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Optimal distributed control of a generalized
fractional Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard
system” by the same authors, general well-posedness results have been established for a class of
evolutionary systems of two equations having the structure of a viscous Cahn–Hilliard system, in
which nonlinearities of double-well type occur. The operators appearing in the system equations
are fractional versions in the spectral sense of general linear operators A,B having compact
resolvents, which are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space
of functions defined in a smooth domain. In this work we complement the results given in quoted
paper by studying a distributed control problem for this evolutionary system. The main difficulty in
the analysis is to establish a rigorous Fréchet differentiability result for the associated control-to-
state mapping. This seems only to be possible if the state stays bounded, which, in turn, makes
it necessary to postulate an additional global boundedness assumption. One typical situation, in
which this assumption is satisfied, arises when B is the negative Laplacian with zero Dirichlet
boundary conditions and the nonlinearity is smooth with polynomial growth of at most order four.
Also a case with logarithmic nonlinearity can be handled. Under the global boundedness assump-
tion, we establish existence and first-order necessary optimality conditions for the optimal control
problem in terms of a variational inequality and the associated adjoint state system.

1 Introduction

Let Ω ⊂ R3 denote an open, bounded, and connected set with smooth boundary Γ and outward
normal derivative ∂ν , let T > 0 be a final time, and let H := L2(Ω) denote the Hilbert space of
square-integrable real-valued functions defined on Ω, endowed with the standard inner product (·, ·)
and norm ‖ · ‖, respectively. We set Qt := Ω × (0, t) for 0 < t < T and Q := Ω × (0, T ). We
investigate in this paper the following abstract distributed optimal control problem:

(CP) Minimize the tracking-type cost functional

J((µ, y), u) :=
α1

2
‖y(T )− yΩ‖2 +

α2

2

∫ T

0

‖y(t)− yQ(t)‖2 dt

+
α3

2

∫ T

0

‖µ(t)− µQ(t)‖2 dt +
α4

2

∫ T

0

‖u(t)‖2 dt (1.1)

over the admissible set

Uad :=
{
u ∈ H1(0, T ;L2(Ω)) : |u| ≤ ρ1 a. e. in Q, ‖u‖H1(0,T ;L2(Ω)) ≤ ρ2

}
, (1.2)

subject to the evolutionary state system

∂ty + A2rµ = 0, (1.3)

τ∂ty +B2σy + f ′(y) = µ+ u, (1.4)

y(0) = y0. (1.5)
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P. Colli, G. Gilardi, J. Sprekels 2

Here, ρ1 and ρ2 are fixed positive constants; αi, i = 1, 2, 3, 4, are nonnegative coefficients but not all
zero, and the given target functions satisfy yΩ ∈ H and yQ, µQ ∈ L2(0, T ;H). The linear operators
A2r and B2σ, with r > 0 and σ > 0, denote fractional powers (in the spectral sense) of operators A
and B. We will give a proper definition of such operators in the next section. Throughout this paper,
we generally assume:

(A1) A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are unbounded, monotone,
and selfadjoint linear operators with compact resolvents.

This assumption implies that there are sequences {λj} and {λ′j} of eigenvalues and orthonormal
sequences {ej} and {e′j} of corresponding eigenvectors, that is,

Aej = λjej, Be′j = λ′je
′
j, and (ei, ej) = (e′i, e

′
j) = δij, for i, j = 1, 2, . . . , (1.6)

such that

0 ≤ λ1 ≤ λ2 ≤ . . . , and 0 ≤ λ′1 ≤ λ′2 ≤ . . . , with lim
j→∞

λj = lim
j→∞

λ′j = +∞, (1.7)

{ej} and {e′j} are complete systems in H. (1.8)

Note that the state system (1.3)–(1.5) can be seen as a generalization of the famous Cahn–Hilliard
system which models a phase separation process taking place in the container Ω. In this case, one typ-
ically has A2r = B2σ = −∆ with zero Neumann or Dirichlet boundary conditions, and the unknown
functions y and µ stand for the order parameter (usually a scaled density of one of the involved
phases) and the chemical potential associated with the phase transition, respectively. Moreover, f
denotes a double-well potential. Typical and physically significant examples for f are the so-called
classical regular potential, the logarithmic double-well potential , and the double obstacle potential ,
which are given, in this order, by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.9)

flog(r) :=
(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c1r

2 , r ∈ (−1, 1), (1.10)

f2obs(r) := −c2r
2 if |r| ≤ 1 and f2obs(r) := +∞ if |r| > 1. (1.11)

Here, the constants c1 > 1 and c2 > 0 in (1.10) and (1.11) are such that flog and f2obs are nonconvex.
Notice that in the case of the nondifferentiable potential (1.11) the state equation (1.4) has to be
understood as a variational inequality. We also note that τ is a nonnegative parameter, where for the
classical Cahn–Hilliard system one has τ = 0 (the nonviscous case), while τ > 0 corresponds to the
viscous case.

In the recent paper [20], general well-posedness and regularity results for the state system (1.3)–(1.5)
have been established for both the viscous and nonviscous cases and for nonlinearities that include all
of the three cases (1.9)–(1.11). It turned out that the first eigenvalue λ1 of A plays an important role
in the analysis. Indeed, the main assumption for the operators A,B besides (A1) was the following:

(A2) Either
(i) λ1 > 0

or
(ii) 0 = λ1 < λ2, and e1 is a constant and belongs to the domain of Bσ.

For our analysis of the optimal control problem (CP), the general assumptions (A1) and (A2) are not
sufficient. Indeed, in order to be able to prove that the control-to-state operator S : u 7→ (µ, y) is
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Optimal distributed control of a generalized fractional Cahn–Hilliard system 3

Fréchet differentiable between suitable Banach spaces, it seems to be indispensable to assume that
f is smooth in its domain (which means that the potential (1.11) is not admitted) and to have at
disposal an L∞(Q) bound for both the state component y and the functions f (i)(y), for i = 1, 2, 3.
In the case of the logarithmic potential (1.10), this means that we need to separate y away from the
critical arguments±1. We will discuss in Section 3 three situations in which appropriate boundedness
conditions for y and the derivatives f ′(y) can be guaranteed, where one of these cases applies to the
logarithmic potential.

Under these boundedness assumptions, we will be able to show the Fréchet differentiability of the
control-to-state operator S (cf. Section 4) and to derive first-order necessary optimality conditions (cf.
Section 5).

Let us add a few remarks on the existing literature. There exist numerous contributions on viscous/-
nonviscous, local/nonlocal, convective/nonconvective Cahn–Hilliard systems for the classical (non-
fractional) case A = B = −∆, 2r = 2σ = 1, or some nonlocal counterparts, where various
types of boundary conditions (e.g., Dirichlet, Neumann, dynamic) and different assumptions on the
nonlinearity f were considered. We refer the interested reader to the recent paper [17] for a selection
of associated references. Some papers also address the coupled Cahn–Hilliard/Navier–Stokes system
(see, e.g, [23,24] and the references given therein).

The literature on optimal control problems for non-fractional Cahn–Hilliard system is still less numer-
ous. The case of Dirichlet and/or Neumann boundary conditions for various types of such systems
were the subject of, e.g., the works [12, 14, 16, 22, 42, 45, 46], while the case of dynamic boundary
conditions was studied in [9–11,13,15,18,19,21,27]. The optimal control of convective Cahn–Hilliard
systems was addressed in [39, 43,44], while the papers [25,26, 29–33,36] were concerned with cou-
pled Cahn–Hilliard/Navier–Stokes systems.

There are only a few contributions to the theory of Cahn–Hilliard systems involving fractional opera-
tors. In the connection of well-posedness and regularity results, we refer to [1, 2] for the case of the
fractional negative Laplacian with zero Dirichlet boundary conditions; general operators other than the
negative Laplacian have apparently only studied in [20]. As of now, aspects of optimal control have
been scarcely dealt with even for simpler linear evolutionary systems involving fractional operators; for
such systems, some identification problems were addressed in the recent contributions [28, 38, 41],
while for optimal control problems for such cases we refer to [5] (for the stationary – elliptic – case,
see also [3, 4]). However, to the authors’ best knowledge, the present paper appears to be the first
contribution that addresses optimal control problems for Cahn–Hilliard systems with general fractional
order operators.

The paper is organized as follows: the subsequent Section 2 brings some auxiliary functional analytic
material, while in Section 3 some preparatory results concerning the state system (1.3)–(1.5) are
discussed. In Section 4, the Fréchet differentiability of the control-to-state operator is shown, and in
the final Section 5, we then prove an existence result for the optimal control problem and establish the
first-order necessary conditions of optimality.

Throughout the paper, for a general Banach space X we denote by ‖ · ‖X and X∗ its norm and
dual space, respectively. However, particular symbols are adopted for the spaces we introduce in the
next section.

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018
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2 Fractional powers and auxiliary results

In this section, we collect some auxiliary material concerning functional analytic notions. To this end,
we generally assume that the conditions (A1) and (A2) are satisfied. At this point, some remarks on
the assumption (A2) are in order.

Remark 2.1. First, the meaning of (A2),(i) is clear, and this condition is satisfied for the more usual
elliptic operators with zero Dirichlet boundary conditions (however, also zero mixed boundary condi-
tions could be considered, with proper definitions of the domains of the operators). For instance, A
can be the Laplace operator −∆ with domain D(−∆) = H2(Ω) ∩ H1

0 (Ω) or the bi-harmonic
operator ∆2 with the domain D(∆2) = H4(Ω) ∩ H2

0 (Ω). The second case (A2),(ii), in which
the strict inequality means that the first eigenvalue λ1 = 0 is simple, arises in both of the fol-
lowing important situations: A is the Laplace operator −∆ with zero Neumann boundary condi-
tions, which corresponds to the choice D(−∆) = {v ∈ H2(Ω) : ∂νv = 0 on Γ}, or A is
the bi-harmonic operator ∆2 with the boundary conditions encoded in the definition of the domain
D(∆2) = {v ∈ H4(Ω) : ∂νv = ∂ν∆v = 0 on Γ}. Indeed, Ω is assumed to be bounded, smooth
and connected.

Using the facts summarized in (1.6)–(1.8), we can define the powers of A and B for an arbitrary
positive real exponent. For the first operator, we have

V r
A := D(Ar) =

{
v ∈ H :

∞∑
j=1

|λrj(v, ej)|2 < +∞
}
, (2.1)

Arv =
∞∑
j=1

λrj(v, ej)ej for v ∈ V r
A, (2.2)

the series being convergent in the strong topology of H , due to the properties (2.1) of the coefficients.
In principle, we can endow V r

A with the (graph) norm and inner product

‖v‖2
gr,A,r := (v, v)gr,A,r and (v, w)gr,A,r := (v, w) + (Arv, Arw) for v, w ∈ V r

A. (2.3)

This makes V r
A a Hilbert space. However, we can choose any equivalent Hilbert norm. Indeed, in view

of assumption (A2), it is more convenient to work with the Hilbert norm

‖v‖2
A,r :=


‖Arv‖2 =

∞∑
j=1

|λrj(v, ej)|2 if λ1 > 0,

|(v, e1)|2 + ‖Arv‖2 = |(v, e1)|2 +
∞∑
j=2

|λrj(v, ej)|2 if λ1 = 0.

(2.4)

In [20, Prop. 3.1] it has been shown that this norm is equivalent to the graph norm defined in (2.3), and
we always will work with the norm (2.4) instead of (2.3). We also use the corresponding inner product
in V r

A given by

(v, w)A,r = (Arv,Arw) or (v, w)A,r = (v, e1)(w, e1) + (Arv, Arw),

depending on whether λ1 > 0 or λ1 = 0, for v, w ∈ V r
A. (2.5)
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Remark 2.2. Observe that in the case λ1 = 0 the constant value of e1 equals one of the numbers
±|Ω|−1/2, where |Ω| is the volume of Ω. It follows for every v ∈ H that the first term (v, e1)e1 of the
Fourier series of v is the constant function whose value is the mean value of v, which is defined by

mean(v) :=
1

|Ω|

∫
Ω

v . (2.6)

Moreover, the first terms of the sums appearing in (2.4) and (2.5) are given by

|(v, e1)|2 = |Ω| (mean v)2 for every v ∈ H,
(v, e1)(w, e1) = |Ω| (mean v)(meanw) for every v, w ∈ H.

In the same way as for A, starting from (1.6)–(1.8) for B, we can define the power Bσ of B for every
σ > 0, where for V σ

B we choose the graph norm. We therefore set

V σ
B := D(Bσ), with the norm ‖ · ‖B,σ associated to the inner product

(v, w)B,σ := (v, w) + (Bσv,Bσw) for v, w ∈ V σ
B . (2.7)

Remark 2.3. Let us briefly comment on the condition (A2),(ii). We notice that the condition that e1

be a constant belonging to V σ
B holds true for many operators having a domain that involve Neu-

mann boundary conditions. This is the case, for instance, if B is the Laplace operator with do-
main D(−∆) = {v ∈ H2(Ω) : ∂νv = 0 on Γ}. On the contrary, if B = −∆ with domain
D(−∆) := H2(Ω) ∩ H1

0 (Ω), then D(B) does not contain any nonzero constant functions. How-
ever, V σ

B does contain every constant function provided that σ ∈ (0, 1/4), since V σ
B is in this case a

subspace of the usual Sobolev-Slobodeckij space H2σ(Ω).

To resume our preparations, we observe that if ri and σi are arbitrary positive exponents, then it is
easily seen that we have the “Green type” formulas

(Ar1+r2v, w) = (Ar1v, Ar2w) for every v ∈ V r1+r2
A and w ∈ V r2

A , (2.8)

(Bσ1+σ2v, w) = (Bσ1v,Bσ2w) for every v ∈ V σ1+σ2
B and w ∈ V σ2

B . (2.9)

The next step is the introduction of some spaces with negative exponents. We set

V −rA := (V r
A)∗ for r > 0, (2.10)

and endow V −rA with the dual norm ‖ · ‖A,−r of ‖ · ‖A,r. We use the symbol 〈 · , · 〉A,r for the duality
pairing between V −rA and V r

A and identify H with a subspace of V −rA in the usual sense, i.e., in order
that 〈z, v〉A,r = (z, v) for every z ∈ H and v ∈ V σ

B . Similarly, we set

V −σB := (V σ
B )∗ for σ > 0. (2.11)

As V σ
B is dense in H , we have the analogous embedding

H ⊂ V −σB . (2.12)

Observe that the following embedding results are valid:

the embeddings V r2
A ⊂ V r1

A ⊂ H are dense and compact for 0 < r1 < r2; (2.13)

the embeddings H ⊂ V −r1A ⊂ V −r2A are dense and compact for 0 < r1 < r2; (2.14)

the embeddings V σ2
B ⊂ V σ1

B ⊂ H are dense and compact for 0 < σ1 < σ2. (2.15)

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018
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We also note the validity of the Poincaré type inequality (see [20, formula (3.5)])

‖v‖ ≤ ĉ ‖Arv‖ for every v ∈ V r
A with mean(v) = 0. (2.16)

At this point, we introduce the Riesz isomorphism Rr : V r
A → V −rA associated with the inner prod-

uct (2.5), which is given by

〈Rrv, w〉A,r = (v, w)A,r for every v, w ∈ V r
A. (2.17)

Moreover, we set

V r
0 := V r

A and V −r0 := V −rA if λ1 > 0, (2.18)

V r
0 := {v ∈ V r

A : mean(v) = 0} and

V −r0 := {v ∈ V −rA : 〈v, 1〉A,r = 0} if λ1 = 0 . (2.19)

According to [20, Prop. 3.2], Rr maps V r
0 onto V −r0 and extends to V r

0 the restriction of A2r to V 2r
0 .

In view of this result, it is reasonable to use a proper notation for the restrictions of Rr and R−1
r to the

subspaces V r
0 and V −r0 , respectively. We set

A2r
0 := (Rr)|V r0 and A−2r

0 := (R−1
r )|V −r0

, (2.20)

where the index 0 has no meaning if λ1 > 0 (since then V ±r0 = V ±rA ), while it reflects the zero mean
value condition in the case λ1 = 0. We thus have

A2r
0 ∈ L(V r

0 , V
−r

0 ), A−2r
0 ∈ L(V −r0 , V r

0 ) and A−2r
0 = (A2r

0 )−1 , (2.21)

〈A2r
0 v, w〉A,r = (v, w)A,r = (Arv,Arw) for every v ∈ V r

0 and w ∈ V r
A , (2.22)

〈f, A−2r
0 f〉A,r = ‖A−2r

0 f‖2
A,r = ‖f‖2

A,−r for every f ∈ V −r0 . (2.23)

Notice that (2.23) implies that

〈f ′, A−2r
0 f〉A,r =

1

2

d

dt
‖f‖2

A,−r a.e. in (0, T ), for every f ∈ H1(0, T ;V −r0 ). (2.24)

Moreover, by virtue of [20, Prop. 3.3], we have(
ArA−2r

0 f, Arv) = 〈f, v〉A,r for every f ∈ V −r0 and v ∈ V r
A. (2.25)

In addition (see [20, Prop. 3.4]), the operator A2r ∈ L(V 2r
A , H) can be extended in a unique way to

a continuous linear operator, still termed A2r, from V r
A into V −r0 , and we have

‖A2rv‖A,−r ≤ ‖Arv‖ for every v ∈ V r
A. (2.26)

As a final preparation, we now introduce some notations concerning interpolating functions.

Interpolants. Let N be a positive integer and Z be one of the spaces H , V r
A, V σ

B . We set hN :=
T/N and InN := ((n− 1)hN , nhN) for n = 1, . . . , N . Given z = (z0, z1, . . . , zN) ∈ ZN+1, we
define the piecewise constant and piecewise linear interpolants

zhN ∈ L∞(0, T ;Z), zhN ∈ L
∞(0, T ;Z) and ẑhN ∈ W 1,∞(0, T ;Z)

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018
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by setting

zhN (t) = zn and zhN (t) = zn−1 for a.a. t ∈ InN , n = 1, . . . , N, (2.27)

ẑhN (0) = z0 and ∂tẑhN (t) =
zn+1 − zn

hN
for a.a. t ∈ InN , n = 1, . . . , N. (2.28)

For the reader’s convenience, we summarize some well-known relations between the finite set of
values and the interpolants. We have that

‖zhN‖L∞(0,T ;Z) = max
n=1,...,N

‖zn‖Z , ‖zhN‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn‖Z , (2.29)

‖∂tẑhN‖L∞(0,T ;Z) = max
0≤n≤N−1

‖(zn+1 − zn)/hN‖Z , (2.30)

‖zhN‖2
L2(0,T ;Z) = hN

N∑
n=1

‖zn‖2
Z , ‖zhN‖

2
L2(0,T ;Z) = hN

N−1∑
n=0

‖zn‖2
Z , (2.31)

‖∂tẑhN‖2
L2(0,T ;Z) = hN

N−1∑
n=0

‖(zn+1 − zn)/hN‖2
Z , (2.32)

‖ẑhN‖L∞(0,T ;Z) = max
n=1,...,N

max{‖zn−1‖Z , ‖zn‖Z} = max{‖z0‖Z , ‖zhN‖L∞(0,T ;Z)} , (2.33)

‖ẑhN‖2
L2(0,T ;Z) ≤ hN

N∑
n=1

(
‖zn−1‖2

Z + ‖zn‖2
Z

)
≤ hN‖z0‖2

Z + 2‖zhN‖2
L2(0,T ;Z) . (2.34)

Moreover, it holds that

‖zhN − ẑhN‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn+1 − zn‖Z = hN ‖∂tẑhN‖L∞(0,T ;Z) , (2.35)

‖zhN − ẑhN‖2
L2(0,T ;Z) =

hN
3

N−1∑
n=0

‖zn+1 − zn‖2
Z =

h2
N

3
‖∂tẑhN‖2

L2(0,T ;Z) , (2.36)

and similar identities for the difference zhN − ẑhN . As a consequence, we also have the inequalities

‖zhN − zhN‖L∞(0,T ;Z) ≤ 2hN ‖∂tẑhN‖L∞(0,T ;Z) , (2.37)

‖zhN − zhN‖
2
L2(0,T ;Z) ≤

4h2
N

3
‖∂tẑhN‖2

L2(0,T ;Z) . (2.38)

Finally, we observe that

hN

N−1∑
n=0

‖(zn+1 − zn)/hN‖2
Z ≤ ‖∂tz‖2

L2(0,T ;Z)

if z ∈ H1(0, T ;Z) and zn = z(nhN) for n = 0, . . . , N. (2.39)

Throughout the paper, we make use of the elementary identity and inequalities

a(a− b) =
1

2
a2 +

1

2
(a− b)2 − 1

2
b2 ≥ 1

2
a2 − 1

2
b2 for every a, b ∈ R, (2.40)

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (2.41)

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018
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and quote (2.41) as the Young inequality. We also take advantage of the summation by parts formula

k−1∑
n=0

an+1(bn+1 − bn) = akbk − a1b0 −
k−1∑
n=1

(an+1 − an)bn , (2.42)

which is valid for arbitrary real numbers a1, . . . , ak and b0, . . . , bk. We also account for the discrete
Gronwall lemma in the following form (see, e.g., [34, Prop. 2.2.1]): for nonnegative real numbers M
and an, bn, n = 0, . . . , N ,

ak ≤M +
k−1∑
n=0

bnan for k = 0, . . . , N implies

ak ≤M exp
(k−1∑
n=0

bn

)
for k = 0, . . . , N. (2.43)

In (2.42)–(2.43) it is understood that a sum vanishes if the corresponding set of indices is empty.

3 General assumptions and the state system

In this section, we state our general assumptions and discuss the properties of the state system (1.3)–
(1.5). Besides (A1) and (A2), we generally assume for the data of the state system:

(A3) r, σ, and τ are fixed positive real numbers.

(A4) f = f1 + f2, where f1, f2 and f satisfy:

f1 ∈ C3(D(f1)), D(f1) being an open interval, and f ′′1 ≥ 0 in D(f1);

f2 ∈ C3(R), and f ′2 is Lipschitz continuous on R;

lim inf |s|↗+∞
f(s)
s2

> 0.

(A5) y0 ∈ V 2σ
B and f ′(y0) ∈ H .

Notice that (A4) holds true for the classical regular potential (1.9), for which we have D(f1) = R. In
general, if D(f1) 6= R, then it is understood that f1 also stands for its l.s.c. extension in the sum f =
f1 + f2. This is the case for the logarithmic potential (1.10), for which we have D(f1) = (−1, 1), and
its l.s.c. extension is given by setting f1(±1) := 2 ln(2) and f1(r) := +∞ if |r| > 1. In cases like
this, the growth condition at infinity for f is trivially satisfied. Finally, we remark that assumption (A4)
excludes the double obstacle potential (1.11), whose effective domain is the closed interval [−1, 1].

For the quantities entering the cost functional and the admissible set Uad (see (1.1) and (1.2)), we
generally assume:

(A6) yΩ ∈ L2(Ω), yQ, µQ ∈ L2(Q), the constants αi ≥ 0, i = 1, 2, 3, 4, are not all equal
to zero, ρ1 > 0, and ρ2 > 0.

Finally, we denote the control space by

X := H1(0, T ;L2(Ω)) ∩ L∞(Q), (3.1)

and make an assumption which is rather a denotation, since Uad is a bounded subset of X:
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(A7) The constant R > 0 is such that Uad ⊂ UR := {u ∈ X : ‖u‖X < R}.

With the above assumptions, we are now ready to cite a well-posedness result for the state system
(1.3)–(1.5) which is a special case of the general results [20, Thm. 2.6 and Thm. 2.8]. To this end, we
recall the weak notion of solution to the system (1.3)–(1.5) introduced in [20]. Namely, we look for a
pair of functions (µ, y) satisfying the variational (in)equalities

(∂ty(t), v) + (Arµ(t), Arv) = 0 for a.e. t ∈ (0, T ) and every v ∈ V r
A, (3.2)

(τ∂ty(t), y(t)− v) + (Bσy(t), Bσ(y(t)− v)) +

∫
Ω

f1(y(t)) + (f ′2(y(t)), y(t)− v)

≤ (µ(t) + u(t), y(t)− v) +

∫
Ω

f1(v) for a.e. t ∈ (0, T ) and every v ∈ V σ
B , (3.3)

y(0) = y0 . (3.4)

We have the following result.

Theorem 3.1. Suppose that the general assumptions (A1)–(A5) and (A7) are fulfilled. Then the weak
state system (3.2)–(3.4) has for every u ∈ UR a unique solution (µ, y) such that

µ ∈ L∞(0, T ;V 2r
A ), (3.5)

y ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ), (3.6)

f1(y) ∈ L1(Q). (3.7)

Moreover, there are constants K1 > 0 and K2 > 0, which depend only on the data of the state
system and R, such that the following holds true:

(i) Whenever u ∈ UR is given, then the associated solution (µ, y) satisfies

‖µ‖L∞(0,T ;V 2r
A ) + ‖y‖W 1,∞(0,T ;H)∩H1(0,T ;V σB ) ≤ K1. (3.8)

(ii) Whenever ui ∈ UR, i = 1, 2, are given and (µi, yi), i = 1, 2, are the associated solutions,

then

‖y1 − y2‖L∞(0,T ;H)∩L2(0,T ;V σB ) ≤ K2 ‖u1 − u2‖L2(0,T ;H) . (3.9)

Remark 3.2. Note that the regularity (3.7) can be improved up to

f1(y) ∈ L∞(0, T ;L1(Ω)).

Indeed, first, f1 is bounded from below by an affine function, so that∫
Ω

f1(y(t)) ≥ −c
∫

Ω

(
1 + |y(t)|

)
for some constant c > 0 and for a.a. t ∈ (0, T ), and the last term is bounded since y ∈ L∞(0, T ;H).
On the other hand, thanks to (3.3),

∫
Ω
f1(y) is bounded from above by an L∞(0, T )-function (cf. (3.5)

–(3.6)).
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Theorem 3.1 ensures that the control-to-state operator

S : u 7→ S(u) := (µ, y) (3.10)

is well defined as a mapping from UR ⊂ X into the Banach space specified by the regularity condi-
tions (3.5), (3.6).

The following global boundedness condition is crucial for the analysis of the control problem.

(GB) There is a constant K3 > 0, which depends only on the data of the state system and R, such
that the following holds true: whenever (µ, y) = S(u) for some u ∈ UR, then

‖y‖L∞(Q) + max
i=0,1,2,3

‖f (i)
1 (y)‖L∞(Q) ≤ K3. (3.11)

Remark 3.3. We observe that under the condition (GB) we have that f ′1(y) ∈ L∞(Q), and the
variational inequality (3.3) is easily seen to be equivalent to the variational equation

(τ∂ty(t), v) + (Bσy(t), Bσ(v)) + (f ′1(y(t)), v) + (f ′2(y(t)), v) = (µ(t) + u(t), v)

for a.e. t ∈ (0, T ) and every v ∈ V σ
B . (3.12)

A fortiori, by virtue of the bounds (3.8) and a comparison in equation (3.12), we have B2σy = µ +
u− τ ∂ty − f ′(y) ∈ L∞(0, T ;H), whence we can infer the additional regularity

y ∈ L∞(0, T ;V 2σ
B ). (3.13)

In particular, under the condition (3.13) the solution (µ, y) is strong and, in particular, (1.4) is valid
almost everywhere in Q.

Examples. The condition (GB) seems to be very restrictive and requires a case-to-case analysis.
We now give some sufficient conditions under which it holds true. In all of the following three examples,
we have B = −∆ with either zero Dirichlet or zero Neumann boundary condition. Then, it turns out
that V 1

B ⊂ H2(Ω), and thus, by regularity, V σ
B ⊂ H2σ(Ω) for all σ ∈ N. Interpolation shows that

then also V σ
B ⊂ H2σ(Ω) for all noninteger σ > 0. We also notice that V 1/2

−∆ is equal to H1
0 (Ω) for

Dirichlet boundary conditions or H1(Ω) in the case of Neumann boundary conditions.

1. We begin with the logarithmic potential (1.10). Recall that in this case we have f1(r) =
(1 + r) ln(1 + r) + (1 − r) ln(1 − r) for r ∈ (−1, 1), f1(±1) = 2 ln(2), and f1(r) = +∞
if r 6∈ [−1, 1]. Hence it follows from the variational inequality (3.3) that the corresponding solution
component y must satisfy y ∈ [−1, 1] almost everywhere. In particular, ‖f ′2(y)‖L∞(Q) is bounded.
Now assume that B = −∆ with zero Neumann boundary condition, 2σ = 1, and

−1 < inf
x∈Ω

y0(x), sup
x∈Ω

y0(x) < +1. (3.14)

Moreover, assume that the embedding

V 2r
A ⊂ L∞(Ω) (3.15)

holds true. This is the case, for instance, if A = −∆ with zero Dirichlet or Neumann condition and
r > 3/8. Indeed, we then have (see above) V 2r

A ⊂ H4r(Ω) and 4r > 3/2, which implies that
H4r(Ω) ⊂ L∞(Ω). Now let (µ, y) = S(u) for some u ∈ UR. If (3.15) is satisfied, then we can infer
from (3.8) that there is some global constant M > 0 such that ‖µ + u − f ′2(y)‖L∞(Q) ≤ M . By
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the form of the derivative f ′1 of the logarithmic potential, there are constants r∗, r∗ ∈ (−1, 1) with
r∗ ≤ y0 ≤ r∗ a.e. in Ω such that

f ′1(r) +M ≤ 0 ∀ r ∈ (−1, r∗) and f ′1(r)−M ≥ 0 ∀ r ∈ (r∗, 1).

Now, recall that V 1/2
−∆ = H1(Ω). We thus may insert v = y(t) − (y(t) − r∗)+ ∈ H1(Ω) in the

variational inequality (3.3), where (y(t) − r∗)+ is the positive part of y(t) − r∗. We then find for
almost every t ∈ (0, T ) the inequality

τ

2

d

dt
‖(y(t)− r∗)+‖2 +

∫
Ω

|∇(y(t)− r∗)+|2

≤
∫

Ω

[
f1(y(t)− (y(t)− r∗)+) − f1(y(t)) + (µ(t) + u(t)− f ′2(y(t)))(y(t)− r∗)+

]
. (3.16)

We claim that the integrand of the integral on the right-hand side is nonpositive. To this end, we put

Ω+(t) := {x ∈ Ω : y(x, t) > r∗}, Ω−(t) = {x ∈ Ω : y(x, t) ≤ r∗}.

Obviously, (y(t)− r∗)+ = 0 on Ω−(t), and thus the integrand is zero on Ω−(t). On the other hand,
in Ω+(t) we have (y(t)− r∗)+ = y(t)− r∗, and thus the integrand equals

f1(r∗)− f1(y(t)) + (µ(t) + u(t)− f ′2(y(t)))(y(t)− r∗).

Now r∗ ∈ (−1, 1), and thus f1 is differentiable at r∗. Hence, invoking the convexity of f1, we have
in Ω+(t) that f1(r∗)− f1(y(t)) ≤ −f ′1(r∗)(y(t)− r∗). Now, by construction, it holds that µ(t) +
u(t) − f ′2(y(t)) − f ′1(r∗) ≤ 0, which implies that the integrand is nonpositive also in this case, as
claimed. In conclusion, the expression on the right-hand side of (3.16) is nonpositive. At this point, we
integrate (3.16) over (0, t), where t ∈ (0, T ] is arbitrary. Since (y0 − r∗)+ = 0 by assumption, we
obtain that (y − r∗)+ = 0 a.e. in Q, which implies y ≤ r∗ a.e. in Q. Similarly, we obtain that y ≥ r∗
a.e. in Q. With this, the condition (3.11), i.e., the validity of (GB), is shown.

We conclude this examples with the remark that the above argumentation remains valid for every
potential f1 ∈ C1(−1, 1) ∩ C0([−1, 1]) which is convex on [−1, 1] and satisfies

lim
r↘−1

f ′1(r) = −∞, lim
r↗+1

f ′1(r) = +∞,

where it is understood that f1 is extended to the whole of R by putting f1(r) = +∞ for r 6∈ [−1, 1].

2. Next, we assume that f1 ∈ C3(R), which is satisfied for the classical potential (1.9). In this
case, V σ

B ⊂ H2σ(Ω), and it holds H2σ(Ω) ⊂ L∞(Ω) (and thus y ∈ L∞(Q) with (3.11) whenever
(µ, y) = S(u) for some u ∈ UR) if σ > 3/4.

3. The following result shows that the condition σ > 3/4 is not optimal if the nonlinearity satisfies a
suitable growth condition, which is met by, e.g., the classical regular potential (1.9).

Proposition 3.4. Let B = −∆ with domain H2(Ω) ∩H1
0 (Ω), let f ∈ C3(R), and suppose that the

general assumptions (A1)–(A5) and (A7) are fulfilled. In addition, assume that there is some Ĉ1 > 0
such that

|f ′(s)| ≤ Ĉ1

(
1 + |s|3

)
∀ s ∈ R. (3.17)

Then the condition (GB) holds true whenever 9
20
< σ ≤ 3

4
.
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Proof. We show the result only for 9
20
< σ < 3

4
(the case σ = 3

4
can be treated in a similar way). We

then have

V σ
B ⊂ H2σ(Ω) ⊂ Lp(Ω) with − 3

p
= 2σ − 3

2
, i.e., p =

6

3− 4σ
. (3.18)

We notice that (3.18) holds true also in the case of Neumann boundary conditions. However, we have
to assume Dirichlet boundary conditions later on. From (1.4), we infer that B2σy = g − f ′(y) with
g := µ+ u− τ ∂ty, where, owing to (3.8) and (3.17),

‖g‖L∞(0,T ;H) + ‖f ′(y)‖L∞(0,T ;Lp/3(Ω)) ≤ C1 , (3.19)

with a global constant C1 > 0. We now distinguish between the two cases p/3 ≥ 2 and p/3 < 2,
which, by virtue of (3.18), occur if σ ≥ 1/2 and σ < 1/2, respectively.

Assume first that σ ≥ 1/2. Then, by (3.19), B2σy ∈ L∞(0, T ;H), whence

y ∈ L∞(0, T ;V 2σ
B ) ⊂ L∞(0, T ;H4σ(Ω)) ⊂ L∞(Q),

since 4σ ≥ 2. Therefore, (3.11) is valid.

Assume now that σ < 1/2. Then, we only have B2σy ∈ L∞(0, T ;Lp/3(Ω)). We now claim that the
following implication is valid:

If v ∈ H and Bsv ∈ Lq(Ω) with s ∈ (0, 1) and q > 3
2s

, then v ∈ L∞(Ω)

and ‖v‖L∞(Ω) ≤ C2, where C2 depends only on s, q and Ω. (3.20)

To prove this claim, we note that λ′1 > 0 (see (1.6)) in our situation, and thus we have Bsw = 0
for w ∈ V σ

B if and only if w = 0. Therefore, we must have v = ṽ+ − ṽ−, where ṽ± ∈ V σ
B is the

(unique) weak solution to the fractional Dirichlet problem Bsṽ± = (Bsv)±. At this point, as we are
dealing with Dirichlet boundary conditions, we can apply the results of [7, Thm. 4.1 and Sect. 2.1],
which imply that the estimate

0 ≤ ṽ± ≤ κ ‖(Bsv)±‖q Bq(ϕ) in Ω, (3.21)

holds true. Here, the constant κ > 0 depends on s, q, and Ω, ϕ ∈ C0(Ω̄) is the first (positive)
eigenfunction of Bs (or, equivalently, of B, i.e., we have ϕ = e′1), and Bq is a suitable continuous
function on [0,+∞) depending on q. The claim thus holds true.

We now choose s = 2σ, so that s ∈ (0, 1), as well as q = p/3. Then we can apply (3.20) provided
that q > 3

2s
, i.e., 2s > 3

q
, which, in view of (3.18), just means that σ > 9

20
.

Remark 3.5. Observe that if B = −∆ with zero Dirichlet boundary condition and σ > 9
20

, then the
assumption (A2) can only be fulfilled if λ1 > 0. Indeed, if λ1 = 0, then (A2),(ii) necessitates that the
constant functions belong to V σ

B ⊂ H2σ(Ω), which in turn requires that 0 < σ < 1/4.

In the following, we will always assume that the condition (GB) is satisfied and account for Remark 3.3.
We now improve the stability estimate (3.9) established in Theorem 3.1.

Theorem 3.6. Suppose that (A1)–(A5), (A7) and (GB) are satisfied. Then there is a constantK4 > 0,
which depends only on the data of the state system andR, such that the following holds true: whenever
ui ∈ UR, i = 1, 2, are given and (µi, yi) = S(ui), i = 1, 2, are the associated solutions to the state
system (1.3)–(1.5), then it holds, for every t ∈ (0, T ],

‖µ1 − µ2‖L2(0,t;V 2r
A ) + ‖y1 − y2‖H1(0,t;H)∩L∞(0,t;V σB )

≤ K4 ‖u1 − u2‖L2(0,t;H) . (3.22)
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Proof. The functions u := u1 − u2, y := y1 − y2, µ := µ1 − µ2, obviously satisfy the system

∂ty + A2rµ = 0 a.e. in Q, (3.23)

τ ∂ty +B2σy + f ′(y1)− f ′(y2) = µ+ u a.e. in Q, (3.24)

y(0) = 0 a.e. in Ω. (3.25)

In the following, Ci, i ∈ N, denote constants that depend only on the data of the state system and
R. We multiply (3.23) by µ and (3.24) by ∂ty, add the resulting identities, and integrate over Qt,
where t ∈ (0, T ] is arbitrary. Rearranging terms and applying Young’s inequality, we then obtain the
inequality

τ

∫ t

0

‖∂ty(s)‖2 ds +

∫ t

0

‖Arµ(s)‖2 ds +
1

2
‖Bσy(t)‖2 =

∫ t

0

∫
Ω

∂ty
(
u− (f ′(y1)− f ′(y2)

)
≤ τ

2

∫ t

0

‖∂ty(s)‖2 ds + C1

(
‖u‖2

L2(Qt)
+ ‖f ′(y1)− f ′(y2)‖2

L2(Qt)

)
. (3.26)

Now observe that |f ′(y1)−f ′(y2)| ≤ K3|y| a.e. inQ, by (3.11). Hence, if we add the term
∫
Qt
y ∂ty

to both sides of (3.26) and apply Young’s inequality appropriately, then we readily infer from Gronwall’s
lemma the estimate

‖Arµ‖L2(0,t;H) + ‖y‖H1(0,t;H)∩L∞(0,t;V σB ) ≤ C2 ‖u‖L2(0,t;H) , (3.27)

whence, by virtue of (3.23), also

‖A2rµ‖L2(0,t;H) ≤ C2 ‖u‖L2(0,t;H) . (3.28)

It remains to show the estimate

‖µ‖L2(0,t;V 2r
A ) ≤ C3 ‖u‖L2(0,t;H) . (3.29)

According to (2.4), this follows directly from (3.28) if λ1 > 0, while in the case λ1 = 0 we have to
estimate the mean value mean (µ). Now, by (A2), the constant function 1(x) ≡ 1 belongs to V σ

B .
Moreover, we have in this case that Ar1 = 0, and it follows from (3.23) that mean (∂ty) = 0, almost
everywhere on (0, T ). We thus can integrate (3.24) over Ω to see that we have almost everywhere in
(0, T ) the estimate∣∣∣∫

Ω

µ(t)
∣∣∣ ≤ ∣∣∣τ ∫

Ω

∂ty(t) + (Bσy(t), Bσ1)−
∫

Ω

u(t) +

∫
Ω

(f ′(y1(t))− f ′(y2(t)))
∣∣∣

≤ C4 (‖Bσy(t)‖+ ‖u(t)‖+ ‖y(t)‖) ,

and (3.27) implies that
‖mean (µ)‖L2(0,t) ≤ C5 ‖u‖L2(0,t;H),

whence (3.29) follows.

4 Differentiability of the control-to-state mapping

In this section, we prove that the control-to-state mapping S : u 7→ (µ, y) is Fréchet differentiable
from the space X defined in (3.1) into a suitable Banach space Y. To this end, we assume that the

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018



P. Colli, G. Gilardi, J. Sprekels 14

general assumptions (A1)–(A5), (A7), and (GB) are satisfied, and we suppose that a fixed ū ∈ UR is
given and that (ȳ, µ̄) = S(ū). We then consider for an arbitrary k ∈ X the linearized system

∂tξ + A2rη = 0 in Q, (4.1)

τ ∂tξ +B2σξ + f ′′(ȳ)ξ = η + k in Q, (4.2)

ξ(0) = 0 in Ω. (4.3)

More precisely, we consider the following weak version of the system (4.1)–(4.3):

(∂tξ(t), v) + (Arη(t), Arv) = 0 for a.e. t ∈ (0, T ) and all v ∈ V r
A, (4.4)

(τ ∂tξ(t), v) + (Bσξ(t), Bσv) + (f ′′(ȳ(t))ξ(t), v) = (η(t) + k(t), v)

for a.e. t ∈ (0, T ) and all v ∈ V σ
B , (4.5)

ξ(0) = 0. (4.6)

If this system admits a unique solution (η, ξ), and if the Fréchet derivative DS(ū) of S at ū exists,
then we should have that DS(ū)(k) = (η, ξ). Observe that ȳ enjoys the regularity (3.6), and the
global bounds (3.8) and (3.11) are satisfied for y = ȳ. We have the following result.

Theorem 4.1. Under the given assumptions, the linearized system (4.4)–(4.6) admits for every ū ∈
Uad and every k ∈ X a unique solution (η, ξ) such that

η ∈ L2(0, T ;V r
A), ξ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ

B ). (4.7)

Moreover, there is a constantK5 > 0, which depends only on the data of the state system andR > 0,
such that

‖η‖L2(0,T ;V rA) + ‖ξ‖H1(0,T ;H)∩L∞(0,T ;V σB ) ≤ K5 ‖k‖L∞(Q) . (4.8)

Proof. We prove the assertion in a number of separate steps.

Step 1. Discretization. We fix an integerN > 1, set hN := T/N and tnN := nhN , n = 0, . . . , N ,
and notice that by virtue of the global bound (3.11) the linear operators

P n
N : H → H; v 7→ P n

N v := f ′′(ȳ(·, tnN)v, (4.9)

are continuous, where with Ĉ := K3 it holds

‖P n
N‖L(H,H) ≤ Ĉ ∀N ∈ N, 0 ≤ n ≤ N.

The discrete problem then consists in finding two (N + 1)-tuples (ξ0
N , . . . , ξ

N
N ) and (η0

N ,
. . . , ηNN ) satisfying

ξ0
N = η0

N = 0 , (ξ1
N , . . . , ξ

N
N ) ∈ (V 2σ

B )N , (η1
N , . . . , η

N
N ) ∈ (V 2r

A )N , (4.10)

and

ξn+1
N − ξnN
hN

+ ηn+1
N + A2rηn+1

N = ηnN , (4.11)

τ
ξn+1
N − ξnN
hN

+
(
ĈI +B2σ + P n+1

N

)
(ξn+1
N ) = Ĉ ξnN + ηn+1

N + kn+1
N , (4.12)
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for n = 0, 1, . . . , N − 1, where I : H → H is the identity and

knN := k(nhN) for n = 0, 1, . . . , N. (4.13)

In view of (3.1), note that k is continuous from [0, T ] to H , so that the above definition is meaningful.
The problem (4.10)–(4.12) can be solved inductively for n = 0, . . . , N − 1 in the following way: let
(ηnN , ξ

n
N) be given in V 2r

A × V 2σ
B . We first rewrite the above equations in the form

hN
(
I + A2r

)
ηn+1
N + ξn+1

N = ξnN + hNη
n
N , (4.14)(

(Ĉ + (τ/hN))I +B2σ + P n+1
N

)
(ξn+1
N ) = (Ĉ + (τ/hN))ξnN + ηn+1

N + kn+1
N . (4.15)

Next, we observe that the operator A := Ĉ I + P n+1
N : H → H is monotone and continuous.

On the other hand, the unbounded operator B2σ is monotone in H , and I + B2σ : V 2σ
B → H

is surjective, whence it follows that B2σ is maximal monotone. Therefore, the sum A + B2σ is also
maximal monotone (see, e.g., [6, Cor. 2.1 p. 35]). It follows that (τ/hN)I+A+B2σ, i.e., the operator
that acts on ξn+1

N in (4.12), is linear, surjective and one-to-one from V 2σ
B ontoH . Therefore, (4.12) can

be rewritten in the equivalent form

ξn+1
N =

(
LNI +B2σ + P n+1

N

)−1 (
LNξ

n
N + ηn+1

N + kn+1
N ), (4.16)

where, for brevity, we have set LN := Ĉ + (τ/hN). By accounting for (4.14), we conclude that
problem (4.11)–(4.12) is equivalent to the system obtained by coupling (4.16) with the equation

hN
(
I + A2r

)
ηn+1
N +

(
LNI +B2σ + P n+1

N

)−1 (
LNξ

n
N + ηn+1

N + kn+1
N ) = ξnN + hNη

n
N

or

hN
(
I + A2r

)
ηn+1
N +

(
LNI +B2σ + P n+1

N

)−1
ηn+1
N

= ξnN + hNη
n
N −

(
LNI +B2σ + P n+1

N

)−1 (
LNξ

n
N + kn+1

N ). (4.17)

By arguing as before, we see that the operator acting on ηn+1
N on the left-hand side of (4.17) is

surjective and one-to-one from V 2r
A onto H , so that the equation can be uniquely solved for ηn+1

N

in V 2r
A . Inserting the solution in (4.16), we directly find that ξn+1

N ∈ V 2σ
B .

Now that the discrete problem is solved, we can start estimating. In the following, the (possibly dif-
ferent) values of the constants termed Ci, i ∈ N, are independent of the parameters hN = T/N
and n ∈ N. Also, in order to avoid an overloaded notation, we omit the index N in the expressions ξnN
and ηnN , writing it only at the end of each estimate.

Moreover, we also express the bounds we find in terms of the interpolants. According to the notation
introduced in Section 2, and recalling that ξ0

N = η0
N = 0, we remark at once that the discrete problem

also reads

ξ̂hN ∈ W 1,∞(0, T ;V σ
B ), ξ

hN
, ξhN ∈ L

∞(0, T ;V 2σ
B ), (4.18)

η
hN
, ηhN ∈ L

∞(0, T ;V 2r
A ), (4.19)

∂tξ̂hN + ηhN + A2rηhN = η
hN

a.e. in (0, T ), (4.20)

τ ∂tξ̂hN +
(
ĈI +B2σ + PN

)
(ξhN ) = Ĉξ

hN
+ ηhN + khN a.e. in (0, T ), (4.21)

ξ̂hN (0) = 0 , (4.22)
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where it is understood that(
PNξhN

)
(·, t) = P n+1

N ξn+1
N for a.e. t ∈ (tnN , t

n+1
N ), 0 ≤ n ≤ N − 1. (4.23)

Step 2. First a priori estimate. We test (4.11) and (4.12) (by taking the scalar product in H)
by hNηn+1 and ξn+1 − ξn, respectively, and add the resulting identities. Noting an obvious can-
cellation, we obtain the equation

hN (ηn+1 − ηn, ηn+1) + hN (A2rηn+1, ηn+1) + τ hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+ (B2σξn+1, ξn+1 − ξn) +
(
(ĈI + P n+1

N )(ξn+1), ξn+1 − ξn
)

= Ĉ(ξn, ξn+1 − ξn) + (kn+1, ξn+1 − ξn). (4.24)

Now, we observe that(
Ĉ ξn+1, ξn+1 − ξn

)
=

Ĉ

2
‖ξn+1‖2 − Ĉ

2
‖ξn‖2 +

Ĉ

2
‖ξn+1 − ξn‖2 . (4.25)

Moreover, by Young’s inequality it holds that(
Ĉ ξn + kn+1 − P n+1

N ξn+1, ξn+1 − ξn
)

≤ τ

2
hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+
1

2τ
hN

∥∥∥Ĉ ξn + kn+1 − P n+1
N ξn+1

∥∥∥2

≤ τ

2
hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+ C1 hN
(
‖ξn‖2 + ‖k‖2

L∞(Q) + ‖ξn+1‖2
)
, (4.26)

where C1 depends only on τ and Ĉ . Combining (4.24)–(4.26), we deduce that

hN
2
‖ηn+1‖ − hN

2
‖ηn‖2 +

hN
2
‖ηn+1 − ηn‖2 + hN ‖Arηn+1‖2

+
τ

2
hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+
1

2
‖Bσξn+1‖2 +

1

2
‖Bσ(ξn+1 − ξn)‖2 − 1

2
‖Bσξn‖2

+
Ĉ

2
‖ξn+1‖2 − Ĉ

2
‖ξn‖2 +

Ĉ

2
‖ξn+1 − ξn‖2

≤ C1 hN
(
‖ξn‖2 + ‖k‖2

L∞(Q) + ‖ξn+1‖2
)
. (4.27)

Then, we sum up for n = 0, . . . , `− 1 with ` ≤ N , obtaining the inequality

hN
2
‖η`‖2 +

1

2

`−1∑
n=0

hN ‖ηn+1 − ηn‖2 +
`−1∑
n=0

hN ‖Arηn+1‖2

+
τ

2

`−1∑
n=0

hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+
1

2
‖Bσξ`‖2 +

1

2

`−1∑
n=0

‖Bσ(ξn+1 − ξn)‖2

+
(Ĉ

2
− C1 hN

)
‖ξ`‖2 +

Ĉ

2

`−1∑
n=0

‖ξn+1 − ξn‖2

≤ C1 ` hN ‖k‖2
L∞(Q) + 2C1

`−1∑
n=0

hN ‖ξn‖2 . (4.28)
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At this point, we fix any N0 ∈ N such that N0 ≥ 4C1 T/Ĉ . With this choice, we have for any integer

N ≥ N0 that Ĉ
2
− C1 hN ≥ Ĉ

4
. Since also ` hN ≤ T , we conclude from the discrete Gronwall

lemma that for any such N ∈ N it holds the bound

hN ‖η`‖2 +
`−1∑
n=0

hN ‖ηn+1 − ηn‖2 +
`−1∑
n=0

hN ‖Arηn+1‖2 +
`−1∑
n=0

hN

∥∥∥ ξn+1−ξn
hN

∥∥∥2

+ ‖Bσξ`‖2 +
`−1∑
n=0

‖Bσ(ξn+1 − ξn)‖2 + ‖ξ`‖2 +
`−1∑
n=0

‖ξn+1 − ξn‖2

≤ C2 ‖k‖2
L∞(Q) ≤ C3 . (4.29)

Since this holds for ` = 0, . . . , N , we obtain in terms of the interpolants, by neglecting the first
contribution and recalling that µ0 = 0 and the definition (2.7) of the norm in V σ

B , that

‖ηhN − ηhN‖L2(0,T ;H) + ‖ArηhN‖L2(0,T ;H) + ‖Arη
hN
‖L2(0,T ;H) + ‖∂tξ̂hN‖L2(0,T ;H)

+ ‖ξ
hN
‖L∞(0,T ;V σB ) + ‖ξhN‖L∞(0,T ;V σB ) + h

−1/2
N ‖ξhN − ξhN‖L∞(0,T ;V σB )

≤ C4 ‖k‖L∞(Q) ≤ C5 . (4.30)

Step 3. Second a priori estimate. Let N ≥ N0. We want to improve the estimate for ArηhN given
by (4.30) and show that

‖ηhN‖L2(0,T ;V rA) + ‖η
hN
‖L2(0,T ;V rA) ≤ C6‖k‖L∞(Q) ≤ C7 . (4.31)

By recalling (2.4), we see that there is nothing to prove if λ1 > 0. Assume now that 0 = λ1 < λ2. We
then have to estimate the mean value of ηhN . To this end, we recall that e1 is a constant and belongs
to V σ

B . Thus, the function 1(x) ≡ 1 also belongs to V σ
B . Integrating the equation (4.21) over Ω, we

therefore obtain almost everywhere on (0, T ) the identity∫
Ω

ηhN =

∫
Ω

(
−khN + Ĉ

(
ξhN − ξhN

)
+ PN(ξhN ) + τ ∂tξ̂hN

)
+
(
BσξhN , B

σ1
)
. (4.32)

Applying the Cauchy–Schwarz inequality to the expressions on the right-hand side, we readily con-
clude from (4.30) the bound∥∥mean(ηhN )

∥∥2

L2(0,T )
≤ C8

(
‖k‖2

L∞(Q) + ‖ξhN‖
2
L2(Q) + ‖ξ

hN
‖2
L2(Q) +

∥∥BσξhN
∥∥2

L2(Q)

+
∥∥∂tξ̂hN∥∥2

L2(Q)

)
≤ C9 ‖k‖2

L∞(Q) ≤ C10 , (4.33)

and the claim (4.31) is proved as far as ηhN is concerned. But as ‖ηhN − ηhN‖L2(Q) is by (4.30)

bounded, and since Arη0
N = Ar0 = 0, it also holds true for η

hN
.

Step 4. Existence. Combining the estimates (4.30) and (4.31), recalling (2.36), and using standard
weak and weak-star compactness results, we see that there are functions ξ and η such that, at least
for suitable subsequences which are again indexed by N ,

ξhN → ξ , ξ
hN
→ ξ , ξ̂hN → ξ, all weakly star in L∞(0, T ;V σ

B ), (4.34)

∂tξ̂hN → ∂tξ weakly in L2(0, T ;H), (4.35)

ηhN → η weakly in L2(0, T ;V r
A), (4.36)
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as N → ∞. Moreover, owing to the compact embedding V σ
B ⊂ H (see (2.15)) and to well-known

strong compactness results (see, e.g., [40, Sect. 8, Cor. 4]), we obtain from (4.34)–(4.35) that

ξ̂hN → ξ strongly in C([0, T ];H), (4.37)

whence it follows that ξ(0) = 0 and, using (2.36),

ξhN → ξ, ξ
hN
→ ξ, both strongly in L2(0, T ;H). (4.38)

Next, we prove that
η
hN
→ η weakly in L2(0, T ;V r

A). (4.39)

By (4.30) and (4.36), it suffices to check that

L2(0,T ;V −rA )〈v, ηhN − ηhN 〉L2(0,T ;V rA) → 0 as N →∞, (4.40)

for every v belonging to a dense subspace V of L2(0, T ;V −rA ), where we can take V = C1
c (0, T ;H)

since H is dense in V −rA (see (2.14)). So, we fix v ∈ C1
c (0, T ;H) and choose δ > 0 such that

v(t) = 0 for t ∈ [0, T ] \ (δ, T − δ). If hN ∈ (0, δ/2), then we have

|L2(0,T ;V −rA )〈v, ηhN − ηhN 〉L2(0,T ;V rA)| =
∣∣∣∫ T

hN

(ηhN − ηhN )(t) v(t) dt
∣∣∣

=
∣∣∣∫ T

hN

(
ηhN (t)− ηhN (t− hN)

)
v(t) dt

∣∣∣
=
∣∣∣∫ T

hN

ηhN (t) v(t) dt−
∫ T−hN

0

ηhN (t) v(t+ hN) dt
∣∣∣

=
∣∣∣∫ T−hN

hN

ηhN (t) (v(t)− v(t+ hN)) dt
∣∣∣ ≤ T 1/2 ‖ηhN‖L2(0,T ;H) ‖v′‖L∞(0,T ;H) hN ,

and (4.40) follows.

We now show that

PN(ξhN )→ f ′′(ȳ)ξ strongly in L1(Q) as N →∞. (4.41)

Indeed, employing the global bounds (3.11), we have, for almost every (x, t) ∈ Ω×(tn−1
N , tnN), where

1 ≤ n ≤ N ,∣∣PN(ξhN )(x, t)− f ′′(ȳ(x, t))ξ(x, t)
∣∣ = |f ′′(ȳ(x, tnN))ξnN(x)− f ′′(ȳ(x, t))ξ(x, t)|

≤ |f ′′(ȳ(x, tnN))− f ′′(ȳ(x, t))| |ξ(x, t)|+ |f ′′(ȳ(x, tnN)| |ξnN(x)− ξ(x, t)|

≤ Ĉ
∣∣ξhN (x, t)− ξ(x, t)

∣∣ + Ĉ |ξ(x, t)| |ȳ(x, tnN)− ȳ(x, t)|

≤ Ĉ
∣∣ξhN (x, t)− ξ(x, t)

∣∣ + Ĉ |ξ(x, t)|
∫ tnN

tn−1
N

|∂tȳ(x, s)| ds

≤ Ĉ
∣∣ξhN (x, t)− ξ(x, t)

∣∣ + Ĉ h
1/2
N |ξ(x, t)|

(∫ tnN

tn−1
N

|∂tȳ(x, s)|2 ds
)1/2

. (4.42)

The claim (4.41) then follows from (4.38) and a simple calculation on the last term by recalling that ξ
and ∂tȳ belong to L2(Q).
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Therefore, we can pass to the limit as N → ∞ in the weak time-integrated versions of (4.20) and
(4.21) (written with bounded time-dependent test functions) to conclude that the pair (η, ξ) solves the
variational equations (4.4) and (4.5). Since also ξ(0) = 0, the existence part of the assertion is shown.
Moreover, the continuity estimate (4.8) is a direct consequence of (4.30), (4.31) and the semicontinuity
of norms.

Step 5. Uniqueness. To show uniqueness, suppose that the system (4.4)–(4.6) has two solutions
(ηi, ξi), i = 1, 2, with the regularity (4.7). Then the pair (η, ξ) with η = η1 − η2, ξ = ξ1 − ξ2, solves
the system (4.4)–(4.6), where in this case k ≡ 0. We then test (4.4) by η and (4.5) by ∂tξ and add the
resulting equations to arrive at the identity∫ t

0

‖Arη(s)‖2 ds +
τ

2
‖Bσξ(t)‖2 + τ

∫ t

0

∫
Ω

|∂tξ|2 = −
∫ t

0

∫
Ω

f ′′(ȳ) ξ ∂tξ , (4.43)

which is valid for every t ∈ [0, T ]. Now we add the term
∫ t

0

∫
Ω
ξ ∂tξ to both sides of (4.43) and

apply Young’s inequality appropriately to the resulting right-hand side. It then follows from Gronwall’s
lemma that Arη = ξ = 0. But then, by virtue of (4.5), also η = 0. This concludes the proof of
Theorem 4.1.

After these preparations, the road is paved for proving the Fréchet differentiability of the control-to-state
operator S. We need, however, yet another assumption.

(A8) V σ
B is continuously embedded in L4(Ω).

Observe that this condition is fulfilled if, e.g., B = −∆ with zero Dirichlet or Neumann boundary
conditions and σ ≥ 3/8. Indeed, by virtue of (3.18), we have in this case V σ

B ⊂ H2σ(Ω) ⊂ L4(Ω) if
−3

4
≤ 2σ − 3

2
, i.e., if σ ≥ 3/8.

Recalling the statement of Theorem 4.1, we show the following result.

Theorem 4.2. Suppose that the assumptions (A1)–(A5), (A7), (A8), and (GB) are fulfilled. Then the
control-to-state operator S : u 7→ S(u) = (µ, y) is Fréchet differentiable in UR when viewed
as a mapping between the spaces X = H1(0, T ;H) ∩ L∞(Q) and Y := L2(0, T ;V r

A) ×
(H1(0, T ;H) ∩ L∞(0, T ;V σ

B )) . Moreover, whenever ū ∈ UR with (µ̄, ȳ) = S(ū) is given, then
the Fréchet derivative DS(ū) ∈ L(X,Y) of S at ū is specifed by the identity DS(ū)(k) = (η, ξ),
where (η, ξ) is the unique solution to the weak formulation (4.4)–(4.6) of the linearized system.

Proof. Since UR is open, there is some Λ > 0 such that ū + k ∈ UR whenever k ∈ X and
‖k‖X ≤ Λ. In the following, we consider only such perturbations k, for which we define the quantities

(µk, yk) := S(ū+ k), ρk := µk − µ̄− ηk, zk := yk − ȳ − ξk,

where (ηk, ξk) = (η, ξ) denotes the unique solution to the system (4.4)–(4.6). Obviously, we have
ρk ∈ L2(0, T ;V r

A) and zk ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ). Moreover, it turns out that

(∂tz
k(t), v) +

(
Arρk(t), Arv

)
= 0 for a.e. t ∈ (0, T ) and all v ∈ V r

A, (4.44)

τ (∂tz
k(t), v) +

(
Bσzk(t), Bσv

)
+ (f ′(yk(t))− f ′(ȳ(t))− f ′′(ȳ(t))ξk(t), v)

= (ρk(t), v) for a.e. t ∈ (0, T ) and all v ∈ V σ
B , (4.45)

zk(0) = 0. (4.46)
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In addition, by Taylor’s theorem and (3.11), we have almost everywhere in Q that∣∣f ′(yk)− f ′(ȳ)− f ′′(ȳ)ξk
∣∣ ≤ C1

(
|zk| + |yk − ȳ|2

)
, (4.47)

where, here and in the remainder of the proof, the constants Ci > 0, i ∈ N, depend only on the
data of the problem and R, but not on the special choice of k ∈ X with ‖k‖X ≤ Λ. Using (3.22) in
Theorem 3.6 and the continuity of the embedding V σ

B ⊂ L4(Ω), we infer that, for any t ∈ (0, T ],

‖yk − ȳ‖L∞(0,t;L4(Ω)) ≤ C2 ‖k‖L2(0,t;H) . (4.48)

Now recall that by (4.8) the mapping k 7→ (ηk, ξk) is continuous from X into Y. According to the
notion of Fréchet differentiability, it therefore suffices to construct an increasing function Z : (0,Λ)→
(0,+∞) such that limλ↘0

Z(λ)
λ2

= 0 and

‖ρk‖2
L2(0,T ;V rA) + ‖zk‖2

H1(0,T ;H)∩L∞(0,T ;V σB ) ≤ Z
(
‖k‖L2(0,T ;H)

)
. (4.49)

At this point, we test (4.44) by ρk(t), (4.45) by ∂tz
k(t), add the resulting equations, and integrate

over Qt, where t ∈ (0, T ]. In addition, we add the term
∫ t

0

∫
Ω
zk ∂tz

k to both sides of the result.
Invoking (4.47), we then obtain the inequality

1

2

(
‖zk(t)‖2 + ‖Bσzk(t)‖2

)
+ τ

∫ t

0

∫
Ω

|∂tzk|2 +

∫ t

0

‖Arρk(s)‖2 ds

≤ C3

∫ t

0

∫
Ω

|zk| |∂tzk| + C4

∫ t

0

∫
Ω

|∂tzk|
∣∣yk − ȳ∣∣2 =: I1 + I2, (4.50)

with obvious notation. Now, by Young’s inequality,

I1 ≤
τ

4

∫ t

0

∫
Ω

|∂tzk|2 + C5

∫ t

0

∫
Ω

|zk|2 ,

while, by also using Hölder’s inequality and (4.48),

I2 ≤ C4

∫ t

0

‖∂tzk(s)‖ ‖yk(s)− ȳ(s)‖2
L4(Ω) ds ≤

τ

4

∫ t

0

∫
Ω

|∂tzk|2 + C6 ‖k‖4
L2(0,T ;H) .

Employing Gronwall’s lemma, we thus conclude from (4.50) the estimate

‖zk‖2
H1(0,T ;H)∩L∞(0,T ;V σB ) + ‖Arρk‖2

L2(0,T ;H) ≤ C7 ‖k‖4
L2(0,T ;H) . (4.51)

At this point, we have to distinguish between two cases. Assume first that λ1 > 0. In this case,
we have ‖ρk‖L2(0,T ;V rA) ≤ C8 ‖Arρk‖L2(0,T ;H), and thus (4.49) follows from (4.51) with Z(λ) =
(1 + C8)C7 λ

4.

Assume now that λ1 = 0. In this case, we need to estimate the mean value of ρk. To this end, we
observe that (A1) implies that for λ1 = 0 we have 1 ∈ V r

A∩V σ
B andAr1 = 0. From this it immediately

follows that mean (∂tz
k(t)) = 0 for almost every t ∈ (0, T ). Thus, inserting v = 1 ∈ V σ

B in (4.45)
and applying the Cauchy–Schwarz inequality and the inequality (4.47), we find that for a.a. t ∈ (0, T )
it holds that ∣∣∣∫

Ω

ρk(t)
∣∣∣ ≤ ∫

Ω

|Bσzk(t)| |Bσ1| + C1

∫
Ω

(
|zk(t)| + |yk(t)− ȳ(t)|2

)
≤ C9

(
‖Bσzk(t)‖ + ‖zk(t)‖ + ‖yk(t)− ȳ(t)‖2

L4(Ω)

)
,
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and it follows the estimate

‖mean(ρk)‖L2(0,T ) ≤ C10

(
‖zk‖L2(0,T ;H) + ‖Bσzk‖L2(0,T ;H) + ‖yk − ȳ‖2

L∞(0,T ;L4(Ω))

)
.

In view of (4.51) and (4.48), and by recalling (2.4) and Remark 2.2, this yields that

‖ρk‖2
L2(0,T ;V rA) ≤ C11

(
‖Arρk‖2

L2(0,T ;H) + ‖mean(ρk)‖2
L2(0,T )

)
≤ C12 ‖k‖4

L2(0,T ;H) .

In conclusion, the condition (4.49) holds true with the choice Z(λ) = (C7 + C12)λ4. With this, the
assertion is completely proved.

Using the above differentiability result and the fact that Uad is a closed and convex subset of X, we can
infer from the chain rule via a standard argument (which can be omitted here) the following first-order
necessary optimality condition:

Corollary 4.3. Let the assumptions of Theorem 4.2 be satisfied, and assume that ū ∈ Uad with
(µ̄, ȳ) = S(ū) is a solution to the optimal control problem (CP). Then it holds the variational inequality

α1

∫
Ω

(ȳ(T )− yΩ) ξ(T ) + α2

∫ T

0

∫
Ω

(ȳ − yQ) ξ + α3

∫ T

0

∫
Ω

(µ̄− µQ) η

+ α4

∫ T

0

∫
Ω

ū (v − ū) ≥ 0 ∀ v ∈ Uad, (4.52)

where (η, ξ) is the unique solution to the system (4.4)–(4.6) associated with k = v − ū.

5 Existence and first-order optimality conditions

In this section, we state and prove the main results of this paper. We begin with an existence result.

Theorem 5.1. Suppose that the conditions (A1)–(A8) and (GB) are fulfilled. Then the optimal control
problem (CP) has a solution.

Proof. We use the direct method. To this end, let {un} ⊂ Uad be a minimizing sequence, and let
(µn, yn) = S(un), for n ∈ N. Then the global bounds (3.8) and (3.11) apply, and there are some
ū ∈ Uad, a pair (µ̄, ȳ) , and some z ∈ L∞(Q), such that, at least for a subsequence which is again
indexed by n ∈ N,

un → ū weakly star in X, (5.1)

µn → µ̄ weakly star in L∞(0, T ;V 2r
A ), (5.2)

yn → ȳ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ) , (5.3)

f ′1(yn)→ z weakly star in L∞(Q). (5.4)

We also observe that standard compactness results (see, e.g. [40, Sect. 8, Cor. 4]) imply that we may
without loss of generality assume that

yn → y strongly in C0([0, T ];H) and pointwise a.e. in Q, (5.5)
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which yields that ȳ(0) = y0, in particular. In addition, by (A4), f ′2 is Lipschitz continuous on R, which
implies that f ′2(yn) → f ′2(ȳ) strongly in C0([0, T ];H); moreover, by the convexity of f1 it turns out
that f ′1 induces a maximal monotone graph. It then follows from standard results on maximal monotone
operators (see, e.g., [6, Prop. 2.2, p. 38]) that z = f ′1(ȳ). In summary, we have that f ′(yn) → f ′(ȳ)
weakly star in L∞(0, T ;H).

Now, we consider the (equivalent) integrated version of (3.2)–(3.4), written for u = un, y = yn,
µ = µn, n ∈ N, and with time-dependent test functions, and we pass to the limit as n→∞. We then
obtain the analogous formulation for u = ū, µ = µ̄, y = ȳ, that is, we have (µ̄, ȳ) = S(ū). But this
means that the pair ((µ̄, ȳ), ū) is admissible for the minimization problem (CP). By the semicontinuity
properties of the cost functional, it is a minimizer.

Next, we aim to establish meaningful first-order necessary optimality conditions by eliminating the
quantities η and ξ from (4.52) by means of the adjoint state variables. To this end, we consider the
adjoint state system which formally reads

A2rp− q = α3(µ̄− µQ) in Q, (5.6)

−(∂tp+ τ ∂tq) +B2σq + f ′′(ȳ) q = α2(ȳ − yQ) in Q, (5.7)

p(T ) + τ q(T ) = α1(ȳ(T )− yΩ) in Ω. (5.8)

However, we can manage such a system only if the right-hand side of (5.6) satisfies restrictive as-
sumptions which are not fulfilled, in general, because of the presence of the component µ̄. Therefore,
we assume α3 = 0 in the sequel. Moreover, we consider a variational formulation of the above formal
problem. We recall the definition (2.11) of V −σB and the embedding H ⊂ V −σB (see (2.12)); let us
use the simpler notation 〈 · , · 〉 without indices for the duality pairing between V −σB and V σ

B . For the
adjoint state (p, q), we require the following regularity conditions:

p ∈ L2(0, T ;V 2r
A ), (5.9)

q ∈ L2(0, T ;V σ
B ), (5.10)

p+ τq ∈ H1(0, T ;V −σB ). (5.11)

The adjoint problem we consider then reads as follows:

(Arp(t), Arv)− (q(t), v) = 0 for a.a. t ∈ (0, T ) and every v ∈ V r
A, (5.12)

− 〈∂t(p+ τq)(t), v〉+ (Bσq(t), Bσv) + (ψ(t)q(t), v) = (g2(t), v)

for a.a. t ∈ (0, T ) and every v ∈ V σ
B , (5.13)

(p+ τq)(T ) = g1, (5.14)

where, for brevity, we have set

ψ := f ′′(ȳ), g1 := α1(ȳ(T )− yΩ) and g2 := α2(ȳ − yQ). (5.15)

We have written for convenience the weak form (5.12), which still makes sense under the weaker
regularity requirement p ∈ L2(0, T ;V r

A). However, it is immediately seen that such a regularity and
(5.12) imply (5.9) and

q = A2rp, (5.16)

i.e., the equation (5.6) with α3 = 0.

Solving the problem (5.12)–(5.14) requires some preliminary work. It is understood that the assump-
tions (A1)–(A8) and (GB) are in force. In particular, we have that ψ ∈ L∞(Q), g1 ∈ L2(Ω), and
g2 ∈ L2(Q). First of all, we give an equivalent formulation.
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Proposition 5.2. The regularity conditions (5.9)–(5.11) and problem (5.12)–(5.14) are equivalent to
(5.9)–(5.10), (5.12), and∫ T

0

(
(p+ τq)(t), ∂tv(t)

)
dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1, v(T )

)
for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) satisfying v(0) = 0. (5.17)

Proof. Before starting, we observe that, for p ∈ L2(0, T ;H) and q ∈ L2(0, T ;V σ
B ) with p + τq ∈

H1(0, T ;V −σB ), the variational equation (5.13) is equivalent to the following integrated version:

−
∫ T

0

〈∂t(p+ τq)(t), v(t)〉 dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt

for every v ∈ L2(0, T ;V σ
B ). (5.18)

We also recall an integration-by-parts formula (see, e.g., [18, Lemma 4.5]): if (V,H,V∗) is a Hilbert
triplet and

w ∈ H1(0, T ;H) ∩ L2(0, T ;V) and z ∈ H1(0, T ;V∗) ∩ L2(0, T ;H),

then the function t 7→ (w(t), z(t))H is absolutely continuous, and for every t, t′ ∈ [0, T ] we have
that∫ t

t′

{(
∂tw(s), z(s)

)
H

+ V∗〈∂tz(s), w(s)〉V
}
ds =

(
w(t), z(t)

)
H
−
(
w(t′), z(t′)

)
H
. (5.19)

Now, we prove the statement. We first assume that (5.9)–(5.11) and (5.12)–(5.14) are valid. Then,
we just have to prove that (5.17) holds true. We start from (5.18), with any v ∈ H1(0, T ;H) ∩
L2(0, T ;V σ

B ). By applying (5.19), we immediately obtain (5.17) on account of (5.14).

Conversely, assume that (p, q) satisfies (5.9)–(5.10), (5.12), and (5.17). We prove the (apparently)
stronger regularity requirement (5.11) and the validity of the formulas (5.13) and (5.14). To this end,
we observe that, because of the meaning of the Hilbert triplet (V σ

B , H, V
−σ
B ), the conditions (5.11)

and (5.13) (or (5.18)) are equivalent to the following properties: i) formula (5.17) holds for every
v ∈ C∞c (0, T ;V σ

B ) (C∞ functions with compact support in (0, T )); ii) the maps that associates to
every v ∈ C∞c (0, T ;V σ

B ) the right-hand side of (5.17) (i.e., the same as in (5.18) since v(T ) = 0)
is continuous with respect to the topology of L2(0, T ;V σ

B ). The former follows from our assumption
and it is straightforward to see that the latter is satisfied since q ∈ L2(0, T ;V σ

B ). Hence, both (5.11)
and (5.18) are established (the latter first for every v ∈ C∞c (0, T ;V σ

B ) by definition, then for every v ∈
L2(0, T ;V σ

B ) by continuity). At this point, we can take (5.17), with v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ
B )

satisfying v(0) = 0, and integrate by parts using (5.19). By comparing with (5.18), we deduce that(
(p+ τq)(T )− g1, v(T )

)
= 0 for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) satisfying v(0) = 0. By
choosing v(t) = tv0 with any v0 ∈ V σ

B we conclude that (5.14) holds true as well since V σ
B is dense

in H .

Thus, we are going to solve the new problem given by the previous proposition. The case λ1 > 0 is
easier, since the operator A2r ∈ L(V 2r

A , H) has the inverse A−2r := (A2r)−1 ∈ L(H,V 2r
A ), so

that we can use (5.16) in order to eliminate p. Hence, we immediately obtain the following lemma:

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018



P. Colli, G. Gilardi, J. Sprekels 24

Lemma 5.3. Assume λ1 > 0. Then, a pair (p, q) satisfying (5.9)–(5.10) solves (5.12) and (5.17) if
and only if p = A−2rq with q satisfying

q ∈ L2(0, T ;V σ
B ), (5.20)∫ T

0

(
A−2rq(t) + τq(t), ∂tv(t)

)
dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1, v(T )

)
for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) satisfying v(0) = 0. (5.21)

On the contrary, the situation is much more complicated in the case when λ1 = 0. To handle this
case, we adapt the ideas of [15, Sect. 5]. To this end, we have to introduce some new spaces. We set

H0 := {v ∈ H : mean(v) = 0} and V σ
B,0 := V σ

B ∩H0, (5.22)

and notice that H1(0, T ;H) ∩ L2(0, T ;V σ
B,0) = H1(0, T ;H0) ∩ L2(0, T ;V σ

B,0). Moreover, we
observe that the operators A2r

0 and A−2r
0 (see (2.20)) also satisfy that

A2r
0 : V 2r

0 → H0 and A−2r
0 = (A2r

0 )−1 : H0 → V 2r
0 are isomorphisms. (5.23)

Finally, for simplicity, in the next statement and in its proof, we often use the same notation ϕ for some
real function ϕ ∈ H1(0, T ) and the function ϕ1 ∈ H1(0, T ;H).

Lemma 5.4. Assume that λ1 = 0. Then a pair (p, q) satisfying (5.9)–(5.10) solves (5.12) and (5.17)
if and only if

p = pΩ + A−2r
0 q, (5.24)

with q and pΩ given as follows:

q ∈ L2(0, T ;V σ
B,0), (5.25)∫ T

0

(
A−2r

0 q(t) + τq(t), ∂tv(t)
)
dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1 −mean(g1)1, v(T )

)
for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B,0) satisfying v(0) = 0, (5.26)

pΩ(t) = mean(g1) +
1

|Ω|

∫ T

t

{(
g2(s),1

)
−
(
Bσq(s), Bσ1

)
−
(
ψ(s)q(s),1

)}
ds

for every t ∈ [0, T ]. (5.27)

Proof. Assume that (p, q) satisfies (5.9)–(5.10) and solves (5.12) and (5.17). By Proposition 5.2 we
can also use the previous formulation (5.12)–(5.14) of the adjoint problem. Testing (5.12) by v = 1 ∈
V σ
B yields (

q(t),1
)

=
(
Arq(t), Ar1

)
= 0 for a.a. t ∈ (0, T ),

since λ1 = 0. Thus, q has zero mean value, and (5.25) is a consequence of (5.10). Moreover, in view
of (5.11) it turns out that the function

t 7→ mean((p+ τq)(t)), t ∈ [0, T ],
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belongs to H1(0, T ), and in particular it has a continuous representative (termed exactly as it is). We
set

pΩ(t) := mean((p+ τq)(t)), for every t ∈ [0, T ], (5.28)

and it turns out that
pΩ(t) = mean(p(t)) for a.a. t ∈ (0, T ).

Therefore, by choosing v = 1 in (5.13) and using (5.14), we also deduce that

− |Ω| p′Ω(t) +
(
Bσq(t), Bσ1

)
+
(
ψ(t)q(t),1

)
=
(
g2(t),1

)
for a.a. t ∈ (0, T ),

pΩ(T ) = mean(g1).

Hence, (5.27) immediately follows. Furthermore, since A2r1 = 0, we can write (5.16) in the form

q = A2r(p− pΩ) = A2r
0 (p− pΩ),

and, owing to the zero mean value property of q, once more we conclude that

p− pΩ = A−2r
0 q,

that is, (5.24) holds true. Using this, we compute both sides of (5.17) with zero-mean-value test func-
tions, i.e., v ∈ H1(0, T ;H)∩L2(0, T ;V σ

B,0), such that v(0) = 0. Since pΩ(t) is space independent,
mean(g1) is a constant, and ∂tv(t) and v(T ) have zero mean value, we have∫ T

0

(
(p+ τq)(t), ∂tv(t)

)
dt =

∫ T

0

(
(A−2r

0 q + τq)(t), ∂tv(t)
)
dt+

∫ T

0

(
pΩ(t), ∂tv(t)

)
dt

=

∫ T

0

(
(A−2r

0 q + τq)(t), ∂tv(t)
)
dt ,

as well as

−
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1, v(T )

)
= −

∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1 −mean(g1)1, v(T )

)
.

Hence, (5.17) with such test functions becomes (5.26).

Conversely, assume that p fulfils (5.24) with q satisfying (5.25)–(5.26) and with pΩ given by (5.27).
First of all, observe that (5.28) (which is not required a priori) still holds as a consequence of (5.24),
since A−2r

0 q has zero mean value. Moreover, (5.10) is trivially implied by (5.25). We now prove the
validity of (5.17). To this end, take any v ∈ H1(0, T ;H) ∩ L2(0, T ;V σ

B ) with v(0) = 0 and split v
as follows:

v = (v − ϕ1) + ϕ1 where ϕ := mean(v) .

Then, v − ϕ1 ∈ H1(0, T ;H) ∩ L2(0, T ;V σ
B,0), and (v − ϕ1)(0) = 0. Hence, (5.26) yields∫ T

0

(
A−2r

0 q(t) + τq(t), ∂tv(t)− ϕ′(t)1
)
dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt

+
(
g1 −mean(g1)1, v(T )

)
+

∫ T

0

(
Bσq(t), Bσ1

)
ϕ(t) dt−

∫ T

0

(
g2(t)− ψ(t)q(t),1

)
ϕ(t) dt

−
(
g1 −mean(g1)1,1

)
ϕ(T ),

DOI 10.20347/WIAS.PREPRINT.2519 Berlin 2018



P. Colli, G. Gilardi, J. Sprekels 26

and we note that the last term vanishes. Now, we observe that ϕ ∈ H1(0, T ) and that ϕ(0) = 0
(since v(0) = 0). Thus, we multiply (5.27) by |Ω|ϕ′(t), integrate over (0, T ) with respect to t, and
perform an integration by parts on the right-hand side. We obtain that∫ T

0

(
pΩ(t),1

)
ϕ′(t) dt

=
(
mean(g1)1,1

)
ϕ(T )−

∫ T

0

(
Bσq(t), Bσ1

)
ϕ(t) +

∫ T

0

(
g2(t)− ψ(t)q(t),1

)
ϕ(t) dt .

By summing up, we deduce that∫ T

0

(
A−2r

0 q(t) + τq(t), ∂tv(t)− ϕ′(t)1
)
dt+

∫ T

0

(
pΩ(t),1

)
ϕ′(t) dt

= −
∫ T

0

(
Bσq(t), Bσv(t)

)
dt+

∫ T

0

(
g2(t)− ψ(t)q(t), v(t)

)
dt+

(
g1, v(T )

)
.

Notice that the right-hand sides of this identity and of (5.17) coincide. Thus, it suffices to show that the
same happens for the left-hand sides. By also accounting for (5.24), and noting that the mean values
of both ∂tv − ϕ′1 and p− pΩ + τq vanish, we have∫ T

0

(
A−2r

0 q(t) + τq(t), ∂tv(t)− ϕ′(t)1
)
dt+

∫ T

0

(
pΩ(t),1

)
ϕ′(t) dt

=

∫ T

0

(
p(t) + τq(t)− pΩ(t), ∂tv(t)− ϕ′(t)1

)
dt+

∫ T

0

(
pΩ(t),1

)
ϕ′(t) dt

=

∫ T

0

(
p(t) + τq(t), ∂tv(t)

)
dt−

∫ T

0

(
p(t) + τq(t),1

)
ϕ′(t) dt+

∫ T

0

(
pΩ(t),1

)
ϕ′(t) dt

=

∫ T

0

(
p(t) + τq(t), ∂tv(t)

)
dt−

∫ T

0

(
p(t)− pΩ(t) + τq(t),1

)
ϕ′(t) dt

=

∫ T

0

(
p(t) + τq(t), ∂tv(t)

)
dt .

This completes the proof.

Lemma 5.5. The space V σ
B,0 is dense in H0. In particular, the Hilbert triplet

(V σ
B,0, H0, V

−σ
B,0 ), where V −σB,0 := (V σ

B,0)∗,

is meaningful.

Proof. We assume that z ∈ H0 satisfies (z, v) = 0 for every v ∈ V σ
B,0 and deduce that z = 0. Take

any v ∈ V σ
B . Then v − mean(v)1 ∈ V σ

B,0, whence (z, v − mean(v)1) = 0. On the other hand,
(z,mean(v)1) = 0 since mean(z) = 0. Therefore, (z, v) = 0. Since this holds for every v ∈ V σ

B

and V σ
B is dense in H , we conclude that z = 0.

Lemma 5.6. Let (V,H,V∗) be a Hilbert triplet and let ( · , · ) and 〈 · , · 〉 be the inner product of H
and the duality pairing between V∗ and V, respectively. Moreover, let A and B satisfy, with suitable
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positive constants M , λ, and α, the following conditions:

A ∈ L(H;H) is symmetric ; (5.29)

B(t) ∈ L(V;V∗) for a.a. t ∈ (0, T ); (5.30)

for every v, w ∈ V, the function t 7→ 〈A(t)v, w〉 is measurable on (0, T ); (5.31)

〈Av, v〉 ≥ α ‖v‖2
H for every v ∈ H ; (5.32)

‖B(t)v‖V∗ ≤M ‖v‖V for a.a. t ∈ (0, T ) and every v ∈ V ; (5.33)

〈B(t)v, v〉+ λ ‖v‖2
H ≥ α ‖v‖2

V for a.a. t ∈ (0, T ) and every v ∈ V. (5.34)

Then, for every F ∈ L2(0, T ;V∗) and every γ ∈ H, there exists a unique q ∈ L2(0, T ;V) satisfying∫ T

0

(
Aq(t), v′(t)

)
dt+

∫ T

0

〈B(t)q(t), v(t)〉 dt

=

∫ T

0

〈F (t), v(t)〉+
(
γ, v(T )

)
for every v ∈ H1(0, T ;H) ∩ L2(0, T ;V) such that v(0) = 0. (5.35)

Proof. The similar forward problem (presented in a slightly different way, see also [35, Lem. 1.1, p. 44]
for a similar equivalence) is solved in [35, Thm. 7.1, p. 70] under even more general assumptions on
the structure (in particular, there A is also allowed to depend on time) and equivalent assumptions on
the data.

Remark 5.7. By arguing as we did for Proposition 5.2, one can easily see that a function q ∈
L2(0, T ;V) solves (5.35) if and only if it satisfies

q ∈ L2(0, T ;V), Aq ∈ H1(0, T ;V∗), −(Aq)′ + Bu = F, and (Aq)(T ) = γ,

where the abstract equation holds a.e. in (0, T ) in the sense of V∗ and the final condition is meaningful
since Aq ∈ C0([0, T ];V∗).

At this point, we are ready to state a well-posedness result for the adjoint problem in the case α3 = 0,
i.e., for the system (5.12)–(5.14). Namely, we have the following theorem.

Theorem 5.8. Suppose that the conditions (A1)–(A8) and (GB) are fulfilled. Moreover, assume that
ū ∈ Uad, and let (µ̄, ȳ) = S(ū) be the corresponding state. Then the adjoint problem (5.12)–(5.14)
has a unique solution (p, q) satisfying (5.9)–(5.11).

Proof. Thanks to Proposition 5.2 and Lemmas 5.3 and 5.4, it is sufficient to establish well-posedness
for the sub-problems that involve just q, i.e., (5.20)–(5.21) and (5.25)–(5.26) in the cases λ1 > 0 and
λ1 = 0, respectively. However, we can unify these problems by seeing both of them as particular
cases of a new one. To this end, we set

H := H, V := V σ
B , A := A−2r + τI, and γ := g1, if λ1 > 0,

H := H0, V := V σ
B,0, A := A−2r

0 + τI, and γ := g1 −mean(g1)1, if λ1 = 0,

where I is the identity map of H, and we define B(t) ∈ L(V;V∗) by

〈B(t)v, w〉 :=
(
Bσv,Bσw

)
+
(
ψ(t)v, w

)
for a.a. t ∈ (0, T ) and every v, w ∈ V,

in both cases (with different meanings of the notations, e.g., V). Then, each of the problems we have
to solve appears in the form (5.35). It is immediately seen that the assumptions of Lemma 5.6 are
fulfilled. In particular, (5.33) and (5.34) hold since ψ is bounded. Hence, the lemma provides a unique
solution.
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We conclude with the first-order necessary condition for optimality expressed in terms of the adjoint
state variables.

Theorem 5.9. Let the assumptions of Theorem 4.2 be satisfied, and assume that ū ∈ Uad is a solution
to the optimal control problem (CP) with α3 = 0. Moreover, let (µ̄, ȳ) = S(ū) be the corresponding
state, and let (p, q) be the unique solution to the related adjoint problem. Then the following variational
inequality holds true: ∫ T

0

∫
Ω

(q + α4ū)(v − ū) ≥ 0 ∀ v ∈ Uad. (5.36)

In particular, if α4 6= 0, the optimal control ū is the L2(0, T ;H)-projection of −q/α4 on Uad.

Proof. Fix any v ∈ Uad, set k := v − ū, and consider the solutions (η, ξ) and (p, q) to the cor-
responding linearized system (4.4)–(4.6) and the adjoint system (5.12)–(5.14), respectively. We test
(4.4) and (4.5) by p(t) and q(t), respectively. Then, we add the resulting equalities to each other and
integrate over (0, T ). By recalling the notations (5.15), we obtain that∫ T

0

{(
∂tξ(t), p(t)

)
+
(
Arη(t), Arp(t)

)}
dt

+

∫ T

0

{(
τ ∂tξ(t), q(t)

)
+
(
Bσξ(t), Bσq(t)

)
+
(
ψ(t)ξ(t), q(t)

)}
dt

=

∫ T

0

(
η(t) + k(t), q(t)

)
dt .

At the same time, by testing (5.12) and (5.13) by −η(t) and −ξ(t), summing up and integrating with
respect to t, we have that∫ T

0

{
−
(
Arp(t), Arη(t)

)
+
(
q(t), η(t)

)}
dt

+

∫ T

0

{
〈∂t(p+ τq)(t), ξ(t)〉 −

(
Bσq(t), Bσξ(t)

)
−
(
ψ(t)q(t), ξ(t)

)}
dt

= −
∫ T

0

(
g2(t), ξ(t)

)
dt.

At this point, we add these equations and notice that several cancellations occur. We are left with the
following identity: ∫ T

0

{(
∂tξ(t), (p+ τq)(t)

)
+ 〈∂t(p+ τq)(t), ξ(t)〉

}
dt

=

∫ T

0

(
k(t), q(t)

)
dt−

∫ T

0

(
g2(t), ξ(t)

)
dt . (5.37)

By applying the integration-by-parts formula (5.19) to the left-hand side, invoking the Cauchy condi-
tions (4.6) and (5.14), and rearranging terms, we deduce that(

g1, ξ(T )
)

+

∫ T

0

(
g2(t), ξ(t)

)
dt =

∫ T

0

(
q(t), k(t)

)
dt . (5.38)

On the other hand, since α3 = 0, the inequality (4.52) given by Corollary 4.3 reads(
g1, ξ(T )

)
+

∫ T

0

(
g2(t), ξ(t)

)
dt+ α4

∫ T

0

(
ū(t), k(t)

)
dt ≥ 0 .
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By replacing the sum of the first two integrals by the right-hand side of (5.38), we obtain (5.36) and the
proof is complete. Indeed, the last sentence is just a consequence of the Hilbert projection theorem,
since Uad is a convex and closed subset of L2(0, T ;H).
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