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The 3D transient semiconductor equations with

gradient-dependent and interfacial recombination
Karoline Disser, Joachim Rehberg

Abstract

We establish the well-posedness of the transient van Roosbroeck system in three space di-

mensions under realistic assumptions on the data: non-smooth domains, discontinuous coef-

ficient functions and mixed boundary conditions. Moreover, within this analysis, recombination

terms may be concentrated on surfaces and interfaces and may not only depend on charge-

carrier densities, but also on the electric field and currents. In particular, this includes Avalanche

recombination. The proofs are based on recent abstract results on maximal parabolic and optimal

elliptic regularity of divergence-form operators.
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The 3D transient semiconductor equations 3

1 Introduction

In 1950, van Roosbroeck [67] established a system of partial differential equations describing the

dynamics of electron and hole densities in a semiconductor device due to drift and diffusion within

a self-consistent electrical field. In 1964, Gummel [35] published the first report on the numerical

solution of these drift–diffusion equations for an operating semiconductor device. In the mathematical

literature, there are now a number of related models and results. For excellent overviews, see [46] or

[54] and references therein. Very active recent areas of research are, for example, the modelling and

analysis of hydrodynamic models, active interfaces, e.g. in solar cells, and organic semiconductors,

[25, 26, 27, 33, 34, 45, 72]. In real device simulation, drift-diffusion formulations and adaptive codes

based on van Roosbroeck’s system represent the state of the art, [15, 22, 66]. Regarding the numerics

and analysis of these systems, we highlight three main difficulties:

� The devices exhibit non-smoothness, referring to non-smooth boundary regularity of their do-

mains, inhomogeneous, mixed boundary conditions due to external contacts, and discountinu-

ous material coefficients due to their heterogeneous, mostly layered, structure.

� The dynamics include nonlinearities of high order, both in the expressions for the currents and

for recombination, depending, for example, on the electric field itself rather than its potential. A

highly relevant prototype is Avalanche recombination.

� Some processes concentrate on or are active on lower-dimensional substructures only, like

surfacial or interfacial recombination due to material structure or impurities.

The aim of this paper is to establish a functional analytic setting for van Roosbroeck’s system that

allows us to simultaneously handle these aspects. It is tayolered exactly to the combination of a lack

of regularity due to non-smoothness, and the need for regularity due to nonlinearity (we refer to a

more detailed discussion in Section 4). In particular, even though interfacial recombination in general

prevents the existence of strong solutions, we can show well-posedness in a suitable norm and Hölder

regularity of solutions, cf. Theorem 5.1. These results provide a strong basis for further numerical

analysis, cf. for example the discussion in 4.2, for the modeling of more complex devices and coupled

effects, and for future optimization and optimal control of the system.

The first proof of global existence and uniqueness of weak solutions for van Roosbroeck’s system

under realistic physical and geometrical conditions is due to Gajewski and Gröger [18, 19]. It was

shown that the solution tends to thermodynamical equilibrium, if this is admitted by the boundary

conditions. The key for proving these results is a Lyapunov functional. At least one serious drawback

of these and related results is that only recombination terms are admissable which depend on the

densities, and this mostly even under some additional structural conditions, see [17, 2.2.3], [20, Ch. 6],

[23] and [71]. The only exception seems to be the paper of Seidman [68], where Avalanche generation

– also called impact ionization, is included. However, his analytic framework requires (generically)

smooth geometries and necessarily excludes mixed boundary conditions, cf. [68, Ch. 5], and interfacial

recombination, which are essentially indispensable for real device modeling.

On the other hand, Avalanche generation is the determining operating priniciple of both Avalanche

diodes and Avalanche transistors, [12, 39, 69], and it is of interest for modeling solar cells, see [51, 56].

In the case of Avalanche generation, no energy functional for van Roosbroeck’s system is known and,
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K. Disser, J. Rehberg 4

as is already observed in [68], methods based on maximum principles are not applicable. Thus, global

existence cannot be expected (and may not be desirable) in such a general context, compare [16, 50],

[55, p. 55].

Hence, our approach is different and rests on a reformulation of the system as the nonlocal quasilinear

dynamics of the quasi Fermi levels, in an appropriate Banach space, cf. Section 4 and cf. [48] for a

similar approach to the two-dimensional problem in anLp-space without Avalanche recombination. We

can then show well-posedness using maximal parabolic regularity of the linearized problem and the

contraction mapping principle. Some special (mathematical) aspects of this approach are the following:

� It includes a detailed analysis of the nonlinear Poisson equation specific to the system. This

also gives rise to efficient numerical schemes, compare [17] and the discussion in Subsection

4.2.

� A quite elaborate choice of the underlying Banach space, providing the spatial regularity of

rates a.e. in time, cf. Section 5. In particular, spaces of types Lp and W−1,2 are excluded by

non-smoothness, interfacial terms and nonlinearity, respectively, and spaces of type W−1,p are

also not suitable. Our choice can be viewed as an adequate framework for the treatment of

generalized second-order quasilinear parabolic problems with nonsmooth data when including

semilinear terms that depend on (powers of) gradients of the unknowns.

� Many intricate properties of the non-smooth Poisson operators−div µ∇·, entering in the equa-

tion for the electrostatic potential and the current fluxes, are essential to the analysis and were

achieved only recently (see e.g. Proposition 5.4 and references):

� They provide topological isomorphims between the spaces W 1,q
D (Ω) and W−1,q

D (Ω) with

q larger than the space dimension 3, cf. Assumption 3.5. An assumption like this was

already introduced in [19] (compare [71, Introduction]) as an ad hoc assumption in order

to show uniqueness in case of Fermi-Dirac statistics, but is now substantially covered by

[8] in cases of mixed boundary conditions and heterogeneous, layered materials. Here,

‘layered’ can be interpreted in a fairly broad sense that may cover many specific devices.

� They have maximal parabolic regularity, even when considered on interpolation spaces of

W−1,q and Lq, cf. Proposition 5.4.

� Even with varying coefficients due to the quasilinearity of the system, they have a (suffi-

ciently regular) common domain of definition on these interpolation spaces, and the oper-

ator norm can be estimated suitably, cf. Lemma 5.7.

� The domains of (suitable) fractional powers can be determined, due to the pioneering

results of [4]. In particular, it can be shown that they may embed into W 1,q.

Even with some technicalities in the functional analytic framework, we want to present a main result

that is straightforwardly applicable to real devices. Thus, we have taken care to motivate and discuss

the mathematical assumptions, using known results, examples, relevant physical quantities and addi-

tional figures.

The outline of this paper is as follows: In the next section, we introduce van Roosbroeck’s model,

including examples of expressions for bulk and surface recombination. In Section 3, we collect mathe-

matical prerequisites. In particular, this includes assumptions and preliminary results associated to the
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The 3D transient semiconductor equations 5

non-smoothness of the setting and inhomogeneous data and to Avalanche recombination. In Section

4, we introduce and explain the functional analytic setting, analyse the nonlinear Poisson equation

for the electrostatic potential given in terms of quasi Fermi levels, and deduce how the system can

then be rewritten as a quasilinear abstract Cauchy problem. In Section 5, we prove the main result on

well-posedness and discuss regularity of solutions.

2 The van Roosbroeck system

In this section we introduce the van Roosbroeck system for modeling the transport of charges in

semiconductor devices. Therein, the negative and positive charge carriers, electrons and holes, move

by diffusion and drift in a self-consistent electrical field and on their way, due to various mechanisms,

they may recombine to charge-neutral electron-hole pairs or, vice versa, negative and positive charge

carriers may be generated from charge-neutral electron-hole pairs.

The electronic state of the semiconductor device resulting from these phenomena is described by the

triple (u1, u2, ϕ) of unknowns that consists of

� the densities u1 and u2 of electrons and holes, and

� the electrostatic potential ϕ.

Moreover, further physical quantities associated with (u1, u2, ϕ) are used to describe the state of the

device:

� the chemical potentials χ1 and χ2,

� the quasi Fermi levels Φ1,Φ2, and,

� the electron and hole currents j1 and j2.

Their precise relations are given in Section 2.1.

Throughout this work we assume that the semiconductor device occupies a bounded domain Ω ⊂ R3.

Its boundary ∂Ω with outer unit normal ν, consists of a Dirichlet part D ⊂ ∂Ω and of a Neumann,

resp. Robin part Γ := ∂Ω\D. In addition, two-dimensional interfaces Π ⊂ Ω are taken into account,

where additional recombination mechanisms may take place, triggered e.g. by material impurities.

The precise mathematical assumptions on the geometry of these objects are collected in Assumption

3.1. The evolution of the charge carriers is monitored during a finite time interval J =]0, T [ with

T ∈]0,∞[.

The van Roosbroeck system (1), defined on J×Ω, then consists of the Poisson equation (1a) and

the current continuity equations (1b):

Poisson equation: − div (ε∇ϕ) = d+ u1 − u2 in Ω,

ϕ = ϕD on D,

ν · (ε∇ϕ) + εΓϕ = ϕΓ on Γ,

(1a)

DOI 10.20347/WIAS.PREPRINT.2507 Berlin 2018



K. Disser, J. Rehberg 6

and with k ∈ {1, 2}, k = 1 for electrons and k = 2 for holes, the

current-continuity equation: ∂tuk − divjk = rΩ in J × (Ω \ Π)

Φk(t) = ΦD
k (t) on D,

ν · jk = rΓ on Γ,

[ν · jk] = rΠ on Π.

(1b)

The evolution starts from initial conditions Φk(0) = Φk,0.

The parameters in the Poisson equation are the dielectric permittivity ε : Ω → R3×3 and, on the

right-hand side, the (prescribed) doping profile d. The latter is allowed to be located also on a two-

dimensional surface in Ω (cf. [59] [11]), see our mathematical requirement on d in Assumption 3.12

below. Moreover, in the corresponding boundary conditions, εΓ : Γ→ [0,∞) represents the capacity

of the part of the corresponding device surface, ϕD and ϕΓ are the voltages applied at the contacts of

the device, and may, therefore depend on time.

From now on we denote the pair (Φ1,Φ2) of quasi Fermi levels by Φ. Analogously, we always write u

for the pair of densities (u1, u2).

The current-continuity equations feature the currents jk on their left-hand side and reaction or re-

combination terms rΩ, rΓ, rΠ on their right-hand side. Here, rΩ acts in the bulk and, additionally, the

Neumann conditions in (1b) balance the normal fluxes cross the exterior boundary Γ with surface re-

combinations rΓ taking place on Γ, resp. the jump of the normal fluxes [ν · jk] across Π with surface

recombinations rΠ taking place on the surface Π. Details on jk and rΩ, rΓ, rΠ and in particular on

their dependence of the quantities u,ϕ, and Φ are given in Sections 2.1 and 2.2.

2.1 Carrier densities and currents

An essential modeling ingredient of van Roosbroeck’s system is the relation of the densities of elec-

trons and holes with their chemical potentials. We assume

uk(t, x) = Fk (χk(t, x)) , x ∈ Ω, k = 1, 2, (2)

where the functions F1 and F2 represent the statistical distribution of the electrons and holes in the

energy band. In general, Fermi–Dirac statistics applies, i.e.

Fk(s) =
2√
π

∫ ∞
0

√
t

1 + e(t− s)
dt, s ∈ R, k = 1, 2. (3)

Sometimes, Boltzmann statistics is a good approximation:

Fk(s) = es. (4)

As is common, we assume that the electron and hole current is driven by the gradient of the quasi

Fermi level of electrons Φ1 and holes Φ2, respectively. More precisely, the currents are given by

jk(t, x) = uk(t, x)µk(x)∇Φk(t, x) , x ∈ Ω, k = 1, 2, (5)
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The 3D transient semiconductor equations 7

where the quasi Fermi levels Φk are related to the chemical potentials χk via

χk = Φk + (−1)kϕ, k = 1, 2 (6)

Here, µk : Ω → R3×3 are the mobility tensors for electrons and holes, respectively. We specify the

mathematical prerequisites on the functions Fk in the following

Assumption 2.1. The functions Fk : R→]0,∞[, k = 1, 2 are twice continuously differentiable with

Fk(s) → +∞ as s → +∞. Moreover, their derivatives F ′k are bounded from above and below on

bounded intervals by strictly positive constants.

This includes Boltzmann statistics (4), as well as Fermi–Dirac statistics (3), for the distribution func-

tions.

2.2 Recombination terms

The recombination term rΩ on the right-hand side of the current–continuity equations (1b) can be

given by rather general functions of the electrostatic potential, of the currents, and of the vector of

electron/hole densities. It describes the production of electrons and holes, respectively — produc-

tion or destruction, depending on the sign. Our formulation of the reaction rates remains abstract, cf.

Section 3, but in particular, it includes a variety of models for semiconductors. It covers non-radiative

recombination like the Shockley–Read–Hall recombination due to phonon transition and Auger re-

combination (three particle transition) as well as Avalanche generation, see e.g. [65, 52, 17] and the

references cited there.

2.2.1 Bulk recombination

A rather general model for many recombination terms, valid under any statistics, is

rΩ(u1, u2,Φ1,Φ2) = r̂(u1, u2)
(
g − exp(Φ1 + Φ2)

)
,

cf. [6, Sect. 9.2]. In case of Boltzmann statistics, this includes the well-known Shockley–Read–Hall

recombination (SRH) and the Auger recombination (AUG):

(SRH) Shockley–Read–Hall recombination :

rΩ
SRH =

u1u2 − n2
i

τ2(u1 + n1) + τ1(u2 + n2)
, (7)

where ni is the intrinsic carrier density, n1, n2 are reference densities, and τ1, τ2 are the lifetimes of

electrons and holes, respectively. ni, n1, n2, and τ1, τ2 are parameters of the semiconductor material.

(AUG) Auger recombination (three particle transitions):

rΩ
Auger = (u1u2 − n2

i )(c
Auger
1 u1 + cAuger2 u2), (8)

where cAuger1 and cAuger2 are the Auger capture coefficients of electrons and holes, respectively, in the

semiconductor material.
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(AVA) An analytical expression for Avalanche generation (impact ionization), valid at least in the cases

of Silicon or Germanium, is

rΩ
Ava(u, ϕ,Φ) = cn|jn| exp

( −an
|E · jn|

)
+ cp|jp| exp

( −ap
|E · jp|

)
, (9)

where E = ∇ϕ is the electrical field and jn,p are the normalized currents jn,p
|jn,p| of the corresponding

type. The parameters a, cn,p are given, see [65, p. 111/112] and references; in particular Tables 4.2-

3/4.2-4, and see also [55, Ch. p. 17, p. 54/55].

2.2.2 Surface recombination

Our model also allows for surface recombination terms rΓ along an exterior (Neumann/Robin) part of

the boundary and rΠ along interior, 2-dimensional surfaces Π, cf. [65, p. 110] and references given

there, see also [23]. Of course, if rΓ ≡ 0, then the semiconductor is isolated at Γ, i.e the current

through Γ is zero.

The functional analytic requirements on the reaction terms are specified in Subsection 3.4. A typical

example of surface recombination is analogous to Shockley-Read-Hall, at gate contacts,

rΓ
Surf (u) =

u1u2 − n2
i

v2(u1 + n1) + v1(u2 + n2)
,

with additional parameters v1, v2.

3 Mathematical prerequisites and assumptions

In this section, we introduce some mathematical terminology and state mathematical prerequisites for

the analysis of the van Roosbroeck system (1).

In particular, we have the following requirements on the domain Ω occupied by the device. Figure 1

shows a typical example.

Assumption 3.1. The device under consideration occupies a bounded domain Ω ⊂ R3. The bound-

ary ∂Ω is decomposed into a Dirichlet boundary part D and its complement Γ := ∂Ω \ D. It holds

that

� the Dirichlet boundary part D is a (d − 1)-set in the sense of Jonsson/Wallin, cf. [47, Ch. II]),

and that

� every point x in the closure of Γ admits a Lipschitzian boundary chart, cf. [57, Ch. 1.1.9]) or [30,

Def. 1.2.1.2].

Moreover, Π ⊂ Ω is a Lipschitz surface (not necessarily connected) which forms a (d − 1)-set, cf.

[42, Ch. II/Ch. VIII.1], and σ is the surface measure on Γ ∪ Π, cf. [10, Ch. 3.3.4C] or [36, Ch. 3.1]

(being identical with the restriction of the 2-dimensional Hausdorff measure to this set).

DOI 10.20347/WIAS.PREPRINT.2507 Berlin 2018



The 3D transient semiconductor equations 9

Figure 1: Scheme of a ridge waveguide quantum well laser (detail 3.2µm×1.5µm×4µm). The device

domain has two material layers. The material interface (darkly shaded) and the Neumann boundary

part (lightly shaded) meet at an edge. At the bottom and the top of the structure, contacts give rise to

Dirichlet boundary conditions for the electrostatic potential. A triple quantum well structure is indicated

where the light beam forms in the symmetry plane of the domain.

This defines the general geometric framework that is restricted implicitly later on by Assumption 3.5.

We are convinced that this setting is sufficiently broad to cover (almost) all relevant semiconductor ge-

ometries – in particular, referring to the arrangement of D and Γ. Please see also the more elaborate

Remark 3.6 on this topic below.

3.1 Notation

For a Banach spaceX we denote its norm by ‖·‖X . X denotes the direct sumX⊕X ofX with itself.

L(X;Y ) is the space of linear, bounded operators from the Banach space X into the Banach space

Y . We abbreviate L(X) := L(X;X). If Z is a Banach space and Z∗ the space of (anti)linear forms

on Z , then 〈· | ·〉Z always denotes the (anti)dual pairing between Z and Z∗.

The (standard) notation [X, Y ]θ, (X, Y )θ,r, respectively, is used for the complex, respectively real

interpolation spaces of X and Y with indices θ ∈]0, 1[, r ∈ [1,∞]. If v is a function on an interval

J =]0, T [ taking its values in a Banach space X , then v̇ indicates its derivative in the sense of

X-valued distributions, cf. [1, Ch. III.1.1].

3.2 Function spaces

We exemplarily define spaces of functions on the bounded domain Ω ⊂ R3 and on its boundary. In the

following, we (mostly) write L2 instead of L2(Ω) and use this convention for all spaces of functions,

functionals or distributional objects on the bulk domain Ω.

If p ∈ [1,∞], then Lp is the usual real Lebesgue space on Ω. Hθ,q denotes the space of real Bessel

potentials (cf. [70, Ch. 4.2]), which coincides with the usual Sobolev space W 1,q on Ω in case of

θ = 1, cf. [70, Ch. 2.3.3]. Hθ,q
D denotes the closure of

C∞D =
{
ψ|Ω : ψ ∈ C∞0 (R3), suppψ ∩D = ∅

}
,

DOI 10.20347/WIAS.PREPRINT.2507 Berlin 2018
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in Hθ,q, which means that Hθ,q
D consists of all elements of W 1,q with vanishing trace on D, – if the

trace exists, compare [42, Thm. 3.7/Corollary 3.8].H−θ,qD denotes the dual ofHθ,q′

D , where 1
q
+ 1

q′
= 1.

The requirements on Ω and on D imply the usual interpolation properties within the {W 1,q
D }q- and

{W−1,q
D }q-scales, cf. [42].

If Z is a Banach space and A is a linear and closed operator in Z , then we denote its domain of

definition by domZ(A).

3.3 Weak elliptic operators in non-smooth settings

Before defining the elliptic operators relevant for (1), we introduce the following symmetry and ellipticity

conditions:

Definition 3.2. A bounded, measurable, elliptic coefficient function ρ on Ω that takes its values in the

set of symmetric 3 × 3-matrices, is called an elliptic coefficient function. Bounded and elliptic means

the existence of two constants ρ• and ρ• such that

ρ•|y|2 ≤ (ρ(x)y) · y ≤ ρ•|y|2, for a.a. x ∈ Ω, for all y ∈ R3.

Assumption 3.3. i) The dielectric permittivity ε and the mobilities µk, k = 1, 2 are elliptic coeffi-

cient functions.

ii) We assume that either the boundary measure of the Dirichlet boundary part D is positive or εΓ

is strictly positive on a subset of Γ which has positive boundary measure. Physically spoken,

the device has a Dirichlet contact or part of its surface has a positive capacity.

Considering the coefficient functions ε and εΓ from now on as fixed, we define the Robin Poisson

operator P̂ : W 1,2 → W−1,2
D by

〈P̂ψ |ϑ〉W 1,2
D

=

∫
Ω

(ε∇ψ) · ∇ϑ dx+

∫
Γ

εΓψ ϑ dσ, ψ ∈ W 1,2, ϑ ∈ W 1,2
D . (10)

Correspondingly, P denotes the restriction of P̂ to the domain W 1,2
D .

By a slight abuse of notation, P may also denote the maximal restriction of P to any range space

which continuously embeds into W−1,2
D .

Remark 3.4. Assumption 3.3 assures that the Poisson operator is coercive, cf. [36] and [13], and,

hence, P : W 1,2
D → W−1,2

D is a topological isomorphism.

Let ρ be an elliptic coefficient function on Ω. Then we define the elliptic operatorAρ : W 1,2
D → W−1,2

D

by

〈Aρψ |ϑ〉W−1,2
D

=

∫
Ω

(ρ∇ψ) · ∇ϑ dx, ψ, ϑ ∈ W 1,2
D , (11)

which may also denote its maximal restriction to a smaller range space. The operator Âρ is defined

accordingly, acting on W 1,2. Of particular interest is the case ρ = ηµk, with η a bounded, strictly

positive scalar function.

For our analysis of van Roosbroeck’s system, the following assumption is crucial.
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Assumption 3.5. There is a common integrability exponent q ∈]3, 4[, such that the operators

P : W 1,q
D → W−1,q

D (12)

and

Aµk : W 1,q
D → W−1,q

D , k = 1, 2, (13)

are topological isomorphisms.

Remark 3.6. i) Gajewski and Gröger have already observed in their pioneering paper [19] that a

condition like this – in 1989 being an ad hoc assumption – would lead to a more satisfactory

analysis of van Roosbroeck’s system, compare also the discussion in [71].

ii) If (12) or (13) is a topological isomorphism for a q > 2, then this property remains true for all

q̃ ∈ [2, q[ by Lax-Milgram and interpolation, cf. [42], so the set of such qs above 2 always forms

an interval. Thus, it is actually sufficient to assume that each of the operators in Assumption

3.5 is an isomorphism for some q > 3. Moreover, if Aρ : W 1,q
D → W−1,q

D is a topological

isomorphism, then this property is maintained for coefficient functions ηρ, if the scalar function

η is strictly positive and uniformly continuous on Ω, cf. [8, Ch. 6].

iii) Assumption 3.5 is fulfilled by very general classes of “layered” structures and additionally, if D

and its complement do not meet in a “too wild” manner, cf. [38] for the most relevant model

settings. A global framework has recently been established in [8]. However, Assumption 3.5

indeed restricts the class of admissable coefficient functions ε and µk. For instance, it is typically

not satisfied if three or more different materials meet at one edge.

iv) Assumption 3.5 also includes interesting geometric constellations that are not covered in [8]. A

relevant example are buried contacts, cf. Figure 2. The characteristic property of these constel-

lations is that they touch themselves ‘from the other side’ – but only at the Dirichlet boundary

part D. In particular, they need not be Lipschitz domains.

Figure 2: Sketch of an idealized buried contact as an example of an admissible geometric setting.

Dirichlet boundary conditions hold at the contact, i.e. on the shaded areas at the inner (buried) surface

and close to its outer contact line.

v) Note that it is typically not restrictive to assume that all three differential operators provide topo-

logical isomorphisms, if one of them does, since this property mainly depends on the (possibly)
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discontinuous coefficient functions versus the geometry of D. This is determined by the mate-

rial properties of the device on Ω, i.e., the coefficient functions µ1, µ2, ε will often exhibit similar

discontinuities and degeneracies.

3.4 Assumptions on recombination terms in (1b)

For the recombination terms rΩ, rΠ, rΓ in (1b), we require the following.

Assumption 3.7. Let q be as in Assumption 3.5. We assume that the reaction term in the bulk, rΩ, is

a locally Lipschitzian mapping

rΩ : W1,q ×W 1,q ×W1,q 3 (u, ϕ,Φ) 7→ rΩ(u, ϕ,Φ) ∈ L
q
2 .

Assumption 3.8. We assume that the reaction term on Γ, rΓ, is a locally Lipschitzian mapping

rΓ : W1,q ×W 1,q ×W1,q 3 (u, ϕ,Φ) 7→ rΓ(u, ϕ,Φ) ∈ L4(Γ, σ).

The same assumption holds, mutatis mutandis, for rΠ.

In particular, the recombination terms introduced in (7) and (8) are included. It is nontrivial to see

that the Avalanche generation term, depending on the electric field and the currents also satisfies

Assumption 3.7. Since the generality of Assumption 3.7 causes considerable functional analytic effort

in the analysis of the system, we give a detailed proof that Avalanche generation (9) is indeed included:

It is straightforward to check that the mappings

L∞ ×W 1,q ×W 1,q 3 (uk, ϕ,Φk) 7→
(
∇ϕ, jk(uk,Φk)

)
∈ Lq(Ω;R3)

are boundedly Lipschitzian. If∇ϕ and jk are orthogonal to each other, in order to give the expression

in (9) a precise meaning, we introduce the function κ : R3 × R3 → [0,∞[ with

κ(e, j) =

0, if e · j = 0,

|j| exp( −a|e· j|j| |
), otherwise,

(14)

for a > 0. It then suffices to show the following result.

Lemma 3.9. The mapping

Lq(Ω;R3)× Lq(Ω;R3) 3 (e, j) 7→ κ
(
e(·), j(·)

)
takes its values in the space Lq(Ω) and admits the Lipschitz estimate

‖κ(e1, j1)− κ(e2, j2)‖q/2 ≤ (|Ω|1/q + 2La‖e1‖q)‖j1 − j2‖q + La‖j2‖q‖e1 − e2‖q, (15)

in Lq/2(Ω;R3), where ‖ · ‖q/2, ‖ · ‖q are the norms in Lq/2(Ω;R3), Lq(Ω;R3), respectively, and

where La = 4
e2a

< 0.542
a

.
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Proof. For e, j ∈ R3, we consider the function κ in (14) as composed of the functions fa : [0,+∞[3
t 7→ e

−a
t and $ : R3 × R3 3 (e, j) 7→ |e · j

‖j‖ |.Regarding fa, note that it is analytic on ]0,+∞[,

bounded by 1, and has Lipschitz constant La = 4
e2a

, and the last two properties extend into 0. To

show the Lipschitz estimate, consider e1, e2, j1, j2 ∈ R3. If j1 = j2 = 0, then the estimate is trivial.

Without loss of generality, let j1 6= 0. Regarding $, we estimate

|$(e1, j1)−$(e1, j2)| ≤ ‖e1‖
2

‖j1‖
‖j1 − j2‖,

and

|$(e1, j2)−$(e2, j2)| ≤ ‖e1 − e2‖.

Thus, we obtain

|κ(e1, j1)− κ(e2, j2)| ≤ |κ(e1, j1)− κ(e1, j2)|+ |κ(e1, j2)− κ(e2, j2)|
≤ ‖j1‖|fa($(e1, j1))− fa($(e1, j2))|

+ ‖j1 − j2‖|fa($(e1, j2))|+ La‖e1 − e2‖
≤ (2La‖e1‖+ 1)‖j1 − j2‖+ La‖e1 − e2‖.

The estimate (15) now follows from Hölder’s inequality.

3.5 Elliptic operators II: the domains of fractional powers

We choose an abstract formulation for the system that intricately solves the analytical problems arising

from combining non-smoothness of material and geometry and nonlinearity of the dynamics. This

gives rise to some technicalities in the proof. For example, on one hand, our techniques heavily rest

on complex methods; this is in particular the instrument to provide exact descriptions for the domains

of fractional powers of the elliptic operators involved. On the other hand, the system is intrisically a

real one – of course, we are (only) interested in real solutions. In this subsection, we consider complex

Banach spaces and complexifications of the elliptic operators Aρ. In order to avoid further indices, the

complex objects are denoted analogously to the real ones, only furnished by an underline.

Let ρ be an elliptic coefficient function on Ω. Then we define the elliptic operatorAρ : W 1,2
D → W−1,2

D

by

〈Aρψ1 |ψ2〉W−1,2
D

=

∫
Ω

(ρ∇ψ1) · ∇ψ2 dx, ψ1, ψ2 ∈ W 1,2
D ,

We show that the isomorphism property (13) transfers to the complex spaces.

Lemma 3.10. If ρ is a real, elliptic coefficient function, such that

Aρ : W 1,q
D → W−1,q

D (16)

is a topological isomorphism, then

Aρ : W 1,q
D → W−1,q

D (17)

is a topological isomorphism.
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Proof. We define a *-operation in W−1,q
D by setting 〈f ∗|ψ〉W−1,q

D
:= 〈f |ψ〉W−1,q

D
, , for ψ ∈ W 1,q′

D .

Evidently, one has f = f+f∗

2
+ if−f

∗

2i
and both f1 := f+f∗

2
and f2 := f−f∗

2i
attain real values for real

functions ψ ∈ W 1,q′

D . Hence, f1, f2 may be viewed as elements of the real space W−1,q
D . Moreover,

since A−1
ρ transforms real elements f = f ∗ ∈ W−1,q

D into real functions, the isomorphism property

(16) carries over to the one in (17).

In case of smooth data (smooth domains, coefficients and absence of mixed boundary conditions) the

determination of the domains of fractional powers is classical, cf. [64]. In our situation, this does not

work, but the subsequent powerful results from [4] apply.

Proposition 3.11. Assume q ≥ 2 and let ρ be an elliptic coefficient function on Ω. Then

i) (Aρ + 1)
1
2 provides a topological isomorphism of Lq and W−1,q

D ,

ii) the operatorAρ+1 is positive on both spaces,Lq andW−1,q
D , i.e. it satisfies resolvent estimates

of the kind

‖(Aρ + 1 + λ)−1‖L(Lq) ≤
1

1 + λ
, ‖(Aρ + 1 + λ)−1‖L(W−1,q

D ) ≤
c

1 + λ
, (18)

for all λ ∈ [0,∞[ and some constant c, cf [70, Ch. 1.14]. In consequence, all fractional powers

are well-defined, cf. [70, Ch. 1.15].

iii) the operator Aρ + 1 admits bounded purely imaginary powers on W−1,q
D , i.e. one has

sup
τ∈[0,1]

‖(Aρ + 1)iτ‖L(W−1,q
D ) <∞.

Proof. i) is the main result of [4], see Thm. 5.1. Regarding ii), it is well-known that, under the above

conditions,Aρ generates a strongly continuous contraction semigroup on everyLp, p ∈]1,∞[, cf. [60,

Thm. 4.28]. Thus, the first resolvent estimate in (18) follows by the Hille-Yosida theorem, cf [63, Thm.

X.47a]. The second estimate is deduced from the first by i). Finally, iii) is proved in [4, Ch. 11].

3.6 Inhomogeneous data

For setting up the Poisson and current–continuity equations in appropriate function spaces, we split

the unknowns into two parts, where one part each represents the inhomogeneous Dirichlet boundary

values ϕD and ΦD
k , k = 1, 2.

Assumption 3.12. The data d, ϕΓ, ϕD and ΦD
k in (1) are such that

i) the doping d is either contained in W 1,∞(J ;Lq/2) or it is independent of time and satisfies

d ∈ W−1,q
D , which would include dopings concentrated on surfaces, cf. [59] [11].

ii) the Robin boundary value ϕΓ satisfies ϕΓ ∈ W 1,∞(J ;L4(Γ, σ)),

iii) there are functionsϕD,Φd
k ∈ W 1,∞(J ;Lq/2)∩L∞(J ;W 1,q) that also satisfy ÂµkΦ

d
k, P̂ϕ

D ∈
L∞(J ;Lq/2) such that ϕD(t)|D = ϕD(t) and Φd

k(t)|D = ΦD
k (t) in the sense of traces.
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Remark 3.13. Note that we do not suppose that the function ϕΓ takes its values in L∞(Γ, σ) with

regularity assumptions for the dependence on time. If there were a continuity requirement on the

mapping J 3 t 7→ ϕΓ(t, ·) ∈ L∞(Γ, σ), this would exclude an indicator function of a subset of Γ

that moves in Γ over time.

Remark 3.14. The regularity Assumption 3.12 iii) is easily satisfied for smooth ϕD and ΦD. In view of

the fact that D is a (d− 1)-set of Jonsson/Wallin (cf. [47, Ch. II]), we refer to [42, Ch. V] for examples

of suitable extension and trace operators. Note that additional time regularity of the data transfers to

additional regularity of the solution, cf. Theorem 5.1 and Remark 5.3 below.

With Assumption 3.12, define

ϕd(t) = P−1(d+ ϕΓ)(t) + (Id− P−1P̂ )ϕD)(t) ∈ W−1,q.

Then ϕd solves


−div ε∇ϕd = d, in Ω,

ϕd = ϕD, on D,

ν · (ε∇ϕd) + εΓϕd = ϕΓ, on Γ,

and the split

ϕ = ϕd + ϕ̃ (19)

gives a solution ϕ of (1a) with

ϕ̃ = P−1(u1 − u2). (20)

For the quasi Fermi levels Φk, in the following, we use the direct split

Φ = φ+ Φd, (21)

so that, in particular, φ(t) ∈W1,q
D is equivalent to Φ(t) ∈W1,q and Φ(t)|D = ΦD(t).

4 Abstract formulation of (1)

In this section, we rewrite the van Roosbroeck system as a quasilinear abstract Cauchy problem for

the homogeneous quasi Fermi levels φ1, φ2,

φ̇(t) +A(t, φ(t))φ(t) = R(t, φ(t)) ∈ X, (22)

with initial condition φ(0) = Φ0 − Φd(0). In the next subsection, we motivate and define the Banach

space X – being a rather ‘unorthodox’ one – in which the problem is set. It becomes clear why the

requirements due to the combination of non-smoothness and non-linearity of the system do not allow

us to use an Lp- or an W−1,2
D -space. We then prove the preliminary properties of the space X that

justify its choice and are needed in the following.

To derive (22), we eliminate the electrostatic potential ϕ from the continuity equations. Replacing the

carrier densities u1 and u2 on the right hand side of Poisson’s equation by (2)/(6) – thereby taking
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into account (19) and (21) – one obtains a nonlinear Poisson equation for ϕ̃. In Subsection 4.2, we

solve this equation in its dependence of prescribed quasi Fermi levels Φ ∈W1,q. This way of nesting

the equations is also used in numerical schemes for the van Roosbroeck system. It is due to Gummel

[35] and was the first reliable numerical technique to solve these equations for carriers in an operating

semiconductor device structure.

Finally, in Subsection 4.3, we derive the abstract formulation of type (22).

4.1 Choice of the ambient space X

We discuss structural and regularity properties of the unknowns u, ϕ,Φ of the transient semiconductor

equations in (1) to motivate the choice of X.

� In view of the jump condition on the surface Π on the fluxes jk in (1b), it cannot be expected that

div jk is a function. This excludes spaces of typeLp, cf. Remark 5.3. In addition, with the choice

of a space X that includes distributional objects, the inhomogeneous Neumann conditions rΓ

in the current-continuity equations (1b) and the surface recombination term rΠ can be included

in the right-hand side of (22), cf. Lemma 4.4.

� For our analysis, we require an adequate parabolic theory for the divergence operators on X.

Due to the non-smooth geometry, the mixed boundary conditions and discontinous coefficient

functions, this is nontrivial. The first crucial point is that the operators have to satisfy maximal

parabolic regularity on X, with a domain of definition that does not change, cf. Lemma 5.8.

� For the handling of ‘squares’ or other functions of gradients in the Avalanche and other recombi-

nation terms, the Banach space X should be sufficienlty ‘small’ so that the parabolic time-trace

space, cf. Theorem 5.1, embeds into W 1,q, cf. Corollary 5.9. This excludes spaces of type

W−1,r
D . With this strategy, at the same time, the space needs to be sufficiently large for the

embedding Lq/2 ↪→ X to hold, cf. Lemma 4.4.

� Finally, the dependence η 7→ Aηρ, cf. (11), should be well-behaved in the sense that it should

be Lipschitz with respect to functions η in the parabolic time-trace space, cf. Lemma 5.7.

With this discussion in mind, for q > 3 the number from Assumption 3.5, we define

X := [Lq,W−1,q
D ] 3

q
and X := X ⊕X.

Moreover, we put Dµ := domX(Aµ1)⊕ domX(Aµ2), equipped with the graph norm.

Remark 4.1. The complex interpolation functor applies to real spaces in the usual sense, following [1,

Ch. 2.4.2]: the spaces are complexified, then interpolated and then the ‘real part’ is considered.

We show that X and X, respectively, together with the occurring operators, possess the properties

claimed in the discussion.
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Lemma 4.2. Recall that X = [Lq,W−1,q
D ] 3

q
. Assume that ρ is an elliptic coefficient function, such

that

Aρ : W 1,q
D → W−1,q

D

is a topological isomorphism. Then

i) we have domW−1,q
D

(
(Aρ + 1)

1
2

(1− 3
q

))
)

= [Lq,W−1,q
D ] 3

q
, and

ii) the embedding (
X, domX(Aρ)

)
ς,∞ ↪→ W 1,q, if ς ∈]

1

2
+

3

2q
, 1[.

Proof. i) According to Proposition 3.11, Aρ + 1 is a positive operator on W−1,q
D , possessing bounded

purely imaginary powers. This gives, according to [70, Ch. 1.15.3],

domW−1,q
D

(
(Aρ + 1)

1
2

(1− 3
q ))
)

= [W−1,q
D , domW−1,q

D

(
(Aρ + 1)

1
2

)
]1− 3

q

= [W−1,q
D , Lq]1− 3

q
= [Lq,W−1,q

D ] 3
q

= X.

ii) From i), it immediately follows that
(
Aρ + 1)

1
2

(1+ 3
q

) : W 1,q
D → [Lq,W−1,q

D ] 3
q

is a topological

isomorphism; in other words domX

(
(Aρ + 1)

1
2

(1+ 3
q

)
)

= W 1,q
D . Since Aρ is – by interpolation – also

a positive operator on X , for ς ∈]1
2

+ 3
2q
, 1[, we have

(X, domX(Aρ))ς,∞ ↪→ (X, domX(Aρ)) 1
2

(1+ 3
q

),1 ↪→ domX((Aρ + 1)
1
2

(1+ 3
q

)) = W 1,q
D ,

cf. [70, Thm. 1.3.3 e)] and [70, Thm. 1.15.2]). This proves the assertion in the complex case. But X

is a real subspace of X and domX(Aρ) is a real subspace of domX(Aρ). So the real interpolation

space
(
X, domX(Aρ)

)
ς,∞ must be embedded in the ‘real part’ W 1,q

D of W 1,q
D .

Corollary 4.3. Under Assumption 3.5, we obtain(
X,Dµ

)
ς,∞ ↪→W1,q

D , if ς ∈]
1

2
+

3

2q
, 1[.

For convenience, we defined the recombination terms rΓ and rΠ as L4(Γ, σ)-valued and L4(Π, σ)-

valued, respectively, since one has an intuitive understanding of this condition. Since the whole system

will be considered in the space X, in the next result, we connect Assumption 3.8 with spaces of type

X.

Lemma 4.4. Let Γ and Π be as in Assumption 3.1. Then

i) we have the embedding L
q
2 ↪→ X , and

ii) there are continuous embeddings

T ∗Γ : L4(Γ, σ)→ X, and T ∗Π : L4(Π, σ)→ X.

given by the adjoints of the trace operators TΓ, TΠ.
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Proof. i) According to the duality formula for interpolation [70, Ch. 1.11.13],

[Lq,W−1,q
D ]θ = [Lq

′
,W 1,q′

D ]∗θ,

and taking into account Remark 4.1, the assertion is equivalent to [Lq
′
,W 1,q′

D ] 3
q
↪→ L( q

2
)′ .... Exploiting

the fact that the spacesLq
′
andW 1,q′

D admit a common extension operator toLq
′
(R3) andW 1,q′(R3),

respectively, and the interpolation equality

[Lq
′
(R3),W 1,q′

D (R3)] 3
q

= H
3
q
,q′(R3),

one obtains, in combination with the embedding H
3
q
,q′(R3) ↪→ L( q

2
)′(R3), the first assertion.

ii) We prove the dual statements, i.e. the existence of trace mappings

TΓ : X∗ = [Lq
′
,W 1,q′

D ] 3
q
→ L

4
3 (Γ, σ), and TΠ : X∗ → L

4
3 (Π, σ), (23)

thereby again taking into account Remark 4.1. In view of q < 4, we have the inequalities 3
q
> 1

q′
=

1 − 1
q

and q′ > 4
3
. We establish the first trace mapping in (23). First, one may localize the setting.

Then, thanks to the Lipschitz property of ∂Ω in a neighbourhood of Γ, the bi-Lipschitzian boundary

charts can be applied, observing that the quality of [Lq
′
,W 1,q′

D ] 3
q
↪→ [Lq

′
,W 1,q′ ] 3

q
is preserved un-

der the corresponding transformation, so that the boundary part under consideration is ‘flat’. Hence,

[Lq
′
,W 1,q′ ] 3

q
= H

3
q
,q′ can be applied locally, as in the half space case, [70, Thm. 2.10.1], in order to

see that the trace belongs to Lq
′
(Γ, σ) ↪→ L

4
3 (Γ, σ).

We now establish the second trace mapping in (23). The starting point is the observation that the

properties of Ω, cf. Assumption 3.1, allow for a continuous extension operator E : Lq
′
(Ω)→ Lq

′
(R3)

the restriction of which to W 1,q′

D (Ω) provides a continuous operator into W 1,q′(R3), cf. [4, Lemma

3.2]. By interpolation, this gives a continuous extension operator

Ê : X∗ = [Lq
′
,W 1,q′

D ] 3
q
→ [Lq

′
(R3),W 1,q′(R3)] 3

q
= H

3
q
,q′(R3).

Taking τ ∈] 1
q′
, 3
q
[6= ∅, we have the embedding H

3
q
,q′(R3) ↪→ W τ,q′(R3) into the corresponding

Sobolev-Slobodetskii space, cf. [70, Ch. 4.6.1]. Now we consider Π, the closure of Π, instead of Π,

and exploit that Π is also a 2-set, and Π \ Π is negligible with respect to the two-dimensional Haus-

dorff measure, cf. [47, Ch. VIII.1.1]). Then we use the trace mapping W τ,q′(R3) ↪→ Lq
′
(Π, σ) ↪→

L
4
3 (Π, σ), cf. [47, Ch. V.1.1]. Finally, the definition of the trace (cf. [47, Ch. I.2]) as the limit of averages

(pointwise a.e. with respect to σ) tells us that the trace of any function ψ ∈ H
3
q
,q′ on points of Π is

independent of the extension Êψ, because Ω is open and Π ⊂ Ω.

4.2 The nonlinear Poisson equation

The aim of this subsection is to express the dependence of the homogeneous part of the electrostatic

potential ϕ̃, cf. (19), in its dependence of the homogeneous quasi Fermi levels φ. With uk(t) =

Fk
(
φ(t) + Φd

k(t) + (−1)k(ϕ̃(t) + ϕd(t))
)

for some ϕd(t),Φd
k(t) ∈ L∞ depending on the data, cf.

Subsection 3.6, this means that we need to solve the nonlinear Poisson problem

Pϕ̃ = F1(ω1 − ϕ̃)−F2(ω2 + ϕ̃) (24)
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and to quantify the dependence of the solution of given functions ω ∈ L∞.

With this analysis, we can then consider van Roosbroeck’s equations as a quasilinear nonlocal prob-

lem in the unknowns Φ only.

Theorem 4.5. For every pair ω = (ω1, ω2) ∈ L∞ there is exactly one element ϕ̃ ∈ W 1,q
D that

satisfies (24). We write ϕ̃ = S(ω). Then,

i) the mapping S : L∞ → W 1,q
D is continuously differentiable,

ii) the mapping S , viewed between L∞ and L∞, is globally Lipschitzian with Lipschitz constant

not larger than 1, and

iii) S : L∞ → W 1,q
D is boundedly Lipschitzian.

Proof. We first apply the implicit function theorem. In particular, define

K : L∞ ×W 1,q
D → W−1,q

D

by

K(ω, ϕ̃) = Pϕ̃−F1(ω1 − ϕ̃) + F2(ω2 + ϕ̃).

We show that K is continuously differentiable and that the partial derivatives with respect to ϕ̃ are

topological isomorphisms between W 1,q
D and W−1,q

D . Then the level set K(ω,S(ω)) = 0 implicitly

defines the solution operator

S : L∞ → W 1,q
D (25)

of (24) and S is continuously differentiable. The partial derivatives of K are given by

∂ϕ̃K(ω, ϕ̃) = P +
2∑

k=1

F ′k(ωk + (−1)kϕ̃) ∈ L(W 1,q
D ;W−1,q

D ),

∂ωkK(ω, ϕ̃) = (−1)kF ′k(ωk + (−1)kϕ̃) ∈ L(L∞;W−1,q
D ),

and they depend continuously on ω and ϕ̃. Note that here the expressions F ′k(ωk + (−1)kϕ̃) ∈ L∞
are to be understood as multiplication operators.

Consider the equation

Pψ +
2∑

k=1

F ′k(ωk + (−1)kϕ̃)ψ = f ∈ W−1,q
D . (26)

Since
2∑

k=1

F ′k(ωk + (−1)kϕ̃)

is a non-negative function in L∞, (26) has a unique solution ψ ∈ W 1,2
D by the Lax-Milgram-Lemma.

Moreover,
∑2

k=1F ′k(ωk + (−1)kϕ̃)ψ is then contained in L2 ↪→ W−1,q
D and P : W 1,q

D → W−1,q
D

is a topological isomorphism, so a rearrangement of terms in (26) gives ψ ∈ W 1,q
D . It follows that

∂ϕ̃K(ω, ϕ̃) is an isomorphism of W 1,q
D and W−1,q

D . This proves i).
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ii) Given ω, κ ∈ L∞, consider the solutions ϕ̃ = S(ω) ∈ W 1,q
D , ψ̃ = S(κ) ∈ W 1,q

D – each being

even uniformly continuous. They satisfy

P (ϕ̃− ψ̃) = F1(ω1 − ϕ̃)−F2(ω2 + ϕ̃)−F1(κ1 − ψ̃) + F2(κ2 + ψ̃) (27)

in W−1,q
D ↪→ W−1,2

D . Define

d = max(max(‖(ω1 − κ1)+‖∞, ‖(κ2 − ω2)+‖∞),max(‖(κ1 − ω1)+‖∞, ‖(ω2 − κ2)+‖∞)),

and note that d ≤ ‖ω − κ‖L∞ . Now let

h =


ϕ̃− ψ̃ − d, if ϕ̃− ψ̃ > d,

ϕ̃− ψ̃ + d, if ϕ̃− ψ̃ < −d,
0, otherwise.

Taking into account the uniform continuity of ϕ̃, ψ̃, it is not hard to see that h is an admissable test

function in W 1,2
D ∩ L∞. Denote by Ω+ = {x ∈ Ω : h(x) > 0}, Ω− = {x ∈ Ω : h(x) < 0} the

(open) subsets of Ω where h is positive or negative, respectively. We apply (27) to h, cf. (10),∫
Ω

(ε∇h) · ∇h dx+
∫

Γ
εΓ(ϕ̃− ψ̃)h dσ

=
∫

Ω+
(F1(ω1 − ϕ̃)−F1(κ1 − ψ̃))h dx−

∫
Ω+

(F2(ω2 + ϕ̃)−F2(κ2 + ψ̃)h dx

+
∫

Ω−
(F1(ω1 − ϕ̃)−F1(κ1 − ψ̃))h dx−

∫
Ω−

(F2(ω2 + ϕ̃)−F2(κ2 + ψ̃)h dx.

Clearly, the first addend on the left-hand-side is non-negative. Secondly, the function (ϕ̃− ψ̃)h is non-

negative on Ω, so its trace on Γ is also non-negative a.e. with respect to σ. On the other hand, by the

definition of d and h and the monotonicity ofFk, all four terms on the right-hand-side are non-positive.

It follows that h ≡ 0 and thus

‖ϕ̃− ψ̃‖L∞ ≤ d ≤ ‖ω − κ‖L∞ ,

which proves ii).

iii) is a direct consequence of re-investing ii) into (27), where

‖ϕ̃− ψ̃‖W 1,q
D

≤ ‖P−1‖L(L∞;W 1,q
D )‖F1(ω1 − ϕ̃)−F2(ω2 + ϕ̃)−F1(κ1 − ψ̃) + F2(κ2 + ψ̃)‖∞

≤ CM(‖ω − κ‖L∞ + ‖ϕ̃− ψ̃‖∞)

≤ 2CM‖ω − κ‖L∞ ,

where the constant CM > 0 depends on the local Lipschitz constants of Fk with respect to bounded

sets of parameters ‖ω‖L∞ , ‖κ‖L∞ < M .

Remark 4.6. We refer to [31] for a similar analysis of (24).

Theorem 4.5 is crucial for our result on well-posedness, but it also provides an adequate starting point

for an highly effective numerical solution of the nonlinear Poisson equation. We discuss this point in

some detail:

Given any k1 ∈ R, e.g. k1 = 0, with the choice of k2 = F−1
2 (F1(k1)), the pair k = (k1, k2) is such
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that S(k) = 0. Set K0 = max(|k1|, |k2|) and note that K0 = 0 is admissible if F1 = F2, cf. the

examples in Subsection 2.1. Then by Theorem 4.5 ii), for all ω = (ω1, ω2) with ‖ω‖∞ ≤ M , the set

of solutions ϕ̃ = S(ω) is bounded via

‖S(ω)‖L∞ = ‖S(ω)− S(k)‖L∞ ≤ ‖ω − k‖L∞ ≤M +K0.

We use this information in the following way: Let K = M +K0, consider the function $ with

$(s) =


K, if s ≥ K

s if s ∈ [−K,K]

−K if s ≤ −K,

and denote the induced Nemytskii operator also by $. Then ϕ̃ is a solution of (24) if and only if it

satisfies the equation

Pϕ̃−F1(ω1 −$(ϕ̃)) + F2(ω2 +$(ϕ̃)) = 0. (28)

With this cut-off in the equation, it is straightforward to check that the associated operator

Pω : W 1,2
D 3 ψ̃ 7→ Pψ̃ −F1(ω1 −$(ψ̃)) + F2(ω2 +$(ψ̃)) ∈ W−1,2

D

is well-defined, Lipschitzian and strongly monotonous with a monotonicity constant not smaller than

the one for P : W 1,2
D → W−1,2

D . The combination of monotonicity and Lipschitz continuity in a Hilbert

space setting then provides a standard, highly efficient solution algorithm for (28), based on a contrac-

tion principle, see in particular [21, Ch. III.3.2].

Finally, a last point is interesting: due to the cut-off, these considerations do not depend on the asymp-

totics of the distribution functions Fk at∞.

4.3 Quasilinear evolution of quasi-Fermi levels

In this subsection, we derive a quasilinear abstract Cauchy problem of type (22) that models the van-

Roosbroeck system (1). It is the basis of our analysis and of a functional analytic setting in which

both gradient recombination and interfacial jump conditions can be realized, cf. the discussion at the

beginning of this section. In particular, the smoothing through the Poisson equation (1a) for the elec-

trostatic potential can be fully exploited in this setting. We first give a pointwise reformulation of the

bulk equations in (1) in terms of the evolution of the quasi Fermi levels Φk in (32) and then derive a

suitable weak formulation in the space X. With the definition (6) of the quasi Fermi levels we have

Φ̇k =
1

F ′k(χk)
u̇k − (−1)kϕ̇. (29)

When recalling the split ϕ = ϕ̃+ ϕd from (19), and differentiating (20) (formally) with respect to time,

we get

ϕ̇ = ϕ̇d + P−1(u̇1 − u̇2). (30)

According to the defintion of the current densities (5), we get

1

F ′k(χk)
div jk = div(

Fk
F ′k

(χk)µk∇Φk)−∇(
Fk
F ′k

(χk)− χk) · µk∇Φk. (31)
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Combining (29), (30) and (31) with the bulk equations in (1b), we obtain the equations(
Φ̇1

Φ̇2

)
−
(

1 + P−1F ′1(χ1) −P−1F ′2(χ2)

−P−1F ′1(χ1) 1 + P−1F ′2(χ2)

)(
div(F1

F ′1
(χ1)µ1∇Φ1)

div(F2

F ′2
(χ2)µ2∇Φ2)

)

= −
(

1 + P−1F ′1(χ1) −P−1F ′2(χ2)

−P−1F ′1(χ1) 1 + P−1F ′2(χ2)

)( ∇(F1

F ′1
(χ1)− χ1) · µ1∇Φ1

∇(F2

F ′2
(χ2)− χ2) · µ2∇Φ2

)

+

(
1

F ′1(χ1)
1

F ′2(χ2)

)
rΩ +

(
+1

−1

)
ϕ̇d.

(32)

in J × Ω.

To incorporate the boundary and interface conditions in (1b), we use the split

Φk = Φd
k + φk,

cf. Subsection 3.6. We can now consider the densities u in (1) as functions of φ via

uk = Fk(χk), with χk = φk + Φd
k + (−1)kϕd + (−1)kS(φ+ Φd + ϕ̌d), (33)

where S taken from (25) is the solution operator of the nonlinear Poisson problem (24) and with the

notation

ϕ̌d =

(
+1

−1

)
ϕd.

In the following, considering ϕd and Φd as fixed, for φ ∈W1,q
D , we thus define

F̃k(t, φ) = Fk(χk(t))

with the right-hand-side as in (33) and, correspondingly, F̃ ′k(t, φ) = F ′k(χk(t)), and

ηk(t, φ) =
F̃k(t, φk)
F̃ ′k(t, φk)

.

As an additional shorthand, we write(
1 + P−1F ′1(χ1) −P−1F ′2(χ2)

−P−1F ′1(χ1) 1 + P−1F ′2(χ2)

)
= Id + P−1[F̃ ′(t, φ)],

for the matrix operators in (32).

We can now define the abstract evolution problem (1), in a functional analytic setting in which Neumann

boundary and interfacial recombination terms appear on the right-hand-sides,

φ̇(t) +A(t, φ(t))φ(t) = R(t, φ(t)) ∈ X for a.a. t ∈ J. (34)

The operatorsA : J ×W1,q → L(Dµk ,X) andR = Rflux +Rrec +Rdata are given by the elliptic

part

A(t, v)φ = (Id + P−1[F̃ ′(t, v)])

(
Aη1(t,v)µ1 0

0 Aη2(t,v)µ2

)
φ, (35)

and the lower-order flux termRflux : J ×W1,q
D → Lq/2 with

Rflux(t, v) = (Id + P−1[F̃ ′(t, v)])

(
∇(η1(t, v)− v1) · µ1∇v1

∇(η2(t, v)− v2) · µ2∇v2

)
. (36)
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In order to define the recombination termRrec : J ×W1,q
D → X with

Rrec(t, v) =

(
1

F̃ ′1(t,v)
1

F̃ ′2(t,v)

)(
r̃Ω(t, v) + r̃Γ(t, v) + r̃Π(t, v)

)
, (37)

we set r̃E(t, φ) = rE(u, ϕ,Φ) for E ∈ {Ω,Γ,Π} with u and ϕ as in (33). We consider Rrec(t, v)

as an element of X by the embeddings in Lemma 4.4. The part of the right-hand-side in (34) modeling

inhomogeneous data is given byRinh : J ×W1,q
D → X with

Rinh(t, v) = −Φ̇d(t) + (Id + P−1[F̃ ′(t, v)])

(
Âη1(t,v)µ1 0

0 Âη2(t,v)µ2

)
Φd (38)

+ (Id + P−1[F̃ ′(t, v)])

(
∇(η1(t, v)− v1) · µ1∇Φd

1

∇(η2(t, v)− v2) · µ2∇Φd
2

)
+ ˙̌ϕd. (39)

The operatorsA andR are analyzed further in Subsection 5.2 below where it is shown that they adapt

to the functional analytic setting in X and that they are locally Lipschitz in v uniformly with respect to

time.

Remark 4.7. In case of Boltzmann statistics, Fk = exp one has ηk = 1, and the main part of the

parabolic operator in (35) simplifies to a linear one. This shows why the analysis of van Roosbroeck’s

system is then much easier, compare [19].

5 Main Result

In this section, we state the main result on well-posedness and regularity of solutions of the van Roos-

broeck system. In the proof, we use the concept of maximal parabolic regularity and its application

to quasilinear problems. Known preliminary results are stated in Subsection 5.1. In Subsection 5.2,

we show that due to our preliminary considerations in Sections 3 and 4, the abstract theory can be

applied to (34). In Subsection 5.3, we discuss further implications and related topics.

Theorem 5.1. Under Assumptions 3.1, 2.1, 3.5, 3.7 and 3.12, let 3 < q < 4 as in Assumption 3.5

and let s > 2q
q−3

.

� Local well-posedness: Suppose

φ0 = Φ0 − Φd(0) ∈ (X,Dµ)1− 1
s
,s = Ys,q.

Then there is a maximal time interval J∗ =]0, T ∗[ of existence (0 < T ∗ ≤ T ) and a unique

solution

φ ∈ Ls(J∗;Dµ) ∩W 1,s(J∗;X) ∩ C(J∗;Ys,q) ↪→ C(J∗;W1,q)

of (34) that depends continuously on the data and initial value in the respective norms.

� The electron and hole densities and the chemical and electrostatic potentials associated

to the solution φ satisfy

uk, χk, ϕ ∈ C(J∗;W 1,q) ↪→ C(J∗;Cβ), u > 0,

for some β > 0.
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� Regularity in time: If the data d,ΦD, ϕD and ϕΓ are such that there is a γ > 0 with

Rinh(·, v) ∈ Cγ(J ;X) for every v ∈W1,q, then

φ ∈ Cγ(J∗;Dµ) ∩ C1+γ(J∗;X).

5.1 Maximal parabolic regularity

The proof of Theorem 5.1 rests on the notion of maximal parabolic regularity for a suitable linearization

of the problem, which we recall here:

Definition 5.2. Let 1 < s <∞, let Z be a Banach space and let J := ]0, T [ be a bounded interval.

Assume thatB is a closed operator inZ with dense domain D, equipped with the graph norm. We say

that B satisfies maximal parabolic Ls-regularity in Z , if for any f ∈ Ls(J ;Z) there exists a unique

function v ∈ W 1,s(J ;Z) ∩ Ls(J ;D) satisfying v(0) = 0 and

v̇ +Bv = f holds a.e. on J. (40)

Remark 5.3. i) The property of maximal parabolic regularity of an operator B is independent of

s ∈]1,∞[ and the choice of a bounded interval J , cf. [9, Thm. 7.1/Cor. 5.4].

ii) Observe that (cf. [1, Ch. 4.10])

W 1,s(J ;Z) ∩ Ls(J ;D) ↪→ C(J ; (Z,D)1− 1
s
,s).

In particular, (Z,D)1− 1
s
,s, is the appropriate space of initial values for (40).

iii) If θ ∈]0, 1− 1
s
[, then

W 1,s(J ;Z) ∩ Ls(J ;D) ↪→ Cβ(J ; (Z,D)θ,1)

with β := 1− 1
s
− θ, cf. [2, Thm. 3].

iv) If B satisfies maximal parabolic regularity on a Banach space Z , and B0 is relatively bounded

with a sufficiently small relative bound, then B +B0 also satisfies maximal parabolic regularity

on Z , cf. [3, Prop. 1.3] or [62, Prop. 1.5].

v) If B satisfies maximal parabolic regularity on the complex Banach space Z , then −B is a

generator of an analytic semigroup on Z . [9, Ch. 4].

vi) IfB1, B2 satisfy maximal parabolic regularity onZ , then

(
B1 0

0 B2

)
satisfies maximal parabolic

regularity on Z = Z ⊕ Z .

We first show that the second order divergence operatorsAρ occurring in (34) satisfy maximal parabolic

regularity:

Proposition 5.4. Let ρ be an elliptic coefficient function on Ω, and assume q ∈ [2,∞[.

i) Then the operator Aρ satisfies maximal parabolic regularity in W−1,q
D and on Lq.
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ii) If θ ∈]0, 1[, then it also satisfies maximal parabolic regularity in [Lq,W−1,q
D ]θ.

Proof. Maximal parabolic parabolic regularity in Lq is obtained under our supposed geometric condi-

tions, if one uses the upper Gaussian estimates for the semigroup kernel from [14] and then applies

[43], compare also [7]. For the case W−1,q
D , see [4, Ch. 11]. ii) follows from i) and the following fact,

proved in [40, Lemma 5.3]: if the (complex) Banach space Z1 embeds into the (complex) Banach

space Z2 and the operators A : domZ2(A) → Z2 and A|Z1 satisfy maximal parabolic regular-

ity on Z1 and Z2, respectively, then A also satisfies maximal parabolic regularity on every complex

interpolation space [Z1, Z2]θ. Compare also [41, Thm. 5.19].

Corollary 5.5. Let ρ be an elliptic coefficient function on Ω, and assume q ∈ [2,∞[. If θ ∈]0, 1[, then

Aρ also satisfies maximal parabolic regularity in [Lq,W−1,q
D ]θ =: Z.

Proof. We assume q as fixed and define Z := [Lq,W−1,q
D ]θ, Z := [Lq,W−1,q

D ]θ. Let f ∈ Ls(J ;Z).

We identify an element z ∈ Z with an element z ∈ Z by setting,

〈z|ψ〉Z := 〈z|ψ1〉Z − i〈z|ψ2〉Z , ψ = ψ1 + iψ2 ∈ Z∗ = [Lq
′
,W 1,q′

D ]θ.

Identifying f in this spirit with a function g ∈ Ls(J ;Z), we are looking for a solution v of the equation

v̇ + Aρv = g, v(0) = 0, (41)

According to the maximal parabolic regularity of Aρ on Z , the (unique) solution of (41) exists and

belongs to the space Ls(J ; domZ(Aρ) ∩W 1,s(J ;Z). But, according to [1, Ch. III1.3 Prop. 1.3.1],

the solution of (41) is given by the variation of constants formula

v(t) =

∫ t

0

e−(t−s)Aρg(s) ds.

Here one observes that the semigroup operators e−(t−s)Aρ transform elements ofZ into real elements

of domZ(Aρ) since the resolvent also has this behaviour. Thus, v ∈ Ls(J ; domZ(Aρ)). But Aρ acts

on domZ(Aρ) as Aρ; so the equation (41) shows that v̇ ∈ Ls(J ;Z), proving the assertion.

The proof of Theorem 5.1 rests on the maximal parabolic regularity of the linearization of (34) and a

Banach fixed point argument, which is encoded in the following Proposition.

Proposition 5.6 ([62]). Suppose thatB is a closed operator on a Banach space Z with dense domain

D, which satisfies maximal parabolic regularity on Z . Suppose further v0 ∈ (Z,D)1− 1
s
,s and B :

J̄ × (Z,D)1− 1
s
,s → L(D, Z) to be continuous with B = B(0, v0). Let, in addition, R : J ×

(Z,D)1− 1
s
,s → Z be a Carathéodory map and assume the following Lipschitz conditions on B and

R:

(LA) For every M > 0 there exists a constant CM > 0, such that for all t ∈ J

‖B(t, w)− B(t, w̃)‖L(D,Z) ≤ CM ‖w − w̃‖(Z,D)
1− 1

s ,s
,

if ‖w‖(Z,D)
1− 1

s ,s
, ‖w̃‖(Z,D)

1− 1
s ,s
≤M .
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(LB) R(·, 0) ∈ Ls(J ;Z), and for each M > 0 there is a function hM ∈ Ls(J), such that

‖R(t, w)−R(t, w̃)‖Z ≤ hM(t) ‖w − w̃‖(Z,D)
1− 1

s ,s

holds for a.a. t ∈ J , if ‖w‖(Z,D)
1− 1

s ,s
, ‖w̃‖(Z,D)

1− 1
s ,s
≤M .

Then there exists T ∗ ∈ J ∪ {T}, such that the equation{
v̇(t) + B

(
t, v(t)

)
v(t) = R(t, v(t)), a.e. t ∈ J,
v(0) = v0.

admits a unique solution v satisfying

v ∈ W 1,s(0, T ∗;Z) ∩ Ls(0, T ∗;D).

The solution depends continuously on the initial condition in (Z,D)1− 1
s
,s and the maximal time of

existence T ∗ is characterized by either T ∗ = T or

‖v(t)‖(Z,D)
1− 1

s ,s
→ +∞ as t→ T ∗.

5.2 Proof of Theorem 5.1

As a next step, we prove the first part of Theorem 5.1. The proof is an application of Proposition 5.6.

Some preliminary observations:

Lemma 5.7. Recall X = [Lq, H−1,q
D ] 3

q
. Assume that ρ is an elliptic coefficient function, such that

Aρ : W 1,q
D → W−1,q

D

is a topological isomorphism.

i) Then the (linear) mapping

W 1,q 3 η 7→ Aηρ ∈ L(domX(Aρ);X)

is well-defined and continuous with norm c‖η‖W 1,q
D

, where the constant c depends only on Ω,

D and ρ. In particular, domX(Aρ) ⊆ domX(Aηρ).

ii) Assume that the function η ∈ W 1,q admits a strictly positive lower bound. Then domX(Aηρ) =

domX(Aρ) and the corresponding graph norms are equivalent.

Proof. i) in [40, pp. 1384/1385], it is proved that

‖Aηρψ‖X ≤ c‖η‖W 1,q
D
‖ψ‖domX(Aρ), ψ ∈ domX(Aρ), (42)

for some constant c > 0. The proof immediately carries over to the case of real spaces.

ii) The properties of η guarantee that also

Aηρ : W 1,q
D → W−1,q

D

is a toplogical isomorphism, cf. Remark 3.6. Thus, the result is obtained by replacing ρ by ηρ in i) and,

afterwards, η by 1
η

.

DOI 10.20347/WIAS.PREPRINT.2507 Berlin 2018



The 3D transient semiconductor equations 27

Lemma 5.8. Assume that f1, f2, η1, η2 ∈ W 1,q and suppose that η1, η2 are bounded functions with

strictly positive lower bounds.

i) Then

domX

(
(Id + P−1[f ])

(
Aη1µ1 0

0 Aη2µ2

))
= domX

(
Aµ1 0

0 Aµ2

)
, (43)

ii) and, moreover, the operator

(Id + P−1[f ])

(
Aη1µ1 0

0 Aη2µ2

)
has maximal parabolic regularity on X.

Proof. By Lemma 5.7, one has

domX

(
Aµ1 0

0 Aµ2

)
= domX

(
Aη1µ1 0

0 Aηµ2

)
,

and it is clear that the functions fk act as continuous multiplication operators on X . Moreover, P−1 :

X → X is compact. Hence, the operator

P−1[f ]

(
Aη1µ1 0

0 Aη2µ2

)
(44)

is relatively compact with respect to

(
Aη1µ1 0

0 Aη2µ2

)
. This implies (43), cf. [49, Ch. IV.1.3].

ii) The operator

(
Aη1µ1 0

0 Aη2µ2

)
satisfies maximal parabolic regularity on X, cf. Proposition 5.4

and Remark 5.3. As established in i), (44) is relatively compact with respect to

(
Aη1µ1 0

0 Aη2µ2

)
.

Using the reflexivity ofX, this implies that (44) is relatively bounded with respect to

(
Aη1µ1 0

0 Aη2µ2

)
,

and the relative bound may be taken arbitrarily small, cf. [5]. Having this at hand, a suitable perturbation

theorem applies, cf. Remark 5.3.

Corollary 5.9. Let s, q and Ys,q as in Theorem 5.1. Then, for every function v ∈ Ls(J ;Dµk) ∩
W 1,s(J ;X), by Remark 5.3, we have v ∈ C(J ;Ys,q). Moreover, by Corollary 4.3,

(X,Dµ)1− 1
s
,s = Ys,q ↪→ (X,Dµ)1− 1

s
,∞ ↪→W1,q

D .

Now we are in the position to show Theorem 5.1 by applying Proposition 5.6:

From Lemmas 5.7 and 5.8 and Corollary 5.9, it follows that the operator A in (35) is well-defined.

In particular, for given v ∈ Ys,q ↪→ W1,q
D , ηk(t, v) ∈ W 1,q is bounded from above and below by

positive constants. Moreover, by Lemma 5.8, A(0, φ(0)) satisfies maximal parabolic regularity in X.
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Secondly, using Lemma 5.7, it is not hard to see that (LA) in Proposition 5.6 also holds, with the

following example of an explicit estimate:

‖A(t, v)−A(t, w)‖L(Dµk ,X)

≤ C max
k

[
‖P−1‖L(L∞,X)LF̃ ′k(t)‖vk − wk‖L∞Cηk(t)‖vk‖W 1,q

D

]
+ C max

k

[
(1 + ‖P−1‖L(L∞,X)CF̃ ′k(t)‖wk‖L∞)Lηk(t)‖vk − wk‖W 1,q

D
)
]

≤ C‖v − w‖Ys,q ,

where Lf is a local Lipschitz constant and Cf is a local bound on the real-valued function f and

C > 0 is a generic constant that, in particular, contains embedding constants and the constant in

(42). Here, we implicitly used the Lipschitz property of S : L∞ → W 1,q
D , Thm. 4.5 to have Lipschitz

dependence of the coefficient functions F̃k(t, ·), ηk(t, ·) of v, w.

For the right-hand-sideRflux in (36), we analogously obtain (LB) in Proposition 5.6 by the embedding

Lq/2 ↪→ X in Lemma 4.4.

For the right-hand-side Rrec in (37), Lipschitz-dependence follows from Assumptions 3.7 and 3.8,

Lemma 3.9 and the embeddings in Lemma 4.4.

The remaining term Rinh in (38) is treated analogously, taking into account Assumptions 3.12 on

the data. This proves the first part of Theorem 5.1. The second part of Theorem 5.1 follows directly

from the relations 33 and 20 of φ and u, ϕ, χ, together with Thm. 4.5. Spatial Hölder regularity is a

consequence of the standard embedding W 1,q ↪→ Cβ for q > 3. The third part of Theorem 5.1 is

a direct consequence of well-known theory for nonautonomous parabolic problems, cf. [61, Thm. 4.3]

and compare also [53, Cor. 6.1.6].

5.3 Concluding remarks

We conclude with a few remarks on direct extensions and open problems associated with the main

result.

The equations in two spatial dimensions can be analyzed in exactly the same way, leading to an

analogous result. Assumption 3.5 that restricts the geometric setting and coefficients can then be

dropped in the sense that for all bounded, measurable and elliptic coefficient functions, there exists a

suitable exponent q > 2, cf. [42].

Note that if rΠ 6= 0, the solution φ in the main result Theorem 5.1 will in general not be twice (weakly)

differentiable and the regularity in Theorem 5.1 is optimal in this sense. If rΠ = 0 and the setting

is smooth, e.g. D = ∂Ω, the material coefficients µk, ε, εΓ and the boundary and initial data are

smooth, then it is straightforward to obtain higher spatial regularity and a strong solution of (1) from

our method by using elliptic regularity in Lp and a boot-strap argument.

The Poisson equation (1a) for the electrostatic potential is sometimes considered on a larger domain

than the current-continuity equation (1b), cf. [48]. This extension is also possible with our analysis.

Finally, it would be interesting to identify the interpolation space [Lq,W−1,q
D ]τ with a dual space of

Bessel potentialsH−τ,qD =
(
Hτ,q′

D

)∗
. This is known for more specific geometries, i.e. if Ω is a Lipschitz

domain, D is the closure of its interior (within ∂Ω), and the boundary of D (within ∂Ω) is locally

bi-Lipschitzian diffeomorphic to the unit interval, see [28] and [37, Ch. 5]. Under our more general

Assumption 3.1, the proof seems to be a very hard task.
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