaghan et al. 2015a). In conventional weighted MRI, the image grayscale values have
arbitrary units and the value in a given voxel will depend on a large number of factors, such as the
sequence type (e.g. the magnetisation-prepared rapid gradient echo, MPRAGE (Mugler and Brooke-
man 1990) versus modified driven equilibrium Fourier transform, MDEFT (Deichmann, Schwarzbauer,
and Turner 2004) for T1-weighted anatomical images), sequence parameters (e.g. repetition time, TR,
echo time, TE, or flip angle), and hardware effects (e.g. transmit and receive profiles and any scaling
factors). In addition, the value will depend on multiple physical tissue properties such as the longitudi-
nal and transverse relaxation times, T1 and T2, or the proton density, PD (Helms et al. 2009; Helms,
Dathe, and Dechent 2010). qMRI accounts for these varied effects in order to increase the specificity
of the estimated metrics and eventually quantify specific physical tissue properties (Cercignani, Dow-
ell, and Tofts 2018; Lutti et al. 2010; Weiskopf et al. 2013). In qMRI, the estimated physical value
has a direct meaning and is quantified in standardised units (e.g. T1 in seconds) (Koenig, Brown,
and Ugolini 1993). This standardised nature further increases the comparability across sites and time
points (Deoni et al. 2008; Weiskopf et al. 2013), which may improve the sensitivity of multi-site studies
and longitudinal analyses of development, plasticity and disease progression. A biophysical interpreta-
tion of physical qMRI parameters (Callaghan et al. 2015a; Stikov et al. 2015) or a combination of qMRI
with biophysical modelling (e.g. Henkelman, Stanisz, and Graham 2001, Assaf and Basser 2005, or
Mohammadi et al. 2015) enables the in vivo characterisation of key microscopic brain tissue param-
eters, which previously could only be achieved with ex vivo histology. This concept is called in vivo
histology using MRI (hMRI, Weiskopf et al. 2015).
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The estimation of quantitative and semi-quantitative metrics commonly includes one or more of the
effective transverse relaxation rate (R?

2 = 1/T ?
2 ), the longitudinal relaxation rate (R1 = 1/T1), the

proton density (PD), the magnetisation transfer (MT ) saturation and a number of diffusion MRI (dMRI)
metrics (Draganski et al. 2011). However, the majority of fundamental and clinical neuroscience stud-
ies either refrain from acquiring qMRI data or the quantitative approach is limited to dMRI only. One
reason for this might be that standardised qMRI imaging protocols (such as the protocol for the Human
Connectome Project (Sotiropoulos et al. 2013)) and processing software (see a summary in Soares
et al. 2013) are readily available for dMRI but less so for other qMRI techniques.

Consequently, the neuroscience and clinical research community lacks a standardised qMRI imple-
mentation to handle the wide diversity of data acquisition types and estimate parameters such as
R?

2, R1, PD and MT saturation, which are sensitive to iron, myelin, and water content in tissue mi-
crostructure, and thus provide complementary information to the axonal properties revealed by dMRI.
For example,R?

2 is often estimated using gradient recalled echo data acquired with multiple echo times
(TE) to create high resolution maps that show strong contrast between different types of brain tissue
(Bernstein, King, and Zhou 2004). Similarly, PD and R1 can be derived from two acquisitions varying
the excitation flip angle (Wang, Riederer, and Lee 1987; Deoni, Peters, and Rutt 2005; Deoni 2007;
Schabel and Morrell 2008; Helms, Dathe, and Dechent 2008; Helms et al. 2011; Liberman, Louzoun,
and Ben Bashat 2013; Heule, Ganter, and Bieri 2015; Baudrexel et al. 2016). For accurate estima-
tion of the latter qMRI parameters, an implementation must adequately correct for instrumental biases
such as inhomogeneous transmit (Lutti et al. 2010) and receive fields (Volz et al. 2012; Mezer et al.
2016; Lorio et al. 2018). Such correction should be based on the additional mapping of these fields,
but the implementation should also provide solutions when these fields have not been measured. For
example in clinical settings, MR sequences for estimating instrumental biases are often unavailable
due to time, hardware or software constraints. For such studies, the facility to correct for instrumental
biases retrospectively using image processing methods that do not rely on additional MRI acquisitions
is highly desirable.

A number of open-source tools have been developed to support qMRI use and make qMRI more
broadly accessible to neuroscience and clinical research (see for example qMRLab (Cabana et al.
2015, https://github.com/sMRLab/qMRLab), QUIT (Wood 2018, https://github.
com/ spinicist/QUIT), mrQ (Mezer et al. 2016, https://github.com/mezera/mrQ)
and QMAP (https://www.medphysics.wisc.edu/~samsonov/qmap/). These tools
include, to various extents, data acquisition guidelines, tools for protocol simulation and optimisation, a
multitude of models and methods for data fitting and estimation of qMRI parameters, and visualisation
tools.

While most of these tools focus on model fitting and generation of qMRI maps, the question of spa-
tial and statistical processing of these qMRI maps is not directly addressed. For spatial processing
and group level statistical analysis, the established tools are primarily designed for diffusion MRI (see
for example TBSS in FSL (Smith et al. 2006) and TRACULA (Yendiki et al. 2011) in FreeSurfer). In
addition, a number of custom made tools have been developed based on established neuroimaging
software, e.g.: applications of the FreeSurfer surface projection software (Dale and Sereno 1993; Fis-
chl et al. 1999; Fischl and Dale 2000) to compare quantitative relaxation and susceptibility data on
the cortex (Marques, Khabipova, and Gruetter 2017), or usage of the VBM framework (Ashburner
and Friston 2000) to process qMRI data across the whole brain on a voxel-by-voxel basis (Büchel
et al. 2004 and Mohammadi et al. 2012 for dMRI metrics, and Table 1 for R?

2, R1, PD and MT sat-
uration). One challenge common to all these tools is to find a proper method to locally preserve the
qMRI parameters after (non-linear) spatial registration. The methods using the statistical parametric
mapping (SPM) framework typically reduce residual misalignment between images by isotropic spatial
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smoothing. However, applying this framework directly to qMRI data would introduce partial volume ef-
fects at tissue boundaries and corrupt the quantitative values. Hence a modified smoothing approach,
which aims to achieve within class smoothing only, is preferred. The majority of the studies in Table 1
took advantage of voxel-based quantification (VBQ), an approach introduced by Draganski et al. 2011
and developed for the comprehensive multi-parameter mapping (MPM) approach (Helms et al. 2008;
Helms et al. 2009; Weiskopf et al. 2011; Weiskopf et al. 2013) to correct for potential error introduced
by spatial smoothing.

A particular instantiation of qMRI developed at 3T, the MPM approach, spans data acquisition, mod-
elling and bias correction of three multi-echo spoiled gradient echo volumes to generate R?

2, R1, PD,
as well as semi-quantitative MT saturation maps. This framework enables time-efficient whole brain
mapping with high isotropic resolution of 800 µm in 27 min (Callaghan et al. 2015b) or reduced MPM
protocol (no MT saturation) at 1 mm isotropic resolution in 14 min at 3T (Papp et al. 2016) and has
even enabled the acquisition of ultra-high-resolution quantitative maps with 400 µm resolution at 7T
(Trampel et al. 2017). This framework has been used in a variety of fundamental and clinical neuro-
science studies (Table 1) focussing on: (a) improving the segmentation of deep grey matter structures,
(b) evaluating the myelin and iron concentration in the brain and spinal cord, (c) linking structure and
function in the cortex, and (d) using the MPM parameter maps as proxies for biophysical tissue models.

In this paper, we present the hMRI-toolbox, a comprehensive open-source toolbox that streamlines
all the processing steps required to generate R?

2, R1, PD and MT saturation maps and provides ap-
propriate spatial processing for group analyses. The flexible nature of the toolbox makes it applicable
to a wide range of data types, from the full MPM protocol to subsets of it, including single contrast
echo trains for mapping R?

2 or variable flip angle data for mapping of R1 and PD using multi-echo
or even single-echo data. The toolbox is embedded in the SPM framework (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/), profiting from the highly accurate spatial regis-
tration into a common space and the variety of established statistical inference schemes. The spatial
processing part of the toolbox can be applied to any set of rotationally-invariant qMRI maps, including
a number of diffusion MRI parameters and all common qMRI metrics.
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2. BACKGROUND

2.1. The MPM protocol. The MPM multi-echo protocol was introduced in Weiskopf and Helms 2008
and Weiskopf et al. 2013 for estimating the longitudinal relaxation rate R1, the effective transverse
relaxation rate R?

2, the proton density PD and the magnetisation transfer MT and generalises a
number of acquisition protocols. It typically involves acquiring six to eight images at different echo
times (TE) for each of the PD-, T1- and MT-weighted acquisitions in an RF and gradient spoiled
gradient echo sequence (referred to as T1w, PDw and MTw echoes, respectively). The hMRI-toolbox
can flexibly deal with a large range of site- and study-specific acquisition schemes, from the full MPM
protocol to subsets of it, including single contrast echo trains for mappingR?

2 or variable flip angle data
for mapping ofR1 and PD using multi-echo or single-echo data, comparable to e.g. DESPOT1 (Deoni,
Peters, and Rutt 2005). Example MPM acquisition protocols can be found at http://hmri.info.

2.2. Overview theory of MPM signal model. We give here, and in Fig. 1, a short overview of the
theory underlying the qMRI map creation process. For a more detailed outline of the theory and the
estimation procedures applied in the hMRI-toolbox see A.

The signal from the multi-echo PDw, T1w and MTw acquisitions can be described by the Ernst equa-
tion (Ernst and Anderson 1966; Helms, Dathe, and Dechent 2008; Helms et al. 2008). The effective
transverse relaxation rate R?

2 can then be derived from the TE dependence of the signal. The unified
description of the multi-echo data from all three contrasts into a single model, denoted as ESTATICS
(Weiskopf et al. 2014), provides a more robust estimation of R?

2 with a higher signal-to-noise ratio
compared to separate estimations (Fig. 1a). Using approximations of the signal equations for small
repetition time TR and small flip angles α, the longitudinal relaxation rate R1, the apparent signal
amplitude A∗ map (proportional to the proton density PD) and the magnetisation transfer MT can
be estimated. At this point (Fig. 1b), the generated maps are biased by B1 transmit fT (Fig. 1c) and
receive fR (Fig. 1d) field inhomogeneities. The hMRI-toolbox provides correction methods for these
bias fields based on specific B1 transmit and receive field measurements or image processing meth-
ods. While fT influences the local flip angle and hence all three (R1, PD, MT ) maps are affected,
the RF sensitivity bias field fR only influences the PD map (in the absence of subject motion).

The toolbox can also handle the situation where only a subset of data is available. For example, R?
2,

R1 and PD can still be estimated when no MTw acquisitions are acquired,R?
2 alone can be estimated

when neither MTw nor T1w acquisitions are available (single multi-echo PDw data). R1, PD and MT
saturation maps can be generated from single echo PDw, T1w and MTw images, not requiring multi-
echo acquisitions. The theory and map creation tools also encompass the creation of R1 maps from
other variable flip angle approaches, such as DESPOT1 (Deoni, Peters, and Rutt 2005) or R?

2 maps
from multi-echo data, such as certain susceptibility mapping/weighted imaging approaches.

3. METHODS

3.1. Toolbox documentation and installation. The latest version of the toolbox can be downloaded
from the hMRI-toolbox page (http://hmri.info) as a zip file (containing the last official re-
lease) or by cloning the git repository (https://github.com/hMRI-group/hMRI-toolbox)
to keep up-to-date with the latest incremental developments.

Updated documentation is available as a Wiki (https://github.com/hMRI-group/hMRI-toolbox/
wiki). It includes installation instructions, an example dataset, a tutorial and a detailed description of
the implemented functionalities. Information on releases and versioning, development and contribution
guidelines are also provided.
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FIGURE 1. Overview of qMRI map generation from the weighted imaging and reference MPM data.
The signal S is modelled by the Ernst equation with an exponential decay depending on the echo time
TE. The longitudinal relaxation rate R1, the effective transverse relaxation rate R?

2, the proton density
PD and the magnetisation transfer (MT ) saturation are estimated from the data, using approximations
for small repetition time TR and small flip angles α. The transmit and receive bias fields fT and fR
are used to correct for instrumental biases.

The toolbox has been developed and tested with MATLAB versions 8.0 (R2012b) to 9.3 (R2017b) and
SPM12 from version r6906 onwards. Since the hMRI developments will be synchronised with SPM
developments, it is recommended to use the most recent SPM release (http://www.fil.ion.
ucl.ac.uk/spm/software/spm12/) to benefit from the latest developments.

The hMRI-toolbox is free but copyright software, distributed under the terms of the GNU General
Public License as published by the Free Software Foundation (as given in file Copyright.txt).
Further details on “copyleft"can be found at http://www.gnu.org/copyleft/.

In particular, the hMRI-toolbox is supplied as is. No formal support or maintenance is provided or
implied. Since the toolbox was developed for academic research, it comes with no warranty and is not
intended for clinical use.

3.2. MPM example dataset. An MPM example dataset from a healthy subject for demonstrating the
hMRI-toolbox features was acquired on a 3T Prisma system (Siemens Healthcare, Erlangen, Ger-
many) at the Wellcome Centre for Human Neuroimaging, London, UK. This dataset can be down-
loaded from https://hmri.info and is described in detail in Callaghan et al. submitted.

3.3. Organisation of the toolbox. The hMRI-toolbox is organised into five main modules (Fig. 2):
Configure toolbox, DICOM import, Auto-reorient, Create hMRI maps and Process hMRI maps. While
the Configure Toolbox and Process hMRI maps modules can be run for a group of subjects, the
DICOM Import, Auto-reorient and Create hMRI maps modules must be run for each subject and
each session separately (if several datasets acquired per subject, e.g. in a longitudinal study). A brief
description of each module is provided below and details can be found in the Appendices.
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FIGURE 2. Left: After installation (Section 3.1), the hMRI toolbox can be started from the SPM menu
of the batch editor. Five options include toolbox configuration, DICOM import, re-orientation of the data
to MNI space, creation and processing of the hMRI maps. Right: Input mask for the map creation part
of the toolbox.

3.4. Configure toolbox module. The hMRI-toolbox provides the user with a set of default acquisi-
tion and processing parameters for most common acquisition protocols without any further customi-
sation. However, customisation is possible and necessary to broaden the toolbox usability to a wider
range of protocols, scanners and vendors. Therefore, the Configure toolbox module allows the user
to select either standard or customised default parameters, to match the user’s own site- or protocol-
specific setup and to be used in the subsequent modules (see details in C.1).

3.5. DICOM import module. DICOM import is a tool to convert DICOM data into NIfTI files. Dur-
ing conversion, the whole DICOM header is stored as JSON-encoded metadata in a file along side
the NIfTI images. This feature is implemented in SPM12 from release r7219 (November 2017), fol-
lowing the hMRI-toolbox implementation. Note that Philips-specific rescaling factor (Chenevert et al.
2014) is applied at conversion, starting from version v0.2.0 of the hMRI-toolbox and release r7487 of
SPM12. The hMRI-toolbox also provides metadata handling functionalities to retrieve parameter val-
ues and store processing parameters in the JSON-encoded metadata file (see Table 3 for an example
of processing information stored as metadata). Detailed description of the DICOM import module, the
metadata handling tools and BIDS compliance aspects (Gorgolewski et al. 2016) is provided in B.

3.6. Auto-reorient module. The reorientation of the images towards a standard pose, setting the
anterior commissure at the origin and both anterior and posterior commissure (AC/PC) in the same
axial plane, as defined in MNI space (Mazziotta et al. 1995; Mazziotta et al. 2001a; Mazziotta et
al. 2001b), is a common step that increases the consistency in individual head positions prior to
normalisation or segmentation. For example, SPM’s segmentation (Ashburner and Friston 2005) is
sensitive to the initial orientation of the images. Therefore, Auto-reorient provides a simple tool for
automatically and uniformly reorienting a set of images prior to any further processing including multi-
parameter map calculation. Note, that the reorientation modifies the orientation information in each
image header, but the reoriented images are not resliced. For more details, see C.2.

3.7. Create hMRI maps module. The Create hMRI maps module computes quantitative as well as
semi-quantitative estimates of R?

2, R1, PD and MT saturation from unprocessed multi-echo T1w,
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Map Creation

NIfTI images and JSON metadata (acquisition 
parameters: flip angle, TE, TR, MT on/off, ...)

Raw images 

Bias field correction 

MPM model

Measurement
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Image processing
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PD R2*

MT R1MTw (TE)PDw (TE) T1w (TE)

B1
+ B1

-

NIfTI images and JSON metadata 
(processing parameters & description)

FIGURE 3. Map creation workflow illustrated for the MPM example dataset (Callaghan et al. sub-
mitted). The MPM protocol includes three multi-echo spoiled gradient echo scans with predominant
T1-, PD- and MT-weighting achieved by an appropriate choice of the repetition time, the flip angle and
the off-resonance MT pulse. Optional RF transmit (B+

1 ) and receive (B−
1 ) field measurements can

be added to the protocol, improving the quality of instrumental bias correction in the MPM maps. Al-
ternatively, these reference measurements can be, to a limited extent, replaced by dedicated image
processing steps that are provided by the toolbox. The map creation module generates PD, R1, MT
and R?

2 maps. For each map, a JSON metadata file is created, which contains information about the
processing pipeline of each image (see example in Table 3).

PDw and MTw spoiled gradient echo acquisitions. The map creation module corrects the qMRI esti-
mates for spatial receive (Section 3.7.3) and transmit (Section 3.7.2) field inhomogeneities.

3.7.1. Multi-parameter input images. The module takes the (possibly reoriented) series of multi-echo
spoiled gradient echo images as input for the creation of quantitative as well as semi-quantitative
maps (Fig. 3) of R?

2, R1, PD and MT saturation (Helms, Dathe, and Dechent 2008; Helms et al.
2008; Weiskopf et al. 2013; Weiskopf et al. 2014) as described in the Background Section 2 and A.
The number and quality of the output maps depends on the contrasts (PDw, T1w, MTw) and number
of echoes available, and on the availability of additional bias field measurements. A single multi-echo
PDw contrast allows for the calculation of a singleR?

2 map. If T1w images are additionally provided,R1

and PD maps will also be generated. The MT map estimation requires the acquisition of additional
MTw images. The map creation also involves optional correction for B+

1 (B1 transmit) bias field fT
(Section 3.7.2) and the B−

1 (RF receive sensitivity) bias field fR (Section 3.7.3) as well as spoiling
imperfections (Yarnykh 2010; Preibisch and Deichmann 2009).

3.7.2. B1 (transmit) bias correction. The map creation module includes the determination ofB1 trans-
mit bias field maps (fT expressed in p.u. of the nominal flip angle) for transmit bias correction of the
quantitative data. Several methods are implemented. Depending on the choice of the specific method
the GUI requires the user to provide adequate input files. Further details on the supported correction

DOI 10.20347/WIAS.PREPRINT.2527 Berlin, July 31, 2018/rev. December 21, 2018
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Results directory Description

<firstPDfileName>_MTsat.[nii|json] Estimated MT saturation map in p.u.
<firstPDfileName>_PD.[nii|json] Estimated PD map in p.u.
<firstPDfileName>_R1.[nii|json] Estimated R1 map in s−1

<firstPDfileName>_R2s_OLS.[nii|json] Estimated R?
2 map in s−1 (ESTATICS) with ordinary least squares fit

Results/Supplementary directory Description

hMRI_map_creation_rfsens_params.json RF sensitivity bias correction parameters (measured sensitivity maps)
hMRI_map_creation_b1map_params.json B1 transmit map estimation: acquisition and processing parameters
hMRI_map_creation_job_create_maps.json Create hMRI maps: acquisition and processing parameters
hMRI_map_creation_mpm_params.json Acquisition and processing parameters used for the current job
hMRI_map_creation_quality_assessment.json Quality assessment results (Appendix D)
<firstSESTEfileName>_B1map.[nii|json] Estimated B1 bias field fT map (p.u.)
<firstSESTEfileName>_B1ref.[nii|json] Anatomical reference for B1 bias field correction
<firstPDfileName>_MTw_OLSfit_TEzero.[nii|json] MTw echoes extrapolated to TE = 0

<firstPDfileName>_PDw_OLSfit_TEzero.[nii|json] PDw echoes extrapolated to TE = 0

<firstPDfileName>_R2s.[nii|json] Estimated R?
2 map from simple exponential fit (PDw echoes)

<firstPDfileName>_T1w_OLSfit_TEzero.[nii|json] T1w echoes extrapolated to TE = 0

TABLE 2. Output files from the Create hMRI maps module using the SE/STE B1 mapping and per-
contrast RF sensitivity bias correction.

methods can be found in C.3 and the respective original publications (Lutti et al. 2010; Lutti et al. 2012;
Weiskopf et al. 2013; Weiskopf et al. 2011; Yarnykh 2007; Chung et al. 2010).

3.7.3. Receiver RF sensitivity bias correction. Three options are available to correct for RF receive
sensitivity bias (fR) within the Create hMRI maps module. Two of them rely on measured RF sensi-
tivity maps (Single or Per contrast options) while the third method is data driven (Unified
Segmentation option: no input sensitivity map required). Although not recommended, it is pos-
sible to disable RF sensitivity correction altogether by selecting the None option. While options
Single and Unified Segmentation assume that the sensitivity profile is consistent between
contrasts (i.e. small inter-contrast subject movement is assumed), the Per contrast option ac-
counts for inter-contrast variation in RF sensitivity profile due to larger subject motion (Papp et al.
2016). Details on the different RF sensitivity bias correction methods can be found in C.4 and in the
respective publications (Papp et al. 2016; Weiskopf et al. 2013).

3.7.4. Output. By default, the estimated quantitative maps are output into a Results subdirectory
within the folder of the first PDw echo. Alternatively, a user-defined folder for the output of the toolbox
can be selected in which the Results directory will be created. The estimated qMRI maps are saved
in the Results directory, with supplementary files are output in theResults/Supplementary
subfolder. The basename for all qMRI maps is derived from the first echo of the PDw image series,
see Table 2 for brief description. If data is reprocessed, a new sub-folder is created.

3.8. Process hMRI maps module. The Process hMRI maps module provides dedicated tools and
tissue probability maps for the spatial processing of quantitative MRI maps based on the corresponding
SPM framework. The spatial processing pipeline for hMRI data relies on three main operational steps
(Fig. 4): (1) segmentation (Ashburner and Friston 2005; Draganski et al. 2011; Lorio et al. 2016a), (2)
non-linear spatial registration into common space (Ashburner 2007) and (3) tissue-weighted smooth-
ing (Draganski et al. 2011), using three different sub-modules that are further detailed in the Appendix,
Table 2. Furthermore, a fully integrated processing pipeline is provided as an additional sub-module
to facilitate standard data processing without the need to combine the individual steps in this module.
Details on the three sub-modules and the integrated pipeline are provided in C.5.

3.9. Statistical analysis. The standard SPM statistical analysis and modelling approaches such as
mass-univariate General Linear Modelling can be applied to the spatially processed maps, see, e.g.,
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FIGURE 4. Overview of the spatial processing module. It consists of three steps: (1) segmentation,
(2) highly parametrised non-linear spatial registration, and (3) tissue-weighted smoothing. The seg-
mentation step (1) uses novel tissue-probability maps (TPMs), designed to take advantage of the better
contrast of the MPMs for improved segmentation (exemplified for the deep-grey matter by the arrow in
(1)). The non-linear spatial registration step into common space (2) reduces inter-individual anatomical
differences (exemplified for R1 maps of subject one and two, S1 and S2, respectively). To further re-
duce residual anatomical differences (see magnification boxes in (2)) and enhance statistical inference,
the qMRI maps can be spatially smoothed (3) using the voxel-based quantification (VBQ) smoothing
procedure. As compared to Gaussian smoothing, VBQ smoothing avoids bias in the qMRI maps (e.g.
see arrows in (3), highlighting a rapid decline in R1 values at tissue boundaries only after Gaussian
smoothing. The VBQ smoothing is detailed in Eq. (18) and Draganski et al. 2011). The sub-figure (1)
has been adapted from (Lorio et al. 2016a), sub-figures (2) and (3) from Mohammadi and Callaghan

2018.

Draganski et al. 2011 and Freund et al. 2013. Additionally, the multiple parameter maps lend them-
selves to multi-variate analyses approaches as well (Draganski et al. 2011).

4. DISCUSSION AND OUTLOOK

This paper introduced the hMRI-toolbox, which is embedded in the SPM framework and allows for
the estimation and processing of four quantitative MRI parameter maps: the longitudinal and effective
transverse relaxation rates R1 and R?

2, the proton density PD and the (semi-quantitative) magnetisa-
tion transfer saturation MT . This introduction includes a comprehensive summary of the MPM signal
model as well as the currently available correction methods for the various bias sources that, if not cor-
rected for, might impair the quantification. Finally, the processing steps for a dedicated SPM analysis
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of quantitative MRI maps (denoted as the VBQ approach) were presented, correcting for the potential
partial volume effects introduced by spatial smoothing.

The name of the toolbox (h-MRI) originates from the concept of in vivo histology of tissue microstruc-
ture using MRI (Weiskopf et al. 2015). Hereby, the quantitative parameter maps generated with this
toolbox provide key input parameters for biophysical models that are designed to non-invasively esti-
mate specific microstructural tissue properties (see Table 1 for example studies).

Considerations and interpretation of the MPM approach. While the signal model (see A for details)
used in this toolbox is based on the Ernst equation and thus provides a comprehensive means of
calculating a set of physical quantitative (and semi-quantitative) parameters, including PD, R?

2, R1

and MT , we would like to emphasise that more sophisticated models can be derived to relate the
parameters more directly to the underlying biophysical mechanisms and tissue characteristics.

The contrast provided by the R?
2 metric is associated with different realisation of iron deposits (for a

review, see e.g. Edwards et al. 2018), myelination of axons (Marques, Khabipova, and Gruetter 2017),
their orientation (Oh et al. 2013) and chemical exchange (Does 2018). Multi-compartment models can
be used, e.g., to separately describe the orientation-dependence of myelinated fibre pathways in R?

2

parameter maps (e.g., Lee et al. 2016; Alonso-Ortiz, Levesque, and Pike 2017; Wharton and Bowtell
2012).

At a given field strength, the R1 contrast is determined by the micro-structural tissue properties such
as the local mobility of water molecules, the macromolecular content and the local concentration of
paramagnetic ions such as iron or gadolinium-based contrast agents. It has been shown that R1

depends within limits linearly on these tissue properties (Fatouros and Marmarou 1999; Fatouros et
al. 1991; Kaneoke et al. 1987; Shuter et al. 1998; Donahue et al. 1994; Kamman et al. 1988; Fullerton,
Potter, and Dornbluth 1982; Gelman et al. 2001). The R?

2 and MT metrics can be used to describe
the dependence of R1 on these components (Callaghan et al. 2015a).

MT saturation is a proxy measure of the bound-pool water fraction (Helms et al. 2008). It provides
information about the macromolecular content of the micro-structural environment and is often used as
a marker for myelin content, see e.g. Freund et al. 2013 and Callaghan et al. 2014. Under equivalent
conditions for the off-resonance pre-pulse the sameMT saturation values are expected. However, this
will not be the case if the properties of the pre-pulse are changed across measurements. Therefore, we
refer to the MT saturation measure as being semi-quantitative. The MT saturation map differs from
the commonly usedMT ratio (MTR; percent reduction in steady state signal) by explicitly removing the
bias introduced by the spatially varying T1 relaxation time and B1-transmit field (Helms et al. 2008).
Additional minor corrections for B1 transmit field inhomogeneity in the MT maps were applied as
described in Weiskopf et al. 2013. The reduced spatially varying bias leads, e.g., to a higher contrast
in deep brain structures than MTR and to reduced variance in the data (Callaghan, Mohammadi,
and Weiskopf 2016). Note that the MT saturation measure does not only depend on the bound-pool
fraction but also on the exchange between the bound and free water pools (see e.g. Battiston and
Cercignani 2018). A more direct measure of the bound-pool fraction is provided by quantitative MT
(qMT ), which requires more time-consuming data acquisition, typically limiting the qMT map’s spatial
resolution (e.g., 2mm isotropic in Stikov et al. 2011).

Sources of bias in qMRI and limitations to bias corrections. Correction of instrumental characteristics
and artefacts is an essential prerequisite for quantitative MRI. Sources of biases and artefacts include
primarily transmit and receive fields, imperfect spoiling, T ?

2 -bias and head motion. The artefact correc-
tion methods provided in the hMRI-toolbox are highly flexible, offering solutions to process reference
measurements (e.g. transmit/receive field measurements carried out with a number of customised or
product sequences) to correct for instrumental artefacts, as well as achieve optimal results even when
no adequate measurements are available.
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The ideal imaging protocol includes dedicated measurements of transmit and receive field inhomo-
geneities, which are typically based on customised sequences (Fig. 5a-d for RF receive bias correc-
tion, and Fig. 6a for B1 transmit bias correction). When customised sequences are not available, a
standard spoiled gradient echo product sequence can be used to acquire data for low-resolution re-
ceive field mapping. Similarly, when not available, customised reference and calibration sequences
such as 3D_EPI (Lutti et al. 2010; Lutti et al. 2012) or 3D_AFI (Yarnykh 2007) for correction of
B1 transmit effects can be replaced by manufacturer’s service sequences such as TFL_B1_map
(Chung et al. 2010) or RF_map (as examples on Siemens scanners). The toolbox provides the option
to process data from several different B1 transmit bias field mapping techniques or to use B1 transmit
bias field maps pre-computed outside the toolbox (see section 3.7.2 and C.3).

The measured transmit and receive fields can be affected by diverse sources of error leading to im-
perfect corrections. For example, residual misalignment between measured receive (or transmit) field
and the spoiled gradient echo images can be one reason for such imperfections. In particular, when
between-contrast (PDw, T1w, MTw) motion is large, discrepancies between head position for a single
receive (or, to a lesser extent, transmit) field measurement and head position for all or some of the
spoiled gradient echo images lead to additional motion-related bias in the quantitative maps (Fig. 5).
In such a case, a per-contrast RF receive sensitivity measurement is preferable and can account for
the between-contrast dynamic variation (see C.4, Receive field sensitivity measurements and Fig. 5).
However, measured RF receive sensitivity maps such as described in C.4 can also suffer from residual
modulations by the receive field of the body coil, which serves as a reference and whose inhomogene-
ity is not accounted for. Such modulation cannot be directly corrected for using the measured transmit
field of the body coil at 3T and higher fields due to the non trivial applicability of the reciprocity principle
at such field strengths (Hoult 2000). As a result, when no large between-contrast motion is observed,
RF sensitivity bias correction using the data driven receive field estimation (described in C.4) may
prove more effective altogether. Such a data driven method could also be applied (with specific opti-
misation of the US regularisation parameters to the body coil’s receive field profile) to correct for the
above residual body coil receive field modulation. Finally, at 7T where RF body coils are not available,
the currently implemented RF sensitivity measurements and bias correction approach are not applica-
ble. All the above aspects are active fields of investigation, optimisation and validation that are also an
integral part of the future developments of the toolbox. Similarly, B1 transmit field mapping techniques
can be inaccurate. For a comparison of the frequently used B1-transmit field mapping techniques and
a description of their respective accuracy and sources of uncertainty we refer to Lutti et al. 2010 and
Pohmann and Scheffler 2013.

When no transmit and/or receive field inhomogeneity maps have been measured, which often hap-
pens in clinical settings due to time constraints, the toolbox provides the option to use image pro-
cessing methods based on the Unified Segmentation approach (Ashburner and Friston 2005) for B1

transmit bias correction (UNICORT, Weiskopf et al. 2011, see Fig. 6b) or RF sensitivity bias correction
(Fig. 5e). The Unified Segmentation approach takes advantage of the fact that bias corrections can
be applied post hoc in good approximation for small read-out flip angles and short TR (Helms, Dathe,
and Dechent 2008). This requires no additional acquisition time but produces quantitative maps of
lesser accuracy with some residual receive and/or transmit field modulation (Weiskopf et al. 2011;
Baudrexel et al. 2016) compared to a correction with measured references. Note that the Unified Seg-
mentation approach, whether applied forB1 transmit (UNICORT) or RF sensitivity bias correction, has
been optimised for the Siemens TIM-TRIO MR system using the body RF coil for transmission and
the 32-channel receive head coil (Weiskopf et al. 2011). The corrections will perform appropriately for
coils with similar transmit or receive field profiles, but might require further adjustments otherwise (see
Weiskopf et al. 2011 for UNICORT optimisation). For more details, see (Callaghan et al. 2016) and the
hMRI wiki (the latter also provides further information on customized usage).
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FIGURE 5. Comparison of different available RF sensitivity bias field correction methods (C.4)
demonstrated on the MPM example dataset (Section 3.2) and PD difference maps. (a) PD map cal-
culated using the reference correction method (PDRef ), following the approach in Papp et al. 2016,
requiring three sensitivity maps, each acquired directly before the respective PDw, MTw and T1w con-
trasts. (b-d) Difference betweenPDRef andPD maps calculated from PDw and T1w images corrected
by a single sensitivity map, acquired directly before the PDw images (b: ∆PDS1), the MTw images (c:
∆PDS2) and the T1w images (d: ∆PDS3), respectively. Due to the large overt movement preceding
the acquisition of the MTw images and corresponding RF sensitivity measurement (see Callaghan et al.
submitted), there is a large discrepancy between head position for that specific RF sensitivity measure-
ment on the one hand and head positions for the PDw and T1w images used to generate the PD map
on the other hand. As a result, errors in (c) are much larger than in (b) and (d). (e) Difference between
PDRef and the PD map corrected for RF sensitivity bias using the Unified Segmentation approach
(∆PDUS ). The body coil sensitivity profile, not corrected for in the reference method, modulates the
PD difference map in (e). (f) Sagittal view of PD map in (a) depicting the position of the slice shown in
(a-e).

The proposed MPM protocol uses RF and gradient spoiling to minimise undesired transverse net
magnetisation. Imperfect spoiling, which depends on the precise sequence protocol settings, can leave
a residual bias in theR1 map if no further correction is used (Preibisch and Deichmann 2009; Yarnykh
2010). For specific MPM protocols using the customised sequences, the hMRI-toolbox provides a
correction for imperfect spoiling, see Eq. (15) in A.5. By default this correction is disabled but can be
enabled through the toolbox customisation provided by the Configure toolbox module (C.1 and the
hMRI-toolbox Wiki).

The estimation of PD maps can be biased by T ?
2 relaxation effects if not accounted for (Eq. (4) in A).

Two correction methods, based on extrapolation of the data to TE = 0 (Ellerbrock and Mohammadi
2018) or relying on the estimatedR?

2 maps respectively, are implemented in the toolbox (Balteau et al.
2018). These correction methods require a number of echoes to be acquired for a robust fit of the
exponential decay to derive TE = 0 magnitude images and R?

2 maps. In the case of a single-echo
variable flip angle dataset, the T ?

2 -weighting correction cannot be applied and the estimated PD and
(to a much lesser extent) the R1 and MT maps will be biased by T ?

2 -modulations. Also, R?
2 maps are

biased in areas with severe susceptibility artifacts (Yablonskiy 1998). Note that the JSON metadata
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FIGURE 6. Comparison of two different available transmit field correction methods demonstrated
on longitudinal relaxation rate (R1) maps. (A) The R1,Ref map is depicted after using the reference
correction method, following the B1 mapping approach by Lutti et al. 2012. (B) The difference between
the reference mapR1,Ref and theR1 map derived with UNICORTB1 transmit bias correction (image
processing method, no additional measurement required, see Weiskopf et al. 2011 for details). (C)
The difference between the reference map R1,Ref and the R1 map derived without B1 transmit bias
correction. (B) shows a comparatively small residual modulation across the slice while (C) is strongly
biased by the B1 transmit inhomogeneity across the slice. The slice location in (A-C) is depicted in

Fig.5f.

file associated with the respective PD parameter map contains information about the processing steps
and thus of potential T ?

2 modulation.

Head motion is widely recognised as a major source of artefacts in MR images, with severe con-
sequences for quantitative MRI and morphological measures of the brain (Callaghan et al. 2015b;
Weiskopf et al. 2014; Reuter et al. 2015). While quantitative measures of image quality have been
introduced, visual inspection remains the most common means of rating data quality despite its lim-
ited sensitivity and inter-rater variability (Rosen et al. 2018). The hMRI-toolbox provides summary
measures of head motion within and between the acquisitions of each image volume (intra- and inter-
scan motion) (Castella et al. 2018 and D). The provided index of intra-scan motion has been tested
against the history of head motion, recorded in real-time during the scans (Castella et al. 2018). Note
that these intra- and inter-scan head motion measures could potentially be combined to guide tool-
box users to objectively classify their data according to quality, for example to exclude or downweight
poor-quality data of individuals in a statistical group analysis.

Spatial processing pitfalls. Since spatial processing in the hMRI-toolbox is embedded in the SPM
framework, it is subject to the same limitations as any typical VBM study, including spatial normalisa-
tion accuracy, segmentation errors and partial volume effects (Ashburner and Friston 2000; Ridgway
et al. 2008; Focke et al. 2011). Auto-reorient is an option that can help improve the segmentation.
However, it has to be done carefully. Poor signal-to-noise ratio, contrast-to-noise ratio, or outliers in the
MPM input images may impair the reorientation procedure. In general, it is good practice to visually
inspect the results of the hMRI pipeline to detect any obviously suspicious results. Piloting the pro-
cessing pipeline using a batch for a single healthy subject dataset, combined with a careful check of
the log files (in Results/Supplementary, metadata including summary description as shown
in Table 3), and comparison with the computed MPM maps from the sample dataset, is recommended.

Residual misalignments between qMRI maps of individual participants in common space will be
present despite the high degree of spatial correspondence that can be achieved by the non-linear
warping algorithms available in SPM, e.g., by DARTEL (Ashburner 2007). These misalignments are
typically reduced in the VBM-framework by spatial smoothing. To correct for the partial volume effects
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at tissue boundaries that can be introduced by spatial smoothing, the hMRI-toolbox provides the
dedicated smoothing approach that has been described in Fig. 4.

The choice of the appropriate smoothing kernel and its performance compared to alternative methods
(e.g. TBSS (Smith et al. 2006) or TSPOON (Lee et al. 2009)) is still a subject of active research. An
alternative method for reducing spatial misregistration in the cortex might be surface-based registration
algorithms (Davatzikos and Bryan 1996; Drury et al. 1996; Thompson and Toga 1996; Fischl et al.
1999). However, a comparison study by Klein et al. 2010 between volume-based and surface-based
registration methods could not demonstrate clear superiority of one or the other approach. In fact this
is an active area of research to better understand the relative benefits and pitfalls of each approach
(Canna et al. 2018).

hMRI-toolbox for different MRI scanner platforms. The first task for interested users of the hMRI-
toolbox is the setup of the MPM acquisition protocol. To facilitate standardisation, a set of example
protocols for the customised MPM sequences on Siemens platforms as well as standard sequences
available on Siemens and Philips platforms are provided on the http://hmri.info website.
Those protocols take advantage from the fact that MPM sequences primarily rely on multi-echo spoiled
gradient echo sequences that are available on all modern MRI scanners. Even though the experience
with implementing the specific MPM protocol on the Philips platforms is limited, first important steps
have been achieved (Lee, Callaghan, and Nagy 2017; Lee et al. 2018), and the MPM framework
together with the hMRI-toolbox will be used in a multi-site clinical trial (NISCI trial, (Seif et al. 2018))
including Philips and Siemens MR systems.

Multi-scanner and multi-vendor data sets will require adjustments in terms of data handling and pro-
cessing with the hMRI-toolbox. Most MPM studies up to now were carried out on Siemens MRI
scanners using customised MPM sequences. Consequently, the toolbox is optimised for this scenario.
New issues might arise when implementing the MPM protocol and using data from other vendors
or conventional product sequences. For instance, different MT pre-pulse implementations will lead
to changes of the MT saturation map, which will require appropriate inter-scanner calibration (Volz
et al. 2010; Seif et al. 2018). Moreover, not every DICOM to NIfTI conversion software appropriately
handles image intensity scaling, as reported e.g. for Philips data (Chenevert et al. 2014), leading to
spurious intensity differences affecting the quantification. Making the hMRI-toolbox data formats fully
BIDS compliant (Gorgolewski et al. 2016) by defining the ontology of acquisition parameters neces-
sary for the creation of the quantitative maps (see B.5) further supports the use on multiple platforms
and vendors, and is a high priority of the ongoing developments.

Applicability of the toolbox to different MRI platforms also involves ultra-high field MR systems. With
the fast progress of ultra-high field scanners (7T and higher) on the MRI market, high-resolution data
will become more routinely available and provide access to e.g. laminar-specific information (see 400
µm new generation MPM, Trampel et al. 2017), while also posing new challenges (e.g. B+

1 field
inhomogeneities) that the hMRI-toolbox will have to address.

Future directions. The hMRI-toolbox has been developed as a scientific collaborative project. As such
its developments aim at making it broadly available, capitalising on its flexible and open-source im-
plementation, and adjusting to data sets acquired on multiple MRI platforms (see hMRI-toolbox for
different MRI scanner platforms above).

Sensitivity to small inter-individual changes of microstructure (e.g. plasticity) and the variation of
change across subjects (e.g. in development, see https://www.biorxiv.org/content/
early/2018/07/26/328146) is another challenge for longitudinal qMRI. To that end, the
bias of the qMRI estimates in the presence of motion has been investigated (Weiskopf et al. 2014;
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Callaghan et al. 2015a; Castella et al. 2018). Retrospective robust estimation of R?
2 parameters (out-

lier rejection) has been suggested in Weiskopf et al. 2014 and could be implemented in future re-
leases of the hMRI toolbox. Robustness must also be considered in parallel to the spatial resolution
versus sufficient SNR level tradeoff to improve the sensitivity of the technique to small developmental
changes and plasticity. Thus, spatially adaptive noise removal methods (Tabelow et al. 2016) along
with appropriate handling of the Rician bias problem (Polzehl and Tabelow 2016; Tabelow et al. 2017)
are important future improvements of the hMRI-toolbox.

Currently, quality assessment (QA) is provided in the hMRI-toolbox via a set of indicative parameters
that should be used at the user’s discretion (Appendix D). Future work will focus on further validating
and implementing an automated QA of the raw data and generated maps, providing figures from
representative populations and protocols.

Extensions of the hMRI-toolbox can easily fit within its modular implementation. As short term future
additions, the following three modules and extensions are considered. An additional module that effi-
ciently calculates the protocol-specific correction parameters required to account for imperfect spoiling
(A.5) is planned. Quantitative susceptibility mapping (QSM), taking advantage of the existing phase
images acquired with the MPM protocol (Acosta-Cabronero and Callaghan 2017; Acosta-Cabronero
et al. 2018), is a second extension. Finally, as suggested by the ”h” in hMRI, adding new biophysical
models that take advantage of the multi-contrast MRI data and generated qMRI maps for in vivo his-
tology (Weiskopf et al. 2015) is another priority of future developments. An example for such a direct
extension of the hMRI-toolbox could be the MR g-ratio model (Stikov et al. 2015; Mohammadi et al.
2015; Ellerbrock and Mohammadi 2018). The MR g-ratio (the ratio between inner and outer diameter
of a myelinated axon) is a geometrical microstructural tissue property that can be derived by combining
myelin-sensitive qMRI maps from the hMRI-toolbox (e.g. MT or PD maps) with the axonal-sensitive
maps obtained with existing SPM tools (e.g. the ACID toolbox (Mohammadi et al. 2012; Tabelow et al.
2015; Ruthotto et al. 2013; Mohammadi et al. 2014) and the DTI & Fiber tools (Reisert et al. 2013)).

Conclusion. The hMRI-toolbox is a highly flexible software package that provides a computationally
time-efficient, robust and simple framework to generate and process qMRI parameter maps sensitive
to myelin, iron, and water content. It profits from the powerful and easy-to-use spatial and statistical
analysis tools in SPM, and can be readily combined with existing SPM tools for quantitative estimation
of parameter maps sensitive to complementary information such as axonal properties. The ongoing
developments address the use of open-science data formats and extensions into biophysical models
for direct microstructure mapping. As such, the hMRI-toolbox is a comprehensive and readily extend-
able tool for estimating and processing qMRI data for neuroscience and clinical research.
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APPENDIX A. SUMMARY OF THE MODEL FOR MPM

A.1. R1 and PD estimation. For a single excitation and echo time TE, the signal intensity S is given
by the Ernst equation for an ideal spoiled gradient echo acquisition (Ernst and Anderson 1966; Helms,
Dathe, and Dechent 2008):

(1) S = A · sinα · 1− e−R1·TR

1− cosα · e−R1·TR
· e−R?

2 ·TE.

We denote the repetition time by TR and the flip angle by α. A is proportional to the equilibrium
magnetisation and thus to the proton density PD (Helms, Dathe, and Dechent 2008) .

For fast estimation of the R1 and A parameters from (1) and a single echo of a T1w and a PDw
acquisition, or the mean across multiple echoes for increased SNR, Helms, Dathe, and Dechent 2008
introduced a linearisation of its exponential terms for short TR (i.e. R1 · TR� 1):

(2) e−R1·TR ' 1−R1 · TR
leading to, after averaging over echos,

(3) S ' A? · sinα · R1 · TR
1− cosα · (1−R1 · TR)

with

(4) A? =
A

#echoes
·
∑
TE

e−R?
2 ·TE

When S is the averaged signal over several echoes, the sum in Eq. (4) is calculated across all echoes
included in the averaged signal. This introduces anR?

2 bias which increases with the number of echoes
and depends on the TE values included in the average. The R?

2 bias in A? can be evaluated using the
R?

2 estimate and corrected for. Alternatively, S can be the extrapolated signal at TE = 0, which is free
fromR?

2 weighting. Both the echo averaging withR?
2 correction method and the TE = 0 extrapolation

method are implemented and available in the toolbox, and perform similarly (Balteau et al. 2018). The
toolbox extrapolates to a TE of 0 ms by default.

Using the approximation sin(α) ' α and cos(α) ' 1−α2/2 for small flip angles and neglecting the
term α2 ·R1 · TR, Eq. (1) simplifies to:

(5) S = A? · α · R1 · TR
α2/2 +R1 · TR

from which R1 and A? are estimated using the signals from the PDw and T1w sequences:

R1 '
SPDαPD/TRPD − ST1αT1/TRT1

2 · (ST1/αT1 − SPD/αPD)
(6)

A? ' ST1SPD(TRT1αPD/αT1 − TRPDαT1/αPD)

SPDTRT1αPD − ST1TRPDαT1

(7)

where signals ST1 and SPD are either averaged over a number of echoes (Helms, Dathe, and Dechent
2008), or extrapolated to TE = 0, as explained above. In the first case, a

∑
TE e

−R?
2 ·TE correction
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factor must be calculated to derive A (Balteau et al. 2018). A = A? otherwise meaning that the R?
2

bias remains.

A.2. Estimation of the magnetisation transfer. The MT (magnetisation transfer) saturation mea-
sure is derived in analogy to a dual-excitation spoiled gradient echo sequence where the second
excitation is replaced by the MT pulse. Using a heuristic approximation for small read-out flip angles
αMT , the closed form solution for the acquired signal S can be written (Helms and Hagberg 2009;
Helms et al. 2008) as

SMT =A · sinαMT ·
1− e−R1·TRMT − δ · (e−R1·TR2 − e−R1·TRMT )

1− cosαMT · (1− δ) · e−R1·TRMT

· e−R?
2 ·TE(8)

where TRMT = TR1 + TR2 is the total repetition time, and δ describes the MT saturation (more
generally denoted MT in this paper).

From an additional MTw signal SMT we obtain, using again the linearisation of the exponential term for
short TRMT (i.e. R1 · TRMT � 1) and the small angle approximation for the trigonometric functions:

(9) δ =MT = (A?αMT/SMT − 1) ·R1 · TRMT − α2
MT/2

see Helms et al. 2008. Note that the parameter maps R1, R?
2, A and MT can alternatively be esti-

mated from the ESTATICS model using analytic formulas and not relying on the linearisation outlined
above (Tabelow et al. 2016).

A.3. The ESTATICS model and R?
2 estimation. The ESTATICS model was introduced in Weiskopf

et al. 2014 for efficiently estimating the effective transverse relaxation rateR?
2 from an MPM acquisition

protocol, where the exponential signal decay with the echo time is identical for T1w, PDw and MTw
acquisitions. Specifically, the signal equations (1) and (8) are re-written as

(10) S = (SPD · IPD + ST1 · IT1 + SMT · IMT ) · e−R?
2 ·TE

with indicator variables IPD, IT1, and IMT for the differently weighted acquisitions. The signal intensi-
ties, e.g. SPD, at TE = 0 are given by

(11) SPD = A · sinαPD ·
R1 · TRPD

1− cosαPD(1−R1 · TRPD)

with the flip angle and repetition time of the PDw sequence and correspondingly for ST1 and SMT .
From Eq. (10) R?

2 can be estimated using all echoes.

A.4. Corrections for transmit and receive field inhomogeneities. Due to inhomogeneities of the
B1 transmit field the local flip angle deviates from its nominal value (Helms, Dathe, and Dechent 2008).
Using a correction field fT , the effective local flip angle is given by

(12) αcorr = fT · α
For details on the correction field fT estimation see Section 3.7.2 and C.3.

For the MTw acquisition we denote by αsat the off-resonance Gaussian shaped RF pulse used for
MT weighting. The B1 transmit bias field fT (x) leads to a local correction of αsat, too, and thus to a
residual bias field for the estimated δ even though δ is largely independent of the local transmit field
bias unlike otherMT metrics such asMTR (Helms et al. 2008; Callaghan et al. 2014). In Helms 2015
the heuristic correction factor for δ was found to be

(13)
1−B · αsat

(1−B · fT · αsat) · f 2
T
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with B · αsat = 0.4 for the typically used value αsat = 220◦ in MPM sequences (Weiskopf et al.
2013).

Finally, the multiplicative RF sensitivity bias field fR (see Section 3.7.3 and C.4) for the correction of
the signal amplitude maps A:

(14) Acorr = A · fR
has to be measured or estimated from the data (for details see section 3.7.3). The A? maps can then
be normalised to proton density PD maps by calibration. To this end, the mean PD value in white
matter is assumed to be 69 percent units (p.u.) (Filo and Mezer 2018).

A.5. Spoiling corrections. Further, imperfect spoiling requires an additional correction when esti-
mating R1 (Preibisch and Deichmann 2009), to account for deviation from Ernst equation (1). The
correction is performed using the following expression

(15) Rcorr
1 =

R1

Pa(fT ) ·R1 + Pb(fT )

where Pa(fT ) and Pb(fT ) are quadratic functions in fT . Their coefficients depend on the specific
sequence and can be determined by simulation (Preibisch and Deichmann 2009). Further refinements
of this correction include diffusion effects on signal spoiling (Yarnykh 2007; Lutti and Weiskopf 2013;
Callaghan, Malik, and Weiskopf 2015).

APPENDIX B. DICOM IMPORT AND JSON METADATA

To support the flexibility of the hMRI processing pipeline and the traceability of the data at every step,
a number of parameters from acquisition to statistical results must be retrieved and stored.

Therefore, DICOM import and JSON metadata handling functionalities have been implemented with
the following objectives:

1 retrieving the full DICOM header as a readable and searchable Matlab structure (metadata),
2 during DICOM to NIfTI conversion, storing the metadata structure as separate JSON file (along-

side the NIfTI image file) and/or as extended header into the NIfTI image file,
3 handling metadata in order to set, get and search parameters.

With the current implementation, these objectives are achieved: the hMRI-toolbox handles and stores
data acquisition and processing parameters as JSON-encoded metadata alongside brain imaging data
sets. The implementation rests on the SPM12 implementation of DICOM tools (spm_dicom_header(s),
spm_dicom_essentials, spm_dicom_convert) and relies on spm_jsonread and
spm_jsonwrite for handling JSON-encoded metadata.

From SPM12 version r7219 (released 16 November 2017) and in later versions, functionalities de-
scribed in points 1. and 2. above (excluding the extended header option though) have been integrated
to the DICOM import module in SPM12 (implementation from the hMRI-toolbox). Note that some fea-
tures of the hMRI-toolbox metadata library (for metadata handling, in particular to set, get and search
the metadata) are not available in the SPM12 distribution.

Detailed syntax and many examples are provided in the hMRI-toolbox Wiki, we briefly describe the
main features and the metadata structure below.

B.1. DICOM to NIfTI conversion. The spm_dicom_convert script has been modified to achieve
the above goals. An additional input argument has been set to deal with the new JSON metadata op-
tions. If JSON metadata storage is enabled, DICOM header information is stored as a JSON-formatted
structure either as a separate JSON file or as extended NIfTI header (or both). If omitted or disabled,
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the DICOM to NIfTI conversion proceeds using exactly the same implementation as in the previously
mentioned SPM12 distribution. The output NIfTI images, extended or not, have a valid NIfTI-1 for-
mat compatible with standard NIfTI readers (MRICron, SPM, FreeSurfer). Note that FSL up to version
v5.0.9 does not support extended headers. For that reason, the extended header option, although sug-
gested in (Gorgolewski et al. 2016) is currently not recommended and disabled by default. Instead, a
separate JSON file is created.

B.2. DICOM to NIfTI conversion – SPM Batch. The DICOM to NIfTI conversion with the above
features is available through the hMRI-toolbox in the SPM Batch GUI (SPM > Tools > hMRI
Tools > DICOM Import). The new JSON metadata format field provides the user
with the following options:

� None
� Separate JSON file (default)
� Extended nii header
� Both

B.3. The metadata structure. Metadata are simple MATLAB structures, hence quite flexible and
modular. The structure of the metadata is divided into the following two main fields:

� Acquisition parameters (hdr.acqpar): this branch contains the original DICOM header. It should
be kept unchanged and is created when importing DICOM images to NIfTI. It is dropped for
processed images relying on several input images.

� History (hdr.history): is a nested structure containing
� procstep: a structure describing the current processing step and containing:

� descrip: a brief description of the processing applied (e.g. DICOM to NIfTI
conversion, realign, create map, . . . )

� version: version number of the processing applied, for traceability
� procpar: processing parameters (relevant parameters used to process the

data – e.g. for SPM processing, all the settings included in the MATLAB batch
job except for the input images.

� input. An array listing the input images used for the processing. Each input (hdr.history.input(i))
is a structure containing:

� filename: the filename of the input image
� history: the history structure from the input image

� output: a structure containing
� imtype: image type of the current output (e.g. R1, FA, MT , ADC) including a

summary description of the processing steps (see Table 3).
� units: either physical units (sec, 1/sec, . . . ), standardised units (e.g. percent

units = p.u.) or arbitrary units (a.u.).

B.4. Metadata handling. The JSON transcription of the MATLAB structure is easily readable and
searchable by opening the extended NIfTI or separate JSON file with a text editor. Furthermore,
metadata set, get and search tools have been implemented. These tools have been added into the
spm12/metadata directory. Typing help <function> in MATLAB gives detailed syntax. Be-
low is a list of the most useful scripts and their summary descriptions. For a complete description of
the implemented tools, please refer to the hMRI-toolbox Wiki pages.

get_metadata: returns the MATLAB structure described above.
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Output map metadata.history.output.imtype

(A) R1,Ref R1 map [s-1]
- B1+ bias correction using provided B1 map
(i3D_EPI)
- RF sensitivity bias correction based on a
per-contrast sensitivity measurement

(B) R1,UNICORT R1 map [s-1]
- B1+ bias correction using UNICORT
- RF sensitivity bias correction based on a
per-contrast sensitivity measurement

(C) R1,None R1 map [s-1]
- no B1+ bias correction applied
- RF sensitivity bias correction based on a
per-contrast sensitivity measurement

TABLE 3. JSON Metadata example: Metadata are stored as a Matlab structure in
the JSON file associated to each output (NIfTI) image. The metadata structure
can easily be retrieved using the following SPM/Matlab command: metadata =
spm_jsonread(<name of the JSON file>). The structure includes
processing parameters, dependencies of the result on other input images as well as
a summary description of each output image. As an example, the image type of each
output R1 image used to generate Figure 6 is provided in the Table. The highlighted
lines (bold font) describe the B1 transmit bias correction, illustrating the user-friendly
traceability of the processing steps used to generate an image. The same information
can be read directly from the JSON file using a text editor.

set_metadata: to write (insert, modify, overwrite) metadata in JSON files and extended
NIfTI headers. In general, metadata are initialised during the DICOM to NIfTI conversion and
further modified as the processing progresses.
get_metadata_val: returns pairs of structure fields and values agreeing with search cri-
teria.
find_field_name: recursively searches a MATLAB structure for a specific field name (can
be applied to any MATLAB structure).

B.5. General usage of the metadata and BIDS compatibility. The DICOM import with metadata
storage is available in the SPM distribution since release r7219 (November 2017) allowing for a wide
use of such metadata. It provides most of the parameters required for map creation and processing.
The hMRI-toolbox also provides metadata handling functionalities to retrieve parameter values and
store processing parameters in the JSON-encoded metadata file. The format used for the metadata
provides flexibility for using a wide range of protocols, and traceability of every parameter used to
generate the results (see for example Table 3).

Outside the hMRI-toolbox, metadata and metadata handling tools implemented in the hMRI-toolbox
can prove useful for many purposes. For quality control, metadata can help checking for protocol con-
sistency by comparing essential parameters across sessions, subjects and sites. When processing
data acquired with several protocols on several scanners from different vendors (multi-centre studies),
metadata provide the information to automatically extract acquisition parameters to be used as regres-
sors of no interest in a statistical analysis (e.g. MR scanner, field strength, head coil, ...). Metadata also
facilitate the sorting of the data between different data types (e.g. functional MRI, structural MRI, diffu-
sion images, etc.) together with retrieving BIDS essential parameters (e.g. repetition time, echo time,
flip angle, session and series numbers, etc.), therefore providing all the information required to make
the data archiving and storage fully BIDS-compatible.
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A BIDS extension proposal (BEP) is currently under discussion, that will define the parameters neces-
sary to describe structural acquisitions with multiple contrasts (see https://bids.neuroimaging.
io/ for updates on BIDS specifications and extension proposals), and bring the metadata structure of
such data in line with the BIDS recommendations (Gorgolewski et al. 2016). The extension will include
all acquisition parameters required to fully describe and process data acquired with the MPM protocols,
in a standard, platform- and vendor-independent way. With such BIDS extension, the hMRI-toolbox
will be adapted and made fully BIDS-compliant, from the structure of the JSON-encoded metadata to
the structure of the output data. The required adaptation will be achieved smoothly thanks to the meta-
data handling functionalities, without affecting the processing part of the hMRI-toolbox, and enabling
the implementation of fully automated tools retrieving the BIDS-organised data, generating the maps
and applying spatial processing.

APPENDIX C. DETAILED DESCRIPTION OF THE HMRI MODULES

C.1. Configure toolbox module. The Configure toolbox module must be run before any other mod-
ule for the default parameters to take effect.

The default settings are defined and described in the config directory. The default files therein
should never be modified. Template files for customised default parameters are stored in the config/
local directory and can be modified and saved with meaningful names by the user. Note that most
parameters should only be modified by advanced users who are aware of the underlying theory and
implementation of the toolbox.

For brevity, a full description of each customisable setting is not provided here. A detailed description
of each parameter may be found in the hmri_local_defaults.m help and examples are pro-
vided in the toolbox Wiki pages. Note that the default settings for B1 transmit bias correction (also
including acquisition and processing parameters) can be customised separately within the Create
hMRI maps module (C.3). Their customisation must follow the same guidelines as provided in this
section.

While settings need to be defined either in the standard or customised default files, acquisition pa-
rameters can be retrieved from the input images if included in the metadata. When no metadata are
available or not yet properly handled by the toolbox (e.g. customised sequences), acquisition param-
eters specified in the default files are used as a fallback solution. The use of metadata is strongly
recommended (see B), to automatically retrieve acquisition parameters and to avoid incorrect pro-
cessing.

C.2. Auto-reorient module. This module performs a rigid-body alignment of a subject’s structural
image into the MNI space, applying the estimated pose to a set of other images. The code makes use
of the spm_affreg function and canonical images available in SPM12. The user must provide one
structural image from the subject and a corresponding canonical image for co-registration, and a series
of other images that need to be kept in alignment with the structural image (typically, all the images
acquired during a given imaging session). The structural image should have good signal-to-noise ratio
with a high white matter/grey matter contrast-to-noise to ensure a robust and reliable co-registration.
The SPM canonical images can be selected from the SPM/canonical directory or any other user-
defined template (e.g. atypical population-driven template), provided it is already oriented according to
MNI. Since the registration is based on matching similar intensities, it is important that the contrast of
the reference image be close to that of the canonical image. The following list is provided as guidelines:
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Source image Recommended template

First T1w echo SPM/canonical/avg152T1.nii
First PDw echo SPM/canonical/avg152PD.nii
First MTw echo SPM/canonical/avg152PD.nii

If no specific output directory is selected, the original orientation of the images will be overwritten. If
an output directory is selected then the images are copied there before being reoriented, therefore
leaving the original data untouched. The reoriented images can be collected as dependencies for
further processing in the batch interface, either all at once (Dependencies > Grouped) or
as individual output images (Dependencies > Individual), which is more convenient to
connect the Auto-reorient module to the next Create hMRI maps module.

C.3. B1 transmit field corrections. Within the Create hMRI maps module, several methods for B1

transmit field correction are implemented. Depending on the choice of the specific method the GUI
requires the user to provide adequate input files, which are described below. In order to proceed to the
B1 map calculation, number of acquisition parameters must also be either retrieved from the metadata
or provided to the toolbox via a standard or customised default B1 file (see below and in C.1).

1 3D_EPI
EPI spin-echo (SE)/stimulated-echo (STE) method (Lutti, Hutton, and Weiskopf 2009; Lutti

et al. 2012).
The sequence uses a set of pulses with nominal flip angles α, 2 · α and α to create pairs of

spin echo and stimulated echo images. All consecutive pairs of SE/STE images corresponding
to the different nominal flip angle values α of the SE/STE RF pulse must be loaded as B1
input. B0 field mapping images must also be provided for correcting distortions in the EPI
images. Both magnitude images and the pre-subtracted phase image must be selected, in that
order, as B0 input.

2 3D_AFI
Actual Flip Angle Imaging (AFI) method (Yarnykh 2007).
A pair of magnitude images acquired with two different repetition times (TR) must be loaded

as B1 input. The hMRI-toolbox then calculates theB1 transmit bias field map as described
in Yarnykh 2007.

3 tfl_b1_map
TFL B1 mapping (Chung et al. 2010).
For this method, the batch interface requests a pair of images (one anatomical image and

one flip angle map, in that order) from a service sequence by Siemens (version available from
VE11 on) based on a turbo flash (TFL) sequence with and without a pre-saturation pulse (Chung
et al. 2010). The flip angle map used as input contains the measured flip angle multiplied by 10.
After rescaling (p.u.) and smoothing, the output fT map is ready to be used forB1 transmit bias
correction.

4 rf_map
This requires a pair of images (one anatomical image and one pre-processed B1 map, in

that order) from a service sequence by Siemens (Erlangen, Germany). These are based on the
acquisition of a spin-echo/stimulated echo as used for method 3D_EPI above (Lutti, Hutton,
and Weiskopf 2009; Lutti et al. 2012). Rescaling and smoothing is applied to the input B1 map
(a.u.) to generate a fT map (p.u.) suitable for B1 transmit bias correction.

5 pre-processed B1
Any B1 transmit bias field map pre-calculated using one of the above methods or another

method can be used as pre-processed B1 input. The user must select one anatomical
reference (for co-registration) and one B1 map (in p.u.), in that order. The anatomical reference
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is typically a magnitude image from the B1 mapping dataset, and must be in the same space
as the B1 transmit bias field map.

6 UNICORT
Data driven estimation of the B1 transmit bias field map using the UNICORT approach

(Weiskopf et al. 2011).
If none of the above mentioned methods applies because no appropriate B1 transmit bias

field mapping data were acquired, the UNICORT option is recommended to remove the transmit
field bias in theR1 map and estimate theB1 transmit bias field map from the qMRI data. Optimal
UNICORT processing parameters are RF transmit coil dependant. The default parameters have
been optimised for Siemens 3T TIM Trio scanners and may need specific optimisation for other
RF transmit coils. See the hMRI-toolbox Wiki for guidelines.

7 no_B1_correction
With this option, no correction for transmit inhomogeneities is applied, i.e. fT ≡ 1.

For each B1 mapping protocol (1-4), one *_B1map (in p.u.) and one *_B1ref (for anatomical
reference) file is created and saved in the Results/Supplementary directory (see Table 2).
The output images are associated with JSON metadata including the type of B1 map processed and
the setting used. For UNICORT, only the *_B1map in p.u. is created (in the same space as the qMRI
maps) with no anatomical reference. For pre-processed B1 transmit bias field maps provided by the
user, the input files are not renamed to match the naming convention above. Default acquisition and
processing parameters for the UNICORT, 3D_EPI and 3D_AFI methods can be customised at this
point by providing the Create hMRI maps module with a customised configuration file (see C.1 and
the hMRI Wiki pages for guidelines). Except for UNICORT, where the B1 transmit bias field is directly
derived from the qMRI data, and the no_B1_correction option, where no anatomical reference
is given, the hMRI-toolbox co-registers the anatomical reference image with the multi-echo spoiled
gradient echo data before applying the B1 transmit bias correction.

C.4. Receive (RF) sensitivity bias correction. In this paragraph, the RF sensitivity bias correction
methods based on measured RF sensitivity maps (Single or Per contrast options) as well as
the data driven method (Unified Segmentation option: no input sensitivity map required) will
be explained in detail.

Receive field sensitivity measurements. Since the receive field sensitivity of the body coil is assumed
to be flat over the spatial extent of the head (Pruessmann et al. 1999), if the same anatomy is imaged
with the head coil and the body coil sequentially, using the same acquisition parameters and assuming
no motion, then the ratio of these two scans is proportional to the net head coil receive sensitivity field
fR:

SHC = fRS0;SBC = CBCS0(16)

SHC/SBC = fR/CBC(17)

where SHC is the signal acquired with the head coil, fR is the receive sensitivity field of the head coil,
SBC is the same signal acquired by the body coil, CBC is the receive sensitivity field of the body coil
assumed to be approximately constant, and S0 is the signal specific to the underlying anatomy and
acquisition parameters.

If receive field sensitivity measurements are available for each imaging contrast (one receive sensitiv-
ity field acquired either before or after each of the PDw, T1w and MTw contrasts), inter-scan variation
of the sensitivity modulation can be accounted for and used to optimally correct for the combined
inter-scan motion and sensitivity modulation effects in the quantitative maps (Papp et al. 2016 and
Figure 5a). Therefore, the implemented RF sensitivity correction method (Per contrast option)
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combines a correction for motion-related relative receive sensitivity variations with rigid-body realign-
ment.

The low resolution measurements from the head and body coils (in this order) for each T1w, PDw and
MTw acquisition are expected as inputs to the RF sensitivity bias correction. A receive field sensitivity
map is calculated according to Eqs. 16 and 17 for each contrast, and applied to the corresponding
contrast to correct for any coil sensitivity driven signal intensity modulation.

If RF sensitivity measurements are missing for some of the contrasts, or if only one single mea-
surement is available, the same RF sensitivity bias correction can still be applied to all contrasts by
choosing the corresponding (Single) option in the GUI. Only one pair of head coil and body coil
images is required. Receiver field inhomogeneities will be corrected for although not accounting for
inter-scan motion (Figure 5b-d). Note that the measured RF sensitivity maps are modulated by the
receive field of the body coil, which is not corrected for (Figure 5e).

Data driven receive field estimation. If no receive field sensitivity map has been acquired, theUnified
Segmentation option can be selected in the GUI. The receive field bias is then estimated from
the calculated A map using SPM unified segmentation (US) approach (Ashburner and Friston 2005).
Accurate bias field estimation requires the use of a brain mask combining the white and grey matter
probability maps. The latter are derived by segmentation of the calculated MT map (because of its
higher contrast in the basal ganglia, see Helms et al. 2009) or alternatively (if no MTw images are
available), by segmentation of the calculated R1 map. The optimal US parameters depend on the RF
receive coil and its sensitivity profile. Fine adjustment of the US parameters might be required for a
specific RF receive coil.

C.5. Process hMRI maps module. This section describes the three main operational steps of the
spatial processing pipeline for hMRI data: segmentation, diffeomorphic registration and tissue-weighted
smoothing. Furthermore, it provides details on the fully integrated processing pipeline, which is pro-
posed in this toolbox as a separate sub-module to facilitate standard spatial data processing without
the need to combine the individual steps.

The processing tools and user interface can be used to process parameter maps generated from a
series of subjects, assuming that each subject has the same small number of images (for example the
four MT saturation, PD, R1, and R?

2 maps). Therefore each module takes as input several series of
images sorted per image type (for example the MT from all the subjects). The images in each series
must follow the same subject-based ordering.

C.5.1. Segmentation. This step relies on the latest unified segmentation (US) algorithm as available
in SPM12 (Ashburner and Friston 2005) and is interfaced through a single module. Compared to the
SPM12-Segment module, the hMRI-Segment module allows the successive processing of a series of
subjects.

The segmentation itself relies on one structural image per subject, typically an MT map, R1 map or
T1w image, and a set of tissue probability maps (TPMs). The TPMs used by default in the hMRI-
toolbox were specifically derived from multi-parametric maps (Lorio et al. 2014) denoted as extended
TPMs (eTPM).

By default (adjustable in the batch interface), the segmentation step generates a series of tissue class
images in native space: the c1/c2/c3 images - for gray matter (GM), white matter (WM) and CSF,
as well as Dartel-imported rc1/rc2 images. The segmentation module also outputs the GM and
WM tissue class images warped into MNI space (classic elastic deformation, i.e. not with Dartel) with
(wmc1/wmc2 images) and without (wc1/wc2 images) Jacobian modulation. Finally, the estimated
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File name Description

Unified Segmentation (US) (Proc. hMRI -> Segmentation)

c1<segmInputFileName>.[nii|json] Tissue class 1 in subject space. Prefixes c1/c2/c3 correspond to GM/WM/CSF respec-
tively.

rc1<segmInputFileName>.[nii|json] Tissue class 1 in subject space, resliced and imported for Dartel processing. Dartel usually
relies on rc1/rc2 images (GM/WM) only.

wc1<segmInputFileName>.[nii|json] Tissue class 1 warped into MNI space, with the simple warp obtained with the US. Prefixes
wc1/wc2 correspond to GM/WM respectively.

mwc1<segmInputFileName>.[nii|json] Tissue class 1 warped into MNI space, with the simple warp obtained with the US, and
modulated by the determinant of the Jacobian, i.e. accounting for local change of volume.
Prefixes mwc1/mwc2 correspond to GM/WM respectively.

y_<segmInputFileName>.nii Deformation field, i.e. warps, obtained from US
<segmInputFileName>_seg8.mat Segmentation and warping parameters, obtained from US

Diffeomorphic registration (Proc. hMRI -> Dartel -> Run Dartel (create Templates))

u_rc1*_Template.nii Flow field image, one per subject, estimated by Dartel from the rc1/rc2 images.
Template_*.nii 7 template images, numbered from 0 to 6, created by Dartel from the rc1/rc2 images of

all the subjects.

Diffeomorphic registration (Proc. hMRI -> Dartel -> Normalise to MNI space)

w*<normInputFileName>.[nii|json] Image warped into MNI space following Dartel, using the estimated flow field and an affine
transformation. This would be typically a qMRI map that should not be modulated to account
for volume changes.

mw*<normInputFileName>.[nii|json] Image warped into MNI space and modulated by the determinant of the Jacobian, i.e. ac-
counting for local change of volume. This would typically be any tissue probability map (i.e.
image with a measure whose total amount over the brain volume should be preserved) to
be used after smoothing for a VBM analysis.

Tissue-weighted smoothing (Proc. hMRI -> Smoothing)

wap1_<smooFileName>.[nii|json] Tissue-weighted smoothing for tissue class 1.
s*<FileName>.[nii|json] (Any) image smoothed with a standard Gaussian filter (here for comparison, not in hMRI).

TABLE 4. Output files from the Process hMRI maps modules. The file names are based on the file
name of the map or image used as input to the Segmentation, Dartel > Run Dartel
(create Templates), Dartel > Normalise to MNI space, and Smoothing
steps. Note that wc*<InputFileName>.[nii|json] images can be obtained either with
the simple warp obtained with the Unified Segmentation or following Dartel with the Dartel >
Normalise to MNI space module.

segmentation and deformation fields are available as a .mat file and 4D y_*.nii files respectively.
See the upper part of Table 4 for a complete file list and description of the output.

C.5.2. Diffeomorphic registration. This step includes three sub-modules derived from the Dartel tool-
box (Ashburner 2007). The key idea of Dartel is to iteratively align the tissue class images, typically
the grey and white matter, from a series of subjects to their own average, i.e. one per tissue class con-
sidered, by generating successive mean images with higher overlap and detail (called ‘Templates’).
This only depends on the Dartel-imported tissue class images from each subject.

The three sub-modules included are as follows:

Run Dartel, create Templates. This module aligns together tissue class images from the series of sub-
jects. In addition a set of Templates (population average tissue class images, with increasing sharp-
ness), this sub-module creates a deformation field for each subject, which encodes the nonlinear
alignment with the final template. See the second part of Table 4.

Run Dartel, existing Templates. If the set of Templates already exists, this sub-module can be used to
estimate only the deformation fields for another set of new subjects (relying on the same form of tissue
class images as those used to generate the Templates).

Normalize to MNI. This module applies the estimated deformation fields to the parameter maps and
tissue class images, bringing them all into alignment with MNI space. Unlike to the Dartel toolbox, no
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smoothing is applied at this stage, but a specific smoothing operation is applied at the next Tissue-
weighted smoothing step. See the third part of Table 4 for the file list and description.

The machinery behind those modules are exactly the same as the ’Dartel toolbox’ available elsewhere
in SPM. They have only been included in the hMRI-toolbox for ease of use. Moreover the user-
interface of the Normalize to MNI module was slightly extended to more efficiently handle the multiple
parameter maps and tissue class images of each subject. Notably, in contrast to many typical VBM
applications, quantitative parameter values are not modulated (to account for volume changes) during
this normalization.

C.5.3. Tissue-weighted smoothing. As proposed in Draganski et al. 2011, the parameter maps should
be smoothed to improve spatial realignment while accounting for the partial volume contribution of
the tissue density in each voxel in subject space. This combination of weighting and smoothing is
expressed as:

(18) v =
g ∗ (w s(φ)[eTPM(t) > .05])

g ∗ w [g ∗ w > .05]

where:

� v is the resulting tissue-weighted smoothed image;
� g∗ stands for convolution with a Gaussian smoothing kernel;
� φ encodes the spatial deformation from subject to standard space;
� s(φ) is a parameter map (e.g. MT , R1,...) in standard space warped by φ;
� w = |Dφ|t(φ), the weights representing the tissue class density in standard space, accounting

for volume changes;
� t(φ) represents subject’s tissue class image, typically GM or WM, warped by φ;
� |Dφ| is a Jacobian determinants of deformation φ;
� [x > 0.05] is a masking operation where voxels with a value x smaller than .05 are set to zero.

The masking ensures that only voxels with a) an a priori probability of being in the considered tissue
class above 5% (i.e. the whole intra-cranial brain volume for GM and WM) and b) original tissue density
in native space above 5% are included in the resulting smoothed image.

One tissue-weighted smoothed map (v) is generated per tissue class (t) and parameter map (s).
These images can then be statistically analysed. See the bottom part of Table 4 for the file prefix list
and description. Note, that the tissue-weighted smoothed maps for different tissue classes will spatially
overlap, because they were thresholded at 5%. Thus, additional masking of these tissue-specific maps
at the group-level may be desirable to ensure that a given voxel is analysed only once. Also note, that
the VBQ smoothing, in contrast to typical VBM analyses, does not modulate the parameter maps (to
account for volume changes), but instead preserves the quantitative values of the original qMRI maps
in MNI space.

C.5.4. Integrated pipeline. Spatial processing of multiple parameter maps would typically combine
four modules (Segmentation, Run Dartel, create Templates, Normalize to MNI, and finally Tissue-
weighted smoothing) into a single batch. The options of each module can be adjusted and the images
passed from one module to the next via virtual dependencies, as available in the batch-GUI, form-
ing a complete processing pipeline. An alternative approach, simpler but less spatially accurate (not
recommended), would skip the diffeomorphic warping steps and only combine the Segmentation and
Tissue-weighted smoothing modules.

To help novice users, an Integrated pipeline module directly enacts the whole procedure with minimal
user input. The module only requires the following inputs:
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� the series of structural reference images and parameter maps (one per subject),
� the width of the Tissue-weighted smoothing kernel desired,
� the type of processing pipeline, i.e. with or without diffeomorphic registration (Dartel).

All the other options of each of the intermediate steps are set by defaults, e.g. only GM and WM tissue
classes are of interest and the TPMs are those from the hMRI-toolbox.

APPENDIX D. QUANTITATIVE MAPS AND QUALITY ASSESSMENT

The Quality Assessment (QA) tool provided with the Create hMRI maps module generates rela-
tive indicators of the quality of the quantitative maps. This tool is enabled via the QA flag in the
hmri_defaults.m file and can be modified using a local configuration (C.1). When enabled,
a JSON-encoded MATLAB structure containing objective measures of the quality of the data is saved
in the Results/Supplementary directory (Table 2). The structure contains the following fields:

1 Coregistration parameters of the MTw and T1w images to the PDw images (translation in mm
and rotation in radians), providing measures of head motion between the corresponding images
(inter-scan motion).

2 Standard deviation in white matter of the R?
2 maps (SD-R?

2), calculated from each individual
multi-echo acquisition (PDw, T1w, MTw) and providing measures of image degradation due to
head motion during the acquisition of the corresponding echoes (intra-scan motion) (Castella et
al. 2018). NOTE: SD-R?

2 depends on the noise level in the images (related to image resolution)
and on the number of echoes for each (PDw, T1w, MTw) contrast, affecting the robustness of
the R?

2 fit. Moreover, since R?
2 is a marker of the microstructural properties of brain tissue,

microscopic changes in the brain may affect the SD-R?
2 values.

3 Mean and standard deviation of the PD values in white matter, which ratio (standard devia-
tion/mean) reflects the accuracy of theB−

1 (RF receive sensitivity) bias field correction in healthy
subjects (Papp et al. 2016). NOTE: pathological inhomogeneities of brain tissue (e.g. brain le-
sions) may contribute and alter the predictability of this parameter.

These parameters are population- and protocol-dependent which is why they are referred to as relative
indicators.
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