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Generalized Sasa–Satsuma equation: Densities approach to new infinite
hierarchy of integrable evolution equations

Adrian Ankiewicz, Uwe Bandelow, Nail Akhmediev

Abstract

We derive the new infinite Sasa-Satsuma hierarchy of evolution equations using an invariant densities
approach. Being significantly simpler than the Lax-pair technique, this approach does not involve ponder-
ous 3 × 3 matrices. Moreover, it allows us to explicitly obtain operators of many orders involved in the
time evolution of the Sasa-Satsuma hierarchy functionals. All these operators are parts of a generalized
Sasa-Satsuma equation of infinitely high order. They enter this equation with independent arbitrary real
coefficients that govern the evolution pattern of this multi-parameter dynamical system.

1 Introduction

An integrable hierarchy is an infinite sequence of partial differential equations that starts with a particular case.
The starting equation could be the Korteweg de-Vries equation (KdV) [1, 2], nonlinear Schrödinger equation
(NLSE) [3], Toda lattice [4], certain classes of Painlevé equations [5], etc. Each successive equation in the hier-
archy normally takes a more complex form than the previous one. An integrable hierarchy can be considered as
a system of commuting Hamiltonian flows [6]. An infinite number of commuting flows can be obtained recursively.
Most of the works on integrable hierarchies are written by mathematicians and may not be easily accessible.
Consequently, purely mathematical results may not be easily used in practical applications. Even if recursive
rules for deriving higher-order equations of a particular hierarchy are provided, obtaining explicit forms of these
equations is a different matter. A countable number of these equations has been presented so far. Moreover,
some of these hierarchies remain unknown due to obscurities in the definition of ’integrability’. The Painlevé
criterion can be useful in finding these special cases [7]. However, using it does not exclude the possibility that
another integrable case, not covered by the technique, remains hidden. In mathematical terms, the Painlevé
criterion is a necessary but not sufficient condition for finding integrable equations.

One important observation is that members of the hierarchy can be written in the form of one general equation
which combines all individual equations into a single one [8, 9]. This general equation can have an infinite
number of operators controlling the time evolution of a system [8, 9]. It includes all equations of the hierarchy
as particular cases with arbitrary real coefficients which govern the contribution of each operator to the whole.
The convenience of such representation lies in the arbitrariness of these coefficients. When all of them are zero
except one, we obtain an individual equation of the hierarchy. Having two or more coefficients being nonzero
provides more complicated equations that can be of interest due to the special case in physics that such an
equation can describe. One example is the Heisenberg spin chain dynamics [7].

Such general equations could be of great importance for physics because higher-order terms in this equation
may describe finer effects such as higher-order dispersion or higher-order nonlinearities in wave propagation
phenomena. They become important only beyond the basic approximation that is usually described by the
lowest-order equation. The brightest example of such approach is soliton science, which started with the KdV
[10] and NLS [11] equations. Clearly, the basic properties of solitons have to be known before we can move
to such elaborations as pulse compression [12], self-frequency shift [13], wave breaking [14], etc. Particular
cases of such step-by-step improvements in wave description are well-known in optics. Starting from simple
theory [15], the soliton approach has been advanced with the contributions of higher-order terms in later works
[16, 17, 18]. Similar ’upgrades’ of the soliton approach [19] have been provided in water wave theory [20, 21, 22].
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Unfortunately, not all higher-order terms in these upgrades result in integrable equations. A specific set of co-
efficients is required for these very special cases. It is indeed fortunate when such an ’upgrade’ belongs to a
general equation of an integrable hierarchy. The chances are low if there is only one hierarchy that starts with
the given base equation. Finding new hierarchies is thus an important task which may significantly improve
the accuracy of modelling of physical phenomena. Luckily, there are at least two ‘general equations’ that have
the NLSE as a base. One of these is a Hirota hierarchy [8, 9], while the other one, found recently [23], is a
Sasa-Satsuma hierarchy. Both start with the NLSE as the base evolution equation. Thus, both of them could be
called NLSE hierarchies. In order to avoid confusion and distinguish them explicitly, we label them here as the
generalized Hirota and generalized Sasa-Satsuma equations (SSE).

The first few equations of the Hirota hierarchy are the NLSE [11], the third-order Hirota equation [25], fourth-
order Lakshmanan-Porsezian-Daniel (LPD) equation [26] and the quintic extension of this sequence [27, 28].
Higher-order extensions (to sixth-order, etc.) have been presented in explicit forms in [8, 9]. On the other hand,
the two starting equations of the Sasa-Satsuma hierarchy are the NLSE and the third-order Sasa-Satsuma
equation [29, 30, 31]. Higher-order extensions (fourth-order etc.) have been discovered in [23].

In the present work, we make further progress in dealing with the general Sasa-Satsuma equation. Namely, we
derive many equations in the hierarchy using invariant densities. This approach is significantly simpler than the
original Lax pair technique developed in [23]. It does not require operations with cumbersome 3 × 3-matrices.
Moreover, recurrent relations in this technique are straightforward and require only the knowledge of the infinite
set of invariant densities Hj . These can be found by representing any given evolution equation in the form of
continuity equations:

∂Hj

∂t
+
∂Jj
∂x

= 0 (1)

of various orders j where Jj are the corresponding invariant flows of the order j. These continuity equations can
be constructed in the same way as for the NLSE [24]. This process requires nothing more than purely algebraic
transformations. For the SSE in the form

iut +
uxx
2

+ |u|2u = iε
[
uxxx + 3(|u|2)xu+ 6|u|2ux

]
,

for the first order, we have:

H1 = |u|2

and

J1 =
i

2
(uu∗x − u∗ux)− ε

[
(|u|2)xx − 4|ux|2 + 6|u|4

]
.

When the free real parameter ε = 0, these densities are the same as for the NLSE [24]. The whole infinite set
of higher order invariant densities and flows can be found easily. An alternative way of obtaining the invariant
densities is using the generating function technique [32]. Below, we consider the invariant densities to be known.
As we can see from Section 2, with this approach, the whole set of calculations occupies only one page.
Integrability of the higher-order equations is guaranteed, as it is based on the invariants of the SSE.

Our present technique confirms that all terms in the SSE hierarchy found in [23] are correct and it provides an
independent and simple way of working with these highly nontrivial extensions of the NLSE and SSE. Again,
we stress that the general equation related to this hierarchy contains an infinite number of real parameters.
The practical benefit of such approach is that this general equation contains higher-order terms with adjustable
coefficients, and these could describe wave propagation phenomena with higher accuracy.

2 Derivation of generalised Sasa-Satsuma equation from invariant densities

As noted above, the results of our first paper [23] can be derived using an even simpler technique that uses
invariant densities of the SSE. This can be done in a way that is related to that used in [9] for the Hirota
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Generalized Sasa–Satsuma equation 3

(previously called NLSE) hierarchy. The difference lies in using the set of invariant densities of the SSE instead
of invariant densities of the NLSE. Let us write the hierarchy, containing an infinite set of equations, in the form:

i ut +

∞∑
n=1

(α2nS2n − i α2n+1S2n+1) = 0, (2)

where Sj are the functionals of the order j for the envelope function u(x, t), and the αj are arbitrary real
coefficients. We stress that the coefficients αj are not small parameters. They are finite real numbers, thus
making our approach far from being just another perturbation analysis. In Eq.(2), we explicitly separated even
and odd terms for the reason which will be clear in the following.

The SSE functional can be written in the form:

S3 =
6

b2
ux|u|2 +

3

b2
u(|u|2)x + uxxx. (3)

Other forms [29, 30, 31] follow from Eq.(3) after simple transformations. The inclusion of the arbitrary real
constant b in (3) follows from free scaling on the variable x. In the normalization of [23], b = 1, but here we find
it more appropriate to use b =

√
2.

The first density of the integral invariant of the SSE is

H1 = |u|2. (4)

The transverse integral (i.e. over x) of this expression represents the conserved mass during evolution.

We define the variational (Frechet) derivative as

F ≡ ∂

∂u∗
− ∂

∂x

∂

∂u∗x
+

∂2

∂x2
∂

∂u∗xx
− · · · (5)

The second invariant density (integrand) of the SSE, divided by b, is

H2 = −
1

2
[uxu

∗ + uu∗x] . (6)

The transverse integral of H2 represents the conservation of momentum. The Frechet derivative of H2 is zero.

The third invariant density of the SSE divided by b2 is

H3 =
u∗uxx
2

+
uu∗xx
2

+
2

b2
|u|4. (7)

Its integral with respect to x is the Hamiltonian, indicating conservation of energy.

Taking the variational derivative produces the NLS term:

F(H3) = S2 =
4

b2
u|u|2 + uxx. (8)

We now take b =
√
2 to get the usual form of the NLSE, iut + α2S2 = 0, i.e.

iut + α2(2u|u|2 + uxx) = 0. (9)

Note that this normalization matches the form used in [9], K2 = 2u|u|2 + uxx.

The fourth invariant of the SSE, divided by b3, is

H4 = −1

2

[
10

b2
uxu(u

∗)2 + uxxxu
∗ +

10

b2
u2u∗(u∗)x + u(u∗)xxx

]
. (10)

The Frechet derivative of H4 is also zero.
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The invariant density H5 of the SSE, divided by b4 is:

H5 =
8|u|6

b4
+

4u2(u∗x)
2

b2
+

4(u∗)2u2x
b2

+
14|u|2|ux|2

b2
+

7u∗|u|2uxx
b2

(11)

+
7u|u|2u∗xx

b2
+
u∗uxxxx

2
+
uu∗xxxx

2

Setting b2 = 2, we get:

H5 = 2u2(u∗x)
2 + 2 (u∗)2 u2x + 7|u|2|ux|2 +

7

2
|u|2u∗uxx +

u∗uxxxx
2

(12)

+
uu∗xxxx

2
+ 2|u|6 + 7

2
|u|2uu∗xx.

We obtain the higher order terms by using the operator F from Eq.(5). Thus

F(H5) = S4.

The 4-th order functional is thus:

S4 =
24

b4
|u|4u+

6

b2
u2u∗xx +

12

b2
u|ux|2 +

14

b2
|u|2uxx +

8

b2
u∗u2x + uxxxx. (13)

Then, the functional (13) resembles the one in the LPD equation [9] with the form of the terms, but has different
coefficients in front of each of them.

The sixth invariant is

H6 = −44 (u∗)2 u3u∗x
b4

− 14 (u∗)2 uxuxx

b2
− 11u∗u2xu

∗
x

b2
− u∗u5x

2
(14)

− u2

[
44 (u∗)3 ux

b4
+

14u∗xu
∗
xx

b2
+

9u∗u∗xxx
b2

]

− u

[
24u∗uxu

∗
xx

b2
+

24u∗ (ux)
∗uxx

b2
+

9 (u∗)2 uxxx
b2

+
11ux (u

∗
x)

2

b2
+
u∗5x
2

]
.

The Frechet derivative of H6 is also zero.

The 7-th invariant density in the set is

H7 =
1

2

{
u

[
u∗

b2
(73uxu

∗
xxx + 98uxxu

∗
xx + 73u∗xuxxx) +

97

b2
|ux|2u∗xx +

194

b4
(u∗)3u2x

+
22

b2
(u∗)2uxxxx + u∗6x +

45

b2
(u∗x)

2uxx

]
+ u∗

{ux
b2

[
43u∗uxxx + 97u∗xuxx

]
+

45

b2
u2xu

∗
xx +

29

b2
(u∗)2u2xx + u6x

}
+

80

b6
|u|8 + 2u3

u∗

b4
[
76u∗u∗xx + 97(u∗x)

2
]

+ u2
[
43

b2
u∗xu

∗
xxx +

572

b4
(u∗)2|ux|2 +

152

b4
(u∗)3uxx +

29

b2
u2(u∗xx)

2 +
22

b2
u∗u∗xxxx

]}
.

We again obtain the 6-th order functional by taking the variational derivative of H7:

S6 =
55

b4
u3(u∗x)

2 +
45

b2
u2xu

∗
xx +

32

b2
uuxu

∗
xxx +

43

b2
u∗uxuxxx +

175

b4
(u∗)2uu2x +

53

b2
uuxxu

∗
xx

+
31

b2
u∗u2xx +

20

b2
|u|2uxxxx +

160

b6
|u|6u+

110

b4
u∗u3u∗xx +

330

b4
u∗u2|ux|2 +

170

b4
|u|4uxx

+
8

b2
u2u∗xxxx +

95

b2
|ux|2uxx +

37

b2
u(ux)

∗uxxx + u6x.

(15)

Clearly, this process can be continued indefinitely generating the infinite hierarchy of operators of the general
Sasa-Satsuma equation (2).
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2.1 Operators Sj with normalization b2 = 2

In conclusion, we can give explicitly the general equation (2). We use b2 = 2 throughout. The lowest order
functional S2[u(x, t)] in Eq.(2) is given by

S2 = uxx + 2u|u|2, (16)

while Eq.(3) gives:

S3 = 3ux|u|2 +
3

2
u(|u|2)x + uxxx. (17)

Using Eq.(13), we obtain:

S4 = 6|u|4u+ 3u2u∗xx + 6u|ux|2 + 7|u|2uxx + 4u∗u2x + uxxxx. (18)

Re-normalizing the form given in [23]), we obtain:

S5 = u5x + 20|u|4ux +
5

2
u2u∗xxx +

25

2
u(uxu

∗
xx + u∗xuxx) + 10|u|2u2u∗x (19)

+ 10|ux|2ux +
15

2
|u|2uxxx + 15u∗uxuxx.

Using Eq.(15), we obtain:

S6 =
55

4
u3(u∗x)

2 +
45

2
u2xu

∗
xx + 16uuxu

∗
xxx +

43

2
u∗uxuxxx +

175

4
(u∗)2uu2x (20)

+ +
53

2
uuxxu

∗
xx +

31

2
u∗u2xx + 10|u|2uxxxx + 20|u|6u+

55

2
u∗u3u∗xx

+
165

2
u∗u2|ux|2 +

85

2
|u|4uxx + 4u2u∗xxxx +

95

2
|ux|2uxx +

37

2
u(ux)

∗uxxx + u6x.

3 Reduction to real-valued forms for odd terms only

For the moment, let us restrict ourselves to the odd-order functionals only. If we additionally specify that the
functions u(x, t) should be real-valued, then Eq.(2) reduces to higher order forms of the mKdV equation. In this
case, Eq.(17) reduces to the basic mKdV equation,

ut − α3S3 = 0,

with:
M3 = uxxx + 6uxu

2. (21)

For the 5-th order, we obtain
ut − α5S5 = 0,

from Eq.(18):

M5 = u5x + 10(uxxxu
2 + 4uuxuxx + u3x + 3uxu

4). (22)

The basic soliton solution of the SSE hierarchy with odd terms only, viz.

ut − α3S3 − α5S5 − · · · = 0, (23)

is
u = p sech [p(x+ st)], (24)

DOI 10.20347/WIAS.PREPRINT.2510 Berlin 2018
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where s =
∑∞

n=1 α2n+1p
2n represents a velocity. Eq.(24) is real, and in this case the SSE and its basic

solution are the same as for the lowest-order mKdV,viz.

ut + a3(uxxx + 6u2ux) = 0.

The general equation (23), with odd-numbered functionals only, is essentially the mKdV hierarchy [33] of equa-
tions. Thus, it is a (real) subset of the Sasa-Satsuma hierarchy. We expect the form of the solution (24) to be valid
for all these equations. Moreover, if u(x, t) is an mKdV solution, then scaling shows that u′ = q u(q x, q3 t) is
also its solution for any real q, so we can just set p = 1 in the above, without loss of generality.

4 Relations between SSE, Hirota (NLS) and mKdV hierarchies

To find the relation between SSE, Hirota (NLS) and mKdV hierarchies, we need a consistent normalization and
use b =

√
2 in the results found above; we note that this is different from that used in the earlier paper [23]. We

denote our previously-found [9] functionals for the Hirota (NLS) hierarchy by Kj , so that the equations of the
infinite hierarchy are

i ut +
∞∑
n=1

(α2nK2n − i α2n+1K2n+1) = 0. (25)

The NLSE is obtained from Eq.(25) when all real coefficients except α2 are zero. Thus:

i ut + α2K2 = 0, (26)

where the functional K2 = uxx + 2u |u|2.

If u(x, t) in (26) is real, this gives the real form D2 of the functional K2,

D2 ≡ uxx + 2u3. (27)

We can take the derivative of D2 with respect to x

M3 =
∂D2

∂x
= uxxx + 6uxu

2. (28)

to get the mKdV equation,
i ut − iα3M3 = 0.

From [9], we have
K3 = uxxx + 6ux|u|2. (29)

Plainly, S3 and K3 are related through

S3 −K3 =

(
3

2
u

) ∣∣∣∣ u u∗

ux u∗x

∣∣∣∣ = 3

2
u(uu∗x − u∗ux) =

3

2
uW1,

where the determinant W1 is defined as:

W1 =

∣∣∣∣ u u∗

ux u∗x

∣∣∣∣.
If u is real, this determinant is zero.

For u real, the SSE

ut − α3

[
uxxx +

3

2

(
|u|2
)
x
u+ 3|u|2ux

]
= 0

DOI 10.20347/WIAS.PREPRINT.2510 Berlin 2018



Generalized Sasa–Satsuma equation 7

reduces to the basic mKdV equation

ut − α3(u3x + 6u2 ux) = 0,

i.e. ut− α3M3 = 0, whereM3 = u3x+6u2 ux. The Hirota functional,K3 = uxxx+6|u|2ux, also reduces
to M3 for u real.

Converting Eq.(13) to its b2 = 2 form, we get

S4 = 3u∗xxu
2 + 6u|u|4 + 6|ux|2u+ 7|u|2uxx + 4u∗u2x + uxxxx.

It is clear that Eq.(30) has the form of the 4th member of the Hirota (NLS) hierarchy which is known as the LPD
equation, but has different coefficients. Now, from [9]:

K4 = 2u∗xxu
2 + 6u|u|4 + 4|ux|2u+ 8|u|2uxx + 6u∗u2x + uxxxx. (30)

The difference between S4 and K4 is

S4 −K4 = 2|ux|2u− 2u∗u2x + u∗xxu
2 − |u|2uxx,

so the two fourth order equations differ only by 2 terms:

u(S4 −K4) =

∣∣∣∣ u u∗
∂
∂x

(
uxu

2
)

∂
∂x

(
u∗xu

2
)∣∣∣∣ = u

∂

∂x

(
u∗xu

2
)
− u∗ ∂

∂x

(
uxu

2
)
, (31)

so
S4 −K4 = uW2 + 2uxW1,

where

W2 =

∣∣∣∣ u u∗

u2x u∗2x

∣∣∣∣.
If u is real, then S4 −K4 is also zero.

If we take u to be real, then we clearly have S4 −K4 = 0, and we get

S4 = K4 = 10uxxu
2 + 6u5 + 10uu2x + uxxxx ≡ D4. (32)

Now D4 is the real form which can be used to obtain the 5th order mKdV equation [34],

ut − α5M5 = 0.

Thus
∂D4

∂x
= 30uxu

4 + 10uxxxu
2 + 40uxuxxu+ 10u3x + u5x =M5. (33)

This is the same as the functional M5 found by other means. It is also the same as Eq.(22) of the real-valued
SSE hierarchy, S5, found here, and it is the same as the real-valued form of K5 found in [9].

Indeed, from [9], we have

K5 = u5x + 10|u|2uxxx + 10(u |ux|2)x + 20u∗uxuxx + 30|u|4ux. (34)

We furthermore find that S5 and K5 are related as follows:

S5 −K5 =
5

2
uW3 +

5

2
uxW2 +

(
5

2
u2x + 10u|u|2

)
W1,

DOI 10.20347/WIAS.PREPRINT.2510 Berlin 2018
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where

W3 =

∣∣∣∣ u u∗

u3x u∗3x

∣∣∣∣,
and W1 and W2 defined above. We can generalize these definitions as follows:

Wj =

∣∣∣∣ u u∗

ujx u∗jx

∣∣∣∣,
so that theWj determinant involves the jth derivatives of u and its complex conjugate, u∗. When u is real, then
each Wj is zero. If u is real, then S5 −K5 is also zero, so S5 = K5 =M5, as noted above.

The real scaled form of S6 from this present work is:

S6 = 20u7 + 70u4uxx + 140u3u2x + 14u2uxxxx (35)

+ 14u
(
4uxuxxx + 3u2xx

)
+ 70u2xuxx + u6x.

The real form of K6, given in [9] is exactly the same as (35). These two functionals are clearly identical and we
label them D6. Now, we can obtain the 7th order mKdV equation, ut − α7M7 = 0, where

∂D6

∂x
= u7x + 14u2

(
u5x + 30u3x

)
+ 140u6ux + 70u4uxxx + 560u3uxuxx

+ 28u(3uxuxxxx + 5uxxuxxx) + 182uxu
2
xx + 126u2xuxxx =M7.

This is the 7th order mKdV functional. It is the same as the real form of K7. The forms of the mKdV functionals,
M2j+1, agree with those found from the recursion operator.

Also, from [9], we have

K6 = u6x + 2
[
30u∗|ux|2 + 25(u∗)2uxx + u∗xxxx

]
u2 (36)

+ u
[
12u∗uxxxx + 8uxu

∗
xxx + 22|uxx|2

]
+ u

[
18uxxxu

∗
x + 70(u∗)2u2x

]
+ 20 (ux)

2 u∗xx

+ 10ux [5uxxu
∗
x + 3u∗uxxx] + 20u∗u2xx + 10u3

[
(u∗x)

2 + 2u∗u∗xx

]
+ 20u|u|6.

We furthermore find that S6 and K6 are related as follows:

S6 −K6 = 2uW4 + 8uxW3 +
1

2

(
9u2x + 15u|u|2 + 5

u
u2x

)
W2 (37)

+
1

4

[
15u2u∗x + 105|u|2ux −

10

u
uxuxx + 2uxxx

]
W1,

If u is real, then each Wj is zero and thus S6 = K6.

In the expressions Sj −Kj , the first term is proportional to uWj−2, while the second term is proportional to
uxWj−3. Of course, when the Kj and differences are known, the set Sj can be generated. So, the pattern of
these hierarchies is now more evident. The results of this section are illustrated schematically, in Table 1.

DOI 10.20347/WIAS.PREPRINT.2510 Berlin 2018
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density Si(complex) real form NLS(complex)

H3 −→ S2 −→ D2 ←− K2[NLS] = S2y ∂
∂x

S3[SSE] −→ M3 ←− K3[Hirota]

H5 −→ S4 −→ D4 ←− K4[LPD]y ∂
∂x

S5 −→ M5 ←− K5[quintic]

H7 −→ S6 −→ D6 ←− K6[sextic]y ∂
∂x

S7 −→ M7 ←− K7[heptic]

. . . . . . . . . . . . . . . . . .

H2j+1 −→ S2j −→ D2j ←− K2jy ∂
∂x

S2j+1 −→ M2j+1 ←− K2j+1

Table 1: Relations between hierarchies, summarizing the results of section 4. Here H2j+1 (Eqs.(7), (13) and
(15)) indicates invariant density of basic SSE, Kj indicates jth order functional of NLS hierarchy, Sj indicates
jth order functional of the SSE hierarchy (newly presented here), Mj (Eq.(33)) indicates jth order functional
of mKdV hierarchy. If the functions u are specified as being real, then both K2j and S2j reduce to the same

functional, viz. D2j (Eqs.(27), (32) and (35)) for each j. Each vertical arrow indicates ∂
∂x , so that

∂D2j

∂x =
M2j+1; for example see Eqs.(28), (33) and (36).

5 Conclusions

Using densities, we have derived a new general multi-parameter equation that contains, as particular cases,
the Sasa-Satsuma and mKdV hierarchies of equations. Real arbitrary parameters in this equation allow one to
select any particular equation of these hierarchies and any combination of them. While we have presented the
operators involved in this equation in explicit forms up to order 6, the technique given here in principle allows
one to conveniently obtain the equation of any even order.

This generalized Sasa-Satsuma equation (2), in addition to the generalized Hirota equation [8, 9], will be useful
in improving the accuracy of modelling solitons, breathers and rogue waves and even turbulent phenomena in
integrable systems [35]. It will allow inclusion of higher-order effects into mathematical modelling of systems
using the form with any number of real parameters to control the dynamics being investigated.
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Finding solutions of the original Sasa-Satsuma equation is not easy [36, 37, 38, 39]. It would be even more
difficult to find them for the whole generalized equation (2). Nevertheless, integrability means there is a way to
find solutions in analytic form. An example of a soliton solution for the whole infinite equation has been given in
[23]. We believe this work can be continued and, in a few years, we will be able to see more detailed analysis
along this path. This immense work needs collective efforts.
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