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Abstract 

Shape memory alloys exhibit a complex load deformation temperature be-
haviour (especially e.g. hysteresis and "inner" loops) which is due to the oc-
curence of a first order phase transition. By load deformation diagrams the so-
called shape memory effect can be made visible. We study a model of I. Millier 
et al. [1], based on statistical mechanics, which is applicable to biaxial loading 
of polycrystalline bodies and incorporates the rotational part of a deformation. 
Recently, I. Milller et al. [3] have proposed a second model incorporating the 
coherence energy for solid phase mixtures. For two principle variants of experi-
ments (soft and hard loading devices) we present numerical simulations ofload 
deformation curves for either of the two models. Comparing these with experi-
mental results of so-called "inner loops" in a hystersis the second model shows 
its superiority. 

1 Introduction 
In the last years Shape Memory Alloys likeNi'JJ, CuAZNi, AuCnZn or CuAZZn have 
gained much attraction from the point of view of applications. The importance of 
these smart materials is a result of the Shape Memory Effect. This effect is pro-
duced by the hysteretic behaviour of the material. Hysteresis is the result of a phase 
transitition between phases in the alloy. 

1.1 The Shape Memory Effect 

At first we describe the Shape Memory Effect, which may be defined as the recov-
ery of the original shape of a specimen upon heating after a (quasi-) plastic defor-
mation. Consider in fig. 1 the schematic picture of a straight wire, which is bent 
into a spiral at low temperature. After heating it recovers its straight shape and re-
tains it even after cooling down to the initial temperature. The recoverable strain 
is typically about 5-8% in a temperature range from about 30 - 50° C. The so-called 
Shape Memory Effect may be read from load deformation diagrams, which will be 
simulated . The impact to applications in industry and medicine is obvious. How-
ever, the case of a two-way Shape Memory Effect is not considered here. In that 
case, there are only two possible states of deformation for the material, realizing a 
mechanical switch. 
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before deformation (20°C) 

after deformation (20°C) 

after heating (60°C) 

after cooling (20°C) 

Fig. 1: The shape memory effect (cf. fig. 1.1 in [3]) 

1.2 Load Deformation Diagrams 

To visualize the Shape Memory Effect we consider some schematic load-deformation 
diagrams for different temperatures T1 < T2 < T3 < T4 in fig. 2. 

p p p p 

quasi plastic pseudo elastic 

Fig. 2: Load-deformation diagrams: Quasi-plasticity (A,B) and pseudo-elasticity 
(C,D) (cf. fig. 1.2 in [3]) 

In the so-called quasiplastic temperature range (subfig. A-B) we start a tensile 
loading P > 0 from the origin (d=O, P=O). Following the virginal curve with an 
elastic deformation path, there is a yield limit (after that, there is also an elastic 
branch) and upon unloading, we reach the point (0, d1 ), i.e. a residual deformation. 
Upon compressively loading (P < 0) subfigure A shows in an analogous manner a 
hysteresis loop, which is followed by a process with alternatively tensile and com-
pressive loading. Subfigure B shows the same qualitative behaviour for a higher 
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temperature T2 > T1 with a decreased yield limit. Because of the yield limit this 
temperature range is called quasiplastic1 or ferroelastic. For higher temperatures, 
in the pseudoelastic range, the picture changes significantly, because there remains 
an elastic line through the origin and now, there are two (smaller) hysteresis loops 
in the first resp. third quadrant. The shape memory effect may be read from fig. 
2A-C. Having reached the point (0, di) upon loading at temperature T1 we heat the 
body and see in fig. 2.C that this point is not a valid, i.e. stable state, so that the 
body will return to the origin assuming the shape before the deformation. So the 
material "remembers" its orignal shape and even in cooling down from T3 to T1 this 
state remains valid. 

1.3 Soft and Hard Loading Devices 

In a uniaxial tensile experiment with a specimen made of Shape Memory Alloy (cf. 
fig. 3) one can distinguish soft- and hard loading devices. In a soft loading device 
the load on the specimen (cf. fig. 3) is prescribed and the resulting deformation is 
measured, and for a hard loading device the situation is vice versa (deformation-
driven experiments). 

Fig. 3: A typical specimen for the soft and hard loading devices made of a shape 
memory alloy (cf. fig. 1.3 in [3]). The total length is here about 5 cm, the width of 
the narrow part0.8 cm and the thickness about 0.15 cm. The lines mark a different 
phase. 

In a series of papers, Falk ([4] and the references therein) has proposed a model 
for shape memory alloys by defining a free energy ofLandau-Devonshire-Ginzburg 
type. Sprekels et al (cf. [5] and the references therein) have shown existence and 

1Unlike plasticity it is possible to load elastically after the yield load has been reached. 
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uniqueness for the mathematical model and proposed a numerical scheme ( [6] ). Klein 
([7]) showed stability and uniqueness of this scheme and carried out numerical sim-
ulations for a soft loading device. In his dissertation, Bubner ( [8], [?]) modified the 
Falk model for the case of a hard loading device and presented numerical calcula-
tions for that in the low temperature range. It turns out that for the latter case there 
are "inner loops" in the "greater" hysteresis (cf. fig. 2.A) We will see this in the last 
section, too. However, these simulations have been down only in one dimension (for 
the simulation of a wire). 
Metallurgists have discovered that in the described experiments phase transitions 
take place between austenite, a highly symmetric lattice structure and marlensite, 
which is less symmetric, or between variants of martensites ("twinning'). Roughly 
spoken, martensite is a sheared version of austenite with twenty-four possible vari-
ants in three dimensions. The temperature dependence of a load deformation dia-
gram is a result from the fact that austenite is a high-temperature phase and marten-
site prevails at low temperatures. In fig. 3 the nucleation of phases resp. the phase 
transition is made visible by black lines. A reasonable model must incorporate the 
energy balance in order to take the effect oflatent heat at a transition into account. 

2 Two Models from Statistical Mechanics 
The starting point for both models is a lattice particle (a small piece of the metallic 
lattice); so the models are of a mesoscopic type. Considering only plane strain, there 
are two martensitic variants, which may be identified as sheared version M+ resp. 
M- of austenite A. The phase of each lattice particle is defined by a (triple well) 
potential energy function¢(~, 7) (cf. fig. 4), where~ is the shear length and Tis 
the external force, acting onto this particle. So we say that a lattice particle is in 
the phase M- if~ < µL and in an analogous manner, we define the phases A and 
M+. 
Notice, that this potential energy has nothing in common with the global phenomeno-
logical free energy of Falk. However, Mi.iller has shown in [3] that for reasonable 
assumptions such a temperature dependent, non convex free energy may be con-
structed from this mesoscopic model, especially from the rate laws for the phase 
fractions. 
The particles are stacked in layers, where it is assumed that they have the same ~­
Stacks with different orientation angles are grouped together to form a polycrystal. 
In a first-order approximation a deformation of the whole body is then assumed to 
be a shearing motion of the layers and a rotation. 
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cp(..6., 0) 

• m tlJJJI 
A 

Fig. 4: Potential energy for a lattice particle (cf. fig. 1 in [1]) 

By statistical mechanics the model may be written as an implicit system of six integro2 

OD Es for the time-dependent variables of the model: 

• volume fractions of phases x := (M-, A, M+), 

• deformation tensor Fij, (1 ::; i, j ::; 2), 

• angle of a layer a and 

• absolute temperature T. 

This results in H(x, ii, T, T, a, a; Fij, FijO", a, TE)= 0, where extern.al temperature TE 
and external stress a (resp. the given deformation) for a soft (resp. hard) loading 
device are prescribed. 

2.1 The Rate Laws for the first Model 

Let us recall shortly the governing equations of the model [1] for a soft loading de-
vice. With r :=Ta being the "projected" force on a layer with orientation a, the ex-
pectation value D == Da for the shear length of one layer is D = 2:~==1 Xk · xk with 

f1 ~ exp(-cp(6, r)/kT)d~ x ·-_le ________ _ 

k .- f11c exp(-cp(~, r)/kT)d~ 

2This originates from the modelled distribution of angles a(t) of each stack. 
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where 11 , 12 and l3 are the (semiin:finite) intervals (-oo, µL), (-µL, µR), (µr, oo) (cf. 
fig. 4) and k is the Boltzmann constant3 • 

The relation of Ta. to the externally applied stress tensor a is given by the well-known 
Mohr circle 

U22 - U11 • Ta. = 
2 

sm(2a) + a 12 cos(2a). 

The distribution of angles in a polycrystal is described by the function g: 

[ g(a, t)da = 1 

I. Deformation Tensor The evolution of Fis described by 

ir .. -111" ( )~ ( -D sin( a) cos( a) iJ cos2
( a) - a ) r;i. d 

ri1 - g a, t . . Eik a, 
0 h -D sin2

( a) +a D sin( a) +cos( a) ik 

where h is the height of a layer, which is assumed to remain constant. 

II. Phase Fractions 
For each layer with orientation a, the phase fractions x = x-:X evolve with 

i = Pa.(T,T) · x, 
where P =Pa. is a matrix of transition probabilities: 

P=(;:: ;:: ~a)· 
0 P32 P33 

E.g. for the transition M- --+ A, we have 

Pn = Kfil exp(-cp(µL,T)/kT) 
J~~ exp(-cp(µL, T)/kT) 

with some proportionality constant K. By this, the change in, e.g., x1 (M-) is 
composed of a gain in particles, which switch over from x2 (A), and a loss of 
those of M-, which switch over to A. Note that it is impossible for particles of 
M- to switch directly to M+. First, a layer of M- must change to austenite A 
and then, it can become M+. 

The introduction of matrix P models a phase transition as an activated pro-
cess, because Pij depends directly on the two external variables T and PE (we 
are in the case of a soft loading device). As pointed out earlier, this makes 
it possible for Milller to construct a global non convex free energy from this 
model, which is the starting point for the investigations of Falk. 

3N otice that k may appear as summation index also (and then we omit by default the range k = 
1, 2, 3). The meaning should be clear from the context. 
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III. Energy Balance 
For internal energy U and kinetic energy K we have 

(with the usual abbreviations (ref. [1]) v being the volume and av the surface 
of the body), which reads by using Newton's law now 

CT = -w(T - TE)+ O"ijFikFkj-1V 

-N {1r g(a,t) LYkikda lo k 

-NJ J {1r g(a, t) [T. Sa - Lxkxk] . (ar . a.+ a~ .. aij) da 1 o k aa aui3 

where N is the number of particles, and w, f, J are constants, 

f1K cp(6, r) exp(-cp(6, r)/kT)d6 
Yk ·= -~----------. f1K exp(-cp(6, r)/kT)d6 ' 

r1r au 
specific heat C = N lo g(a, t)Rada + aT 

and Sa=~~-
The term Ra in the expression for the specific heat is computed as follows: 

_ t [ (Jr, cp2 
( t::., r) exp( -cp( t::., r) / kT)dt::.) (Jr, exp( ~cp( t::., r) / kT)dt::.) 

i=l (J1i exp(-cp(6, r)/kT)d6) 

(Ir, cp( t::., T) exp( -cp( t::.' T) I kT)~t::. r] · ( 1) 

( f1i exp( -cp( 6, r) / kT)d6) 

To summarize, this system of seven integro ODEs for the soft loading device allows 
us to calculate Fii, xk and T, the latter, to take into account the effects oflatent heat 
(cf. Yk). 
The right hand side of the system is lineary dependent in Fii, T, ik and nonlinearly 
dependent in Fij, T, xk, a and a. Because of the natural constraint L:k xk = 1, only 
six equations are independent. Miiller proposed to discretize the distribution of an-
gles a in e.g. v directions, so that the system is converted from integro ODEs to a 
system of2v+4 ODEs. Notice, however, that the right hand-side then still contains 
semiinifinite integrals as coefficients. 
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2.2 Special Case 

Some special assumptions have been made to fit the setting of the experiments. So 
the body is subject to a tensile or compressive load in one direction, where the verti-
cal sides of the body remain vertical. For simulating experiments with unicrystals 
we assume a body, which contains initially only particles with a single orientation 
of~. 

We achieve thereby the simplification of the Mohr circle to Ta= r(P(t), F11, a), where 
P(t) is the external load (not to be confused with the matrix of transition probabili-
ties). Furthermore, the rate laws for Fii can be reduced to one rate law for D = Da : 

. · 8D 8D 
D = Kar+ SaT + L Xkxk, Sa := BT, Ka := Br i 

k 

and there is the relation 

V2 Fn = . 
J1 + (1 + Jt) 2 

With c := C /Nm (m the mass of a layer) the energy balance is reduced to 

cT V Fn 
£2Nm PE(t) Ff1 

w 
Nm (T - TE(t)) 

+ LYkxk 
k 

+ :: (T·Sa- ~Xkx} 
where. L 2 is the ground surface and V the volume of the body. 

2.3 Mathematical Model 

We investigate the case of section 2.2. After making the variables dimensionless 
and sorting the time derivatives of the solution vector on the left side, we arrive at 
the following system of OD E's for the soft loading device: 

B(Y) ·ff= f(y; TE(t), PE(t)), y(O) =Yo, (2) 
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with y := ( x, d, T) E ~4 x ~ +, d := deformation and 

B= 

In the right-hand side 

( 

J3X3 

1 - PE(t) · [c1(Y) + S · c4(y)] 
-PE(t) · c4(y) 

there is the dimensionless matrix of transition probabilities with the structure 

The other coefficients of the system are similar to the one defined above, e.g., 

·- __!.__"'"""' bku · bkoo - bko1 · bklo 
s .- r2 L..; b2 

k 000 

where we have defined 

bklm := i. 01cpm( 0, PE) exp ( cp( O::E)) dO 

and c1 , ... , c6 are not written down for reasons of brevity. 

(3) 

(4) 

(5) 

(6) 

Matrix B may be singular and therefore, we can only show local existence for the 
given IVP yet: 

Lemma 1 For continuous PE, TEE L 00 [0, oo] with PE(O) = 0, there is a t 1 > 0, such 
that there is a unique solution to the given system of OD Es in the time intervall [O, t1). 

This is a direct consequence of the continuity of Band f, such that 

and therefore B-1 exists in [O, t1). Having shown the existence of B-1, the proof is 
finished by using the theorem of Picard-Lindelof. 
The special structure of the matrix of transition probabilities P shows that 2:k ik = 
0. Assuming L:k xk(O) = 1 (which is the only solution that makes sense, since xk are 
phase fractions), we arrive at I::k xk(t) = 1 for all t ~ 0. 
Furthermore, we can exclude that a phase fraction will become negativ, if the ele-
ments of P behave as probabilities: 
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Lemma 2 For continuous xi(t) E L00 [0, t1] and if Pii 2:: 0, we have 

Xi(O) E [O, 1] :=:;.. Xi(t) E [O, 1] Vt 2:: 0, i = 1, 2, 3. 

Proof: It suffices to show that xi(t) 2:: OVi. Assume, that there is at> 0 with xi(t) < O 
for one particular i. From continuity there must beat* with t* : = mint>o {xi( t) = 0, i E {1, 2, 
FIRST CASE: Let x1(t*) = x2(t*) = 0, then x3(t*) = 1. Therefore 

{ 

i1(t*)=O, 
i2(t*) = P32 2:: 0, 

i3(t*) = -P32 ::; 0. 

So i 2(t*) = O; otherwise i 2(t*) > 0, i.e. 3t < t* with x2(t) = 0, which contra-
dicts the minimality oft*. We conclude that P32 = 0 :=:;.. i3(t*) = 0 :=:;.. i(t*) = 0 
9 x(t*) = (0, 0, 1), and x(t) = (0, 0, 1) being a Stationary point, but especially Xk 2:: 0. 
IN THE SECOND CASE we restrict ourselves to x1(t*) = 0 and x2(t*), x3(t*) > 0, be-
cause of the first case. From the minimality oft*, we have that i 1(t*) < 0. From 
the ODE (5) we have than the contradicition, that i1(t*) = 0 + P21x2(t*) 2:: 0. This 
finishes the proof. 
Beyond this it is shown that either 0 < xi(t) < 1 or that there is a stationary point 
x = ei for a unit vector ei E JR3• Similarly, one may show that for Pii > 0, xi(O) > O it 
follows, that 

Xi(t) E [O, 1) Vt 2:: O; i = 1, 2, 3. 

2.4 The second Model 

In a recent series of papers Miiller et al. (cf. [2] and references there) have shown 
that from a thermodynamic point of view the coherency energy between (A, M) or 
( M-, M+) phases must be taken into account. Otherwise, there is no reason for the 
material, not to act as a fluid. Then, there would be no hysteretic behaviour. Miiller 
shows, that the size of a hysteresis loop is dependent from 
Miiller chooses the simplest possible case with a value of rv A(l - A) = x2(l - x2), 
whose derivative appears with the proportionality factor €for the coherency energy 
in the "new" transition probabilities as follows: 

p -0 - 1 ( 01 · ../8 ·exp f1(PE(t~ - 2ex2) 

0- C1 ·~·exp ( }i(PE(t~ + 2ex2) p -

p+o - 1 ( 01 · .jB ·exp f2(PE(t~ - 2ex2) (7) 
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Here is the list of used abbreviations: 

• p transistion probabilities, e.g., p0+ for the transition from austenite (whose 
phase fraction is x2) to martensite+ (whose phase fraction is x3); 

• ():the dimensionless absolute temperature; 

• K, the ratio of curvatures KA/ KM of the two parabola, by which the potential 
r.p (cf. fig. 4) is constructed in this case; 

• rx relaxation time of the phase fractions; 

a TT relaxation time of the temperature; 

a C1 := R/rx)l - K-/(4¢), (\ := Cif-JK,; 

• !1,2 := ¢. Pj ±Ki . PE + K2; 

• !1,2 := ¢/K- · Pj ±PE+ K3, where 

• 8 = µR/ J, where J is the abscissa, where r.p is in its lateral minimum (cf. fig. 
4). 

With the abbreviation 

( 1) 2 1 ( 1 K,) F13 := 1 - - . ¢. PE =F - . PE+ 1 - --' K, 8 4¢ 

we arrive at the system for a soft loading device 

-0 X1 = -p X1 +p0-x2 
X2 p-OX1 - (p0-x2 + p0+) x2 +p+0x3 
X3 - po+x2 -p+ox3 

8 = _2_(8 - BE)+~ [F1 · x1 + F3 · x3] 
TT ( 

-~ [1 - 2x2] · x2 

' d(t) = (K- · x1 + x2 +fl;· x3) · 21!_8 · PE(t) - (x1 - x2) K, 

11 
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with some constant(. Notice that for given PE(t) and BE(t) we may compute x and B. 
The corresponding deformation follows then from a purely algebraic relation (10). 
We continue with studying some mathematical properties. The structure of the sys-
tem is similar to the one of the first model. However, after bringing the derivatives 
of the system onto the left side, the resulting matrix Bis regular, and so we have 
global existence, if the right-hand side is suitable. 
Lemma 2 holds, of course, in this case, too. The following lemma guarantees that 
the transition probabilities in spite of the term ..}e are well defined, at least for the 
case, when there is no loading, e.g., by simulating a temperature-induced phase 
transition. 

Lemma 3 Let PE = 0, B ~ cE Vt E [O, T] with a positive constant cE and for the 
coefficient of the coherency energy, let € < min{ 1, ~} with r : = ~. 
Then there exists c > 0 with B(t) ~ c Vt E [O, T]. 
Proof Let Pii be the transition probabilities from (7). Then we have for them 

f1,2 - 2Ex2 = K2 - 2ex2 E [1 - e, 1 + 3e] =} !1,2 - 2ex2 > 0 

- 1 1 -
f1,2 + 2ex2 = 4r - e + 2ex2 E 4r + [-€, e] =} f1,2 + 2ex2 > 0 

=} limpij(B) = lim exp(-~y) = O 
8-+0 y-+oo y-2 

with a positive constant K. Assume that there is a monotone increasing sequence 
tn with liIDn-+oo B ( tn) = 0. 
After a possible change to a subsequence tni, we can assume 

Jim Bi= 0 and Jim Bi ::; 0 i-+oo i-+oo 

with Bi:= B(t~) and Bi analogously. The evolution of the phase fractions is due to (8) 
stationary: liIIli-+oo xk(t~) = 0 (k = 1, 2, 3). For Ei := [I:k=l,3 (Fkxk) - E(l - 2x2)x2] 

tni 

we have therefore due to F1,3( PE = 0) =const.:liIIli-+oo Ei = 0, i.e. liili-+oo Ei - !~ = 0. 
Due to cE > 0 we find by applying (9) for every € > 0 a N E N with 

e. = BE( tnJ + (E. - Bi ) > CE - € > 0 Vi > N. . f - CE i i _ _ , 1 e.g. e < -
fy fy fy fy 

'---v----" 
H~e 

From this and the assumption about ih, for i sufficiently large, follows the contra-
diction 

0 ~ fh > 0. 

D 
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Lemma 4 For PE, BEE 1 00 (0, T) there is a constant C > 0, such that B(t) < C Vt E 
[O, T]. 
Proof Assume tn being a monotone increasing sequence with fJ(tn)-+ +oo. Obvi-
ously !1,2, li,2 E 1 00 (0, T]' because X2 E [O, 1 ], due to lemma 2. So Pii( tn) rv exp~,,.)) ~ 

0. Inserting this into (8) we observe for E1 := I: Fkxk -+ 0 and E2 := -(1-2x2)x2 -+ 
k=l,3 

0, because PE, BE E 1 00 (0, T). By testing (9) with 8, integrating over [O, T] and using 
Young's inequality, we arrive at 

~ 021~ + t (;12dt ~ { T (BE + E1 + E2) · Bdt 
TT lo 

< ~ (82 lT 02dt + 1T [OE+ E1 + E2]2 dt) 

1T [BE+ E1 + E2]2 dt::; G2 

with suitable constants Ci, C2 > 0, which finishes the proof. D 

For both models, it is easy to make the necessary changes from a model for a soft 
loading device to one for a hard loading device. 

13 



3 Numerical Simulations vs. Measurements from 
Experiments 

Let us start with a soft loading device and the first model. 
Remember, that matrix B of the system (3) may become singular, because we were 
not successful in excluding this by analytical means (e.g. a priori estimates). So 

Fig. 5: Simulation soft loading device: left: phase fractions and deformation vs. 
time, right: F21, F22, external load PE,Ta. and temperature vs. time 

we have chosen a EDF-solver for DAEs (LSODI) instead of ODEs. To simplify the 
scheme, we transformed system (2) into the modified system 

MY= F(t,Y) 
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with 

M := ( ~ n , Y := ( ~ ) and 

F ( t, Y) := ( z ) . 
B(y) · z - f(t, y) 

So the left-hand side of the modified problems consists only of the singular matrix 
M, which is now constant. The whole system is packed into the right-hand side F. 
To compute therein Band f, it is necessary to evaluate the (partially semiinfinite) 
integrals (6), which is done to some extent by numerical approximations via Gauss-
Hermite resp. Laguerre formula resp. by analysis. However, the dimension of the 
resulting system has doubled now. 

pEm.ax=2 N<> l11terfacial E11ugy 

thct.a=:0.175 -

load 

-1 

-2 t_____J_ ___ .L__ __ --1.-__ __._ __ ___. _ __, 

0.4 -0.4 -0.2 0.2 
deformation 

Fig. 6: Simulated load-deformation diagram for given external load, 
which is fading away. 

In the second picture of the right-hand side of fig. 5 we see the given evolution of PE 
and the resulting force on the layers Ta. (here denoted P _alpha), which are different, 
because during the simulation, the angle a of the layers is changing. At the bottom 
of the right-hand side, we can observe slight changes in temperature, due to the 
effects of latent heat during the transitions. 
The left-hand side describes the development of the phase fractions (first subfigure 
martensite M- and M+, second one for austenite A) and the last subfigure shows 
the computed deformation for the given load. 
In fig. 6 the resulting load-deformation diagram shows a asymmetry between the 
first and third quadrant, which is due to the fact, that during the hysteresis loop, 
the angle a and therefor also the load Ta. is changing. 
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Numerical Load-Deformation Diagram, first model, soft loading device 

i '°'~..q-e-+-O-~ ·-~ : 4-~-0-~~ ""$.. ,b'-t ~ 4-~4-~~-.:JY' 
{11.,h : ~..q- ,~ ~, 0.8 
, :~~'°' ,, $1 : ...or-""" fl \ / ,~1 / 

~ ~, i ~ I 
/ 'f',' ~ / I 

f / j ~ ! 
; f ~ / _l 

<} I ~ J ,7 / ! ~ / ,~ 
? / ~ l_4-~-ef / ? : ..... -ii>---+-4-~..;;,,--0-{ o ········································-··········,'iJ·········/······························· . -*-~····································r································· ,, ! j 

,, ~, I p I I 

/ I j 
~ ~ : 

,,fl" {I/,,' / 

~ / f 
" n' I / / I 

,h '" (I' high temperature -:AS -~·/¥ .11>/ low temperature ~--
-0.8 '$._ ' : -e--~H 

~-+-+~~-~~-e--~-o-~~~~-e-~-~~~~ 

-0.2 

-0.4 

-0.6 

0.6 

0.4 

0.2 

~ : 
~ ~-. : 

-2 -1.5 -1 -0.5 0 0.5 1.5 2 
load 

Fig. 7: Simulated load-deformation diagram 1st model for 2 different 
temperatures/soft loading device 

4-----------------------------~ 

-4'---L----.....L----......L.-----~----....... -----6 -3 0 ~ 6 
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Fig. 8: Measured load-deformation diagram (ref. fig. 18 in [9]) 

Now we consider, still for the case of a soft loading device and the first model, a 
saw-toothed external load PE(t). 
The numerical results (fig. 7) for this setting show a good qualitative agreement 
with experimental data of Murakami [9] in fig. 8. Notice that the shape memory 
effect as described in section 1.1 can be read of in fig. 7, where the dotted curve 
describes the load-deformation cycle at a low temperature with residual deforma-
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Fig. 9: Measured load-deformation diagram (in courtesy of U. 
Glasauer, TU-Berlin, cf. [10]) 

tions. After heating, the continuous curve applies, showing a zero deformation for 
zero external loads. We have not calculated the corresponding diagrams of the sec-
ond model in the case of a soft loading device. 
In fig. 9-11 we compare the experimental load-deformation diagrams with the nu-
merical results for the case of a hard loading device. The programs are built in anal-
ogy to those for the first model. However, the physcial constants of [?? and private 
communication with I. Miiller] are used. 
By simulation a hard loading device, we can reproduce "inner loops" (cf. [8]) for 
both models (fig. 10-11). Comparing the simulations with experimental data (fig. 
9), the second model (with coherency energy) shows its superiority to the first one, 
because in fig. 10, the "inner loops" have intersections with the outer one. So, the 
first model would predict thermodynamically unrealistic crosspoints in the loops. 
The simulations, done by the second model, have these artefacts not and the loops 
are much smoother, compared to the experiment. 

3.1 Summary 

We have discussed the Shape Memory Effect and pointed out, how it may be visu-
alized by load-deformation diagrams for different temperatures. Using two models 
of I. Miiller et al., based on statistical mechanics, we presented numerical simula-
tions ofload-deformation diagrams. In the setting of a soft loading device the first 
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Fig. 10: Simulation hard loading device: 1st model 

model shows a good qualitative agreement with experimental data. But in the case 
of a hard loading device then 2nd model can be seen as superior, especially when 
we simulate "inner loops", which can only be observed in this sort of experiments. 
It remains to confirm that the 2nd model can reproduce the internal recovery line 
(ref. [3]) in the quasi plastic- and pseudoelastic temperature range. 
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