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Transport of solvated ions in nanopores:
Asymptotic models and numerical study

Jürgen Fuhrmann, Clemens Guhlke, Bartlomiej Matejczyk, Rüdiger Müller

Abstract

Improved Poisson–Nernst–Planck systems taking into account finite ion size and solvation ef-
fects provide a more accurate model of electric double layers compared to the classical setting. We
introduce and discuss several variants of such improved models. We study the effect of improved
modeling in large aspect ratio nanopores. Moreover, we derive approximate asymptotic models for
the improved Poisson–Nernst–Planck systems which can be reduced to one-dimensional systems.
In a numerical study, we compare simulation results obtained from solution of the asymptotic
1D-models with those obtained by discretization of the full resolution models.

1 Introduction

Artificial nanopores gained attention as an attractive technology for low cost/high speed sensing of
macromolecules [HS09, Key11]. Further optimization of this technology requires accurate characteriza-
tion of the pore material properties and a better understanding of the ion transport and flow behavior.
Due to their size, experimental investigations are hard to undertake. Thus, mathematical modeling
and simulation are crucial to gain a detailed understanding of flow and transport in nanopores. But
also numerical simulation is complicated because of strong nonlinearities, the very short width of the
occurring boundary layers which requires very fine grids for the discretization, and the large aspect
ratio of the geometry.

Surface charges on the inner pore walls are compensated by counter ion accumulation, leading to
the formation of the so called electrical double layer. The Debye length that characterizes the width
of the double layer typical is in the range of a few nanometers, and therefore it is in the same order
of magnitude as the width of the narrowest parts of the nanopore itself. As the double layer amounts
for large part of the volume inside a pore, the consistent incorporation of its structure into the models
is mandatory. The classical Poisson–Nernst–Planck (PNP) theory fails to provide such a model. It
typically overestimates the stored charge in the double layer by several orders of magnitude because
it is based on the assumption of strongly diluted solutions and therefore ignores volume exclusion,
ion–solvent interaction and coupling to the momentum balance. Improved models for electrolytes in this
respect have been discussed e.g. in [Bik42, BAO97, KBA07, BSW12]. Recently, improved models of
electrolytes and electrochemical interfaces have been consistently derived from first principles of on
non-equilibrium thermodynamics [DGM13, DGL14, DGM18].

Asymptotic models can take advantage of the strongly anisotropic character of the pore geometry
and allow the reduction to spatially one-dimensional systems which can be solved with significantly
less computational cost. In spite of its well known deficiencies, PNP theory is used in most of the
available research on nanopores, cf. e.g. [SAB+03, CSP05, CS07, VSS08], and also for the even
smaller biological ion channels, cf. e.g. [CKC00, YVS+05, ZW11]. Asymptotic analysis based on
PNP models has been applied e.g. in [SGNE08, SN09] and compared to experimental data. For the
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asymptotic analysis of classical PNP equations which includes rotational effects see [MPWR18], where
approximate solution based on solving the Poisson-Boltzmann equation in different regimes is proposed.
Also models that take steric effects into account have been applied for ion channels and nanopores,
cf. [CGMP03, HLLE12, BSW12, CCAO14].

In this paper we derive asymptotic models for improved Nernst–Planck systems, taking into account
finite ion size and solvation effects under the assumption of mechanical equilibrium. Moreover, we
describe a way how the spatial dimension of the asymptotic model can be reduced to a truly one-
dimensional system by applying exact solution to the asymptotic approximate equations in one direction.
Our numerical study is influenced by the geometry of typical polyethylene terepthalate (PET) nanopores,
which are produced by irradiating a 12µm thick PET foil with heavy ions and subsequent chemical
etching which results in a radially symmetric pore. Here, we focus on a a different simplification of the
domain that assumes planar symmetry.

Outline. First, in Sect. 2 we discuss a general form of continuum models for electrolyte transport and
present different material models from the literature. Next, in Sect. 3 we state details of the geometry
and the physical parameters of the nanopores. In Sect. 4 we present the dimensionless form of the
model equations and derive an asymptotic model together with a reduction to a 1D system. The
numerical study is reported in Sect. 5 covering two different types of nanopores as well as discussion
of different solvation models. We end with some conclusions in Sect. 6.

2 Ion transport in liquid electrolytes and application to nanopores

The electrolyte is modeled as a mixture ofN+1 constituents. For referencing the individual constituents
we use the index set I = {1, 2, · · · , N, S} For a description on a continuum level, each of the
constituents is characterized by the (atomic) mass mα and its atomic charge zαe0, where the positive
constant e0 is the elementary charge and zα is the charge number of the constituent. We will always
assume that the solvent is neutral, i.e. zS = 0.

Basic quantities. The electrolytic mixture occupies a region Ω ⊂ R3. At any time t, the thermody-
namic state of Ω in an isothermal, incompressible and electrostatic setting is described by number
densities nα for α ∈ I , barycentric velocity υ, pressure p and electric potential ϕ. The introduced
quantities may be functions of time t and space x = (x1, x2, x3) ∈ Ω.

Multiplication of the number densities nα by the masses mα gives the partial mass densities,

ρα = mαnα . (2.1)

The summation over the partial mass densities, number densities and products of number densities and
charges defines the (total) mass density, total number density and the free charge density, respectively,

ρ =
∑
α∈I

ρα , n =
∑
α∈I

nα , nF =
∑
α∈I

zαe0nα . (2.2)

For the later representation of the constitutive equation we introduce the mole fractions,

yα = nα
n

=⇒ 1 =
∑
α∈I

yα . (2.3)
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Balance equations of mass, momentum and Poisson equation. In the electrostatic approximation
of Maxwell’s equations the magnetic contributions vanishes and only the electric field E = −∇ϕ
remains. The coupled system of equations for the basic variables then relies on balance equations of
partial masses and momentum, and the Poisson equation for the electric potential. The mass densities
ρα, resp. number densities nα, the barycentric velocity υ and the potential ϕ satisfy

− div((1 + χ)ε0∇ϕ) = nF , (2.4a)

∂tρα + div(ραυ + Jα) = rα , for α ∈ I , (2.4b)

∂tρυ + div(ρυ ⊗ υ −Σ) = ρb . (2.4c)

Here, Jα are the non-convective mass fluxes, rα are the production rates due to chemical reactions, Σ
is the total stress tensor1, and ρb is the force density due to gravitation. Moreover, ε0 is the dielectric
constant and χ is the constant dielectric susceptibility of the mixture.

General constitutive equations for liquid electrolytes. The balance equations have to be comple-
mented by constitutive equations for the mass fluxes Jα and the total stress tensor Σ. The constitutive
equations are not uniquely determined, thus there is some freedom in the modeling. Nevertheless the
constitutive modeling is restricted by the second law of thermodynamics and symmetry principles and
we refer to [Mül85, BD15, DGM18] for the general strategy of constitutive modeling in the contexts of
(electro-) thermodynamics.

First of all we note that the mass fluxes are not independent of each other, but they are restricted by
the constraint ∑

α∈I

Jα = 0 . (2.5)

The general constitutive equations in an isothermal, electrostatic setting read

Jα = −
N∑
β=1

Dαβ
ρβ
kBT
∇
(
µβ − mβ

mS
µS + zβe0ϕ

)
, for α ∈ I \ {S} , (2.6a)

Σ = −p1 + ν div(υ)1 + η(∇υ +∇υT )− 1
2(1 + χ)ε0|∇ϕ|21 + (1 + χ)ε0∇ϕ⊗∇ϕ .

(2.6b)

The phenomenological coefficients are diffusion coefficients Dαβ , bulk viscosity ν and shear viscosity
η. The second law of thermodynamics requires Dαβ positive definite, η ≥ 0 and ν + 2

3η ≥ 0 . The
driving force of the diffusion is the gradient of the (effective) electrochemical potential, which is given as

µe
α = µα − mα

mS
µS + zαe0ϕ . (2.7)

The derivation of suitable constitutive equations for liquid electrolytes can be found in [DGM13, DGL14,
DGM18]. We refer to this material model as Dreyer-Guhlke-Landstorfer-Müller model (DGLM model).

The constraint (2.5) guarantees that the total mass density ρ is conserved, i.e.

∂tρ+ div(ρυ) = 0 . (2.8)

1The total stress tensor consists of the Cauchy and the Maxwell stress tensor. We refer to [DGM13, DGM18] for more
details.
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For constant mass density and vanishing viscosity, the momentum balance (2.4b) together with (2.6b)
reduces to

mechanical quasi-equilibrium: ∇p = −nF∇ϕ . (2.9)

The term on the right hand side is the electrostatic approximation of the Lorentz force. In region with
non-zero free charge density and an non-zero electric field, a pressure gradient results. In particular
in the electrochemical double layer, where charge accumulates and the electric field is in the order of
several volts per nm, large pressure are generated.

2.1 Continuum models for ion transport in electrolytes – a brief survey

In the literature various continuum models are applied to describe charge transport in electrolytes.
In the context of nanopores the majority of electrolyte models are based on i) the classical Poisson–
Nernst–Planck model (PNP-model) or ii) modified PNP models that we refer to as Bikerman model.
Both types of models can be related to the general framework above and the DGLM model can be seen
as a further extension step of these models.

Classical Nernst–Planck. The classical Nernst–Planck model, cf. [BF00, NTA04], is the most com-
mon electrolyte model for strongly diluted solutions, i.e. nα � n0. The fluxes are chosen as

Jα = −Dααmα

(
∇nα + nα

zαe0

kBT
∇ϕ
)

for α = 1, . . . , N . (2.10)

Here, a diagonal matrix of the diffusion coefficients is assumed, i.e. Dαβ = 0 for α 6= β, that can be
justified by a derivation of the more general Maxwell-Stefan model in the limit of strong dilution, see e.g.
[BFS14]. From (2.10) we can reconstruct electrochemical potentials µe

α as

µe
α = µ̃ref

α + kBT ln nα
n

+ zαe0ϕ for α = 1, . . . , N , (2.11)

where µ̃ref
α is a reference potential, which in general depends on temperature. The total number density

n is approximately equal to the number density nS of the pure solvent and can be related to the specific
volume of the solvent υref

S ,

n = nS = 1
υref
S

. (2.12)

In a liquid electrolyte, typically very thin charged boundary layers form, but in the bulk region, outside the
boundary layers, the electrolyte is locally electroneutral, i.e. nF = 0. For vanishing velocity υ ≈ 0, the
electrolyte bulk can be described by the Nernst–Planck model consisting of (2.4b) and (2.10) together
with nF = 0, see [DGM13, DGM15].

To describe also the charged boundary layers, the electroneutrality condition can be replaced by the
Poisson equation (2.4a), leading to the PNP model. In the presence of non vanishing convection, the
system can further be coupled to Navier-Stokes equations for the fluid flow (NS-PNP). In the strong
dilution limit, the barycentric velocity υ coincides with the solvent velocity and the total mass density is
approximately given by the constant solvent mass density.
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Figure 1: The same ion distribution, represented in different electrolyte models: a) in the Nernst–Planck
model the solvent is not considered. b) Bikerman with lattice size given by the solvent molecule c)
incompressible ideal mixture with solvated ion, d) Bikerman with lattice size given by the solvated ions.

Bikerman. Although the strong dilution assumption is often well justified in the bulk regions, in general
it is not in the boundary layers. This leads to the well-known deficiency of the PNP model, the almost
unbounded accumulation of ionic charge in the vicinity of a charge surface. Several authors proposed
remedies where a common key feature of these extended Nernst–Planck models is the introduction of
a finite length scale that is related to a molecular size and thereby defines an underlying lattice model
for the electrolyte, cf. [Bik42, BAO97, KBA07, BSW12]. We refer to this kind of models as Bikerman
model.

The Bikerman model employs a lattice model where the size of the cells in the lattice defines one
specific volume υref

S for all of the species. One reasonable choice is to set υref
S such that for the pure

solvent without any further constituents, the correct number density is attained, see Fig. 1b). The total
number density is given by the lattice and thus it is constant

n = 1
υref
S

, (2.13)

and also the maximal charge density has an upper bound. The effective electrochemical potentials are
defined

µe
α = µ̃ref

α + kBT ln nα
nS

+ zαe0ϕ , (2.14)

what is compatible with (2.7) if the specific volumes and the atomic masses of all species are equal, i.e.

mα = mS , υref
α = υref

S . (2.15)

Moreover, the explicit dependency of µe
α on the solvent in (2.14) then can be removed by using (2.13)

in the form nS = 1
υref
S

−
∑N

α=1 nα.
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Incompressible ideal mixture of solvated ions (DGLM model). In the incompressible setting, the
pressure p is an independent variable and the number densities have to satisfy the constraint

1 =
∑
α∈I

υref
α nα , (2.16)

which defines an upper bound for the number densities. Here, the constants υref
α denote the specific

volume of constituent with index α. The chemical potentials µα are defined as

µα = µref
α + υref

α p+ kBT ln(yα) , (2.17)

where µref
α is the reference potential, which depends in general on temperature. Thus, the (effective)

electrochemical potentials are

µe
α = µ̃ref

α + kBT
(

ln(yα)− mα
mS

ln(yS)
)

+ (υref
α − mα

mS
υref
α )p+ zαe0ϕ , (2.18)

where µ̃ref
α collects the reference chemical potentials of ion and solvent.

Insertion of the chemical potential (2.17) into the mass fluxes (2.6a) yields the explicit expression for
the fluxes

Jα = −
N∑
β=1

Dαβmβ

(
∇nβ + nβ

zβe0

kBT
∇ϕ (2.19)

+ nβ
nS

[
− mβ

mS

∇nS −
nS
n

(
1− mβ

mS

)
∇n + nS

kBT

(
υref
β −

mβ

mS

υref
S

)
∇p
])
.

Compared to the standard Nernst–Planck model, cf. (2.10), there are three additional terms highlighted
here in blue. The first term represents the solvent-ion interaction, the second term takes into account
the different size of the constituents and the third term represents the coupling of elastic effects and
diffusion. All these terms vanish in the limit case of strong dilution, i.e. for nα � nS . The Bikerman
model contains the first of these three terms, For the second and the third term to vanish, it requires
the assumption (2.15) of equal volume and equal mass for all species.

The incompressibility constraint (2.16) generalizes the lattice model of the Bikerman model by allowing
the different species to have different specific volume. In polar solvents, i.e. in water, the charged ions
build larger complexes with several of the solvent molecules. A solvated ion is said to consist of a center
ion and the solvation shell. The solvent molecules in the solvation shell are not free to participate in
the entropic mixing. Therefore, it is reasonable to consider the solvated ions as the constituents of
the mixture and not the bare center ions without the solvation shell, cf. the illustration in Fig. 1c). As a
consequence, the mixture consists of species with strongly different specific volume and mass. It is
also possible, to use a common specific volume of the solvated ions to define a lattice of the Bikerman
model. But this would imply that also the solvent is considered as consisting of larger compounds which
are built from several solvent molecules without entropic interaction of the single solvent molecules,
see Fig. 1d).

3 Nanopores

Specific assumptions. For the application to nanopores, in this paper we simplify the general model
by the following assumptions:

DOI 10.20347/WIAS.PREPRINT.2526 Berlin 2018



Transport of solvated ions in nanopores 7

� diagonal matrix of the diffusion coefficients, i.e. Dαβ = 0 for α 6= β,

� no chemical reactions and no gravitation, i.e. rα = 0 and b = 0.

� mechanical equilibrium, i.e. υ → 0,

� mass-volume-ratio of all constituents is identical,
mα

υα
= mS

υS
, for α = 1, . . . , N . (3.1)

These assumptions yield i) the convective flow in the mass balances (2.5) can be ignored ii) the total
mass density is constant and thus the total mass balance (2.8) is satisfied, iii) the mass fluxes (2.19)
do not depend on pressure and iv) the momentum balance reduces to (2.9) and decouples from the
partial mass balances. The remaining model equations are

∂tnα + div(−Dααnα
kBT
∇µe

α) = 0, for α = 1, . . . , N (3.2a)

− div((1 + χ)ε0∇ϕ) =
N∑
α=1

zαe0nα , (3.2b)

υref
S nS = 1−

N∑
α=1

υref
α nα , (3.2c)

with the (effective) electrochemical potentials

µe
α = µ̃ref

α + zαe0ϕ+ kBT ×


ln nα

nref
S

Nernst–Planck ,

ln nα
nS

Bikerman ,

ln nα
n
− υref

α

υref
S

ln nS
n

DGLM .

(3.3)

For the pore wall no adsorption of the electrolytic species and a fixed surface charge σ is assumed. We
have the boundary conditions

−Dααnα
kBT
∇µeα · ν|ΩM = 0 , (3.4)

ε0(1 + χ)∇ϕ · ν|ΩM = σ . (3.5)

2D approximation of a nanopore. We consider a 2D-cross-section of the pore which is symmetric
with respect to the axis at r = 0. The coordinate in axial direction is denoted by x. The pore wall is
described by a parameterization R : (0, L)→ R+ and it carries a surface charge σ that depends only
on the axial variable x. The domain Ω ⊂ R2 of the pore cross-section is given by

Ω = {(x, r) | 0 ≤ x ≤ L, |r| ≤ R(x)} . (3.6)

At x = 0 and x = L the pore domain is connected to the reservoirs on both sides of the membrane.

4 Asymptotics for large aspect ratio nanopores

4.1 Scaling

For the non-dimensionalization of the model equations we substitute the variables according to Tab. 1
and thereby we transform the computational domain to the unit square (0, 1)2. We introduce two
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Figure 2: Sketches of the geometries considered for the nanopores.

Table 1: Substitution for the non-dimensionalization.

x→ Lrefx r → R(x)Rref r t→ tref t nα → nrefnα υref
α → 1

nref υ
ref
α

ϕ→ kBT
e0
ϕ µα → kBTµα Dαα → (Lref )2

tref Dαα σ → (1+χ)ε0kBT
e0Rref σ

dimensionless constants:

λ̃ :=

√
ε0(1 + χ)kBT
e2

0n
ref (Lref )2 , δ̃ := Rref

Lref . (4.1)

The first constant is related to the Debye-length λ̃Lref , that characterize the wide of the electrical
double layer at charged pore walls. The second constant is the aspect ratio of the pore. Both constants
appear quadratic in the dimensionless system.

A nanopore filled with aqueous electrolyte is characterized by these scaling quantities

tref = 1s , Lref = 10−5m , Rref = 10−9m , (4.2)

nref = 1mol/L , T = 300K , χ = 80 . (4.3)

These values imply for the dimensionless constants

λ̃2 ≈ 10−8 , δ̃2 ≈ 10−8 , (4.4)

For diffusion coefficients and the surface charges in the range of

Dαα = 10−9 m2

s
, σ = 10−1 C

m2 , (4.5)

the corresponding dimensionless quantities are of order one. This motivates a second rescaling of the
variables where now we introduce a small parameter ε ≈ 10−8 and the substitutions

λ2 → ελ̃2 , δ2 → εδ̃2 , (4.6)

such that now λ2 and δ2 are of order one.

DOI 10.20347/WIAS.PREPRINT.2526 Berlin 2018
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Summary of the dimensionless nanopore model. The nanopore model reads in dimensionless
quantities

∂tnα −Dαα

(
∂x − R′

R
r∂r
)(
nα∂xµ

e
α − nαR

′

R
r∂rµ

e
α

)
− 1

ε
Dαα
δ2R2∂r(nα∂rµeα) = 0 , (4.7a)

−λ2ε(∂x − R′

R
r∂r)(∂xϕ− R′

R
r∂rϕ) + λ2

δ2R2∂rrϕ =
N∑
α=1

zαnα , (4.7b)

υref
S nS = 1−

N∑
α=1

υref
α nα .

(4.7c)

The dimensionless electrochemical potentials are define as

µe
α = µ̃ref

α + zαϕ+


ln nα

nref
S

Nernst–Planck ,

ln nα
nS

Bikerman ,

ln nα
n
− υref

α

υref
S

ln nS
n

DGLM .

(4.8)

The dimensionless boundary conditions at the pore wall and the symmetry axis are

−Dααnα
(
∂rµ

e
α −R′Rεδ2(∂x − R′

R
∂r)µeα

)
|r=1 = 0 , ∂rnα|r=0 = 0 , (4.9a)

1√
εδ2(R′)2+1

( 1
R
∂rϕ− δ2εR′(∂x − R′

R
∂r)ϕ

)
|r=1 = σ , ∂rϕ|r=0 = 0. (4.9b)

4.2 Derivation of an asymptotic model

In this section we discuss a leading order problem in terms of ε that must be solved both in x and r
direction. In order to find an asymptotic solution of system (4.7)-(4.9) in the limit ε→ 0, and with all
other parameters of size O(1), we assume the existence of expansions of the form

ϕ = ϕ(0)(r, x, t) + ε ϕ(1)(r, x, t) + ε2 ϕ(2)(r, x, t) + · · · , (4.10a)

nα = n(0)
α (r, x, t) + ε n(1)

α (r, x, t) + ε2 n(2)
α (r, x, t) + · · · , (4.10b)

µe
α = µe,(0)

α (r, x, t) + ε µe,(1)
α (r, x, t) + ε2 µe,(2)

α (r, x, t) + · · · . (4.10c)

These expansions are entered into the equations and boundary conditions. Then, the terms are sorted
with respect to their polynomial order in ε. In the following we focus on the first order approximations
of the equations and match the respective order in considered equations. For the simplicity of the
presentation, we omit the superscripts (0), that are referring to the order in the expansion.

Leading order equations for the cross-sections. Introducing the expansions (4.10) into (4.7)-(4.9)
provides us with the first order approximations of the the system which read

∂rµ
e
α = 0 , for α = 1, . . . , N (4.11a)

− λ2

δ2R2∂rrϕ =
N∑
α=1

zαnα , (4.11b)

υref
S nS = 1−

N∑
α=1

υref
α nα . (4.11c)

DOI 10.20347/WIAS.PREPRINT.2526 Berlin 2018
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The boundary conditions simplify to

∂rµ
e
α|r=1 = 0 , ∂rnα|r=0 = 0 , (4.12a)

∂rϕ|r=1 = Rσ , ∂rϕ|r=0 = 0 . (4.12b)

Leading order equations for the averaged ion concentrations. In the following, we indicate quan-
tities that are averaged over the r-coordinate by a superscript bar, i.e. for a generic function u the
corresponding averaged quantity is ū =

∫ 1
0 u dr. The integration of the system (4.7) in r-direction

leads to the leading order system for the averaged number densities,

∂tn̄α − Dαα
R
∂x(R n̄α ∂xµ̄e

α) = 0 , α = 1, . . . , N , (4.13a)

− λ2

δ2R
σ =

N∑
α=1

zαn̄α , (4.13b)

υref
S n̄S = 1−

N∑
α=1

υref
α n̄α . (4.13c)

For the derivation we used the boundary conditions (4.9) and the leading order equations for the
cross-section (4.11).

4.3 Reduction to averaged 1D problem

The asymptotic analysis above decouples the fluxes in x and in r direction and thereby splits the
full 2D system into two coupled 1D systems. The equation system (4.13a)–(4.13c) determines the
evolution of the averaged number densities along the nanopore and the equation system (4.11a)–
(4.11c) determines the specific ion concentration profiles in each cross-section of the nanopore. A
similar coupled 1+1D system for the rotational symmetric case is the basis for the quasi-1D PNP model
developed in [MPWR18]. In the following we derive a reduction from the asymptotic 1+1D system to a
single 1D system, that is also applicable for the Bikerman and in the DGLM model.

Exact solution in the cross-section. At first we integrate the inner equations (4.11a) for α =
1, . . . , N , as well as for α = S, to get implicit representations of the mole fractions, that reads

yα = y0
α exp(−zα(ϕ− ϕ0))×


1 Nernst–Planck ,
yS
y0
S

Bikerman ,(
yS
y0
S

)υref
α /υref

S

DGLM .

(4.14)

Here the y0
α and ϕ0 denotes mole fractions and potentials at r = 0 respectively. The mole fraction of

the solvent is determined by (2.3)right,

yS = 1−
∑

α=1,...,N

yα , (4.15)

and the total number density n can be then determined using the equation (4.11c).

Form the equations (4.14) and (4.11c) we conclude that the number densities nα can be expressed as
functions of the electric potential ϕ and the number densities n0

α and electric potential ϕ0.
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Multiplication of the Poisson equation (4.13b) by ∂rϕ yields

− λ2

2δ2R2∂r(∂rϕ)2 =
( N∑
α=1

zαnα

)
∂rϕ . (4.16)

In the Nernst–Planck case, the right hand side of (4.16) can be expressed as the r derivative of a
function that depends on ϕ−ϕ0 and n0

α. For Bikerman and DGLM, we differentiate (4.15) with respect
to r and by use of (4.14) and (4.11c) we get the identity

1
υref
S

∂r ln(yS) =
( N∑
α=1

zαnα

)
∂rϕ . (4.17)

We use the identity to replace the free charge density in the Poisson equation (4.11b) by the r- derivative
of ln(yS). This allows us to integrate the Poisson equation to obtain a relation between the r- derivative
of the electric potential and the mole fraction of the solvent.

∂rϕ = sgn(σ)R
√

2δ
λ

√
P (ϕ− ϕ0, n0

1, . . . , n
0
N) , (4.18)

where P is defined as 2

P (ϕ− ϕ0, n0
1, . . . , n

0
N) =


∑N

α=1 n
0
α

(
exp(−zα(ϕ− ϕ0))− 1

)
Nernst–Planck ,

1
υref
S

ln
(n0

S

nS

)
Bikerman ,

1
υref
S

ln
(y0

S

yS

)
DGLM .

(4.19)

Let ϕR denote the electric potential at the pore wall. The relation (4.18) and the boundary conditions
(4.12b) relate the potential difference ϕR − ϕ0 to the surface charge and number densities at r = 0,

σ = sgn(σ)
√

2δ
λ

√
P (ϕR − ϕ0, n0

1, . . . , n
0
N) . (4.20)

The number densities for α = 1, . . . , N , as well as for α = S can now be expressed in terms of P as

nα = n0
α exp(−zα(ϕ− ϕ0))×


1 Nernst–Planck ,

exp(−υref
α P ) Bikerman ,

n

n0 exp(−υref
α P ) DGLM .

(4.21)

When evaluating the mean values of the number densities, we use this relation to substitute the
integration with respect to r by an integration with respect to ϕ for the averaging. To compensate a
singularity in the integral, we average the deviation from the values at the axis, i.e. n̄α = n0 +nα − n0,
and get

n̄α = n0
α + 1

R
λ√
2δ

∫ ϕR−ϕ0

0

nα − n0
α√

P (ϕ̃, n0
1, . . . , n

0
N)

dϕ̃ α = 1, . . . , N . (4.22)

As the first order electrochemical potentials are r independent (see equation (4.11a)), the mean
chemical potentials for α = 1, . . . , N are given by their respective values at r = 0,

µ̄eα = µ̃ref
α + zαϕ

0 +


ln n0

α

nref
S

Nernst–Planck ,

ln n0
α

n0
S

Bikerman ,

ln n0
α

n0 − υref
α

υref
S

ln n0
S

n0 DGLM .

(4.23)

2This P is in fact related to the pressure, or more precisely it is the pressure difference p− p0, and (4.17) is a variant
of the momentum balance (2.9). Readers who feel uncomfortable with the introduction of a pressure in the context of
Nernst–Planck or Bikerman models can treat it as just a shorthand notation for the corresponding expression in (4.19).
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Resulting 1D system and 2D reconstruction. The variables ϕ0 and n0
α for α = 1, . . . , N , as well

as ϕR and n̄0
α for α = 1, . . . , N are determined by a system consisting of one dimensional PDEs in

x-direction (4.13a) and (4.13b), and in addition for each point in x the non-linear algebraic equations
(4.20) and (4.22). The system reads

∂tn̄α = Dαα
R
∂x(R n̄α ∂xµ̄e

α) α = 1, . . . , N , (4.24a)

− λ2

δ2R
σ =

N∑
α=1

zαn̄α , (4.24b)

σ = sgn(σ)
√

2δ
λ

√
P (ϕR − ϕ0, n0

1, . . . , n
0
N) . (4.24c)

n̄α = n0
α + 1

R
λ√
2δ

∫ ϕR−ϕ0

0

nα − n0
α√

P (ϕ̃, n0
1, . . . , n

0
N)

dϕ̃ α = 1, . . . , N , (4.24d)

For the averaged potentials µ̄e
α (4.23) is applied. To get n0

S , (4.11c) is used,

υref
S n0

S = 1−
N∑
α=1

υref
α n0

α . (4.25)

In the Nernst–Planck case the function P is explicitly determined by (4.19) as a function of n0
α and ϕ0.

In contrast for the Bikerman and DGML model P is implicitly determined by equation

nS +
N∑
α=1

nα = n , (4.26)

together with the representation (4.21) of the number densities.

Finally, a 2D solution can be recovered in a post processing step. Given the solution ϕ0, ϕR and n0
α,

we use (4.11b) to determine ϕ in all of Ω, i.e.

− λ2

δ2R2∂rrϕ =
N∑
α=1

zαnα(ϕ, P ) , (4.27a)

ϕ|r=0 = ϕ0 , ϕ|r=R = ϕR , (4.27b)

n(ϕ, P ) =
N∑
α=1

nα(ϕ, P ) + nS(ϕ, P ) , (4.27c)

1 =
N∑
α=1

υref
α nα(ϕ, P ) + υref

S nS(ϕ, P ) , (4.27d)

where we again use the representation (4.21) for nα.

5 Numerical study

In this section we present numerical study focused on two questions:

� How accurate is the 1D-method derived in the Section 4.3 in comparison with the solution of the
2D model?
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� What is the influence of the different solvation models as discussed in previous sections?

To answer these questions we study two, experimentally driven, pore examples: (i) a trumpet shaped
pore and (ii) a conical pore geometry which are shown in Fig. 2. We consider a binary electrolyte
consisting only of the solvent and – for simplicity – monovalent anions and cations and use the indices
α ∈ {A,C} instead of α ∈ {1, 2} for referencing the ionic species. Further we assume that the
number of solvent molecules in the solvation shell of the ions is equal. We refer to the solvation shell
number as κ. The atomic masses and the specific volume of the ions are given by the simple relation

mα = (1 + κ)mS , υref
α = (1 + κ)υref

S α = A,C . (5.1)

By this assumption the mass-volume-ratio of all constituents is equal and the constraint (3.1) is satisfied.

5.1 Comparison 1D and 2D model

In this section we compare the 1D and 2D solutions for the DGLM model with κ = 0 and with κ = 10.
The case κ = 0 coincides with the Bikerman model where the lattice size is given by the number
density of the pure solvent. We also compared the 1D and 2D results from the Nernst–Planck model
and found only minor differences compared to the Bikerman (κ = 0) case. Therefore we omit these
results here.

The computations are performed with the parameters given in Table 2. On the left and the right domain
boundary the surface charge vanishes and the electric potential and the number densities are thus
constant in r direction. The prescribed potential difference between the left and the right boundary is
denoted by VLR and the number densities on the left and right boundary are set to the values nbath

AC

that correspond to the bulk concentrations in the baths on both sides of the pore.

Table 2: Parameters used in the numerical computations.

kB ≈ 1.3806488× 10−23 J/K T = 300 K
e0 ≈ 1.602176565× 10−19C ε0 ≈ 8.85418781762−12C/(V m) σ0 = 1 e0/nm2

χ = 77.5 zA = −1 zC = +1
(υref
S )−1 = 55 mol/L VLR = 0.2 V nbath

A/C = 0.1 mol/L

Numerical methods For the 1D problem, we use a P1 finite element method for the stationary version
of (4.24a), i.e. we discretize∫ L

0
∂xξ ·R n̄α ∂xµ̄α dx = 0 for all testfunctions ξ , (5.2)

where we apply element wise constant approximation of R n̄α by its value in the element mid point. For
simplicity, a uniform mesh in x-direction is used and the integral in (4.22) is approximated by trapezoidal
rule with a uniform partition and 500 evaluation points. The resulting non-linear system is solved by
Newton’s method and implemented for use with GNU Octave and MATLAB.

To solve the full 2D steady state system, i.e. equations (2.11), we used two different implementations.

On the one hand, a variant of the method described in in [MPWR18] applying a standard P1 finite
element discretisation and a Gummel iteration, [Gum64] is used to solve the problems for the Bikerman
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Figure 3: Comparison of the 1D and 2D solution for the trumpet shape pore. We observe good
agreement between the 1D and 2D solution along the line r = 0 (functions ϕ0(x), n0

A(x) and n0
C(x)).

In addition, ϕ0(x)− ϕR(x) is displayed in the upper right figure to show the agreement between the
1D and the 2D computations on the pore walls.

model (κ = 0). We use non-uniform meshes that are strongly refined at the charged pore walls in order
to properly resolve the Debye layers. The meshes are created using Netgen [Sch97], while we use
MATLAB to assemble and solve the corresponding discrete systems. Because of the different length
scales and the boundary layer scale we use a highly anisotropic mesh of 7× 105 triangular elements.

On the other hand the method described in [Fuh15, Fuh16] is used to solve the problems for the DGLM
model (κ = 10). It is based on a re-formulation of the system in terms of (effective) species activities

aα = exp
(
µα−mαmS µS

kBT

)
and a two point flux finite volume method based on a thermodynamically

consistent modification of the Scharfetter–Gummel flux [SG69]. Here, the resulting non-linear systems
are solved via Newton iteration and parameter embedding. The discretization meshes are created from
an anisotropic rectangular mesh with graded refinement in the vicinity of the pore wall and subsequent
transformation to the pore geometries. The method is implemented within the C++/python based
framework pdelib [JF+18].

Solutions from both codes where tested for coincidence for the classical Nernst–Planck and the
Bikerman model.

Trumpet shape geometry. We consider a trumpet shaped pore like in Fig. 2. The length of the pore
is Lref = 1000nm and a radius is varying form 1.5nm to 10nm . This pore shape is usually obtained
by the double etching technique and due to its symmetry in the x direction shows different behavior
then the more popular conical shaped pore. The pore boundary is given by

R(x)
Rref =

(
34
(

x
Lref

)2 − 34 x
Lref + 10

)
, (5.3)

where we chose Rref = 1nm. We assume a smooth charge distribution of the form
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Figure 4: Reconstructed 2D solution based on the 1D solution with κ = 10 from Fig. 3. Only the upper
half of the symmetric solution is displayed.

σ(x) = σ0 exp
(

1 + (Lref )2

(2x− Lref )2 − (Lref )2

)
. (5.4)

The solution of the 1D problem is shown in Fig. 3. We observe that on the center line r = 0 in x
direction the electric potential is not linear but instead but shows a stronger growth on the left side of
the pore center at x = 500nm and a slower growth to the right of the center. The anions show some
accumulation in the middle of the pore where the positive surface charge is the highest. The diffusion
of cations from the right to the left side is hindered by the pore resulting in accumulation ”before” and
depletion ”behind” the pore. Fig. 4 shows a 2D reconstruction for κ = 10. We observe a very sharp
layer near the charged pore wall where the anions accumulate to compensate the surface charge.

Comparing the solution obtained with the 1D model with the results of the full 2D computations show
very good agreement along the center line r = 0 and for the potential difference between the pore wall
and the center line, cf. Fig. 3. A more detailed comparison of the 1D and 2D results and of the impact
of the model parameter κ, can be obtained from cross-sections of the (reconstructed 2D) solutions for
fixed values of the variable x. In Fig. 5, cross-sections are displayed in the pore middle at x = 500nm
and at some distance to the left and right. Again, we observe perfect agreement between the 1D and
2D solutions over the complete distance of the cross-sections. The potential shows in all cases similar
profiles from r = 0 to r = R(x)Rref with an increase in the order of 0.08V. At x = 500nm we see
that, due to the higher concentration at r = 0, the anions accumulate very strongly in front of the
charged pore wall, reaching a concentration of 7mol/L for κ = 0. For κ = 10 the anion concentration
is significant lower at nA ≈ 3.5mol/L what is still considerably lower than the saturation limit of 5mol/L
for this case. The cations are repelled from the positively charged wall, leading to similar profiles with
respect to r, only starting from a significantly higher level for x = 800nm.
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Figure 5: Cross sections of the potential and the number densities at x = 200nm (top row), x = 500nm
(middle row) x = 800nm (bottom).

Figure 6: Comparison of the 1D and 2D solution for the conical shape pore. The computed 1D solution
ϕ0(x), n0

A(x) and n0
C(x) agree with the corresponding 2D solution. In addition, ϕ0(x) − ϕR(x) is

displayed in the upper right figure and also shows agreement between the 1D and the 2D computations.
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Figure 7: Reconstructed 2D solution based on the 1D solution with κ = 10 from Fig. 6. Only the upper
half of the symmetric solution is displayed.

Conical shape geometry. Motivated by experimental work on pores with conical shape obtained
using the etching technique, we consider a conically shaped pore of length Lref = 10000nm with
radius varying between 1.5nm and 10nm which corresponds with the polyethylene terephthalate (PET)
nanopore, as used by Siwy [SAB+03]. It is well known that such narrow tips strongly influences the
ion transport through the pore [PWB+13]. We include two bath regions of 5000nm length each. The
computational domain is thus described by

R(x)
Rref =


−28

(2x−Lref

Lref

)
+ 2 for 0 ≤ x

Lref ≤ 1
2 ,

8
(2x−Lref

2Lref

)
+ 2 for 1

2 ≤
x
Lref ≤ 3

2 ,

20
(2x−3Lref

Lref

)
+ 10 for 3

2 ≤
x
Lref ≤ 2 .

(5.5)

We consider a pore with surface charge density inside the pore which corresponds with 5000nm <
x < 15000nm and zero outside this section.

σ(x) = σ0

(
1
2 + 1

2 tanh
(
3002x−Lref

2Lref

))(1
2 + 1

2 tanh
(
− 3002x−3Lref

2Lref

))
. (5.6)

The solution of the 1D problem is shown in Fig. 6. We observe a very sharp, step-like transition layer
of the electric potential at the narrow opening of the pore at x = 5000nm. The potential difference
between the pore wall and the center line approaches a plateau inside the pore. The ion concentrations
also show the sharp layers at x = 5000nm with accumulation on the right side of the narrow opening
and depletion to the left. The anions show a sharp peak of the concentration directly right to the narrow
opening. Fig. 7 shows a 2D reconstruction of the 1D solution for κ = 10. As in the parabolic case, we
observe a very sharp layer near the charged pore wall.

The solutions from the 1D model show to a large extend good agreement with the results from the full
2D computations along the center line r = 0, cf. Fig. 6. While the potential difference between the pore
wall and the center line agrees very well between the 1D and the 2D results, there is some deviation
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Figure 8: Cross sections of the potential and the number densities at x = 6000nm (top row),
x = 14000nm (bottom) for the conical pore.

between the values on the center line near the narrow opening of the pore. In particular when looking
at κ = 10, we observe that the peak in n0

A is more pronounced in the 1D simulations compared to the
corresponding full 2D case. This indicates limitations of the asymptotic model in situations where sharp
peaks in x direction occur. Cross-sections of the (reconstructed 2D) solutions for fixed x are shown in
Fig. 8. At x = 600nm we again observe the very strong accumulation of anions in front of the charged
pore wall, reaching a concentration of 7mol/L for κ = 0 and nA ≈ 3.5mol/L for κ = 10.

Both examples – trumpet shape and conical pore – have also been solved numerically for the Poisson–
Nernst–Planck model. As good agreement between the results from the 1D model and the 2D model
was observed and the PNP model has the simplest structure among the models discussed here we do
not present obtained results.

5.2 Solvation effect study for PNP, Bikerman and DGLM model

The Nernst–Planck model is build on the dilute solution assumption, and therefore is lacking any
mechanism for volume exclusion. In the Bikerman model the size exclusion mechanism is introduced
but as in the considered test cases the anion accumulation reaches only 7mol/L, whereas the saturation
limit in this case is the mole density of the pure solvent (55mol/L), the volume exclusion still has no
significant impact on the ion concentration. To reach higher anion concentration and and observe the
exclusion effects in the Bikerman model (κ = 0), it would be necessary to increase the surface charge
significantly (although the chosen value of 1e0/nm2 is already high) or consider higher concentrations
in the bath regions.

In the profiles of nA in Fig. 5 and Fig. 8, we observe that the larger specific volume υref
A/C for κ = 10

effectively reduces the ion concentration already before getting close to the saturation limit of 5mol/L
in this case. Thus it is reasonable to choose the lattice size in the Bikerman model according to the
volume of the solvated ions as (1 + κ)υref

S and then to compare the results with the DGLM model with
the same solvation number.

In the following, we compare only the results of the 1D computations, which already have shown to be
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Figure 9: Comparison of different electrolyte models for the parabolic shape pore. Solvation effect
leads to higher potential differences ϕR − ϕ0 between the center line and the wall and stronger anion
accumulation on the center line at the narrowest part of the pore.

in good agreement with the 2D solutions. The computations in this section were again performed using
the parameters listed in Table 2.

Trumpet shape geometry. For all of the four considered models, the potential ϕ0 along the center
line at r = 0 is very similar, see Fig. 9. The largest differences can be observed in the region where the
pore is the narrowest. Much more pronounced are the differences between the models for ϕR − ϕ0.
Here, the models containing solvation effects show a considerably higher potential difference than
the Nernst–Planck and the Bikerman model without solvation. Moreover, the different treatment of the
solvent causes a larger voltage ϕR − ϕ0 in the DGLM model compared to the Bikerman model with
solvated ions. The anion concentration n0

a along the center line shows a peak at the narrowest part of
the pore where the charged pore wall with its adjacent diffuse charge layer gets closest to the center
line. The peak height is almost the same for Nernst–Planck and Bikerman with κ = 0, but is larger
for Bikerman with κ = 10 and is highest for the DGLM model. This higher anion concentration n0

A

for κ = 10 is a consequence of the limitation of the space charge due to incompressibility and the
large specific volume of the solvated ions which requires a larger boundary layer width to compensate
the surface charge of the wall. The Bikerman model without solvated ions gives similar results to
the Nernst–Planck as the summarized ion concentration is much smaller then the saturation level at
55mol/L.

Conical shape geometry. For the conical pore, a comparison of the different electrolyte model, see
Fig. 10, leads to the same conclusions as for the trumped shaped pore above.

The value φR − φ0 is essentially the zeta potential [Hun13]. As observed above, the introduction
of the solvation effect increases the zeta potential. In the absence of the mechanical equilibrium
assumption taken for this contribution, according to the Helmholtz-Smoluchowski theory for pores with
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Figure 10: Comparison of different electrolyte models for the conical shape pore. Solvation effect
leads to higher potential differences ϕR − ϕ0 between the center line and the wall and stronger anion
accumulation on the center line at the narrowest part of the pore.

non-overlapping Debye layers this would lead to a proportionally increased electroosmotic velocity, see
also [FGL+18] for discussion.

6 Conclusions and discussion

The asymptotic analysis used in this paper leads to quasi-equilibrium conditions governing the system
in the cross sections perpendicular to the pore axes. This allows the effective dimension reduction
of the model to a one dimensional situation by the use of implicit representations that are known for
equilibrium solutions. This procedure can be applied for a variety of material models for the electrolyte:
to the classical PNP model, but also – for the first time – to models containing volume exclusion effects
like the Bikerman model and to models that in addition take solvation effects into account.

The numerical study demonstrates that the asymptotic 1D models can approximate the results of the
full 2D models very closely, but at a considerably lower computational cost. In steady state, the profile
of the electric potential and the ion distribution can be accurately reproduced by the dimension reduced
asymptotic models. We observe differences between the different electrolyte models. In general, volume
exclusion effects limit the charge accumulation in front of the charged wall. Nevertheless, going from
the PNP model to the Bikerman model where the particle volume is given by the number density of
the pure solvent, i.e. 55mol/L, we observe almost no difference in the counter ion accumulation in
front of the charged wall. This result might seem surprising at the first sight, and it seems to suggests
that the simpler PNP model without volume exclusion effects might be preferable over more complex
models like Bikerman or DGLM. But, one has to notice that the maximal archived number density is
only about 7mol/L and thus too low for the volume exclusion mechanism to get relevant. Given realistic
values of the surface charge, in the range of 1e0/nm2 that we used here, therefore sufficiently large
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complexes like solvated ions are need in order for the volume exclusion to have a visible effect. Then,
the resulting ion distribution shows considerably less steep concentration gradients but also results in
higher potential differences (ζ potential) between the pore wall and the center line of the pore. In further
extended models, which take electro-osmotic flow into account, cf. [FGL+18], this wider spreading of
charge in the boundary layers can be expected to cause an increase of the flow velocity and thereby
might contribute to the total current flow though the pore.

In the example of the conical pore, we can divine the limits of the asymptotic method. The narrow width
of the pore, together with the abrupt change of geometry and surface charge, leads to very strong
gradients in the electric potential and the ion concentrations. These quantities can become of order ε−1

and start contributing to the leading order equations of (4.7a). Then, the decoupling of the fluxes into
the different coordinate directions is no longer possible, requiring a full 2D model.

As the behavior of the boundary layers have huge influence on the experimentally observable quantities
of the pores such as obtained current or the rectification a deep study of this effect seems be crucial.

This work might be a starting point for further investigation, especially issues such as

� the extension of the asymptotic analysis and dimension reduction to nonlinear electrolyte models
for radially symmetrical geometries

� inclusion of convective transport and electro-osmotic flow inside the pore

� study the influence of big particles crossing the nanopore on the current crossing the pore. In
particular, the wider spreading of charge in the solvated ions models leads to larger electro-
osmotic velocities and may have a mayor impact on the processes within the pores.
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